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Abstract

This thesis mainly deals with large scale objects of height around 1.5 meters.

It uses a dynamic stereo model or a binocular stereo model to calibrate and

reconstruct a 3D large scale object.

This thesis briefly introduces two basic calibration techniques, i.e. DLT

calibration technique and Tsai’s calibration technique. It then discusses and

evaluates the impact of different factors on the calibration system, especially

the size of an object, the distance between the camera and the calibration

object, the number of calibration points and its distribution pattern, the

method for finding the center of a calibration mark, the covered area by a

calibration object in an image and the calibration error distribution around

the object height.

The thesis extends Tsai’s calibration method and builds up two mathe-

matical models. One model is the dynamic stereo system (one camera + one

turntable system). The other is the binocular stereo system. It then demon-

strates the corresponding calibration methods and evaluates the accuracies

of these two systems in reconstructing a 3D object respectively. Problems of

the dynamic stereo system are also discussed.

From the results of evaluation, the accuracy of the binocular stereo system

is much better than the dynamic stereo system.

i



Acknowledgements

I would like to thank my supervisor, Professor Reinhard Klette, for his orig-

inal ideas, comments and suggestions during the development of this thesis.

His support, encouragement and patience were invaluable and essential in

bringing it to completion.

I also like to thank Associate Professors Georgy Gimel’farb and Robert Mar-

shall for their suggestions and comments during the development of this

thesis.

Furthermore, I wish to thank Yen Chen and Yuan-sheng Tsai, our project

members, for their cooperation and support.

Thanks to James Harper, technical staff of CITR, for his technical support.

Thanks also to Brian Gaby for his construction of the open calibration cube.

Finally, I would like to thank Yating Xu, my wife, and Peiyuan Zhang, my

daughter for their support and encouragement.

ii



Contents

Abstract i

Acknowledegments ii

1 Introduction 1

1.1 Purpose of this Thesis . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Basic Calibration Techniques 6

2.1 Direct Linear Transform Method . . . . . . . . . . . . . . . . 6

2.1.1 World Coordinates and Image Coordinates . . . . . . . 8

2.1.2 Eleven Transformation Parameters . . . . . . . . . . . 9

2.1.3 Principal Point and Tz . . . . . . . . . . . . . . . . . . 9

2.1.4 Focal Length . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Translation Vector and Rotation Matrix . . . . . . . . 10

2.2 Tsai’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Sensor Coordinates . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Seven Transformation Parameters . . . . . . . . . . . . 14

2.2.3 Y-component of Translation Vector . . . . . . . . . . . 16

2.2.4 Scaling Factor . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.5 Rotation Matrix and X-component of Translation Vector 17

2.2.6 Approximation of Focal Length and Z-component of

Translation Vector . . . . . . . . . . . . . . . . . . . . 18

iii



2.2.7 Calculation of Focal Length, Z-component of Transla-

tion Vector and Radial Distortion Coefficients . . . . . 19

3 Camera Calibration for Large Scale Objects 22

3.1 Setup of Working Environment . . . . . . . . . . . . . . . . . 23

3.2 Error on the Implementation Software of Tsai’s Calibration

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Different Methods for Finding Center of Calibration Mark . . 27

3.4 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Calibration Points and Pattern . . . . . . . . . . . . . . . . . 33

3.6 Covered Area by a Calibration Object . . . . . . . . . . . . . 36

3.7 Size of Calibration Object . . . . . . . . . . . . . . . . . . . . 38

3.8 Distance Between the Calibration Object and the Camera . . 42

3.9 Distribution of the Calibration Error Around the Heigh of the

Calibration Object . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Dynamic Stereo Calibration Technique 46

4.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Comparison to Aligned Turntable Model . . . . . . . . . . . . 52

4.3 Method of Reconstructing a 3D Point . . . . . . . . . . . . . . 53

4.3.1 Calibration of Camera Parameters . . . . . . . . . . . . 53

4.3.2 Calibration of Rotation Axis . . . . . . . . . . . . . . . 54

4.3.3 Calculation of Rotation Angle . . . . . . . . . . . . . . 55

4.3.4 Calculation of World Coordinates . . . . . . . . . . . . 55

5 Evaluation of Dynamic Stereo System 56

5.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Obtain Calibration Data . . . . . . . . . . . . . . . . . 56

5.1.2 Camera Parameters and Rotation Axis . . . . . . . . . 58

iv



5.1.3 Reconstruction of 3D Points . . . . . . . . . . . . . . . 59

5.2 Evaluation Result . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Problems of Dynamic Stereo System . . . . . . . . . . . . . . 70

6 Binocular Stereo 72

6.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Method of Reconstructing a 3D Point . . . . . . . . . . . . . . 75

6.2.1 Calibration of Cameras . . . . . . . . . . . . . . . . . . 75

6.2.2 Calculation of Undistorted Image Coordinates . . . . . 75

6.2.3 Calculation of World Coordinates . . . . . . . . . . . . 76

6.3 Evaluation of Result . . . . . . . . . . . . . . . . . . . . . . . 77

7 Applications 81

7.1 Application Running Environment . . . . . . . . . . . . . . . 81

7.2 Structures of Applications . . . . . . . . . . . . . . . . . . . . 81

7.3 Use of Method in the Context of PSM Based Shape Recovery 89

7.3.1 Dynamic Stereo Model . . . . . . . . . . . . . . . . . . 89

7.3.2 Binocular Stereo Model . . . . . . . . . . . . . . . . . 91

8 Conclusions 93

References 96

v



CHAPTER 1

Introduction

Camera calibration in the context of three dimensional (3D) machine vi-

sion is the process of determining the internal camera geometric and optical

characteristics (intrinsic parameters) and the 3D position and orientation of

the camera frame relative to a certain world coordinate system (extrinsic

parameters).

This thesis deals with large scale objects and calibration of two models.

One model is a dynamic stereo system (one camera + one turntable system).

The other model is a binocular stereo system.

1.1 Purpose of this Thesis

There are many camera calibration methods, of which the most famous are

DLT (Direct Linear Transform) method and Tsai’s calibration method. DLT

method is the simplest camera calibration method whilst Tsai’s method has

better accuracy. The above two camera calibration methods can only transfer

3D world coordinates to image coordinates or transfer image coordinates to

coplanar world coordinates.

For a camera calibration, the different working situations may also affect

the accuracy of camera calibration results. One of the purposes of this thesis

is to find out which impacts some factors may have on a camera calibration,

such as the size of calibration object, the distance between a camera and

a object, the number of calibration marks and its distribution pattern, the
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methods for finding the center of a calibration mark, the covered area by a

calibration object and the calibration error distribution around the object

height.

For a 3D object reconstruction, we need to reconstruct a 3D point in

a world coordinate system. The above camera calibration method is not

enough. We need to build up a stereo system and to extend Tsai’s camera

calibration method to calibrate a stereo system, not just a single camera,

which is one of the purposes.

Another purpose of this thesis is to evaluate two stereo systems we build

up and find out the accuracies of these stereo systems. The problems of these

stereo system are also discussed.

1.2 Related Works

Images taken with wide-angle cameras tend to have severe distortions which

pull points towards the optical center. Rahul [9] proposes a simple method

for recovering the distortion parameters without calibration objects. Since

distortions cause straight lines on the scene as curves in the image, the pro-

posed algorithm seeks to find the distortion parameters that map the image

curves to straight lines. The user selects a small set of points along the

image curves. Recovery of the distortion parameters is formulated as the

minimization of an objective function which is designed to explicitly account

for noise in the selected image points. Experimental results are presented for

synthetic data as well as real images. The paper [9] also presents the idea of

a polycamera which is defined as a tightly packed camera cluster. Possible

configurations are proposed to capture very large fields of view. Such camera

clusters tend to have a nonsingle viewpoint. This paper therefore provides
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analysis of what the authors call the minimum working distance for such

clusters. Finally, this paper presents results for a polycamera consisting of

four wide-angle sensors having a minimum working distance of about 4 m.

On undistorting the acquired images using the proposed technique, the real

time high resolution panoramas are created.

Zhengyou [10] proposes a flexible new technique to easily calibrate a cam-

era. It only requires the camera to observe a planar pattern shown at a few

(at least two) different orientations. Either the camera or the planar pat-

tern can be freely moved. The motion needs not to be known. Radial lens

distortion is modeled. The proposed procedure consists of a closed-form so-

lution, followed by a nonlinear refinement based on the maximum likelihood

criterion. Both computer simulation and real data have been used to test

the proposed technique and very good results have been obtained. Compared

with classical techniques which use expensive equipment such as two or three

orthogonal planes, the proposed technique is easy to use and flexible. It ad-

vances 3D computer vision one more step from laboratory environment to

real world use.

Current calibration methods typically assume that the observations are

unbiased, the only error is the zero-mean independent and identically dis-

tributed random noise in the observed image coordinates, and the camera

model completely explains the mapping between the 3D coordinates and the

image coordinates. In general, these conditions are not met, causing the

calibration results to be less accurate than expected. Janne [11] proposes a

calibration procedure for precise 3D computer vision applications. It intro-

duces bias correction for circular control points and a nonrecursive method

for reversing the distortion model. The accuracy analysis is presented and

the error sources that can reduce the theoretical accuracy are discussed. The
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tests with synthetic images indicate improvements in the calibration results

in limited error conditions. In real images, the suppression of external error

sources becomes a prerequisite for successful calibration.

1.3 Thesis Organization

Chapter 2 briefly introduces the basic calibration techniques, i.e. Direct

Linear Transformation calibration method and Tsai’s calibration method. It

also demonstrates the use of these calibration techniques.

Chapter 3 evaluates and discusses the impact of some factors in the cal-

ibration system, such as the size of the calibration object, the distance be-

tween the camera and the calibration object, the number of calibration marks

and its distribution pattern, the different method to find the center of a cal-

ibration mark, the covered area by a calibration object and the calibration

error distribution around the object height.

Chapter 4 builds up a new mathematical model for the dynamic stereo

system (one camera + one turntable system). It also compares this new

model to the aligned turntable model mentioned in the textbook [1]. Further-

more, this chapter demonstrates the use of method for this new calibration

model.

Chapter 5 demonstrates the use of method for the evaluation of dynamic

stereo system. It also evaluates this dynamic stereo system. According to

the evaluation result, this chapter discusses the problems of this dynamic

system.

Chapter 6 builds up a mathematical model for a binocular stereo system

and also demonstrates the method for the reconstruction of a 3D object.

Furthermore, this chapter evaluates the accuracy of this binocular stereo
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system.

Chapter 7 introduces the software we developed for both of these two

calibration systems we build. It demonstrates the applications running en-

vironment and the structures of applications. It also demonstrates the use

of method in the context PSM based sharp recovery for the dynamic stereo

system and binocular stereo system.

Chapter 8 gives an overall conclusion for this thesis.
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CHAPTER 2

Basic Calibration Techniques

A calibration technique is based on known 3D space coordinates (e.g. in

the world coordinate system) of geometrically configured points (calibration

points) which are physically realized by marks (calibration marks) on a cer-

tain calibration object.

There are many different calibration techniques. The simplest one is DLT

(direct linear transform) method which is easily understood. Tsai’s method

is the most widely used calibration technique. These two methods are basic

calibration techniques in the computer vision field.

2.1 Direct Linear Transform Method

The Direct Linear Transform Method (DLT method) was suggested by Y.I.

Abdel-Aziz and H.M. Karara (1971)[4]. It has the advantage that it is the

simplest model and is easily understood.

Figure 2.1 shows the relations between world coordinates, camera coor-

dinates and image coordinates. If there is a point P that is (Xw, Yw, Zw) in

the world coordinate system, it is (Xk, Yk, Zk) in the camera system. It is

clear that a translation operation plus a rotation operation on (Xw, Yw, Zw)

will transform it to (Xk, Yk, Zk) in the camera coordinate system. The trans-
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Figure 2.1: Relationships of world coordinates, camera coordinates and image

coordinates

formation relations are as follows:










Xk

Yk

Zk











=











r1 r2 r3

r4 r5 r6

r7 r8 r9





















Xw

Yw

Zw











+











Tx

Ty

Tz











(2.1)

In this equation, ri are the coefficients of the rotation matrix R = Rx ·

Ry ·Rz of the Euclidean transformation (world into camera coordinates). Tx,

Ty and Tz are the coefficients of the translation vector T .

Central projection or orthogonal parallel projection can be assumed for

the transformation of camera coordinates into image coordinates.

If the orthogonal parallel projection model is used, the relation is as

follows:




xi − cx

yi − cy



 =





Xk

Yk



 (2.2)
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If the central projection model is used, the relation is then as follow:




xi − cx

yi − cy



 = − f
Zk





Xk

Yk



 (2.3)

From Equ. 2.1, we can obtain the following equations:




xi − cx

yi − cy



 =
−f

r7Xw + r8Yw + r9Zw + Tz





r1Xw + r2Yw + r3Zw + Tx

r4Xw + r5Yw + r6Zw + Ty





(2.4)

In the above equations, (cx, cy) is the coordinate of the principal point

(i.e. the intersection point of the optical axis with the image plane) according

to the image coordinate system. The parameter f is the effective focal length

of the lens (the distance between the lens center and image plane).

In most of cases, the central project model should be used. The calibra-

tion procedure using DLT method is explained in the following subsections.

2.1.1 World Coordinates and Image Coordinates

A picture of the calibration object, i.e. the marks of the geometric configured

calibration points is taken. The geometric configuration of these points has

to be known. It can be done through constructing a world coordinate system

on the calibration object, e.g. if the calibration object is an open cube, the

three intersection lines of the three planes of the open cube can be used as

the axes of the world coordinate system.

The device dependent row and column positions, i.e. the positions of the

calibration points in the image coordinate system (xb, yb), are determined for

every calibration point having a visible projected mark in the image.
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2.1.2 Eleven Transformation Parameters

Equation 2.4 can be rewritten into the following form:

M ·

















L1

L2
...

L11

















=





xi

yi



 (2.5)

where

M =





Xw Yw Zw 1 0 0 0 0 −xiXw −xiYw −xiZw

0 0 0 0 Xw Yw Zw 1 −xiXw −xiYw −xiZw





It follows that

L1 = r7cx−fr1
Tz

L2 = r8cx−fr2
Tz

L3 = r9cx−fr3
Tz

L4 = Tzcx−fTx
Tz

L5 = r7cx−fr4
Tz

L6 = r8cx−fr5
Tz

L7 = r9cx−fr6
Tz

L8 = Tzcy−fTy

Tz
L9 = r7

Tz

L10 = r8
Tz

L11 = r9
Tz

For a mathematically unambiguous solution, at least six calibration points

are required to solve the above equation with respect to the eleven unknown

transformation parameters L1, . . . , L11. In general, six points or more lead to

an over-determined system of linear equations. More points are also required

with respect of stability of the calibrated solution.

The eleven parameters of transformation vector can be solved by using

the pseudo-inverse technique [6].

2.1.3 Principal Point and Tz

The eleven parameters of transformation vector have been solved in the above

step. These parameters “contain” the intrinsic and extrinsic parameters.
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The image coordinates of principal point can be determined by following

equations:





cx

cy



 =
1

L2
9 + L2

10 + L2
11





L1 L2 L3

L5 L6 L7















L9

L10

L11











(2.6)

The Z component of translation vector T can be obtained from following

equation:

Tz =

√

1
L2

9 + L2
10 + L2

11
(2.7)

In most of cases, the origin of world coordinate system should be in front

of the lens, i.e. Tz is positive. Otherwise, Tz would be negative.

2.1.4 Focal Length

The effective focal length f can be calculated by using any of the following

two equations:

f =

√

L2
1 + L2

2 + L2
3

L2
9 + L2

10 + L2
11
− c2

x (2.8)

f =

√

L2
5 + L2

6 + L2
7

L2
9 + L2

10 + L2
11
− c2

y (2.9)

With respect to the accuracy of calibration, we should use the average of

both equation results as the final value of focal length f .

2.1.5 Translation Vector and Rotation Matrix

Tz of translation vector has been calibrated. Tx and Ty can be calibrated

from the following equation:




Tx

Ty



 =
Tz

f





cx − L4

cy − L8



 (2.10)
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The coefficients r7, r8 and r9 of rotation matrix are determined by fol-

lowing equation:










r7

r8

r9











= Tz











L9

L10

L11











(2.11)

The rest of rotation matrix coefficients can then be calculated:




























r1

r2

r3

r4

r5

r6





























=
1
f





























r7cx − L1Tz

r8cx − L2Tz

r9cx − L3Tz

r7cy − L5Tz

r8cy − L6Tz

r9cy − L7Tz





























(2.12)

2.2 Tsai’s Method

There are a number of techniques for geometric calibration of CCD cameras,

which are known from the computer vision literature. Tsai’s calibration

method was suggested by R.Y. Tsai in 1986 [5]. This calibration method is

widely used because its accuracy is good enough for most applications and

there is a fully developed implementation software provided on the internet

[2].

Unlike the DLT method described in Section 2.1, the Tsai’s calibration

method also includes the determination of the lens distortion coefficients and

mapping sensor elements to image buffer matrix. The method requires at

least seven non-coplanar, accurately detected calibration points which were

given in any arbitrary but known geometric configuration.

Radial lens distortion generally occurs with common cameras. Figure 2.2

shows the influence of this distortion on the acquired image. The effects of
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(x  , y  )u u

(x    ,  y  )

r

v v

Figure 2.2: Deformation of ideal image by radial lens distortion.

the radial lens distortion can be described mathematically. However, an ideal

modeling of the lens distortion leads to an infinite number of distortion coeffi-

cients. In practice, only the first two coefficients are needed to be considered

because it is good enough for the approximation of these distortions. The

valid, i.e. distorted projected image coordinates (xv, yv) can be determined

from undistorted image coordinates (xu, yu) by using the following equations:




xv

yv



 =





xu

yu



−





Dx

Dy



 (2.13)

with Dx = xv · (k1r2 + k2r4), Dy = yv · (k1r2 + k2r4) and r =
√

x2
v + y2

v .

The sensors of CCD cameras are not perfect squares, so this has to be

considered in the mapping of image coordinates to image buffer matrix. Fig-
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digital image buffer coordinates

ure 2.3 shows the following relations:




xb

yb



 =





sxxv
d′x
yv
dy



 +





cx

cy



 (2.14)

In the above equations, the coordinates (cx, cy) specify the principal point.

The parameter Ncx is the number of sensor elements in one image row. The

parameter Nfx is the number of pixels in one row of the final digital image.

The parameter d′x = dx
Ncx
Nfx

is the horizontal distance between two image pix-

els. The parameter dx is the horizontal distance between two sensor elements.

The parameter dy is the vertical distance between two sensor elements. The

parameter sx is the horizontal scaling factor.

The scaling factor sx has to be calibrated. The parameters dx, dy, Ncx,

and Nfx are normally included in the manufacturer’s data sheets for the

camera and the image digitization unit (frame grabber).
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Nowadays the CCD sensors are more likely to be squares. So the con-

version of the principal point centered sensor coordinates into digital image

buffer coordinates is not a necessary consideration.

Tsai’s calibration method can be explained as a procedure consisting

of the following seven processing steps as explained in [1]. The following

explanations are based on a non-coplanar case.

2.2.1 Sensor Coordinates

The position (0,0) is defined to be located in the top-left corner of the image

and it is in a right-hand coordinate system. This ensures positive image buffer

coordinates. The number of sensor elements in one image row is represented

by Ncx. The number of pixels in one image row is represented by Nfx. The

horizontal distance between two sensor elements d′x and the vertical distance

between two sensor elements dy can be read in the manufacturer’s data sheets.

The principal point (cx, cy) is assumed to be at the image center so it can

be obtained from calculation. The corresponding sensor coordinates (xs, ys)

are calculated for all (centers of) calibration marks by the following formulas:

xs =
(xb − cx) · dx′

sx
(2.15)

ys = (yb − cy) · dy (2.16)

The scaling factor sx is initially set to the value one and it will be deter-

mined explicitly later in Sec. 2.2.4.

2.2.2 Seven Transformation Parameters

In the camera coordinates system, the projection vector of the calibration

points (Xk, Yk, Zk) onto the Xk − Yk plane parallel to the corresponding

14



image vector (xs, ys). Their outer product should be zero. It holds:

(Xk, Yk)× (xs, ys) = 0 (2.17)

Using Equ. 2.1, the projection of marks of calibration points (Xw, Yw, Zw)

in the world coordinate system onto corresponding image points (xs, ys) in

sensor coordinates is characterized by the following linear equation. It holds:

xs = (ysXw, ysYw, ysZw, ys,−xsXw,−xsYw,−xsZw) · L (2.18)

with L = [ r1sx
Ty

, r2sx
Ty

, r3sx
Ty

, Txsx
Ty

, r4
Ty

, r5
Ty

, r6
Ty

]T for Ty 6= 0.

The parameters Tx and Ty denote the components of the translation vec-

tor T , and the ri values represent the elements of the rotation matrix R.

The use of more than seven calibration points leads to an over-determined

set of equations which can be solved for L using the pseudo-inverse technique

(Moore-Penrose inverse) as following:

L = (MT M)−1MT X (2.19)

with

M =

















ys1Xw1 ys1Yw1 ys1Zw1 ys1 −xs1Xw1 −xs1Yw1 −xs1Zw1

ys2Xw2 ys2Yw2 ys2Zw2 ys2 −xs2Xw2 −xs2Yw2 −xs2Zw2
...

...
...

...
...

...
...

ysnXwn ysnYwn ysnZwn ysn −xsnXwn −xsnYwn −xsnZwn

















and X = (xs1, xs2, · · · , xsn)T , for n calibration points.
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2.2.3 Y-component of Translation Vector

The components of the solution vector L will be described in the following

by the abbreviations a1 to a7:

a1 =
r1sx

Ty

a2 =
r2sx

Ty

a3 =
r3sx

Ty

a4 =
Txsx

Ty

a5 =
r4

Ty

a6 =
r5

Ty

a7 =
r6

Ty
(2.20)

All parameters a1 to a7 were already determined at Subsection 2.2.2. From

the orthonormality property of R, the relation r2
4 + r2

5 + r2
6 = 1 holds. There-

fore:

(a2
5 + a2

6 + a2
7) = T−2

y · (r2
4 + r2

5 + r2
6) = T−2

y (2.21)

Thus, the value of Ty can be calculated by

| Ty |=
1

√

a2
5 + a2

6 + a2
7

(2.22)

For determining the sign of Ty, an object point P = (Xw, Yw, Zw) is chosen

such that its image position (xb, yb) lies as far away from the principal point

as possible. Firstly the sign of Ty is assumed to be positive. Assume sx

is one and using Equ. 2.20, the values of r1, r2, r3, r4, r5, r6 and Tx can

be calculated. Then the position can also be calculated by the following
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equation:




x

y



 =





r1 r2 r3

r4 r5 r6















Xw

Yw

Zw











+





Tx

Ty



 (2.23)

Compare x and xs as well as y and ys, if they have the same signs, then

Ty is positive, otherwise the sign of Ty is negative.

2.2.4 Scaling Factor

Because of the orthonormality property of R, r2
1 + r2

2 + r2
3 = 1 holds. Using

Equ. 2.20, the following relation can be obtained:

√

a2
1 + a2

2 + a2
3· | Ty |= sx ·

√

r2
1 + r2

2 + r2
3 = sx (2.24)

Thus, the scaling factor can be determined by

sx =
√

a2
1 + a2

2 + a2
3· | Ty | (2.25)

2.2.5 Rotation Matrix and X-component of Transla-

tion Vector

From Equ. 2.20, the components of rotation matrix r1 to r6 and the X-

component of translation vector can be calculated by the following equations:

r1 = a1 ·
Ty

sx
(2.26)

r2 = a2 ·
Ty

sx
(2.27)

r3 = a3 ·
Ty

sx
(2.28)

r4 = a5 · Ty (2.29)

r5 = a6 · Ty (2.30)
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r6 = a7 · Ty (2.31)

Tx =
a4 · Ty

sx
(2.32)

The still missing components of rotation matrix r7, r8 and r9 are cal-

culated with the inner vector product of the first two rows of the rotation

matrix R.

r7 = r2 · r6 − r3 · r5 (2.33)

r8 = r3 · r4 − r1 · r6 (2.34)

r9 = r1 · r5 − r2 · r4 (2.35)

2.2.6 Approximation of Focal Length and Z-component

of Translation Vector

If we ignore the radial lens distortion, i.e. let the coefficients k1 and k2

be as zero, then the distortion coordinates are the same as the undistorted

coordinates. It holds:

ys =
fYk

Zk
(2.36)

Using Equ. 2.1, the linear equation

( y −ys )





f

Tz



 = w · ys (2.37)

is formulated for every calibration point with





y

w



 =





r4 r5 r6

r7 r8 r9















Xw

Yw

Zw











+





Ty

0



 (2.38)

Assuming more than two calibration points can be used. For the unknown
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f and Tz, using the pseudo-inverse technique, it holds:




f

Tz



 = (MT M)−1MT X (2.39)

where M and X are calculated using n calibration points with

M =

















y1 −ys1

y2 −ys2
...

...

yn −ysn

















X =

















w1ys1

w2ys2
...

wnysn

















2.2.7 Calculation of Focal Length, Z-component of Trans-

lation Vector and Radial Distortion Coefficients

The utilization of a standard optimization technique allows more accurate

calculation of the camera constant f , of the depth Tz and of the distortion

coefficients k1 and k2. The already determined approximations of f and Tz

act as the starting values. Zero is assumed as the initial value for the radial

distortion coefficients.

The steepest descent method is used for optimization. The equations

xu1 = f · r1Xw + r2Yw + r3Zw + Tx

r7Xw + r8Yw + r9Zw + Tz
(2.40)

yu1 = f · r4Xw + r5Yw + r6Zw + Ty

r7Xw + r8Yw + r9Zw + Tz
(2.41)

can be used for determination of the parameters. These equations describe

the transformation of a world coordinate point into the camera-centered co-

ordinate system assuming perspective projection in between.
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Projected ideal image points can also be generated by a radial rectification

of the actually projected, valid image points (xv, yv). Therefore:

xu2 = xv · (1 + k1r2 + k2r4) (2.42)

yu2 = yv · (1 + k1r2 + k2r4) (2.43)

where r =
√

x2
v + y2

v

For a search in a four-dimensional vector space, the error function

ε(k1, k2, f, Tz) =
√

(xu2 − xu1)2 + (yu2 − yu1)2 (2.44)

arises from the Euclidean distance between a pair of ideal image points that

were calculated in different ways. The gradient of ε is calculated with the

partial derivatives:

∂ε
∂k1

=
r2 · ((xu2 − xu1) · xv + (yu2 − yu1) · yv)

ε
(2.45)

∂ε
∂k2

=
r4 · ((xu2 − xu1) · xv + (yu2 − yu1) · yv)

ε
(2.46)

∂ε
∂f

= −(xu2 − xu1) · (r1Xw + r2Yw + r3Zw + Tx)
ε · (r7Xw + r8Yw + r9Zw + Tz)

−(yu2 − yu1) · (r4Xw + r5Yw + r6Zw + Ty)
ε · (r7Xw + r8Yw + r9Zw + Tz)

(2.47)

∂ε
∂Tz

=
f · (xu2 − xu1) · (r1Xw + r2Yw + r3Zw + Tx)

ε · (r7Xw + r8Yw + r9Zw + Tz)2

+
f · (yu2 − yu1) · (r4Xw + r5Yw + r6Zw + Ty)

ε · (r7Xw + r8Yw + r9Zw + Tz)2 (2.48)

This gradient allows to specify the direction of the steepest increase of the

error function ε. The optimum has to be analyzed contrary to the direction

of the gradient because a minimum error is needed.

The determination of the principal point (cx, cy) is also possible with this

optimization method if the image point in the sensor coordinates is replaced
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by

xs =
d′x · (xb − cx)

sx

ys = dy · (yb − cy)

in this error function ε, and if the gradient ∇ε is adjusted accordingly.
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CHAPTER 3

Camera Calibration for Large Scale

Objects

There are many factors which may affect the camera calibration result. In

principle, the calibration technique should consider every factor which may

affect the calibration result, but it is impossible in practice. We have to

ignore some factors which stay unchanged during the usage of calibration or

which only cause a small error on the calibration result.

In fact, every known calibration technique only considers several limited

factors. The calibration technique which considers more factors results in

better accuracy than the one which considers less factors, e.g. Tsai’s cal-

ibration method is more accurate than DLT’s calibration method because

Tsai’s method does consider the lens distortion and the mapping of sensor

coordinates to image buffer coordinates and DLT’s method does not. This

result is well-known and needs not be discussed anymore.

In this chapter, we will discuss some factors which are not considered

in every calibration technique but do affect the calibration results. We will

discuss their impacts and find out the best situation for calibration of large

scale objects. The calibration object we deal with is 1.5 meter in height. The

following discussions are based on Tsai’s calibration method.
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Figure 3.1: Setup of camera and calibration object

3.1 Setup of Working Environment

The camera we used is JVC KY-F55BE CCD camera and it is positioned

somewhere as shown in Fig. 3.1. Figure 3.1 shows the related positions about

camera, calibration object and turntable. The camera’s specifications can be

found in the web site [3]. It has 752(H)×582(V ) pixels and 4.8mm×3.6mm

CCD size. The frame grabber we used has 768(H)× 576(V ) pixels.

According to the above information, we set up the camera initial param-

eters as in Tab. 3.1.

Table 3.1 shows the initial values of our camera. Ncx is the number of

sensor elements in one image row. Nfx is the number of pixels in one row

of the frame grabber window. dx is the the horizontal distance between two

CCD sensor elements. dy is the vertical distance between two CCD sensor

elements. dpx is the horizontal distance between two image pixels. dpy is the
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Camera Parameter Value

Ncx 752 [sel]

Nfx 768 [pix]

dx 4.8/752 [mm/sel]

dy 3.6/582 [mm/sel]

dpx dx ·Ncx/Nfx [mm/pix]

dpy dy [mm/pix]

Cx 768/2 [pix]

Cy 576/2 [pix]

Sx 1.0

Table 3.1: Initial camera parameters

vertical distance between two image pixels. Cx is the X-coordinate of the

image center point. Cy is the Y-coordinate of the image center point. Sx is

the horizontal scaling factor.

The video control panel is set up as in Fig. 3.2.

The world coordinate system used should be the right hand system. The

world coordinate axes on the open calibration cube should be set up as

Fig. 3.3.

The image coordinate system should also use the right hand system even

though it only has two image coordinate axes. The image coordinate axes

on the image window should be set up as Fig. 3.4.

24



Figure 3.2: Camera control panel

Yw

Zw Xw

O


Figure 3.3: Setting of world coordinate system
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Yi

XiO


Figure 3.4: Setting of image coordinate system

3.2 Error on the Implementation Software of

Tsai’s Calibration Method

The implementation software of Tsai’s calibration method we used can be

downloaded from the website [2]. This software is a freeware and is widely

used in the computer version field and robotics field.

There is a minor error in this software. In function ncc compute Tx and Ty()

of file cal main.c, Tx should not be calculated here. It should be calculated

after the calibration of Sx and the formula should be Equ. 2.32 rather than

Tx = a4 · Ty.

There is a corresponding error in the original paper of Tsai’s calibration

method. On line 2 of right column of page 333 in [8], the equation of Tx

should be Equ. 2.32 and it misses Sx.

In order to correct this error, we calculate Tx after calculation of Sx and

put it in function ncc compute sx() of file cal main.c.
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Figure 3.5: Examples of marks used in camera calibration

3.3 Different Methods for Finding Center of

Calibration Mark

No matter what kind of calibration technique is used, we have to mark several

marks on the calibration object and determine the center points of the marks

on the projected image plane. The determination method will directly affect

the correctness of the center point positions of the marks.

There are a lot of marks which can be used for camera calibration purpose.

Figure 3.5 shows the examples of marks used in the camera calibration. These

four marks are the most often used in the camera calibration. There are three

ways often used to determine the calibration points.

The first method is to determine the center points of the marks by cal-

culation of the moments of the mark’s pixels. The formulas are as follow:

x =
Σxipi

Σpi
(3.1)

y =
Σyipi

Σpi
(3.2)

In the above formulas, xi and yi are the coordinates of every pixel in the

27



calibration mark. pi is the pixel value of (xi, yi).

From our experiences, the brightness of lighting will directly affect the

accuracy of the result. If the image is too bright, the calculated moments

are not accurate. If the image is too dark, it is hard to distinguish the mark

and the background. The best situation of brightness is that the background

pixel value is about 210 ∼ 254 in case of maximum pixel value is 255.

This method is the simplest determination method and has a good ac-

curacy for most situations. It can use the mark 1, mark 2 and mark 3 of

Fig. 3.5 as calibration marks.

The second method is to determine the vertex points of calibration marks

by searching through the whole mark. It can use the mark 1 and mark

3 of Fig. 3.5 as the calibration marks. There are two weaknesses for this

determination method. One is that the search algorithm is hard to define

and the algorithm will not be applicable for every case. Another is the

accuracy will be seriously affected by the threshold technique necessary used

for preprocessing the image.

The third method is to determine the center points of calibration marks

by determination of the cross point of two straight lines. It can use the mark

1 and mark 4 of Fig. 3.5 as the calibration marks. The weakness of this

method is that it can only be used for the coplanar case.

Figure 3.6 shows an image of calibration marks after preprocessing. We

can see that the marks on the bottom plane are seriously distorted. In this

case, we can not find the straight line on these marks and of course are unable

to find the center points by using the third method.

In conclusion, there are serious distortions in the 3D non-coplanar case.

We suggest it is better to use mark 2 of Fig. 3.5 as the calibration marks and

use the first method to determine the center point of a calibration mark.
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Figure 3.6: Image marks after preprocessing
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3.4 Evaluation Methods

Camera and calibration object are setup as in Fig. 3.1. The distance between

the camera and the calibration object is 2.8 meters and the camera angle θ is

10 degree. The camera focal length is 6.4 mm. We use 32 calibration points

uniformly distributed as in Fig. 3.7 to calibrate the camera.

After calibration, there are four methods to evaluate the accuracy of cal-

ibration result. The first method is to evaluate errors on the image plane.

We project the calibration points from the world coordinate system to image

plane and calculate the distances between these points and their correspond-

ing true projected points on the image plane as the errors on the image

plane.

Figure 3.8 shows the evaluation result by using the first method, i.e.

errors on the image plane. The horizontal axis is the calibration mark which

indicates the geometric position shown in Fig. 3.7. The vertical axis is the

errors on the image plane.

The second method is to evaluate the closest errors on the object plane. It

calculates the minimum distance from the true point in the world coordinate

space to the straight line passing through the corresponding image point and

the principal point. It has the same pattern with the first method.

The third method is to evaluate the normalized calibration error which

is proposed by Weng [12]. It evaluates the mean of the ratio of the lateral

triangulation error to the lateral standard deviation of the pixel digitization

noise at the depth.

The fourth method is to evaluate the errors on the object plane. It

calculates the distance between the true point and the intersection point of

the back-projection line of the test point and the plane z = zi of the true

point. It represents the error on the world coordinate system.
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Figure 3.7: Calibration marks distribution
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Figure 3.8: Errors on the image plane

Figure 3.9: Errors on the object space
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Figure 3.9 shows the evaluation result by using the second, third and

forth methods, i.e. errors on the object space. The horizontal axis is the

calibration mark which indicates the geometric position shown in Fig. 3.7.

The vertical axis is the errors on the object space. We can see that these

three methods have the similar error pattern and they just represent the

different physical meaning.

From the above discussion, the four methods has similar error pattern

but represent different physical meaning. In this chapter, camera calibration

accuracy is evaluated. Therefore, the first evaluation method is chosen.

3.5 Calibration Points and Pattern

Tsai’s calibration method requires at least seven calibration points. In the-

ory, the more calibration points the less random error of calibration. In this

section, we will find out the minimum calibration points and their distribu-

tion pattern. The camera and the calibration object are setup as in Fig. 3.1.

The distance between the camera and the calibration object is 2.8 meters

and the camera angle θ is 10 degree. The camera focal length is 6.4 mm.

Figure 3.10 shows the relationship between the number of calibration

points on uniform distribution and the mean error on the image plane. The

vertical axis is the mean error on the image plane and its unit is pixel. The

horizontal axis is the number of calibration points used on uniform distribu-

tion. In this figure, it also shows how the calibration points distributed. The

seven marks of number 7 are initial seven calibration points. The n calibra-

tion points are points with mark n and marks less than n. It is clear that

the mean error will dramatically drop down when the number of calibration

points increase to nine. It then drops down a little when the number of cal-
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Figure 3.10: Relationship between number of calibration points on uniform

distribution and mean error on image plane

ibration points increase. After the number of calibration reach to nineteen,

it keeps stable when the number of calibration points increase.

Similar to Fig. 3.10, Figure 3.11 shows the relationship between the num-

ber of calibration points on non-uniform distribution and the mean error on

the image plane. The vertical axis is the mean error on the image plane

and its unit is pixel. The horizontal axis is the number of calibration points

used on non-uniform distribution. Figure 3.11 also shows how the calibra-

tion points are distributed. The seven marks with number 7 are our initial

seven calibration points. The n calibration points are points with mark n

and marks less than n. We can see that the mean error will dramatically

drop down when the number of calibration points increase to twelve. It then

drops down a little when the number of calibration points increase. After the

number of calibration reach to twenty-five, it keeps stable when the number
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Figure 3.11: Relationship between number of calibration points on non-

uniform distribution and mean error on image plane
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of calibration points increase.

From the above discussion, it is clear that despite the fact that increasing

the number of calibration points can reduce the mean error of calibration, it

will be useless for the accuracy of calibration when the number of calibration

points reaches a certain threshold. In conclusion, it is better to use twenty-

seven calibration points uniformly distributed on three planes of an open

cube, i.e. there are nine calibration points uniformly distributed on every

plane.

For our calibration open cube, the bottom plane is quite smaller than the

other two planes in order to reconstruct a object such as a mannequin. We

use the pattern of uniform density distribution. There are 4 marks uniformly

distributed on the bottom plane and there are 28 marks uniformly distributed

in the same density as the bottom plane on the other two planes. Therefore,

there are 32 calibration marks on our calibration open cube shown 3.7.

3.6 Covered Area by a Calibration Object

The camera and the calibration object are setup as in Fig. 3.1. The distance

between the camera and the calibration object is 2.8 meters and the camera

angle θ is 10 degree. The camera focal length is 6.4 mm.

In this section, we will discuss the impact of the covered area by the

calibration object. We define covered area as the percentage of the calibration

object height in the reconstruction object height.

covered area =
the height of calibration object

the height of reconstruction object

We use 12 uniformly distributed calibration points to calibrate the camera

and then use 32 points shown in Fig. 3.7 to evaluate the camera calibration
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Figure 3.12: Relationship between the mean calibration error and the covered

area by a calibration object

result. The 12 uniform distributed calibration points are chosen from 4 bot-

tom points, 4 highest calibration points and 4 middle high calibration points,

e.g. calibration object of cover area 71.43% we used are chosen the calibra-

tion points of mark 3, 10, 17, 24, 5, 12, 19, 26, 29, 30, 31, 32 shown in

Fig. 3.7.

Figure 3.12 shows the relationship between the mean error on the image

plane and the covered area by a calibration object. The vertical axis is the

mean error on the image plane. The horizontal axis is the percentage of the

covered area by a calibration object. It is clear that the mean calibration error

will drop down when the percentage of the covered area increases. When the

covered area is larger than 80%, the mean calibration error will keep stable.

In conclusion, we have to use a calibration object which will cover more
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Figure 3.13: Relationship between calibration object size and mean error on

the object space when the camera focal length is fixed

than 80% reconstruction area.

3.7 Size of Calibration Object

In this section, we will discuss the impact of the size of the calibration object.

The camera and the calibration object are setup as in Fig. 3.1. In order to

make that the calibration object is completely filled in the image window,

there are two ways to adjust the object image when the calibration object

size is changed.

The first way is to adjust the camera angle θ and the distance between

the camera and the calibration object when the camera focal length is fixed.

The camera focal length is 13 mm.

Figure 3.13 shows the relation between calibration object size and mean

error on the object space when the camera focal length is fixed. The vertical
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Figure 3.14: Relationship between the calibration object size and the mean

error on the image plane when the camera focal length is fixed

axis is the mean error on the object space (closest error on the object space).

The horizontal axis is the size of calibration object, i.e. the height of cali-

bration object. One series called same pattern of calibration points uses 12

uniformly distributed calibration points, i.e. every 4 uniformly distributed

points are distributed on every plane of 3 open cube planes. The other series

called same density of calibration points uses all of calibration points under

the height of calibration object shown in Fig. 3.7. When calibration object

height (size) increases, the mean error on the object space increases. This

is because the camera resolution for calibration object decrease when size of

calibration object increase.

Figure 3.14 shows the relation between the calibration object size and

the mean error on the image plane when the camera focal length is fixed.

The vertical axis is the mean error on the image plane. The horizontal axis

is the size of calibration object, i.e. the height of calibration object. One
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Figure 3.15: Relationship between the calibration object size and the mean

error on the object space when the distance between the camera and the

calibration object is fixed

series called same pattern of calibration points uses 12 uniformly distributed

calibration points, i.e. every 4 uniformly distributed points are distributed

on every plane of 3 open cube planes. The other series called same density of

calibration points uses all of calibration points under the height of calibration

object shown in Fig. 3.7. When calibration object height (size) increases, the

mean error on the image plane decreases. This is because the camera reso-

lution for calibration object decrease when size of calibration object increase

and the errors of calibration marks is fixed.

The second way is to adjust the camera angle θ and the camera focal

length when the distance between the camera and the calibration object is

fixed. The distance between the camera and the calibration object is 2.8

meters.

Figure 3.15 shows the relation between the calibration object size and the
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Figure 3.16: Relationship between the calibration object size and the mean

error on the image plane when the distance between the camera and the

calibration object is fixed

mean error on the object space when the distance between the camera and the

calibration object is fixed. The vertical axis is the mean error on the object

space (closest error on the object space). The horizontal axis is the size of

calibration object, i.e. the height of calibration object. One series called same

pattern of calibration points uses 12 uniformly distributed calibration points,

i.e. every 4 uniformly distributed points are distributed on every plane of 3

open cube planes. The other series called same density of calibration points

uses all of calibration points under the height of calibration object shown

in Fig. 3.7. When the calibration object height (size) increases, the mean

error on the object space increases. This is because the camera resolution

for calibration object decrease when size of calibration object increase.

Figure 3.16 shows the relation between the calibration object size and the

mean error on the image plane when the distance between the camera and the
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calibration object is fixed. The vertical axis is the mean error on the image

plane. The horizontal axis is the size of calibration object, i.e. the height of

calibration object. One series called same pattern of calibration points uses

12 uniformly distributed calibration points, i.e. every 4 uniformly distributed

points are distributed on every plane of 3 open cube planes. The other series

called same density of calibration points uses all of calibration points under

the height of calibration object shown in Fig. 3.7. When the calibration

object height (size) increases, the mean error on the image plane decreases.

This is because the camera resolution for calibration object decrease when

the size of calibration object increase and the errors of calibration marks is

fixed.

In conclusion, for a certain camera, the camera resolution for calibration

object decrease when the size of calibration object increase. The calibration

error on object space will increase when the size of calibration object increase.

On the other hand, the calibration error on image plan will decrease when

the size of calibration object increase. This means that the small size of

calibration object requires more accuracy calibration marks than the large

size of calibration object.

3.8 Distance Between the Calibration Object

and the Camera

The camera and the calibration object are setup as in Fig. 3.1. In this

section, we will discuss the impact of the distance between the calibration

object and the camera. We use a 1.5 meter height calibration object and keep

its projected image as large as possible in the image window. In order to fill

the calibration object image in the image window, we adjust the camera focal
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Figure 3.17: Relationship between the mean error on the image plane and

the distance between the camera and the calibration object

length and the camera angle θ when the distance between the camera and

the calibration object is changed.

Figure 3.17 shows the relation between the mean error on the image plane

and the distance between the camera and the calibration object. The vertical

axis is the mean error on the image plane. The horizontal axis is the distance

between the camera and the calibration object. It is clear that the longer

distance will result in the bigger calibration error.

In conclusion, it is better to keep the calibration object as closely to the

camera as possible.
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Figure 3.18: Distribution of the mean calibration error around the height of

the calibration object

3.9 Distribution of the Calibration Error Around

the Heigh of the Calibration Object

In this section, we will find out the pattern of the calibration error distri-

bution around the height of the calibration object. The camera and the

calibration object are setup as in Fig. 3.1. The distance between the camera

and the calibration object is 2.8 meters and the camera angle θ is 10 degree.

The camera focal length is 6.4 mm.

Figure 3.18 shows the distribution of the mean calibration error on the

image plane around the height of the calibration object. The horizontal axis

is the height of calibration object. The vertical axis is the mean calibration

error of the same height of calibration points on the image plane.

From Fig. 3.18, we can get a clear pattern of calibration error distribution

around the height of the calibration object. The mean calibration error in the
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middle height of calibration object is the smallest. The farther the calibration

points from the middle height of calibration object, the bigger calibration

mean error they have.
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CHAPTER 4

Dynamic Stereo Calibration

Technique

Our dynamic stereo system basically consists of one camera and one turntable.

It is a simple solution for reconstruction of 3D objects. If the exact turn-

ing angle is known, the dynamic stereo system becomes a binocular stereo

system in principle.

Our aim is to reconstruct a large scale object automatically. In order to

calculate a 3D point, two different view images are needed. Our system uses

one fixed camera and one turnable which can rotate object at any angle to

get different view images. Practically it is hard to measure the turning angle

accurately by hand. A calibration technique is needed to calibrate turning

angle dynamically.

4.1 Mathematical Model

Our system, we refer it as the general turntable model, assumes that the

central projection is used. One point in the camera image plane represents

one straight line across this point and the principal point. One point which

rotates a certain angle in the world coordinate system will result in a pair of

points in the image coordinate system.

Figure 4.1 shows the relationship of dynamic stereo system.

The task in this chapter is to get the world coordinates from a pair of

corresponding image points. Tsai’s calibration method is chosen as a basic
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(xu1,yu1)

(xu2,yu2)

θ




O



Xw

Zw

Figure 4.1: Dynamic stereo system

camera calibration technique. Assume a pair of points in image coordinates

(xi1, yi1) and (xi2, yi2), the corresponding world coordinate points are P =

(X, Y, Z) and the point after rotation P ′ = (X ′, Y ′, Z ′). The corresponding

camera coordinate points are C = (Xk, Yk, Zk) and the point after rotation

C ′ = (X ′
k, Y

′
k , Z

′
k).

If the feature of CCD camera sensors and the radial lens distortion are

concerned, the distorted image coordinates (xv1, yv1) and (xv2, yv2) can be

calculated from Equ. 2.14.

xv1 =
xi1d′x − cx

sx
(4.1)

yv1 = yi1dy − cy (4.2)

xv2 =
xi2d′x − cx

sx
(4.3)

yv2 = yi2dy − cy (4.4)

The undistorted image coordinates (xu1, yu1) and (xu2, yu2) can be derived
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from Equ. 2.13:

xu1 = xv1 + Dx1 (4.5)

yu1 = yv1 + Dy1 (4.6)

xu2 = xv2 + Dx2 (4.7)

yu2 = yv2 + Dy2 (4.8)

where Dxi = xvi · (k1r2 + k2r4), Dyi = yvi · (k1r2 + k2r4) and r =
√

x2
vi + y2

vi.

The undistorted image coordinates can be obtained from the correspond-

ing camera coordinates by using central projection.

xu =
fXk

Zk
(4.9)

yu =
fYk

Zk
(4.10)

Therefore, the camera coordinates can be rewritten as the following form:

C = Zk · (
xu1

f
,
yu1

f
, 1)T = Zk · E (4.11)

C ′ = Z ′
k · (

xu2

f
,
yu2

f
, 1)T = Z ′

k · E ′ (4.12)

From Tsai’s calibration method, we can get the rotation matrix R and

translation vector T .

R =











r1 r2 r3

r4 r5 r6

r7 r8 r9











T = (Tx, Ty, Tz)T

The world coordinates can be transformed to the camera coordinates by

translation and rotation operations using Equ. 2.1.

C = R · P + T (4.13)

C ′ = R · P ′ + T (4.14)
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Using Equ. 4.11 and Equ. 4.12, we can get P and P ′:

P = RT · (Zk · E − T ) (4.15)

P ′ = RT · (Z ′
k · E ′ − T ) (4.16)

Assumption 4.1.1. The rotation axis is parallel to the Y axis of the world

coordinate system.

If our dynamic stereo system is satisfied by the above assumption, the

rotation axis is across the point Tc = (Xc, 0, Zc). The values of Xc and Zc

can be calibrated during the calibration period. The point P ′ = (X ′
w, Y ′

w, Z ′
w)

is the transformation point of P = (Xw, Yw, Zw) which is rotated θ degree

around the rotation axis. Figure 4.1 shows the relations between them. If we

assume that our world coordinate system is right hand system, the rotation

matrix Rθ is as follow:

Rθ =











cosθ o sinθ

0 1 0

−sinθ 0 cosθ











(4.17)

The world coordinate points P ′ and P satisfy the following equation:

P ′ = Tc + Rθ · (P − Tc) (4.18)

Using Equ. 4.15 and Equ. 4.16, the above equation can be rewritten as

follow:

RT · (Z ′
k · E ′ − T ) = Tc + Rθ · (RT · (Zk · E − T )− Tc) (4.19)

The above vector equation contains three unknown variables θ, Zk and

Z ′
k. It also generates three equations and can solve these three unknown

variables.
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From Equ. 4.19, we can get the following equation:

αsinθ + βcosθ − β = 0 (4.20)

The parameters α and β are constants if the corresponding two image

points are known. They are as follows:

α = −a2b1c1 + a2c1Xc − d2 − d1 − c2Zc + c1Zc − a1a2d2 + a1a2d1

+a1b2c2 − a1c2Xc (4.21)

β = −a2c1Zc − b2c1 + c1Xc − b1c2 + c2Xc − a1c2Zc (4.22)

where the parameters a1, b1, a2, b2 are constants related to xu1 and yu1 and

the parameters a3, b3, a4, b4 are constants related to xu2 and yu2.

a1 =
(r6r8 − r5r9)xu1 + (r2r9 − r3r8)yu1 + (r3r5 − r2r6)f
(r5r7 − r4r8)xu1 + (r1r8 − r2r7)yu1 + (r2r4 − r1r5)f

(4.23)

b1 =
(r8Ty − r5Tz)xu1 + (r2Tz − r8Tx)yu1 + (r5Tx − r2Ty)f
(r5r7 − r4r8)xu1 + (r1r8 − r2r7)yu1 + (r2r4 − r1r5)f

(4.24)

c1 =
(r4r9 − r6r7)xu1 + (r3r7 − r1r9)yu1 + (r1r6 − r3r4)f
(r5r7 − r4r8)xu1 + (r1r8 − r2r7)yu1 + (r2r4 − r1r5)f

(4.25)

d1 =
(r4Tz − r7Ty)xu1 + (r7Tx − r1Tz)yu1 + (r1Ty − r4Tx)f
(r5r7 − r4r8)xu1 + (r1r8 − r2r7)yu1 + (r2r4 − r1r5)f

(4.26)

a2 =
(r6r8 − r5r9)xu2 + (r2r9 − r3r8)yu2 + (r3r5 − r2r6)f
(r5r7 − r4r8)xu2 + (r1r8 − r2r7)yu2 + (r2r4 − r1r5)f

(4.27)

b2 =
(r8Ty − r5Tz)xu2 + (r2Tz − r8Tx)yu2 + (r5Tx − r2Ty)f
(r5r7 − r4r8)xu2 + (r1r8 − r2r7)yu2 + (r2r4 − r1r5)f

(4.28)

c2 =
(r4r9 − r6r7)xu2 + (r3r7 − r1r9)yu2 + (r1r6 − r3r4)f
(r5r7 − r4r8)xu2 + (r1r8 − r2r7)yu2 + (r2r4 − r1r5)f

(4.29)

d2 =
(r4Tz − r7Ty)xu2 + (r7Tx − r1Tz)yu2 + (r1Ty − r4Tx)f
(r5r7 − r4r8)xu2 + (r1r8 − r2r7)yu2 + (r2r4 − r1r5)f

(4.30)

The following equation also holds:

sin2θ + cos2θ = 1 (4.31)

From Equ. 4.20 and Equ. 4.31, the two solution of θ are usually obtained.

One solution is θ = 0. It is the principal point and should be thrown away.
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Another solution is what we want. Therefore, the following solution can be

obtained:

cosθ =
β2 − α2

α2 + β2 (4.32)

sinθ =
β
α

(1− cosθ) (4.33)

The turning angle can be calculated through Equ. 4.32 and Equ. 4.33. A

set of corresponding points with the same turning angle, if possible, should

be used to calculate the average turning angle.

Once the turning angle has been calculated, Zk and Z ′
k can also be cal-

culated from Equ. 4.19. The point P can be calculated by Equ. 4.15 or the

following equation:

P = Tc + RT
θ · (RT · (Z ′

k · E ′ − T )− Tc) (4.34)

The Zw of point P can be further derived from Equ. 4.15 and Equ. 4.34

Zw =
a2d2 − a2d1 − c2b2 + c2Xc − c2Zcsinθ + (c2b1 − c2Xc)cosθ

c1a2 − c2sinθ − a1c2cosθ
(4.35)

Zw =
d2 − d1 + c2Zc − (c2b1 − c2Xc)sinθ − c2Zccosθ

c1 + a1c2sinθ − c2cosθ
(4.36)

The results of Zw calculated by using Equ. 4.35 or Equ. 4.36 should

be same ideally. In practise, they are not the same. For our experience,

the result of Equ. 4.36 is always closer to the true value than the result of

Equ. 4.35. The difference of these two results can be used to evaluate the

accuracy of the result.

After calculation of Zw, the Xw and Yw of world coordinates can be

calculated by using the following equations:

Xw = a1 · Zw + b1 (4.37)

Yw = c1 · Zw + d1 (4.38)
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4.2 Comparison to Aligned Turntable Model

The dynamic stereo system (one camera + one turntable system) is also

mentioned by the textbook [1]. In the textbook, it builds up another mathe-

matical model to solve the calibration problem. We refer this mathematical

model mentioned in the textbook as aligned turntable model.

In the textbook, there are two assumptions even if they are not clearly

stated.

Assumption 4.2.1. The rotation axis passes through the origin of world

coordinate system.

Assumption 4.2.2. The rotation axis is an axis of the world coordinate

system.

According to Assumption 4.2.1, the point P = (Xw, Yw, Zw) and the point

after rotation P ′ = (X ′
w, Y ′

w, Z ′
w) satisfy the following equation:

P ′ = Rδ · P (4.39)

In the above equation, Rδ is the rotation matrix. According to Assump-

tion 4.2.2, we can get the following equation if we assume that the rotation

axis is Y -axis of the world coordinate system and the coordinates system is

a right-hand system.

Rδ =











cosδ 0 sinδ

0 1 0

−sinδ 0 cosδ











(4.40)

It is clear that Rδ in this case is the same as the Rθ in the general

turntable model describe in Sec. 4.1. There are two main differences between

the general turntable model and the aligned turntable model. One is that
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the aligned turntable model is only for special case where Assumption 4.2.1

holds. In practise, it is very hard to hold Assumption 4.2.1. The other one is

that the general turntable model is the special case where the Y -axis of world

coordinate system is the rotation axis. Therefore, we can get Tc = (0, 0, 0)

if Assumption 4.2.1 holds for the general turntable model. And also assume

that the rotation axis is Y -axis in aligned turntable mode, Rδ = Rθ holds.

Equation 4.18 is the same as Equ. 4.39. Except the above two differences,

the two mathematical model use the same relation equations.

In conclusion, there are only two differences as described above between

the general turntable model and the aligned turntable model. In despite of

the above two differences, they are the same and can get the same solutions

of world coordinates. The general turntable model is more practicable than

the aligned turntable model.

4.3 Method of Reconstructing a 3D Point

In the implementation, we use Tsai’s calibration method as a basic calibration

method and extend it to deal with a dynamic stereo system. The general

idea is as follows:

4.3.1 Calibration of Camera Parameters

The Tsai’s calibration method is used to calibrate the camera system. An

image with non-coplanar marks is taken and it is used as calibration image

to get calibration data. It included the camera focal length, distortion coeffi-

cients k1 and k2, 3D rotation matrix R, translation vector T and the scaling

factor sx. This has already been described in Chapter 2.
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4.3.2 Calibration of Rotation Axis

A mark is put on the turntable and it is rotated 180 degrees. The two

images are taken respectively. There are two points on the camera image

plane. From these two image points, we calculate the projected points on

the turntable. In our system, the turntable plane is Y = -8 mm in the

world coordinate system. We can calculate these two points projected on the

turntable plane (X1,−8.0, Z1) and (X2,−8.0, Z2). The point which intersects

with rotation axis and the plane Y = -8 mm is (Xc,−8.0, Zc), Xc = (X1 +

X2)/2 and Zc = (Z1 + Z2). We can assume that Y axis is parallel to the

rotation axis in the world coordinate system. The rotation axis is X = Xc

and Z = Zc

The above calibration method is simple but the accuracy is not good

enough. We can put a mark on the turntable and rotate the turntable for

several rotation angle. More than three images are taken. From these images,

we can calculate the corresponding projected points on the turntable. These

projected points are (Xi,−8.0, Zi), i = 1, 2, · · · , n. They satisfy the following

equation:

(Xi −Xc)2 + (Zi − Zc)2 = r2 (4.41)

The above equation can be rewritten as follow:

(2Xi, 2Zi, 1)











Xc

Zc

r2 −X2
c − Z2

c











= X2
i + Z2

i (4.42)

For more than three points, we can use the pseudo-inverse technique

(Moore-Penrose inverse) to get the solutions of Xc and Zc.
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4.3.3 Calculation of Rotation Angle

The input arguments are a pair of corresponding image points. The camera

calibration parameters of Tsai’s calibration method is used. The parameters

a1, b1, c1, d1, a2, b2, c2 and d2 can be calculated by Equ. 4.23, Equ. 4.24,

Equ. 4.25, Equ. 4.26, Equ. 4.27, Equ. 4.28, Equ. 4.29, and Equ. 4.30.

The parameters α and β are then calculated by Equ. 4.21 and Equ. 4.22

respectively.

Finally, the values of sinθ and cosθ can be calculated by Equ. 4.33 and

Equ. 4.32 respectively. The turning angle can be calculated by the values of

sinθ and cosθ.

In practices, the values of sinθ and cosθ can not be calculated exactly as

the true value because of the system error and random error. If possible, a

set of corresponding image points should be used to calculate the value of

turning angle individually and then use the average of these turning angles

as the value of calibration turning angle.

4.3.4 Calculation of World Coordinates

Using the calibrated turning angle θ, the sinθ and cosθ values can be cal-

culated. The Zw value then can be easily calculated through Equ. 4.35 or

Equ. 4.36. The two solutions of Zw can be obtained by these two equations.

These two values should be equal ideally, but are not equal in practice. For

our experiences, the result of Equ. 4.36 is always closer to true value than

the result of Equ. 4.35. Therefore, Zw can be calculated by using Equ. 4.36.

The values of Xw and Yw then can be calculated by Equ. 4.37 and Equ. 4.38

respectively.
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CHAPTER 5

Evaluation of Dynamic Stereo System

We have already built up a mathematical model for our dynamic stereo

system in Chapter 4. The accuracy of this dynamic stereo system needs to

be evaluated. It also needs to find out the weakness of this system.

In this chapter, we show how to evaluate our dynamic stereo system and

we will use a set of calibration data to reconstruct 3D points in a world

coordinate system. These reconstructed 3D points are used to evaluate the

accuracy of the dynamic stereo system. We will also discuss the problems of

this system.

5.1 Evaluation Method

There are three steps for the evaluation of the dynamic stereo system. The

evaluation method is demonstrated in the following subsections.

5.1.1 Obtain Calibration Data

The open cube is used as our calibration object. In order to deal with a large

scale object, we build a open cube with 1.5 meter height, 0.5 meter width

and 0.5 meter length. The calibration marks are needed and are put on the

calibration open cube. It is impossible to build up a large scale calibration

open cube by hand with a maximum error less than 1 mm. We use a plotter

to print a calibration marks paper with 1 meter width and 2 meter length

and then put it on the calibration open cube. It is shown in Fig. 5.1.
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Figure 5.1: Calibration open cube
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The open cube is put on the turntable. The three intersection lines of

the planes of open cube are used as the axes of world coordinate system.

The right hand coordinate system is used and the vertical direction is set as

Y -axis of world coordinate system.

The distance between the camera and the calibration open cube is ad-

justed in order to fill the whole calibration object in the camera image win-

dow. The image of the calibration open cube is taken and then the turntable

is rotated some degrees, e.g. about 30 degrees, anti-clockwise. Then another

image of the calibration open cube is taken for further reconstruction of 3D

points.

The images taken above are needed to be pre-processed. Firstly, the

objects except the open cube on the image are cut off. Secondly, the values

of image pixels are inverted. Finally, the threshold operation is applied to

these images to deduct the noise on the images.

The program fmc is used with the file name of processed calibration open

cube image as the parameter. It produces a data file called ncc cd.dat and

then we can rename this data file as what we need. The data file contains the

world coordinates of every calibration mark and their corresponding image

coordinates.

The image coordinate system must be a right hand system. It always

has a virtual Z-axis from the image plane towards the calibration object.

Therefore, the origin of image coordinates must be in the top-left of image.

The X-axis is towards to right and Y -axis is towards to bottom.

5.1.2 Camera Parameters and Rotation Axis

Tsai’s calibration method is used for the calibration of the camera parame-

ters. The calibration data file produced by the first taken image should be

58



named as ncc cd.dat. The batch program nccal should be called. It produces

the camera parameters file called ncc cpcc.dat.

The calibration open cube is removed from the turntable and keep the

turntable position unchanged. A calibration mark, e.g. the mark 2 in Fig. 3.5

is printed on a white paper, is put on the turnable. The image is taken and

the other images are also taken after the turntable is rotated certain degrees.

These images are processed as the calibration open cube image. The

program findrc is called. The name of camera parameters file produced

during the last step is the first program parameter and these image file names

are the other parameters of the program findrc. This program produces a

data file called tc.dat. It contains the rotation axis coordinates Xc and Zc.

We assume that the rotation axis is parallel to Y -axis in the world coordinate

system.

5.1.3 Reconstruction of 3D Points

The reconstruction of 3D points needs a pair of images which are taken for

the same object and from the different view directions. The dynamic stereo

system uses turntable to get the images with different view directions. For

our evaluation, we use a pair of images taken at Sec. 5.1.1.

The program ic2wc3d is called. The file name of camera parameters is the

first parameter of the program and the file name of rotation axis parameters

is the second parameter of the program. It then prompts user to input a

pair of image coordinates and produces a rotation angle and its 3D world

coordinates.

The rotation angle may be various because of the noise on the image. If

we know the exact rotation angle or the average of these rotation angles on

the pair of images, the program ic2wc3dw can be used. The file name of
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camera parameters is also the first parameter of this program and the file

name of rotation axis data is also the second parameter of this program. This

program prompts user to input a pair of image coordinates and the rotation

angle. It then produces the corresponding 3D world coordinates.

After we get these 3D world coordinates, we can evaluate the dynamic

stereo system by comparing these 3D world coordinates to their true world

coordinates.

5.2 Evaluation Result

The camera and the calibration object are setup as in Fig. 3.1. The distance

between the camera and the calibration object is 2.8 meters and the camera

angle θ is 10 degree. The camera focal length is 6.6 mm. The working

environment setup as in Sec. 3.1.

We use the first image taken at rotation angle θ = 0 to calibrate the

camera. The 32 calibration marks are used to calibrate the camera. The

camera parameters are calibrated shown in Tab. 5.1.

In Tab. 5.1, f is the focal length of the camera. k1 is the camera lens

distortion coefficient. Tx is the X component of the translation vector. Ty

is the Y component of the translation vector. Tz is the Z component of

the translation vector. Rx is the rotation angle around X-axis. Ry is the

rotation angle around Y -axis. Rz is the rotation angle around Z-axis. Cx

is the x-coordinate of the image center point. Cy is the y-coordinate of the

image center point. Sx is the horizontal scaling factor. Using these camera

calibration parameters, the camera calibration accuracy is that the mean

error on the image plane is 0.26 pixel and the mean error on the object space

(closest error on the object space) is 1.4 mm.
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Camera Parameter Value

f 6.582940 [mm]

k1 0.005281476 [1/mm2]

Tx 64.883741 [mm]

Ty 633.620886 [mm]

Tz 3273.513524 [mm]

Rx -172.289584 [degree]

Ry 62.099022 [degree]

Rz 7.441918 [degree]

Cx 369.636984 [pixels]

Cy 296.529166 [pixels]

Sx 1.006039

Table 5.1: Camera calibration parameters
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Figure 5.2: Relation between the mean error and the nonuniform distributed

calibration points for calibrating the rotation axis

There are 32 3D points which are used to evaluate the calibration result.

We firstly use the program without the requirement of rotation angle to

reconstruct these 32 points in the world coordinates. These world coordinates

are compared to the true values as the error on the object space.

In our dynamic stereo system, the calibration of the rotation axis is quite

an important step. We should find out how many points are needed and how

these points are distributed for calibration of the rotation axis.

Figure 5.2 shows the relation between the mean error on the object space

and the number of nonuniform distributed calibration points for calibrating

the rotation axis. The vertical axis is the mean error of the reconstructed

points by using our dynamic stereo system without the requirement of the

rotation angle. The horizontal axis is the number of nonuniformly distributed

calibration points. These points are distributed as in Fig. 5.3. The two points

are distributed as the mark 1 and the mark 12. The n (n > 2) points are
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Figure 5.3: Nonuniform distribution of calibration marks for calibrating the

rotation axis

distributed as the mark n and the mark m (m < n). It is clear that the

uniform distribution is not accepted for calibration of the rotation axis.

Figure 5.4 shows the relation between the mean error on the object space

and the number of uniformly distributed calibration points for calibrating

the rotation axis. The vertical axis is the mean error of reconstructed points

by using our dynamic stereo system without the requirement of the rotation

angle. The horizontal axis is the number of uniform distributed calibration

points for calibrating the rotation axis. These points are distributed as in

Fig. 5.5. The n points are distributed as the mark n and the mark m (m < n).

It is clear that the mean error will keep stable when the number of the

uniformly distributed calibration marks reaches 8. Therefore, we should use

at least 8 uniformly distributed points to calibrate the rotation axis.

From the above discussion, we know that the rotation axis is parallel to

Y -axis and also passes through the point (217.033362,−8.0, 249.33312) which
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Figure 5.4: Relation between the mean error and the uniform distributed

calibration points for calibrating the rotation axis

is calibrated in the above step. Using 32 pairs of image coordinates and the

above calibration parameters, we can reconstruct 32 world coordinate points

by using our dynamic stereo system.

Figure 5.6 shows how the errors are distributed in the geometric position

by using the dynamic stereo reconstruction method. The vertical axis is the

distant between the reconstructed point and its true point. The horizontal

axis is the mark number of the reconstructed point whose geometric position

is shown in Fig. 3.7. From Fig. 5.6, except the points of the mark 18 and

the mark 11, the errors of other points are under 20 mm for the dynamically

calibrating the rotation angle and are around 10 mm for the pre-calibrating

the rotation angle. The mean error for the dynamically calibrated rotation

angle is 9.78 mm and the mean error for the pre-calibrated rotation angle is

6.30 mm. The problem of reconstructing the two points of the mark 11 and
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Figure 5.5: Uniform distribution of calibration marks for calibrating the

rotation axis

Figure 5.6: Error distribution
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Figure 5.7: Distribution of the rotation angle

the mark 18 will be discussed in Sec. 5.3.

When we reconstruct these 32 points by using the program ic2wc3d, we

also get the dynamic rotation angle. We know that the rotation angle is

about 30 degrees. It is not the exact 30 degrees because we measure it by

hand. Figure 5.7 shows how the rotation angle is distributed in the geometric

position. The vertical axis is the rotation angle. The horizontal axis is the

mark number of reconstructed point whose geometric position is shown in

Fig. 3.7. The average rotation angle is 30.32 degrees. This average rotation

angle is used as an input parameter in the program ic2wc3dw for the pre-

calibrated rotation angle in Fig. 5.6. From Fig. 5.7 and Fig. 5.6, It is clear

that the two points of the mark 18 and the mark 11 are far away from the

true rotation angle and also have big errors. The problem of reconstructing

these two points of the mark 11 and the mark 18 will be discussed in Sec. 5.3.

Figure 5.8 shows the error distribution around the height of calibration
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Figure 5.8: Error distribution around the height of calibration object for the

model of dynamically calibrated rotation angle

Figure 5.9: Error distribution around the height of calibration object for the

model of pre-calibrated rotation angle
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Figure 5.10: Errors on X-axis of world coordinate system

object for the model of dynamically calibrated rotation angle. Figure 5.9

shows the error distribution around the height of calibration object for the

model of pre-calibrated rotation angle. Both of the horizontal axes are the

height position of calibration object. Both of the vertical axes are the mean

error, i.e. the average distance between the reconstructed points and their

true points. It is clear that the mean error is higher in the middle of calibra-

tion object than in the low or high position of calibration object for both of

the models. But the corresponding mean error of the dynamically calibrated

rotation angle model is higher than the pre-calibrated rotation angle model.

The reason that the error in the middle height of calibration object is higher

than in the low or high position of calibration object will be discussed in

Sec. 5.3.

Figure 5.10, Fig. 5.11 and Fig. 5.12 show the error of X coordinates, Y

coordinates and Z coordinates distribution. All of the horizontal axes are the

mark number of the reconstructed point whose geometric position shown in
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Figure 5.11: Errors on Y -axis of world coordinate system

Figure 5.12: Errors on Z-axis of world coordinate system
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Fig. 3.7. The vertical axes are the error of X coordinates, Y coordinates and

Z coordinates respectively. From Fig. 5.11, the errors on the Y coordinates

are quite small. The maximum error is 2.45 mm. The errors of mark 18 and

mark 11 are 0.17 mm and 0.21 mm respectively. Most of the errors come

from X coordinates and Y coordinates. From Fig. 5.10 and Fig. 5.12, the

errors are quite small except two points of the mark 11 and the mark 18.

The reason for that will be discussed in Sec. 5.3.

5.3 Problems of Dynamic Stereo System

From the above evaluation result, we know that there are some big errors for

two points of the mark 18 and the mark 11. The most of errors of these two

points come from X-axis and Z-axis, not Y -axis.

We use these two data sets to reconstruct these points by using binocular

stereo model. The mean error is 1.2 mm and the maximum error is 2.42

mm. This is done in Chapter 6. The evaluation result is showed in Fig. 6.2.

Therefore, the big error is only caused by the error of rotation angle and the

error of rotation axis.

For the error of rotation angle, we can use a set of points with the same

rotation angle to dynamic calibrate the rotation angle individually and using

their average rotation angle as the true rotation angle. This method requires

quite more points to get the true rotation angle. Another method is to use

the rotation angle measured by hand. But it can not be used in some cases,

e.g. there is not enough time to measure.

There is an assumption on our mathematical model. It assumes that

the rotation axis is parallel to Y -axis. In fact, it is impossible to make the

rotation axis absolutely parallel to Y -axis. Therefore, the error of rotation
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axis will increase when the height of calibration object increase for a large

scale object.

From Fig. 3.7, we can see that the two points which have the biggest

reconstruction errors are all at height of Y = 796.8 mm and are close to the

rotation axis. From Fig. 3.1, it is clear that these two points are at the same

height with the camera. Therefore, the two straight line across these points

and their corresponding image points are parallel to the Y plane. This will

increase freedom in our mathematical model. If there is a small error on

rotation axis and also the points are close enough to the rotation axis, it

will find a wrong point which is far away from the true point and generate

quite a big error. This is why the two points of the mark 11 and the mark

18 have quite big errors. The more close to the middle height of the object

the more freedom. This is why the mean error in the middle of the object

height is higher than the low or high position of the object. Because there

is not freedom increased in Y direction, the wrong point and the true point

are always in the same Y plane or nearby. The most of error therefore come

from X coordinate and Z coordinate.

In order to overcome the error of calibration axis, it is possible to calibrate

the whole calibration axis and change our mathematical model including a

rotation matrix. It is quite complicated and will not be discussed in our

thesis.

In conclusion, the dynamic stereo system can reconstruct a 3D large scale

object in acceptable accuracy. In our case, for a 1.5 meter high object, it can

reach the accuracy characterized by a mean error of 6.3 mm and a maximum

error of 28.93 mm.
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CHAPTER 6

Binocular Stereo

As the hardware, such as camera and computer, becomes cheaper and more

powerful nowadays. Binocular stereo can be widely used to reconstruct a 3D

object.

This chapter demonstrates a mathematical model and its calibration im-

plementation for a binocular stereo system. We also evaluate the accuracy

of this binocular stereo system.

6.1 Mathematical Model

Binocular stereo system uses two cameras. It does not need a turntable and

also it does not make any assumptions. This system needs more than one

camera, which is not a problem nowaday because camera prices drop down.

Figure 6.1 shows the geometric illustration of a binocular stereo system.

For every camera, we need to do camera calibration before it can be used. We

use Tsai’s calibration method to do camera calibration for the two cameras.

Therefore, the two sets of cameras calibration parameters are obtained. They

include the internal parameters and external parameters.

For any 3D point P in the world coordinate system, its world coordinates

are (Xw, Yw, Zw). The projected point of P on the left camera image is

PL(xi1, yi1). The projected point of P on the right image is PR(xi2, yi2).

From the derivation in Sec. 4.1, we know that one point in the image

represents a straight line passing through that point and the principal point.
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PR

PL

Figure 6.1: Binocular stereo system

This line can be represented as Equ. 4.37 and Equ. 4.38. For the convenience

of reading, these two formulas are rewritten here:

Xw = aZw + b

Yw = cZw + d

The parameters a, b, c and d are only associated with the undistorted

image coordinates if the camera is fixed. They are as follows:

a =
(r6r8 − r5r9)xu + (r2r9 − r3r8)yu + (r3r5 − r2r6)f
(r5r7 − r4r8)xu + (r1r8 − r2r7)yu + (r2r4 − r1r5)f

(6.1)

b =
(r8Ty − r5Tz)xu + (r2Tz − r8Tx)yu + (r5Tx − r2Ty)f
(r5r7 − r4r8)xu + (r1r8 − r2r7)yu + (r2r4 − r1r5)f

(6.2)

c =
(r4r9 − r6r7)xu + (r3r7 − r1r9)yu + (r1r6 − r3r4)f
(r5r7 − r4r8)xu + (r1r8 − r2r7)yu + (r2r4 − r1r5)f

(6.3)

d =
(r4Tz − r7Ty)xu + (r7Tx − r1Tz)yu + (r1Ty − r4Tx)f
(r5r7 − r4r8)xu + (r1r8 − r2r7)yu + (r2r4 − r1r5)f

(6.4)
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For the two image points PL and PR, their corresponding undistorted

image coordinates (xu1, yu1) and (xu2, yu2) can be calculated through Equ. 4.1

to Equ. 4.8. In the equations, the camera parameters should be a set of

camera parameters which belong to their own camera.

For the left camera, a1, b1, c1 and d1 can be calculated through Equ. 6.1 to

Equ. 6.4 by using the left camera calibration parameters and the undistorted

image coordinates (xu1, yu1) of PL.

For the right camera, a2, b2, c2 and d2 can be calculated through Equ. 6.1

to Equ. 6.4 by using the right camera calibration parameters and the undis-

torted image coordinates (xu2, yu2) of PR.

The line PLP can be represented as follow:

Xw = a1 · Zw + b1 (6.5)

Yw = c1 · Zw + d1 (6.6)

The line PRP can be represented as follow:

Xw = a2 · Zw + b2 (6.7)

Yw = c2 · Zw + d2 (6.8)

The intersection point of these two lines is the point P . The coordinates

of point P can be obtained by solving the above four equations Equ. 6.5,

Equ. 6.6, Equ. 6.7 and Equ. 6.8.

From Equ. 6.5 and Equ. 6.7, we can get one solution of Zw:

Zw =
b2 − b1

a1 − a2
(6.9)

From Equ. 6.6 and Equ. 6.8, we can get another solution of Zw:

Zw =
d2 − d1

c1 − c2
(6.10)
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From our experiences, the solution of Equ. 6.9 is always closer to the true

value than the solution of Equ. 6.10. Furthermore, the solutions of Equ. 6.5

and Equ. 6.6 are also always closer to the true values than the solutions of

Equ. 6.7 and Equ. 6.8 respectively.

After the calculation of Zw, we can get the values of Xw and Yw by using

Equ. 6.5 and Equ. 6.6 respectively.

6.2 Method of Reconstructing a 3D Point

In this section, we demonstrate how to reconstruct a 3D point by using the

binocular stereo system. The method of reconstructing a 3D point consists

of the following three steps.

6.2.1 Calibration of Cameras

The binocular stereo system uses two cameras. Both of them need to be

calibrated respectively. We use Tsai’s calibration method to do camera cal-

ibration for these two cameras. The calibrated camera parameters must be

carefully stored and can not be misused.

Both of world coordinate system and image coordinate system must be

the same. In our experience, we used right hand system for both of the

coordinate systems.

6.2.2 Calculation of Undistorted Image Coordinates

We refer to the left camera calibration parameters as 1 and the right camera

calibration parameters as 2. Using the calibration parameters, we can cal-

culate the distorted image coordinates (xv1, yv1) and (xv2, yv2) through the
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following equations:

xv1 =
xi1d′x1 − cx1

sx1
(6.11)

yv1 = yi1dy1 − cy1 (6.12)

xv2 =
xi2d′x2 − cx2

s(x2)
(6.13)

yv2 = yi2dy2 − cy2 (6.14)

The undistorted image coordinates (xu1, yu1) and (xu2, yu2) can be calcu-

lated from the following equations:

xu1 = xv1 + Dx1 (6.15)

yu1 = yv1 + Dy1 (6.16)

xu2 = xv2 + Dx2 (6.17)

yu2 = yv2 + Dy2 (6.18)

where Dxi = xvi ·(k1ir2 +k2ir4), Dyi = yvi ·(k1ir2 +k2ir4) and r =
√

x2
vi + y2

vi.

6.2.3 Calculation of World Coordinates

After calculation of the undistorted image coordinates, we can calculate the

parameters a1, b1, c1 and d1 of the left camera through Equ. 6.1 to Equ. 6.4

by using the left camera calibration parameters and its distorted image co-

ordinates.

Furthermore, we can also calculate the parameters a2, b2, c2 and d2 of

the right camera through Equ. 6.1 to Equ. 6.4 by using the right camera

calibration parameters and its distorted image coordinates.

Finally, we can calculate the Zw value by using Equ. 6.9 and calculate

the Xw and Yw by using Equ. 6.5 and Equ. 6.6 respectively.
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6.3 Evaluation of Result

We only have one camera and one turntable. In order to evaluate the binoc-

ular stereo system, we use the turntable to rotate the calibration open cube

certain degrees. The camera takes two images of calibration open cube at

the different rotation angle. We can imagine that the calibration open cube

is fixed and there are two cameras positioned on the two view directions.

The camera and the calibration object are setup as in Fig. 3.1. The

distance between the camera and the calibration object is 2.8 meters and the

camera angle θ is 10 degree. The working environment setup as in Sec. 3.1.

The two images taken can be used as the calibration images respectively.

The world coordinates of calibration marks are the same for the two images

taken. We use the first image data to calibrate the camera as the left camera.

The first camera calibration parameters are as in Tab. 5.1. We use the

second image data to calibrate the camera as the second virtual camera

(right camera). The second virtual camera calibration parameters are as in

Tab. 6.1.

In Tab. 6.1, f is the focal length of the camera. k1 is the camera lens

distortion coefficient. Tx is the X component of the translation vector. Ty

is the Y component of the translation vector. Tz is the Z component of

the translation vector. Rx is the rotation angle around X-axis. Ry is the

rotation angle around Y -axis. Rz is the rotation angle around Z-axis. Cx

is the x-coordinate of the image center point. Cy is the y-coordinate of the

image center point. Sx is the horizontal scaling factor.

The reconstruction method mentioned in Sec. 6.2 is used. The 32 points

of 3D world coordinates are reconstructed.

Figure 6.2 shows the evaluation result for the binocular stereo system.

The horizontal axis represents the mark number of reconstructed point whose
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Camera Parameter Value

f 6.581203 [mm]

k1 0.005649727 [1/mm2]

Tx -141.528361 [mm]

Ty 639.399258 [mm]

Tz 3285.625432 [mm]

Rx -175.916652 [degree]

Ry 31.498625 [degree]

Rz 2.820074 [degree]

Cx 380.309823 [pixels]

Cy 293.730990 [pixels]

Sx 1.002447

Table 6.1: Second virtual camera calibration parameters
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Figure 6.2: Evaluation result of the binocular stereo system

geometric position is shown in Fig. 3.7. The vertical axis is the distance be-

tween the reconstructed 3D point and its corresponding true point. The

result is amazing. The maximum error is only 2.42 mm and the average

error is only 1.21 mm. These two images are also used for the reconstruction

by using the dynamic stereo method. Compared to the result of the dynamic

stereo reconstruction method, the result of the binocular stereo reconstruc-

tion method is perfect.

Figure 6.3 shows the error distribution around the height of the calibra-

tion object. The horizontal axis is the height position of the calibration

object. The vertical axis is the mean error, i.e. the average distance between

the reconstructed points and their true points. It is clear that the mean er-

ror is smaller in the middle of the calibration object than in the low or high

position of the calibration object.
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Figure 6.3: Mean error distribution around the height of calibration object
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CHAPTER 7

Applications

The applications we developed are running in the Unix environment for a

Silicon Graphics computer. The source codes are written in C language. It

is developed based on the Tsai’s calibration software which is provided by [2].

7.1 Application Running Environment

Our application are run under Unix operation system. It requires a Silicon

Graphics computer. If the software needs to be moved to another platform,

the programs fmc and findrc need to be rewritten because they use a image

package in a Silicon Graphics computer. The functions dealing with RGB

image format need to be removed and replaced with suitable functions.

The details of working environment setup is already described in Sec. 3.1.

7.2 Structures of Applications

The application we developed consisted of six functions. They can be used

together or separately.

Figure 7.1 shows the flowchart of function fmc. The function fmc finds

the world coordinates of the marks and also their corresponding image co-

ordinates. It takes a RGB image file name as the only input parameter and

outputs a data file named as ncc cd.dat.

Figure 7.2 shows the flowchart of function nccal fo. The function nccal fo

81



Figure 7.1: Flowchart of function fmc
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Figure 7.2: Flowchart of function nccal fo
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calibrates the camera by using Tsai’s calibration method. It takes a cam-

era calibration data file name as the only input parameter and outputs the

camera calibration parameters to screen (standard output).

Figure 7.3 shows the flowchart of function findrc. The function findrc

finds the rotation axis parameters. It detects the world coordinates of the

intersection point of rotation axis and turntable. It takes the camera calibra-

tion parameters as the first input parameter and takes more than two RGB

image file names as the rest input parameters. It then outputs a data file

named as tc.dat.

Figure 7.4 shows the flowchart of function ic2wc3d. The function ic2wc3d

transfers a pair of image coordinates to their corresponding 3D world coordi-

nates. It takes the camera parameters file name and the rotation parameters

file name as the input parameters. It then prompts user to input a pair of

image coordinates and then outputs the world coordinates to screen.

Figure 7.5 shows the flowchart of function ic2wc3dw. The function ic2wc3dw

transfers a pair of image coordinates to their corresponding 3D world coordi-

nates. It takes the camera parameters file name and the rotation parameters

file name as the input parameters. It then prompts user to input a pair

of image coordinates and their rotation angle, and then outputs the world

coordinates to screen.

Figure 7.6 shows the flowchart of function biic2wc. The function biic2wc

transfers a pair of image coordinates to their corresponding 3D world coordi-

nates. It takes the first camera parameters file name and the second camera

parameters file name as the input parameters. It then prompts user to input

a pair of image coordinates and then outputs the world coordinates to screen.
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Figure 7.3: Flowchart of function findrc
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Figure 7.4: Flowchart of function ic2wc3d
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Figure 7.5: Flowchart of function ic2wc3dw
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Figure 7.6: Flowchart of function biic2wc

88



7.3 Use of Method in the Context of PSM

Based Shape Recovery

The application we developed can be used in the context of PSM based shape

recovery. The use of method is different depending on what kind of model

the PSM based shape recovery is using. This section demonstrates different

usages for the PSM based shape recovery.

7.3.1 Dynamic Stereo Model

If the PSM based shape recovery uses the dynamic stereo model, the use of

the calibration method is as follows:

Firstly, we need to set up the working environment as mentioned in

Sec. 3.1. The positions of the turnable and the camera are adjusted in order

to satisfy the requirements of the reconstructed object. The programs can

be compiled by using the command:

make -f makefile.unx all

Secondly, the calibration open cube is put on the turntable. The image

of calibration open cube is taken. The calibration open cube then can moved

off the turntable. A paper with a calibration mark is put on the turntable.

The image of this paper is taken. The turnable rotates certain degrees and

more than two images of this paper at different rotation angle are taken. The

mark on the paper should be uniformly rotated at the different angle.

The images taken above are preprocessed. The objects except the cali-

bration marks are cut off from the images and also the threshold operation

is applied to these images in order to deduct the noise on these images.

Thirdly, the function fmc is used to get calibration data. The command

is as follow:
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fmc imagefilename.rgb

imagefilename.rgb should be the name of the image file of calibration

open cube. The file format should be RGB image format. It then produces

the calibration data file called ncc cd.dat.

Fourthly, the function nccal fo is used to get calibration parameters. The

command is as follow:

nccal fo ncc cd.dat > ncc cpcc.dat

ncc cd.dat is the name of camera calibration data file. ncc cpcc.dat is the

name of the camera calibration parameters file.

Fifthly, findrc is used to get the rotation axis parameters data. The

command is as follow:

findrc ncc cpcc.dat image1filename.rgb image2filename.rgb · · ·

image1filename.rgb, image2filename.rgb and etc. should be the names

of the more than two image files of the calibration mark paper. The files

format also should be RGB image format. ncc cpcc.dat is the name of the

camera calibration parameters file. It produces the rotation axis parameters

file called tc.dat.

Finally, the function ic2wc3d is used to reconstruct a 3D point in the

world coordinate system. The command is as follow:

ic2wc3d ncc cpcc.dat tc.dat

ncc cpcc.dat is the name of the camera calibration parameters file. tc.dat

is the name of the rotation axis parameters file. It then prompts user to

input a pair of image coordinates and then outputs the rotation angle and

the corresponding world coordinates. It is very important that the first input

image coordinates are from the image taken before the rotation and the other

input image coordinates are from the image taken after the rotation.

If there are a lot of reconstructed points which are rotated at the same
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angle or the rotation angle is known, the function ic2wc3dw is used to re-

construct a 3D point in the world coordinate system. The command is as

follow:

ic2wc3dw ncc cpcc.dat tc.dat

ncc cpcc.dat is the name of the camera calibration parameters file. tc.dat

is the name of the rotation axis parameters file. It prompts user to input

a pair of image coordinates and the rotation angle. It then outputs the

corresponding world coordinates. The rotation angle is the average rotation

angle or the known rotation angle. It is very important that the first input

image coordinates are from the image taken before the rotation and the other

input image coordinates are from the image taken after the rotation.

7.3.2 Binocular Stereo Model

If the PSM based shape recovery uses the binocular stereo model, the use of

the calibration method is as follows:

Firstly, we need to set up the working environment as mentioned in

Sec. 3.1. The two camera positions are adjusted in order to satisfy the

requirements of the reconstructed object. The programs can be compiled by

using the command:

make -f makefile.unx all

Secondly, the calibration open cube is put on the front of two cameras.

The two images of calibration open cube from the two cameras are taken.

These two images are preprocessed. The objects except the calibration marks

are cut off from the two images and also the threshold operation is applied

to these two images in order to deduct the noise on these two images.

Thirdly, the function fmc is used to get calibration data. The command

is as follow:
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fmc imagefilename.rgb

imagefilename.rgb should be the name of the image file of calibration

open cube taken from the left camera. The file format should be RGB image

format. It then produces the calibration data file called ncc cd.dat.

The file ncc cd.dat is renamed as ncc cd1.dat and the above command is

run again to process the image file taken from the right camera. The output

camera calibration parameters is renamed as ncc cd2.dat

Fourthly, the function nccal fo is used to get calibration parameters. The

command is as follow:

nccal fo ncc cd1.dat > ncc cpcc1.dat

ncc cd1.dat is the name of the left camera calibration data file. ncc cpcc1.dat

is the name of the left camera calibration parameters file.

The above command is run again to process the right camera calibration

data. ncc cd1.dat is replaced with ncc cd2.dat. ncc cpcc1.dat is replaced

with ncc cpcc2.dat.

Finally, the function biic2wc is used to reconstruct a 3D point in the

world coordinate system. The command is as follow:

biic2wc ncc cpcc1.dat ncc cpcc2.dat

ncc cpcc1.dat is the name of the left camera calibration parameters file.

ncc cpcc2.dat is the name of the right camera calibration parameters file.

It then prompts user to input a pair of image coordinates and outputs the

corresponding world coordinates. It is very important that the first input

image coordinates are from the left camera image and the other input image

coordinates are from the right camera.
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CHAPTER 8

Conclusions

This thesis has built up two mathematical models for a dynamic stereo system

(one camera + one turntable system) and a binocular stereo system. It

deals with large scale objects such as human body. The thesis also evaluates

these two calibration models and discusses the problems for these calibration

models and the impact of some factors.

All of the models built up in this thesis use Tsai’s calibration technique as

the basic calibration technique and extend to their own calibration models.

There are many factors which may affect the calibration result. The

following six factors can cause the different effects on the calibration result.

1. For a certain camera, the camera resolution for the calibration object

decrease when the size of the calibration object increase. The calibra-

tion error on object space will increase when the size of the calibra-

tion object increase. On the other hand, the calibration error on image

plan will decrease when the size of the calibration object increase. This

means that the small size of calibration object requires more accurate

calibration marks than the large size of calibration object.

2. The longer distance will increase the calibration error on the object

space. It is better to keep the calibration object as close to the camera

as possible.

3. Even thought increasing the number of calibration points can reduce

the mean error of calibration, it will be useless for the accuracy of

93



calibration when the number of calibration points reach to a certain

amount. It is better to use twenty-seven calibration points uniform

distributed on three planes of open cube, i.e. there are nine calibration

points uniformly distributed on every plane.

4. For a 3D calibration, there is a large distortion associated with the view

direction. Mark 2 of Fig. 3.5 is the best choice as the calibration marks.

We should use the first method mention in Sec. 3.3 to determine the

center point of a mark.

5. We have to use a calibration object which will cover more than 80% of

the reconstruction area.

6. The mean calibration error in the middle height of calibration object is

the smallest. The farther the calibration points from the middle height

of calibration object, the bigger calibration mean error they have.

For the dynamic stereo system, it assumes that the rotation axis is parallel

to Y -axis. In fact, it is impossible to make the rotation axis absolutely

parallel to Y -axis. Therefore, the higher object will result in a bigger error

on the rotation axis. It will generate a little big reconstruction errors on the

points around the intersection point of rotation axis and the plane parallel to

turntable with Y = camera height. For a rough reconstruction, the evaluation

result for the dynamic stereo system shows that this model is quite acceptable

for the reconstruction of a large scale object. In our case, for a 1.5 meter

height object and the camera is 2.8 meters away from the object, it can reach

the accuracy characterized by a mean error of 6.3 mm and a maximum error

of 28.93 mm.

For the binocular stereo system, there is not any assumption at all. It

suits any case. The result of evaluation is amazing. The camera is about
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2.8 meters away from the calibration object which is about 1.5 meters in

height. The maximum error on the calibration object is only 2.42 mm and

the average error is only about 1.21 mm.

According to the evaluation result, for a large scale object, the accuracy of

binocular stereo system is much better than dynamic stereo system. Nowaday

the camera becomes much cheaper and also the computer’s price always drops

down. The computer networking speed increases and it is fast enough to

transfer camera data to meet the requirement of reconstructing a 3D object.

Therefore, we should abandon the camera + turntable system and use the

binocular stereo system instead.
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