
Robust Source Coding

with Generalised T-Codes

Ulrich G�unther

A thesis submitted in partial ful�lment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Science

The University of Auckland, 1998

Abstract

This thesis presents a range of novel and improved results in the area of source
coding with T-Codes, based on a thorough review of the recursive structure of the
T-Codes.

T-Codes were introduced by Mark Titchener in 1984. They are variable-length
codes, similar to the well-known Hu�man codes and may thus be used for compres-
sion by source coding. T-Codes have also been noted for their self-synchronisation
properties, which result from their recursive construction.

This thesis reviews and formalises the theory of generalised T-Codes and their
recursive construction. It extends an existing recursive storage concept, the bi-
nary depletion codes, as the \T-depletion codes". These are shown to provide a
unique �xed-length representation for T-Codes, which may be used in a recursive
encoder/decoder scheme for T-Codes.

It is shown that the T-depletion code format accommodates unique representa-
tions for all proper pre�xes of T-Code codewords, thus covering the complete state
space of an encoder or decoder. For use in decoder applications, the thesis derives
a recursive conversion between T-depletion codes and a contiguous integer index.

A new simpli�ed method for the calculation of the expected synchronisation
delay (ESD) is introduced. Finally, the thesis develops a recursive search algorithm
to �nd the T-Code set that most e�ciently encodes a source.

5

Preface and Acknowledgements

The present thesis is, if the author has counted correctly, the fourth PhD thesis in
the area of T-Codes, and the �rst in the area of generalised T-Codes.

While a PhD thesis is always an individual's research record, few if any are
written in isolation. This thesis is no exception. In fact, given the circumstances
under which the project was conducted, I owe thanks to rather more people than
the average PhD student.

The list should perhaps start with Gavin Higgie, who �rst introduced me to T-
Codes in a graduate class that he was teaching. Then it was Gary Bold who alerted
me to the fact that Mark Titchener had returned to New Zealand and was teaching
at Auckland University's Tamaki Campus. Mark was very supportive from the
start and right throughout the thesis process, and his support was not restricted to
university matters alone. I hope very much that this thesis rewards his con�dence
in me. Throughout my time at Tamaki, Mark has been a continuous source of
new ideas. While he often had a hard time convincing a sceptic like me, I must
say that his \gut feel" has often proved to be more reliable than my (and other's)
doubts. Many of the new and extended results in this thesis have their origin in
our brainstorming sessions.

Radu Nicolescu helped a great deal in formalising the notation used in this
thesis, and his uniqueness theorem proved to be an extremely useful tool for this
thesis. His interest in my work was always appreciated. Peter Hertling deserves a
special mention for his suggestions for cleaning up some of the proofs in Chapters 4
and 6.

Professor Cris Calude deserves thanks for his ongoing interest in my work, and
his help and feedback regarding several of the publications that this thesis is based
on. Professor Reinhard Klette was kind enough to read some early chapters of this
thesis - his comments on style and structure have had a profound inuence on the
shape of this thesis. Professor Clark Thomborson also gave helpful comments |
his assistance with administrative and policy matters and an always open ear for
PhD students' problems have been a great reassurance.

Thanks go to the Department of Computer Science, in particular its present
head Professor Peter Gibbons, for providing me with a departmental stipend and
with the necessary hardware to keep my tutoring load under control so I could write
this thesis. Penny Barry also deserves a mention for making the administrative side
of this run so smoothly. Bruce Benson, Paul Burkimsher, Paul Bonnington, Rob

6

Burrowes, Mano Manoharan, Clare West, Gary Wong, and Edouard Poor have had
their part in saving the computational side from the brink of disaster a few times.

Working at Tamaki Campus has been a great experience. Its interdisciplinary
family atmosphere has been a source of ideas. My special thanks go to Alastair
McNaughton whose comments made me re-think aspects of the search algorithm in
Chapter 10. As a result, the algorithm's usability for real-world problems has im-
proved signi�cantly. Many other sta� from computer science, mathematics, physics,
and statistics have had input into the notation used.

Being one of the �rst PhD students at Tamaki campus meant that I often
did not �t into established categories. Professor Chris de Freitas o�ered a lot of
support during the early stages of my research, while he was Head of Division.
Steve Chaney and others from ITSS often put in unscheduled jobs to keep me
online. The administrative sta� at Tamaki have also su�ered much under me and
deserve a mention.

Library support is vital for any research, especially when most of the relevant
literature is located on another campus, and one's �eld of research spans several
disciplines. Lynley Stone and her team at the Tamaki Library have bent over back-
wards many times to make the physical distance disappear. Thanks here go espe-
cially to Brenda Dwane, Danielle Carter, Hester Mounti�eld, and Russell Tu�ery
for going the extra mile on so many occasions.

Thanks also go to the many sta� and fellow students who have helped to keep me
sane. My motivation also owed a lot to my friends in amateur radio and elsewhere.

Finally, I am indebted to my family for their continuous love and support over
time and distance.

Auckland, February 1998 Ulrich G�unther

8

Contents

Contents 9

1 Introduction 15

1.1 Motivation : 15

1.2 How this Thesis is Organised : 17

1.3 Basic Notation and Conventions : 18

1.4 Code Sets and their Properties : 21

1.4.1 Unique and Instantaneous Decodability, Pre�x-Freeness, and
Completeness of Codes : 21

1.4.2 Coding E�ciency and Compression : : : : : : : : : : : : : : 23

1.4.3 Other Aspects of Coding : 25

1.5 A Brief History of T-Codes : 25

2 An Introduction to T-Codes 27

2.1 T-Augmentation : 27

2.2 T-Code Sets : 29

2.3 Basic Properties of T-Code Sets : 32

2.3.1 Pre�x-Freeness : 32

2.3.2 Completeness : 33

2.3.3 Cardinality : 35

2.4 Notation Conversion : 36

2.5 Discussion : 37

9

10 Contents

3 T-Prescriptions 39

3.1 Variable-Length Codes as Trees : 39

3.2 T-Codes as Trees : 40

3.3 T-Prescriptions: Construction Strategies for T-Code Sets : : : : : : 42

3.4 Discussion : 45

4 T-Depletion Codes 47

4.1 Representing Variable-Length Codes in a Fixed-Length Format : : : 47

4.2 The Structure of T-Code Codewords and T-Depletion Codes : : : : 50

4.2.1 The Structure of T-Code Codewords : : : : : : : : : : : : : 50

4.2.2 T-Depletion Codes : 55

4.2.3 Conversion between Variable-Length T-Code Codewords and
T-Depletion Codewords : 57

4.2.4 Storage Requirements for T-Depletion Codewords : : : : : : 61

4.3 Discussion : 63

5 Contiguous Range Index Conversion 65

5.1 Simple Addressing : 65

5.2 From T-Depletion Codes to Contiguous Indices : : : : : : : : : : : 67

5.3 From Contiguous Indices to T-Depletion Codes : : : : : : : : : : : 74

5.4 Discussion : 75

6 Storing Arbitrary Variable-Length Codes in T-Depletion Code
Format 77

6.1 Pseudo-T Codewords : 77

6.2 Pseudo-T Codewords and Variable-Length Codes : : : : : : : : : : 82

6.3 Discussion : 84

7 Hierarchical Coding Alphabets and T-Codes 85

7.1 Hierarchical Coding Alphabets : 85

7.2 T-Decomposition of Strings in S? : : : : : : : : : : : : : : : : : : : 89

7.3 Discussion : 93

Contents 11

8 T-Code Self-Synchronisation 95

8.1 Synchronisation Concepts : 95

8.2 De�ning a Synchronisation Model : : : : : : : : : : : : : : : : : : : 99

8.3 The T-Code Self-Synchronisation Mechanism : : : : : : : : : : : : : 100

8.3.1 Synchronising Earlier : 104

8.3.2 Boundary Compatibility : 108

8.4 Generalised vs. simple T-Codes : 110

8.5 Discussion : 111

9 Calculating the Expected Synchronisation Delay 113

9.1 Modelling the T-Code Self-Synchronisation Mechanism as a Discrete
Markov Chain : 113

9.2 Calculating the Expected Synchronisation Delay (ESD) : : : : : : : 115

9.2.1 Calculating the Visitation Probability Pv(m) : : : : : : : : : 116

9.2.2 Calculating �(m) : 124

9.3 Two Examples: Calculating the ESD of Binary T-Code Sets : : : : 125

9.3.1 ESD(S
(1;1;1;1;1)
(0;1;00;01;11)) : 126

9.3.2 ESD(S
(2;1;1)
(0;001;01)) : 130

9.4 Special Cases and Computational Complexity : : : : : : : : : : : : 132

9.4.1 T-Expansion Parameters : 132

9.4.2 Mismatched Sources : 132

9.4.3 Computational Complexity : : : : : : : : : : : : : : : : : : : 133

9.5 Discussion : 134

10 Approaches to Source Coding With T-Codes 135

10.1 Source Coding : 135

10.2 Source Coding with T-Codes : 136

10.3 The Search Algorithm : 138

10.4 Feasibility Criteria and Simpli�cations : : : : : : : : : : : : : : : : 141

10.4.1 Virtual T-Augmentation : 141

10.4.2 Avoiding Multiple Equivalent T-Prescriptions : : : : : : : : 142

10.4.3 Non-Decreasing T-Pre�x Lengths : : : : : : : : : : : : : : : 143

12 Contents

10.4.4 Assignment of Codewords : : : : : : : : : : : : : : : : : : : 144

10.4.5 Feasibility of a Virtual T-Augmentation : : : : : : : : : : : 144

10.4.6 Redundancy Criterion : 145

10.4.7 Maximum Feasible Codeword Length : : : : : : : : : : : : : 146

10.4.8 Dropping the Logarithms : 148

10.5 Performance of the Search Algorithm : : : : : : : : : : : : : : : : : 149

10.6 Other Approaches : 149

10.7 Discussion : 153

11 Outlook and Conclusions 155

11.1 Open Problems on T-Codes : 155

11.2 Conclusion : 158

Bibliography 161

Contents 13

14 Contents

C H A P T E R 1

Introduction

This introduction sets the scope for the rest of the thesis.
It gives some motivation and introduces basic notation and
conventions.

1.1 Motivation

Communication of information through space or time is a fundamental engineering

problem. Whether we wish to transmit telemetry data from a satellite to earth,

a voice signal over a telephone line, or store a �le on a computer disk for later

retrieval, we can always identify three essential components:

1. an information source which has information that is to be transmitted or

stored;

2. an information sink that receives and utilises the information in some way.

3. a channel connecting the source and the sink.

15

16 Introduction

The channel carries the source's information in some way or another to the sink.

In the context of this thesis, a \channel" denotes both a channel through space as

well as a channel through time. For example, we would regard a computer disk as

a channel through time: information is �rst written to it and later retrieved.

All real-life channels are in some way bandlimited. In the case of channels

through space this means that a channel can only pass a limited amount of infor-

mation to the sink during a given time interval. In the case of channels through

time, the limited bandwidth manifests itself | if we take the disk example | in the

form of unwelcome error messages such as \disk full".

The question that usually arises is: \Given an information source and sink,

and a channel, how can the interface between the channel and the source/sink

be designed such that we can communicate the maximum amount of information

through the channel, with a minimum number of errors, and at minimum cost?"

There is no single answer to this question, as the above goals are generally in

conict with each other. Any individual solution will always be a compromise,

depending on the particular source, sink, and channel involved. Also, the number

of errors that may be acceptable varies from application to application.

Thus, the best that can be achieved is an addition to the collection of known

compromises that have proven to be useful. This thesis attempts to do just that.

The particular communication scenario on which this thesis is based assumes

that the sink can accommodate a modest amount of errors, such that no extra

channel coding (such as checksums, etc.) is required. Our scenario further assumes

that a high (but not necessarily maximal) amount of information needs to be passed

through the channel. At the same time, we require that the cost at the source and

sink be low.

1.2 How this Thesis is Organised 17

information

sink

information

source
encoder

decoder

channel

�

-

?

�

Figure 1.1. Our model of a communication process involving an information source, an

encoder, a channel, a decoder, and an information sink.

As mentioned above, practical applications that fall within this category are,

e.g., digital telephony and digital image/video transmission. In these cases, the

ultimate information sink is the human ear or eye. Both the ear and the eye are

known to integrate well over a limited amount of errors.

In our communication scenario, the interface between source and channel is

called the encoder, and the interface between channel and sink is called the decoder.

Figure 1.1 illustrates this concept.

1.2 How this Thesis is Organised

This thesis is a collection of solutions to various problems related to source coding

with T-Codes. As such, its chapters do not all have to be read in sequence. The

18 Introduction

main results presented are:

1. a treatment of T-depletion (Chapter 4) and pseudo-T codes (Chapter 6).

These discussions build on all chapters up to Chapter 4.

2. a contiguous-range index conversion for T-depletion codes (Chapter 5), which

builds on the T-depletion codes.

3. a novel storage scheme for variable-length codes (Chapter 6), based on the

T-depletion codeword format and the pseudo-T codes.

4. a novel way for the calculation of the expected synchronisation delay (ESD)

for T-Code sets (Chapter 9), based on the hierarchical coding aspect of T-

Codes discussed in Chapter 7. The treatment of this topic uses results from all

chapters up to Chapter 4, as well as the discussion of T-Code synchronisation

in Chapter 8.

5. a search algorithm to �nd a T-Code set that provides the best possible coding

e�ciency for a given source probability distribution. This is discussed in

Chapter 10 and uses the results from Chapters 1 to 4, and Chapter 6.

A summary, including an outlook on possible avenues for future research, is given

in Chapter 11.

1.3 Basic Notation and Conventions

A signi�cant part of this thesis is devoted to developing a theoretical framework

for discussing the construction, storage, handling, and performance of T-Code sets.

While digital communication provides the motivation, this theoretical model of T-

1.3 Basic Notation and Conventions 19

Codes is much more general and not restricted to binary codes. This both motivates

and necessitates a somewhat more mathematically formal approach.

The notation that will be used here represents a compromise between formal

correctness, tradition, and space e�ciency. It was chosen against the background

of this thesis, which includes previous works, but also other ongoing work at the

time. The author is well aware that some of it, at least in the context of this thesis,

may seem a bit cumbersome and overly complicated. However, in most cases this

was necessary to avoid ambiguities in other circumstances.

Only the basic notation is introduced here. Notation speci�c to more advanced

concepts will be introduced together with the concepts, i.e., when it is required.

The end of a proof for a theorem, lemma, or corollary is marked by a square

box at the end of a line. 2

The cardinality of a set X is denoted as #X. The subtraction of sets is denoted

by the backslash \n", i.e., XnY denotes the set that contains all elements of X that

are not in the set Y . Similarly, the union of sets will be denoted by the \["-symbol,

such that X[Y denotes the set of all elements that are in X or Y . The \["-symbol

may also be used in the form
S
iXi which denotes the union of all sets Xi. For some

set X, P(X) denotes the set of all subsets of X. The \j" symbol in the set notation

used stands for \for which": e.g., fnjn > 3g is read as \the set of all n for which n

is greater than 3".

Expression from logic used include _ (logical OR), ^ (logical AND), 8 (\for

all: : :"), and 9 (\there exists at least one: : : ").

All code sets to be discussed are based on a �nite alphabet S, which we regard as

a set of #S symbols. In many examples, S will be the binary alphabet S = f0; 1g.

The binary alphabet is generally chosen in order to keep examples compact and

easy to understand. However, unless speci�ed otherwise, there is no principal limit

20 Introduction

on the cardinality of S.

Symbols may be concatenated to form strings. The empty string is denoted as

�. The concatenation of two strings x and y is denoted as xy. The concatenation

of n strings x, where n is a non-negative integer, is denoted as xn. x0 = � for any

string x. The length of a string x measured in symbols from S is denoted jxj, and

j�j = 0.

For simplicity, this thesis does not explicitly distinguish between alphabet sym-

bols and strings - a symbol is simply regarded as a string with length 1.

In the context of strings, S? denotes the set of all �nite strings that can be

generated by concatenation of symbols from S. S? contains the empty string �.

Where � is explicitly excluded, the remaining set is denoted as S+.

A code set C in the context of this thesis is a �nite subset of S+. Its elements

will be called codewords or words. Similarly, C? and C+ denote the set of �nite

strings generated by concatenation of elements from C, including/excluding �.

Furthermore, following a convention similar to Hamming [23], the term \sym-

bol" will also be used in the context of an information source which emits \source

symbols" (as opposed to the \channel (alphabet) symbols" from S). These source

symbols are encoded as codewords, which in turn are strings from S+. However,

in each instance it should be obvious from the context which type of \symbol" is

being referred to.

If for a string x 2 C? there is another string y 2 C? such that z = xy 2 C?, we

say that \x is a pre�x of z (over C)". This is denoted as x �
C
z. If we demand

that y 2 C+, i.e., y 6= �, this is denoted as x �
C
z and we say that \x is a proper

pre�x of z (over C)". Similarly, if we wish to express that x is not a pre�x of z

over C, and x 6= z, then this is denoted as x n�
C
z. It should be noted here that this

notation is only valid in circumstances where z has a unique decoding over C. This

1.4 Code Sets and their Properties 21

is the case whenever C is pre�x-free (see the following section).

Similarly, we de�ne su�xes: if for a string x 2 C? there is another string y 2 C?

such that z = xy 2 C?, we say that \y is a su�x of z (over C)". This is denoted

as z �
C
y. Proper su�xes (x 6= �) are similarly denoted z �

C
y etc.

Provided that a unique decoding over C exists for some string x 2 C?, we can

de�ne the length of x, measured in codewords from C. We denote this length as

jxjC .

As mentioned in the introduction, the communication model used in this thesis

can be applied to both space and time. For the sake of simplicity and without

loss of generality, the terminology here will generally assume communication in

space. That is, we will presume that the information source and sink are spatially

separated, and that the channel propagation delay is negligible. Hence, e.g., the

term \symbol rate" | rather than \symbol density" | will be used.

1.4 Code Sets and their Properties

In the context of the problems addressed in this thesis, we may generally assume

that the information source, its statistics, and the channel alphabet S are known.

1.4.1 Unique and Instantaneous Decodability, Pre�x-Freeness,

and Completeness of Codes

In general, a code C is a subset of S+. We may use C to encode a set X, comprising

all source symbols �i, by de�ning a mapping � :

� : X �! C: (1.1)

22 Introduction

We call �(�i) the encoding of �i.

Some authors [2] will not call C a code just because C is a subset of S+, but

require further that C be uniquely decodable as well. This is not an unreasonable

requirement in many practical cases, where a series of words from C form a symbol

stream over S. Unique decodability is guaranteed if C is pre�x-free, i.e., if there

is no word in C that is the pre�x of another word in C.

Hamming [23] actually calls this property \instantaneous" and explicitly dis-

tinguishes it from \uniquely decodable". The example he gives for a uniquely

decodable but non-instantaneous code, however, assumes that one can somehow

go to the end of a transmitted message and then decode backwards. This in turn

requires a way of signaling to the receiver that a message has ended, which is not al-

ways possible. It is therefore often easier | and for our purposes entirely su�cient

| to simply test for pre�x-freeness and infer unique decodability from this.

The pre�x-freeness of the T-Codes plays an important role in this thesis, and is

proven in Chapter 2. However, as mentioned before, the convention adopted here

is that any subset of S+ may be called a code. The reason for this should become

obvious in Chapter 4, where the pseudo-T codes are introduced, which correspond

to a subset of S+ that is not pre�x-free.

A pre�x-free code C satis�es the Kraft inequality:

X
x2C

#S�jxj � 1 (1.2)

Another property of some pre�x-free codes is that of completeness. Some

authors also call complete codes exhaustive [13, 26]. This thesis uses the term

\complete" as it seems to be the predominant term used in the information sciences.

A pre�x-free, complete code C may be characterised in two ways:

1. for any string x 2 S+nC, the code set (C [fxg) is not pre�x-free.

1.4 Code Sets and their Properties 23

2. any su�ciently long1 string in S+ may be written as a unique concatenation

xy of a codeword x 2 C and a string y 2 S?.

The latter property is particularly important, as it guarantees that any su�ciently

long input into a decoder for a complete code will result in some valid output.

If C is represented by a \decoding tree" (see Chapter 3), a pre�x-free code

corresponds to a decoding tree where only the leaf nodes are codewords, and a

complete code is synonymous to a decoding tree where all branch nodes are each

fully populated with #S outgoing branches.

For pre�x-free complete codes, the Kraft inequality becomes an equality:

X
x2C

#S�jxj = 1: (1.3)

1.4.2 Coding E�ciency and Compression

The Shannon theorem [39, 40] places an upper bound �m on the number of symbols

from the channel alphabet S that we can communicate through a channel with

bandwidth ! in a given amount of time, with signal-to-noise ratio �:

�m � ! log#S(1 + �): (1.4)

The number � of symbols from S that have to be communicated depend on several

factors:

� the rate at which the source emits source symbols;

� the (possibly conditional) probability of a source symbol being emitted;

1In this context, a string is \su�ciently long" if but not necessarily only if it is at least as long
as the longest codeword in C.

24 Introduction

� which C � S+ is chosen to encode the source.

In many practical circumstances, the �rst two of these are determined by the source

and cannot be controlled. In fact, for many practical applications, the probability

of occurrence of a source symbol can only be estimated. However, the encoding

is often open to choice, and it is this parameter that can sometimes lead to a

considerable reduction in the symbol rate on the channel.

Similarly, the bandwidth ! and the SNR � are often hard constraints. Thus,

choosing a suitable encoding method is in some cases the only way of controlling

the number of symbols from S that are communicated.

The \standard" way of encoding a source is to use block codes, where j�(�i)j is

constant, i.e., independent of �i. This does not pay any attention to the source's

statistics, however.

\Source coding", on the other hand, takes source statistics into account, thus

resulting in \compression" when compared to a block encoding.

In 1952, Hu�man [30] presented an algorithm for the construction of variable-

length codes from the probabilities of occurrence of the source symbols. These

\Hu�man codes", arguably the best-known example of source coding, assume that

the source symbols are mutually independent, i.e., that the probability of occurrence

of the next symbol that the source will emit does not depend on previously emitted

symbols.

However, for most real-life sources, there is some correlation between source

symbols. This renders the Hu�man codes suboptimal, and approaches such as the

Lempel-Ziv algorithm [54] frequently lead to an overall better compression. How-

ever, in a number of cases there are good arguments for adhering to an algorithm

that encodes each source symbol individually. For simplicity, or just as a best esti-

mate, one can often assume that the source symbols are independent, which usually

1.5 A Brief History of T-Codes 25

still results in a signi�cant compression gain.

The general source coding model for T-Codes is based on this same assumption

and is discussed in Chapter 10.

1.4.3 Other Aspects of Coding

Coding e�ciency and compression ratios are only one aspect under one may wish

to select a code for a particular application. There are other aspects, too, two of

which play an important role in this thesis:

1. robustness of codes. In many practical applications, the channel introduces

errors into the received symbol stream. A source code that inherently helps

a decoder to recover from errors may be desirable in some applications.

2. encoder and decoder complexity. It is generally desirable to have codes which

can be encoded and decoded quickly with as few computational resources

(such as storage) as possible. This is a issue especially when hardware imple-

mentations are involved.

1.5 A Brief History of T-Codes

As a subset of all possible Hu�man code sets, T-Codes have inadvertently been in

use for a long time. However, their special properties, in particular self-synchronisa-

tion and the T-augmentation construction, were �rst recognised and presented [44]

by Mark Titchener while he was a graduate student. He later completed a PhD [46]

on the subject, in which he also introduced a �xed -length representation. Together

26 Introduction

with Je� Hunter, he developed the theory of T-Code synchronisation [51], which is

revisited and expanded in this thesis.

Mark Titchener's ideas have been picked up by several people. In 1989, a

UK-based research group, M. Darnell, B. Honary, and F. Zolghadr, suggested the

use of T-Codes in the construction of a statistical real-time channel evaluation

system [7]. Gavin Higgie completed a PhD on T-Codes in 1991 [26], in which he

compares the synchronisation performance of a large number of possible T-Code

sets, and suggests some hardware solutions for the practical implementation of

T-Code decoders. Some of his graduate students have since presented theses or

project work on T-Codes [10, 24, 25, 5], mostly in the area of fax and image coding.

Gavin Higgie himself has also remained active in the area, elaborating further on

his thesis topic [27].

The original T-Code concept as presented by Mark Titchener restricted itself to

\simple" T-augmentation. In 1986, he came to the conclusion that the important

results, in particular with regard to self-synchronisation, held true for a much wider

class of codes. This resulted much later in a paper introducing the generalised T-

Codes [49], and forms the basis of the research for this thesis.

Radu Nicolescu [36] has contributed signi�cantly to the understanding of T-

Code codeword structure by proving the uniqueness of the longest codewords in

T-Code sets.

T-Codes have always o�ered \spin-o�s" for general variable-length coding.

Gavin Higgie developed a decoder model for general variable-length codes that

\traps" the �nal codeword between pointers [26]. Mark Titchener realised that the

synchronisation behaviour of most variable-length codes could be approximated by

that of similar T-Code sets [50]. Finally, the generalised T-depletion code format

presented in this thesis and in [18, 19] o�ers a convenient storage and handling

format for general variable-length codes.

C H A P T E R 2

An Introduction to T-Codes

This chapter introduces the concept of T-augmentation and
shows how it may be used to obtain T-Code sets. T-Code
properties such as pre�x-freeness, completeness and the
cardinality of T-Code sets are discussed. A conversion
method for a more restricted notation used by other au-
thors is also given.

2.1 T-Augmentation

T-augmentation is the central \tool" in the construction of T-Code sets. However,

since its application is not restricted to T-Code sets, we may de�ne it separately:

De�nition 2.1.1 (T-Augmentation)

The mapping

�(X; p; k) : P(S?)� S? � IN! P(S?)

is called a T-augmentation of X i� p 2 X, k 2 IN+, and

�(X; p; k) = fxjx = pk
0

s where s 2 Xnfpg ^ 0 � k0 � kg [fpk+1g: (2.1)

27

28 An Introduction to T-Codes

If �(X; p; k) is a T-augmentation, we write X
(k)
(p) = �(X; p; k). We call X

(k)
(p) a T-

augmented set. The string p is said to be the T-pre�x, and the integer k is

called the T-expansion parameter for the T-augmentation.

This de�nition goes beyond the original set \augmentation" algorithm proposed by

Titchener in [44]. His original de�nition did not include the T-expansion parame-

ter k that he added later [49]. We propose to call the original algorithm \simple

T-augmentation" and may treat it simply as a special case of the above de�ni-

tion, with k = 1. The algorithm proposed above is also known as \generalised

T-augmentation".

Simple T-augmentation and the resulting simple T-Code sets have been inves-

tigated by others who developed applications such as encoders and decoders [26],

real-time channel evaluators [7], and image coding [24] techniques.

Example 2.1.2 (T-Augmentation)

Consider the set

X = fa; ba; bb; bc; ca; cb; ccg

based on S = fa; b; cg and choose, say, p = bb and k = 2 for the T-augmentation.

Thus, the T-augmented set

X
(2)
(bb) = fa; ba; bc; ca; cb; cc; bba;

bbba; bbbc; bbca; bbcb;

bbcc; bbbba; bbbbba;

bbbbbb; bbbbbc; bbbbca;

bbbbcb; bbbbccg:

2.2 T-Code Sets 29

2.2 T-Code Sets

As mentioned above, T-augmentation is central in the construction of T-Code sets.

T-Code sets are de�ned as follows:

De�nition 2.2.1 (T-Code Sets)

We de�ne any �nite alphabet S to be a T-Code set at T-augmentation level 0.

A set X � S+ that can be derived from S by a �nite series of n T-augmentations

with T-pre�xes p1; p2; : : : ; pn and T-expansion parameters k1; k2; : : : ; kn respectively,

such that

X =
�
: : :
�h
S
(k1)
(p1)

i(k2)
(p2)

�
: : :
�(kn)
(pn)

is called a T-Code set at T-augmentation level1 n. We write

S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

= X:

This de�nition leads to a few corollaries:

Corollary 2.2.2

Let S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

be a T-Code set at T-augmentation level n, and let pn+1 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

and kn+1 2 IN+. The set

S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

=
h
S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

i(kn+1)

(pn+1)
(2.2)

is a T-Code set at T-augmentation level n+ 1.

Proof: follows immediately from De�nition 2.2.1. 2

Corollary 2.2.3

Let S(k1;k2;:::;kn)
(p1;p2;:::;pn)

be a T-Code set at T-augmentation level n, and let pn+1 2 S(k1;k2;:::;kn)
(p1;p2;:::;pn)

1referring to a T-augmentation level always carries an implicit reference to a particular set of
T-pre�xes and T-expansion parameters (see Chapter 3).

30 An Introduction to T-Codes

and kn+1 2 IN+. Then

S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

=
n
pk

0
n+1sjs 2 S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

nfpn+1g ^ 0 � k0n+1 � kn+1
o
[fpkn+1+1

n+1 g:

(2.3)

Proof: follows immediately from De�nitions 2.1.1 and 2.2.1. 2

Another notion that will be used throughout this thesis is that of intermediate

T-Code sets:

De�nition 2.2.4 (Intermediate T-Code Sets)

Let S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

be a T-Code set at T-augmentation level n. For m � n, the T-Code

set S
(k1;k2;:::;km)
(p1;p2;:::;pm) is called an intermediate T-Code set (of S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

).

Note that the �nal set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

counts as an intermediate T-Code set. This

inclusion is of a technical nature and simpli�es a number of proofs in this thesis.

De�nition 2.2.5 (Simple T-Code Sets)

T-Code sets that can be generated entirely by simple T-augmentation are called

\simple T-Code sets".

The following example illustrates the construction of a T-Code set:

Example 2.2.6 (Construction of a T-Code set)

Table 2.1 shows the construction and the intermediate T-Code sets for the binary

T-Code set S(1;1;3)
(0;1;01) at the T-augmentation levels from 0 to 3. The concept of T-

augmentation may be understood as follows: a new column/T-Code set at level i+1

may be derived from at T-Code set at level i to the left by copying the codeword list

into a new column a total of ki+1+1 times. The copies may be indexed by k0i+1 such

that k0i+1 = 0; : : : ; ki+1. Each copy is then pre�xed with p
k0i+1

i+1 . Finally, all codewords

of the form p
k0i+1

i+1 are removed from the list.

2.2 T-Code Sets 31

T-augmentation level
n 0 1 2 3
kn k0 = 1 1 1 3

set S S(1)
(0) S(1;1)

(0;1) S(1;1;3)
(0;1;01)

0 0= � �
1 1 1= �

00 00 00
01 01 01==

� �
11 11
100 100
101 101

�
�

0100
01==01==
�

0111
01100
01101

�
�

010100
01==01==01==

�
010111
0101100
0101101

�
�

01010100
01010101

�
01010111
010101100
010101101

Table 2.1. The columns in the table list the codewords in the intermediate T-Code sets:
S (T-augmentation level 0), S

(1)
(0) (T-augmentation level 1), S

(1;1)
(0;1) (T-augmentation level 2),

and S
(1;1;3)
(0;1;01) (the �nal set at T-augmentation level 3).

32 An Introduction to T-Codes

2.3 Basic Properties of T-Code Sets

This section explores and proves two basic properties of T-Code sets: pre�x-freeness

and completeness. Together, these two properties ensure the unique and instanta-

neous decodability of any semi-in�nite string in S+1. We also derive an expression

for the cardinality of T-Code sets.

2.3.1 Pre�x-Freeness

A code set C is called pre�x-free if none of its codewords is the pre�x of another,

or, more formally:

8x 2 C; y 2 C : x �
S
y) x = y: (2.4)

Theorem 2.3.1 (Pre�x-Freeness of T-Code Sets)

T-Code sets are pre�x-free.

Proof: by induction over the T-augmentation level n. The alphabet S is by def-

inition pre�x-free. By induction hypothesis, S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is pre�x-free. By Corol-

lary 2.2.3, every codeword x 2 S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

is of the form x = p
k0n+1

n+1 y where

y 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

and 0 � k0n+1 � kn+1. Presume that there is a codeword x0 2

S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

such that x0 is a proper pre�x of x. If we write x0 in its appropriate

form, i.e., x0 = p
k00n+1

n+1 y
0 where y0 2 S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

, then there are three possibilities:

1. x = p
k0n+1

n+1 y, x
0 = p

k00n+1

n+1 y
0, and k0n+1 = k00n+1. Thus y

0 �
S
y, which violates the

pre�x-freeness of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

.

2. x = p
k0n+1

n+1 y, x
0 = p

k00n+1

n+1 y
0, and k0n+1 > k00n+1. This implies that y0 is a proper

pre�x of p
k0n+1�k

00
n+1

n+1 y. By Corollary 2.2.3, y0 6= pn+1 because k00n+1 < k0n+1 �

2.3 Basic Properties of T-Code Sets 33

kn+1. Hence, we require either y
0 �

S
pn+1 or pn+1 �S

y0. Neither of these two

options is feasible because they violate the pre�x-freeness of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

and

hence the induction hypothesis.

3. x = p
k0n+1

n+1 y, x
0 = p

k00n+1

n+1 y
0, and k0n+1 < k00n+1. This implies that p

k00n+1�k
0
n+1

n+1 y0

is a proper pre�x of y, which makes pn+1 a proper pre�x of y. This is not

compatible with the induction hypothesis either.

Hence, S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

is pre�x-free. 2

As mentioned before, the property of pre�x-freeness is so fundamental that some

authors regard it as a necessary condition for a set of strings to be called a \code"[2].

2.3.2 Completeness

Code set completeness may be regarded as complementary to the pre�x-freeness of

a code. A pre�x-free code C is called complete if it is not possible to add another

word from S+ to the code without violating its pre�x-freeness, or, more formally:

8x 2 S+nC : C [fxg is not pre�x-free: (2.5)

A brief note on terminology: complete code sets are also sometimes called \ex-

haustive", in particular in an engineering context [13, 26, 38], however, this thesis

will use the term \complete" since it seems to be the more common usage in the

information sciences.

Completeness in conjunction with pre�x-freeness of a code C implies unique

and instantaneous decodability, i.e., any string in S+1 can be written as a unique

sequence of codewords from C.

Theorem 2.3.2 (Completeness of T-Code Sets)

T-Code sets are complete.

34 An Introduction to T-Codes

Proof: by induction over the T-augmentation level n. The alphabet S is by default

complete | any string from S+ that we could add starts with a symbol from S

and hence the resulting set would not be pre�x-free. Our induction hypothesis is

now that S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is complete. Let us presume that there exists a �nite string

x 2 S+nS
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

such that S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

[fxg is still pre�x-free. Unique and

instantaneous decodability of S(k1;k2;:::;kn)
(p1;p2;:::;pn)

implies that we have three cases

1. x is a proper pre�x of a codeword in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. In this case, x violates

the pre�x-freeness of S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

because all proper pre�xes of codewords in

S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

are also proper pre�xes of codewords in S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

.

2. x has a proper pre�x that is a codeword in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

nfpn+1g. Since all

codewords of S(k1;k2;:::;kn)
(p1;p2;:::;pn)

except pn+1 are also codewords in S(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

, this

would violate the pre�x-freeness of S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

.

3. pn+1 is a proper pre�x of x. Now we may remove copies of pn+1 from the left

of x until

� we have removed kn+1+1 copies of pn+1, in which case p
kn+1+1
n+1 is a proper

pre�x of x, or

� the remainder x0 after the removal of k0n+1 � kn+1 copies of pn+1 no longer

has a decoding over S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, in which case x0 is a proper pre�x of a

codeword s 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. Hence, x is a proper pre�x of p
k0n+1

n+1 s, or

� the remainder x0 after the removal of k0n+1 � kn+1 copies of pn+1 no

longer starts with pn+1, but with some other codeword s 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

.

Then p
k0n+1

n+1 s is a proper pre�x of x.

In all these cases, the pre�x-freeness of T-Code sets leads to the desired contradic-

tion. Hence, T-Code sets are complete. 2

2.3 Basic Properties of T-Code Sets 35

2.3.3 Cardinality

The cardinality of a T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is determined by the number of alphabet

symbols, #S, and the T-expansion parameters used in the construction of the T-

Code set [49, 17]:

Theorem 2.3.3

The cardinality of T-Code sets at T-augmentation level 1 and above is given by

#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

= 1 + (#S � 1)
nY
i=1

(ki + 1): (2.6)

Proof: by induction over the T-augmentation level n. By Corollary 2.2.3, the

assertion holds for n = 1. In a T-augmentation from S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

to S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

,

we need to account for the following cases:

� the codeword pkn+1+1
n+1 ,

� #S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1 codewords from S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, each pre�xed with between 0

and kn+1 copies of pn+1. This is a total of
�
#S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1
�
(kn+1 + 1)

codewords2.

This yields a total of

#S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

= 1 +
�
#S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1
�
(kn+1 + 1)) (2.7)

= 1 +

1 + (#S � 1)

nY
i=1

(ki + 1)� 1

!
(kn+1 + 1))

= 1 + (#S � 1)
n+1Y
i=1

(ki + 1):

2

2The unique decodability of strings composed from T-Code codewords ensures that we do not

count codewords in S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

twice. For a more elaborate and wide-ranging proof of this

assertion that does not rely on the cardinality of T-Code sets, see Theorem 4.2.3.

36 An Introduction to T-Codes

The minimum cardinality at a particular T-augmentation level is given by the

simple T-Code sets, where ki = 1 for 1 � i � n, and thus [46]

#S1;1;:::;1
p1;p2;:::;pn

= 1 + (#S � 1)2n: (2.8)

In the case of a binary coding alphabet (#S = 2), this simpli�es to

#S1;1;:::;1
p1;p2;:::;pn

= 1 + 2n: (2.9)

2.4 Notation Conversion

In 1985, Titchener devised a notation that permitted the unique description of any

simple T-Code set [45], based on the binary depletion codes (an advanced form

of which will be discussed in Chapter 4). It has subsequently been used among

others by Titchener, Higgie [26, 27], as well as Honary, Zolghadr and Darnell [7].

The notation also states the alphabet, followed by square brackets with a list of

T-pre�xes. These T-pre�xes are not given by their literal reading but rather by an

index corresponding to their position on a list similar to the lists in the columns

of Table 2.1. The codeword in the top line of the list is given the index 0, and

counting all lines, including the empty lines (due to previously removed T-pre�xes),

one �nally arrives at the appropriate index.

If we restrict ourselves to simple T-Codes, this notation is indeed appropriate.

However, it needs to be adapted to work with generalised T-Codes where the result

of a T-augmentation no longer depends on the T-pre�xes alone. Depending on

the T-expansion parameter used, positions on a codeword list may be occupied

by di�erent codewords. Such an adaptation was performed for a suite of C tools

(TCODE | T-Code Online Development Environment [52]), but proved to be too

cumbersome for theoretical work.

2.5 Discussion 37

Hence, a more comprehensive and improved notation was required for gener-

alised T-Codes. It is used throughout this thesis and has already been introduced

in this chapter. The following example shows how to convert between the two

notations:

Example 2.4.1 (Notation Conversion)

1. The simple T-Code set S
(1;1;1)
(1;10;0) from Table 2.2 is denoted S[1; 2; 0] in Titch-

ener's 1985 notation. Note that it is not simply possible to take the \binary

value" of the strings as this might suggest. For example, S
(1;1;1)
(0;00;1) would be

denoted S[0; 2; 1].

2. In the other direction, we convert as follows: consider, e.g., S[1; 3; 2]. With

p1 = 1, we get S[1] = S
(1)
(1) = f0;�; 10; 11g, where the \-" indicates a \deleted"

position that needs to be counted. Thus, p2 = 11 and

S[1; 3] = S
(1;1)
(1;11) = f0;�; 10;�; 110;�; 1110; 1111g:

Finally, we get p3 = 10 and hence

S[1; 3; 2] = S
(1;1;1)
(1;11;10)

= f0;�;�;�; 110;�; 1110; 1111; 100;�;

1010;�; 10110;�; 101110; 101111g

2.5 Discussion

This chapter has shown how T-Code sets may be constructed, and that they pos-

sess the basic properties of pre�x-freeness and completeness that ensure unique and

38 An Introduction to T-Codes

T-augmentation level
n 0 1 2 3
kn n/a 1 1 1

index S S(1)
(1) S(1;1)

(1;10) S(1;1;1)
(1;10;0)

0 0 0 0 0=
1 1 1= � �
2 10 10== �
3 11 11 11
4 100 100
5 � �
6 1010 1010
7 1011 1011
8 00
9 �
10 �
11 011
12 0100
13 �
14 01010
15 01011

Table 2.2. Indices of T-Code codewords in a series of simple T-Code sets.

instantaneous decodability. These features are desirable for codes in practical ap-

plications, for example in communications or data compression. Furthermore, the

cardinality of T-Code sets has been shown to depend only on the alphabet size and

the T-expansion parameters.

Having discussed the \basics" of T-Codes, we now turn our attention towards

the recursive features of T-Codes. The reader may have noticed that all the

signi�cant proofs in this chapter have been conducted by induction over the T-

augmentation level n | a method that seems to be tailor-made for T-Code sets

with their recursive construction by T-augmentation. It is therefore not surprising

that proofs by induction will be used repeatedly throughout this thesis.

C H A P T E R 3

T-Prescriptions

The process of T-augmentation in the construction of T-
Code sets may be regarded as a recursive \copy-and-pre�x"
process. This chapter illustrates this construction using de-
coding trees as a graphical representation. A question of
uniqueness arises: is it possible that multiple sets of T-
pre�xes and T-expansion parameters yield identical sets?
The answer is yes, under certain well-de�ned circum-
stances [36]. The notion of a T-prescription is introduced,
and equivalence criteria for T-prescriptions are discussed.

3.1 Variable-Length Codes as Trees

Decoding trees and search trees are common in computer science. Consider a pre�x-

free variable-length code (e.g., a Hu�man code or a T-Code) based on an alphabet

S with #S symbols. The decoding tree starts at a root node, which we denote by

� (the string associated with the beginning of the decoding is the empty string).

Unless the code set is empty, the root node is a branch node. A branch node gives

rise to between 1 and #S outgoing branches connecting the node with other nodes,

and (except for the root node) exactly one incoming branch. Each outgoing branch

39

40 T-Prescriptions

from a branch node is associated with a unique symbol from S. Outgoing branches

end either at other branch nodes, or at leaf nodes (terminal nodes), characterised

by having no outgoing branches. Leaf nodes correspond to a completely decoded

codeword.

A decoder for the code may be thought of as a state machine automaton, starting

at the root node. Upon receipt of the �rst symbol from S, the automaton follows

the branch associated with that symbol to the next node. If this node is a branch

node, the decoder will wait until the next symbol is received. It then exits the

branch node via the appropriate branch to the next node. This is repeated until

the node reached is a leaf node, at which stage the decoder outputs the source

symbol corresponding to the decoded codeword.

Commonly, the trees are drawn such that they indicate the \direction" of the

decoding, e.g., the decoder moves from the root node at the top to the leaf nodes

further \down" in the tree. Here, we will adopt the convention that (for binary

trees) a branch to the left will correspond to the receipt of a 0, while a branch to

the right will correspond to the receipt of a 1.

3.2 T-Codes as Trees

For T-Codes, trees help to understand T-augmentation as a process of appending

k copies of an existing tree to the original copy via one of its leaf nodes, p. The

following example illustrates this:

Example 3.2.1 (T-Augmentation of Trees)

Consider the T-augmentation sequence of S = f0; 1g via S
(2)
(1) to S

(2;1)
(1;10) in Figure 3.1.

3.2 T-Codes as Trees 41

.

@
@
@

�
�
�

root

0 1

@
@
@
@
@
@
@
@
@

�
�
�

root

0 �
�
�
10 �

�
�

110 111

@
@
@
@
@
@
@
@@

�
�
�

root

0 �
�
�
@
@
@
@
@
@@

�
��

100 �
��

1010 �
��

10110 10111

�
��
110 111

S S
(2)
(1) S

(2;1)
(1;10)

Figure 3.1. Recursive growth of a decoding tree under two T-augmentations.

In the �rst T-augmentation, the tree for S is copied twice and the two copies

are appended to the original tree (and each other) via the respective leaf nodes

corresponding to the codeword 1. The second T-augmentation links one copy of the

tree for S(2)
(1) with the original via the leaf node 10.

We can now see the signi�cance of the T-pre�xes and the T-expansion param-

eters: the choice of the T-pre�x controls the \direction" in which the tree \grows"

as a result of the T-augmentation. The T-expansion parameter controls the size

(i.e., the number of nodes) of the T-augmented tree. Together, the T-pre�x and

the T-expansion parameter control the depth and codeword length distribution of

the tree.

42 T-Prescriptions

3.3 T-Prescriptions: Construction Strategies for
T-Code Sets

The previous section discussed how the choice of T-pre�xes and T-expansion

parameters a�ects the size and shape of a T-Code decoding tree. This raises another

question: is it possible to construct the same T-Code set using two di�erent sets of

T-pre�xes and T-expansion parameters? The answer is yes | the reader may wish

to verify that, e.g., the T-Code sets S
(3)
(0) and S

(1;1)
(0;00) are identical.

Nicolescu [36] showed that this is indeed the case under certain well-de�ned

circumstances. To separate a T-Code set from a particular way of constructing it,

Nicolescu introduced the notion of a \T-prescription":

De�nition 3.3.1 (T-Prescriptions)

For a given T-Code set C, the system (S; (p1; p2; : : : ; pn); (k1; k2; : : : ; kn)) is called

a T-prescription of C if C = S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

.

Note that this de�nition permits several T-prescriptions for the same set. Nicolescu

further proved that if one prescription was known, all other prescriptions could be

derived from it. This is possible by searching for \factors" in T-pre�xes and T-

expansion parameters:

Theorem 3.3.2 (Expansion)

Consider a T-prescription (S; (p1; p2; : : : ; pn); (k1; k2; : : : ; kn)) of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. If for

some km with 1 � m � n, (km + 1) is not prime, i.e., there exist two positive

integers kym and kyym such that

km + 1 = (kym + 1)(kyym + 1); (3.1)

then the T-prescription

(S; (p1; p2; : : : ; pm�1; pm; p
k
y
m+1

m ; pm+1; : : : ; pn); (k1; k2; : : : ; km�1; k
y
m; k

yy
m; km+1 : : : ; kn))

3.3 T-Prescriptions: Construction Strategies for T-Code Sets 43

is also a T-prescription of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

.

Proof: it su�ces to show that two successive T-augmentations of a T-Code set

S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

, with kym, kyym as the successive T-expansion parameters and pm,

pk
y
m+1

m as the T-pre�xes, yield the same �nal set as a single T-augmentation of

S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

with km and pm respectively:

S
(k1;k2;:::;km�1;k

y
m;k

yy
m)

(p1;p2;:::;pm�1;pm;p
k
y
m+1

m)

=
�
xjx = p(k

y
m+1)i

m s where s 2 S
(k1;k2;:::;km�1;k

y
m)

(p1;p2;:::;pm�1;pm) n
�
pk

y
m+1

m

�
^ 0 � i � kyym

�

[
�
p(k

y
m+1)(kyym+1)

m

�

=
�
xjx = p(k

y
m+1)i

m s where s 2
n
yjy = pjms

0 ^ s0 2 S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

n fpmg

^ 0 � j � kym
o
^ 0 � i � kyym

�
[
�
p(k

y
m+1)(kyym+1)

m

�

=
�
xjx = p(k

y
m+1)i

m pjms
0 where s0 2 S

(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

n fpmg ^ 0 � j � kym ^ 0 � i � kyym

�

[
n
pkm+1
m

o

=
n
xjx = pi

0

ms
0 where s0 2 S

(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

n fpmg ^ 0 � i0 � (k+m + 1)kyym + k+m
o

[
n
pkm+1
m

o

=
n
xjx = pi

0

ms
0 where s0 2 S

(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

n fpmg ^ 0 � i0 � km
o
[
n
pkm+1
m

o

= S
(k1;k2;:::;km)
(p1;p2;:::;pm) (3.2)

This concludes the proof of Theorem 3.3.2. 2

The proof above may also be used to prove the \reverse" theorem:

44 T-Prescriptions

Theorem 3.3.3 (Contraction)

Consider a T-prescription (S; (p1; p2; : : : ; pn); (k1; k2; : : : ; kn)) of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. If for

some pm; pm+1 with 1 � m < n,

pm+1 = pkm+1
m ; (3.3)

then the T-prescription

(S; (p1; p2; : : : ; pm�1; pm; pm+2; : : : ; pn); (k1; k2; : : : ; km�1; (km+1)(km+1+1)�1; km+2; : : : ; kn))

is also a T-prescription of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

.

Proof: see above. 2

The above theorems con�rm Nicolescu's results from [36]. They will also be used

in Chapter 7, where his uniqueness theorem is discussed against the background

of hierarchical coding. In Chapter 10, the above results are applied to achieve a

considerable reduction in computational complexity for a search algorithm.

Whenever there are several T-prescriptions for a set, we can �nd one that is

\canonical" and another one that is \anti-canonical":

De�nition 3.3.4 (Canonical and Anti-Canonical T-Prescriptions)

A T-prescription (S; (p1; p2; : : : ; pn); (k1; k2; : : : ; kn)) of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is called canon-

ical if there is no m with 1 � m < n for which pm+1 = pkm+1
m . It is called

anti-canonical if there is no m with 1 � m � n for which (km + 1) is not prime.

Nicolescu also showed that the canonical and the anti-canonical T-prescriptions of

S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

are unique, i.e., there is only one canonical and one anti-canonical T-

prescription for each T-Code set. Note that the canonical and the anti-canonical

T-prescription may be identical, in which case no other T-prescription of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

exists.

3.4 Discussion 45

3.4 Discussion

The structure of T-Code sets as the product of a recursive \copy-and-pre�x" process

is now well understood. The existence of multiple T-prescriptions for some T-Code

sets introduces an element of ambiguity. However, by demanding that only the

canonical or anti-canonical form of a T-prescription be used, one can avoid this

ambiguity. This is utilised in a set searching algorithm presented in Chapter 10,

where it helps to avoid repeated processing of the same T-Code set under di�erent

T-prescriptions.

However, the existence of multiple T-prescriptions is also a useful tool when

testing assertions about T-Code sets: all assertions that relate to the set must be

independent of the T-prescription chosen to obtain it.

46 T-Prescriptions

C H A P T E R 4

T-Depletion Codes

In some practical applications, e.g., in an encoder or de-
coder, it is desirable to have a �xed-length format for the
storaged and handling of codewords from a variable-length
code. This chapter shows that the recursive construction of
T-Code sets gives rise to an inherent recursive structure in
T-Code codewords. This structure may be exploited to ef-
�ciently represent T-Code codewords in a �xed-length for-
mat, the T-depletion codeword. Algorithms that convert
between the variable-length T-Code codewords and their
corresponding T-depletion codewords may be regarded as
encoders and decoders, and an example for each is pre-
sented here.

4.1 Representing Variable-Length Codes in a Fixed-
Length Format

By their nature, variable-length codes, such as Hu�man codes, are somewhat cum-

bersome to handle in computers with a �xed-length word architecture. For this

47

48 T-Depletion Codes

reason, we require �xed-length representations for variable-length codes, and con-

versions between variable-length code and �xed-length code formats.

For the purposes of this chapter, an encoder is regarded as an algorithm or

device that converts source data from a �xed-length input format into a unique

variable-length output format. Similarly, a decoder is regarded as an algorithm

or device that performs the inverse operation, i.e., that converts variable-length

input data uniquely into some �xed-length output (which may then be used to, e.g,

address (index) a look-up table containing the corresponding source symbols). In

particular, we consider the case where a sequence of �xed-length inputs is encoded

into a series of concatenated variable-length outputs, yielding a continuous symbol

stream. This symbol stream is then communicated through a channel, which may

introduce symbol errors into the stream. At the other end of the channel, the

stream is decoded and reconverted into a sequence of �xed-length outputs.

One way of storing variable-length codewords in a �xed-length format is to

store both the codeword string and its length, where the length of the �eld used

to store the codeword string is determined by the length of the longest codeword

in the set. In Section 4.2.4, an example illustrates that this representation is not

very space-e�cient compared to the representation proposed in this chapter. The

\traditional" way of representing strings in the PASCAL programming language

(and the problems this created) is a good example for this approach.

The representation of the variable-length codewords is a particular problem in

encoders. In decoders, such as the universal decoders for variable-length codes

proposed by Tanaka [42] or Chung [6], an enumeration of the codewords can bypass

the need to handle codewords in their literal form. However, if the code set used

is not �xed, it may need to be communicated to the decoder. In this case, a

general variable-length code may still require a format similar to the one above to

communicate the codewords and their \translations". Canonical Hu�man codes

4.1 Representing Variable-Length Codes in a Fixed-Length Format 49

as treated by Hirschberg and Lelewer [29] simplify the decoder considerably by

establishing a convention that permits the derivation of the decoding tree from

the code's code length distribution. However, (canonical) Hu�man codes are not

necessarily robust, in particular with respect to synchronisation.

Apart from addressing this practical problem, the �xed-length T-depletion rep-

resentation for T-Code codewords introduced in this chapter also provides an insight

into the structure of T-Code codewords. It may also be used to derive synchroni-

sation information in a T-Code decoder (cf. Chapter 8). Furthermore, as we will

see in Chapter 6, the T-depletion representation is general enough to accommodate

arbitrary variable-length codes.

The predecessor to the T-depletion codes, the binary depletion codes, were ini-

tially proposed by Titchener [45], based on simple T-Codes. The term \depletion"

originates from a depletion algorithm that is applied to an initially complete list of

binary words of n + 1 bits (in the case of a binary alphabet S). Starting from the

initial list of 2n+1 binary words, individual words are deleted from the list accord-

ing to a regular pattern. Titchener showed that the remaining words on the thus

depleted list corresponded uniquely to T-Code codewords in a simple T-Code set at

T-augmentation level n, with individual bits indicating the absence or presence of

T-pre�xes in the codeword concerned. He thus showed that the depletion algorithm

in the �xed-length domain was equivalent to the T-augmentation algorithm in the

variable-length domain.

Zolghadr, Honary, and Darnell used binary depletion codes in the implementa-

tion of a real-time channel evaluation system [7]. It is now convenient to extend the

notion of these depletion codes to accommodate generalised T-augmentation. The

following sections thus develop a general formal de�nition for T-depletion codes that

permits the representation of generalised T-Codes based on binary and non-binary

alphabets.

50 T-Depletion Codes

The next section shows how the T-depletion code format may be derived from

the general form of T-Code codewords.

4.2 The Structure of T-Code Codewords and
T-Depletion Codes

4.2.1 The Structure of T-Code Codewords

We begin by proving two lemmata that will be used in the proof of the central

theorem of this section, and in the proof of Theorem 6.1.2.

Lemma 4.2.1

Consider a string of the form

x = p
k0n
n p

k0n�1

n�1 : : : p
k01
1 : (4.1)

where 0 � k0i � ki for i = 1; : : : ; n. Then x is a proper pre�x of a codeword in the

set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, i.e., there exists a string y 2 S+ such that xy 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

.

Proof: by induction over n. For n = 0, x = � (where � denotes the empty string),

which is clearly a proper pre�x of all elements of S. Now consider

x = p
k0n+1

n+1 p
k0n
n p

k0n�1

n�1 : : : p
k01
1 : (4.2)

By induction hypothesis, the word p
k0n
n p

k0n�1

n�1 : : : p
k01
1 is a proper pre�x of a codeword

z 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. We now distinguish two cases: if z 6= pn+1, then p
k0n+1

n+1 z is a

codeword in S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

and hence x is a proper pre�x of it. If z = pn+1, then x

is a proper pre�x of pkn+1+1
n+1 2 S

(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

. 2

We can now use this result to prove the following lemma:

4.2 The Structure of T-Code Codewords and T-Depletion Codes 51

Lemma 4.2.2

For any string x 2 S? and a given T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, there exists at most one

set fk01; : : : ; k
0
ng with 0 � k0i � ki for i = 1; : : : ; n such that x may be written in the

form of Equation (4.1).

Proof: x for which no appropriate sets fk01; : : : ; k
0
ng exist trivially satisfy the lemma.

Strings x for which an appropriate set fk01; : : : ; k
0
ng exists are obviously more

interesting. In this case, we may use induction over n to prove that fk01; : : : ; k
0
ng is

indeed the only set that satis�es Equation (4.1).

For n = 0, only the empty word � can be written in the form of Equation (4.1),

and this representation is unique.

For the induction step we assume that a word x 2 S? can be written in two

forms satisfying Equation (4.1):

x = p
k0n+1

n+1 p
k0n
n p

k0n�1

n�1 : : : p
k01
1 : (4.3)

and

x = p
k00n+1

n+1 p
k00n
n p

k00n�1

n�1 : : : p
k001
1 ; (4.4)

such that 0 � k0i � ki, 0 � k00i � ki for i = 1; : : : ; n + 1. We need to show that

necessarily k0i = k00i for all i = 1; : : : ; n+ 1.

We distinguish three cases:

1. k0n+1 = k00n+1: in this case, p
k0n
n p

k0n�1

n�1 : : : p
k01
1 = p

k00n
n p

k00n�1

n�1 : : : p
k001
1 and the induction

hypothesis applies such that k0i = k00i for i = 0; : : : ; n.

2. k0n+1 > k00n+1: in this case, pn+1 is a pre�x of p
k00n
n p

k00n�1

n�1 : : : p
k001
1 . However, by

Lemma 4.2.1, this is a pre�x of a codeword in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. Thus, pn+1 would

have to be a pre�x of a codeword in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, which violates the pre�x-

freeness of that set.

52 T-Depletion Codes

3. k0n+1 < k00n+1: this case also violates the pre�x-freeness of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, by the

same argument as before.

This proves Lemma 4.2.2. 2

We are now ready to prove the central theorem of this section: the existence of

a unique form for T-Code codewords in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

:

Theorem 4.2.3 (Decomposition of T-Code Codewords)

For all codewords x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, a decomposition

x = p
k0n
n p

k0n�1

n�1 : : : p
k01
1 k

0
0; (4.5)

exists such that 0 � k0i � ki for i = 0; 1; : : : ; n and k0 = #S�1. This decomposition

of x is unique, i.e., there exists exactly one set of k0i for which Equation (4.5) is

satis�ed.

Proof: Existence: by induction over n. For n = 0, the T-Code set is the

alphabet S itself. As we may represent each alphabet symbol by an integer 0 �

k00 � k0, codewords x0 at T-augmentation level 0 are of the general form x = k00,

which satis�es the theorem.

By the induction hypothesis, the codewords of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

satisfy the general

form

x = p
k0n
n p

k0n�1

n�1 : : : p
k01
1 k

0
0; (4.6)

for some k0i, i = 0; 1; : : : ; n, such that 0 � k0i � ki. The T-augmentation of

S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

with pn+1 and kn+1 pre�xes these codewords with k0n+1 � kn+1 copies

of pn+1. The codewords in S
(k1;k2;:::;kn;kn+1)
(p1;p2;:::;pn;pn+1)

thus satisfy the general form

x = p
k0n+1

n+1 p
k0n
n p

k0n�1

n�1 : : : p
k01
1 k

0
0: (4.7)

Thus, we have shown the existence of the decomposition.

4.2 The Structure of T-Code Codewords and T-Depletion Codes 53

Uniqueness: write a codeword x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

in the form of Equation 4.5:

x = p
k0n
n p

k0n�1

n�1 : : : p
k01
1 k00: (4.8)

The uniqueness of k00 is clear as it is simply the last symbol in x. The uniqueness

of k01; : : : ; k
0
n follows from Lemma 4.2.2 by applying it to the string p

k0n
n p

k0n�1

n�1 : : : p
k01
1 .

This concludes the proof of Theorem 4.2.3. 2

In fact, the representation in form of Equation (4.5) is unique not only for

codewords in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, but also for all codewords in its intermediate T-Code

sets:

Theorem 4.2.4 (Decomposition for Intermediate T-Code Sets)

For any m � n, the decomposition of x 2 S
(k1;k2;:::;km)
(p1;p2;:::;pm) as

x = p
k0n
n p

k0n�1

n�1 : : : p
k01
1 k

0
0 (4.9)

with 0 � k0i � k0i exists and is unique. It satis�es k0i = 0 for i > m.

Proof: The existence of a decomposition with k0i = 0 for i > m follows from

Theorem 4.2.3 for k0i = 0 for i > m. Again, the uniqueness of k00 is clear. The

uniqueness of k01; : : : ; k
0
n follows from Lemma 4.2.2. 2

De�nition 4.2.5 (T-expansion indices and literal symbol)

Let x = p
k0n
n p

k0n�1

n�1 : : : p
k01
1 k

0
0 with x 2 S

(k1;k2;:::;km)
(p1;p2;:::;pm) for m � n and k0i � ki for i =

0; : : : ; n. For i � 1, we call k0i the i'th T-expansion index of x. k00 is called the

literal symbol.

Example 4.2.6 (Decomposition of T-Code codewords)

Table 4.1 shows the decomposition of the codewords from the binary (S = f0; 1g)

T-Code set S
(1;1;3)
(0;1;01).

54 T-Depletion Codes

T-Code structure
00 (01)010010
11 (01)011001
100 (01)011010
101 (01)011011
0100 (01)110010
0111 (01)111001
01100 (01)111010
01101 (01)111011
010100 (01)210010
010111 (01)211001
0101100 (01)211010
0101101 (01)211011
01010100 (01)310010
01010101 (01)310011
01010111 (01)311001
010101100 (01)311010
010101101 (01)311011

Table 4.1. Codeword decomposition for the T-Code set S
(1;1;3)
(0;1;01).

Nicolescu [36] showed that the decomposition of one of the longest codewords

in a T-Code set may be used to represent the set itself. The longest codewords

contain all T-pre�xes, and their T-expansion indices equal the T-expansion factors

of the corresponding set. Chapter 7 discusses T-decomposition, an algorithm that

permits the recovery of a T-prescription1 from any one of the longest codewords.

Hence, it is possible to communicate the whole T-Code set to a decoder by simply

sending one of the longest codewords.

1The T-pre�xes and T-expansion parameters cannot necessarily be uniquely determined this

way. Consider, e.g., S
(3)
(0) = S

(1;1)
(0;00) for S = f0; 1g.

4.2 The Structure of T-Code Codewords and T-Depletion Codes 55

4.2.2 T-Depletion Codes

Presume that | for a given T-Code set | the T-pre�xes and T-expansion pa-

rameters are known. Thus, we may specify any codeword in such a set simply by

stating the corresponding T-expansion indices k01; k
0
2; : : : ; k

0
n and literal symbol k00.

For example, if the T-Code set S
(1;1;3)
(0;1;01) from the previous examples was given, and

we speci�ed that k00 = 1, k01 = 0, k02 = 1, and k03 = 2, it would be unambiguous

that this combination would refer to (01)211001 = 010111. T-depletion codewords,

which may be de�ned in terms of multibase numbers, implement this format:

De�nition 4.2.7 (Multibase Numbers)

A vector (k0n; k
0
n�1; : : : ; k

0
1; k

0
0) is called a multibase number with base (kn +

1; kn�1 + 1; : : : ; k1 + 1; k0 + 1) if for all i, 0 � i � n

0 � k0i � ki: (4.10)

De�nition 4.2.8 (T-Depletion Codewords)

For a given T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, a multibase number (k0n; k
0
n�1; : : : ; k

0
1; k

0
0) is

called the T-depletion codeword dn(x) corresponding to x 2 S(k1;k2;:::;km)
(p1;p2;:::;pm) if m �

n, 0 � k0i � ki for i = 0; : : : ; n, and

x = p
k0n
n p

k0n�1

n�1 : : : p
k01
1 k00: (4.11)

The notion of multibase numbers will probably be familiar to the reader: for

example, a 24-hour clock may be represented by a multibase number with base

(24; 60; 60), i.e., one index running from 0 to 23 for the hours, and two indices

running from 0 to 59 each for the minutes and seconds.

56 T-Depletion Codes

T-Code T-depletion codeword
(k03; k

0
2; k

0
1; k

0
0)

00 (0; 0; 1; 0)
11 (0; 1; 0; 1)
100 (0; 1; 1; 0)
101 (0; 1; 1; 1)
0100 (1; 0; 1; 0)
0111 (1; 1; 0; 1)
01100 (1; 1; 1; 0)
01101 (1; 1; 1; 1)
010100 (2; 0; 1; 0)
010111 (2; 1; 0; 1)
0101100 (2; 1; 1; 0)
0101101 (2; 1; 1; 1)
01010100 (3; 0; 1; 0)
01010101 (3; 0; 1; 1)
01010111 (3; 1; 0; 1)
010101100 (3; 1; 1; 0)
010101101 (3; 1; 1; 1)

Table 4.2. Codewords and T-depletion code elements for the T-Code set S
(1;1;3)
(0;1;01).

Note that, by Theorem 4.2.4, a unique T-depletion codeword exists for each

codeword from the intermediate T-Code sets S
(k1;k2;:::;km)
(p1;p2;:::;pm) .

T-depletion codewords are illustrated in the following example:

Example 4.2.9 (T-Depletion Codewords)

The codewords from the binary (S = f0; 1g) T-Code set S
(1;1;3)
(0;1;01) and their associated

T-depletion codewords are listed in Table 4.2.

Since the decomposition of T-Code codewords reects the recursive construc-

tion of the T-Codes, the T-depletion codewords reect it, too: consider, for ex-

ample, a T-depletion codeword dn(x) = (k0n; k
0
n�1; : : : ; k

0
1; k

0
0) of a T-Code code-

word x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, i.e., x = p
k0n
n p

k0n�1

n�1 : : : p
k01
1 k

0
0. We may split x recursively

4.2 The Structure of T-Code Codewords and T-Depletion Codes 57

into k0n copies of the n'th level T-pre�x pn, and the codeword p
k0n�1

n�1 : : : p
k01
1 k00, all

of which are codewords in S
(k1;k2;:::;kn�1)
(p1;p2;:::;pn�1)

, etc. Similarly, the T-depletion codeword

dn(x) may be interpreted as accounting for k0n copies of dn�1(pn), and one copy of

dn�1(p
k0n�1

n�1 : : : p
k01
1 k

0
0).

This may be utilised in the construction of encoders and decoders, which may be

regarded as converters between T-Code and T-depletion codewords, i.e., between

the variable-length format and the �xed-length format.

4.2.3 Conversion between Variable-Length T-Code Codewords

and T-Depletion Codewords

Table 4.2 lists the T-Code codewords from S
(1;1;3)
(0;1;01) and their corresponding T-

depletion codewords, but does not explain how to obtain one format from the

other. We will now discuss these conversions:

Encoders: Converting T-Depletion into T-Code Codewords

The conversion algorithm here is in principle the same algorithm used for the binary

depletion codes: Theorem 4.2.3 provides us with an easy way of converting T-

depletion codewords into their variable-length T-Code codewords counterparts in

S(k1;k2;:::;kn)
(p1;p2;:::;pn)

. We only need to concatenate the appropriate number of T-pre�xes and

the literal symbol. Since all T-pre�xes and the literal symbol may be found in at

least one of the intermediate sets S
(k1;k2;:::;km)
(p1;p2;:::;pm) , m < n, each of these strings has a

T-depletion code associated with it. Hence the concatenation of the T-pre�xes and

the literal symbol may be done recursively.

If a T-Code set is to be stored by a decoder in a �xed-length format, this may

thus be achieved by representing it by the T-depletion codewords for its T-pre�xes

58 T-Depletion Codes

and their respective T-expansion parameters. This information su�ces to permit

the recursive encoding or decoding of every codeword in the set.

Decoders: Converting T-Codes into T-Depletion Codewords

The conversion in the other direction, i.e., obtaining a T-depletion codeword from

a variable-length T-Code codeword, may be used in decoders. The pseudo-code

in Figure 4.1 implements such a recursive decoder. A T-Code codeword at T-

augmentation level n is read left-to-right as a concatenation of codewords from the

intermediate set at level n � 1. This concatenation sequence consists of up to kn

T-pre�xes and another codeword from the intermediate set. To obtain the number

of T-pre�xes k0n, and the T-depletion codeword elements for the remaining su�x

(a codeword from the intermediate set at level n � 1), the decoder routine calls

itself recursively as a decoder over the intermediate set. Only at the lowest level,

representing codewords from S (i.e., T-augmentation level 0), the routine reads

symbols from the decoder's input.

Example 4.2.10 (Decoding T-Code into T-Depletion Codewords)

The T-depletion codeword format for codewords from S
(1;1;3)
(0;1;01) is (k

0
3; k

0
2; k

0
1; k

0
0). We

follow the entries in this format as we decode the codeword 01010101 from S
(1;1;3)
(0;1;01).

The following \snapshots" of the global T-depletion codeword register may be taken

at the point indicated in the pseudo-code listing in Figure 4.1:

� initial state: (�;�;�;�), not initialised. As the procedure calls itself recur-

sively, the T-expansion indices are initialised top-down, i.e., (0;�;�;�), then

(0; 0;�;�), (0; 0; 0;�), and (0; 0; 0; 0) before the �rst snapshot is taken.

4.2 The Structure of T-Code Codewords and T-Depletion Codes 59

program conversion;

var

global x: string;

global i: integer;

global (k0n; k
0

n�1; : : : ; k
0

1; k
0

0): TDepletionCodeWord;

procedure tconvert(m: integer);

begin

k0m := 0; fClear T-expansion indexg
if (m > 0) then begin fDecode at lower levelg

loop:

fCheck if next lower-level codeword is pmg
tconvert(m� 1); fDecode next lower-level codewordg
if ((k0m; k

0

m�1; : : : ; k
0

1; k
0

0) 6= dm�1(pm)) then break;

fFound pm: is it the (km + 1)'th copy of pm?g
if (k0m < km) then

k0m := k0m + 1; fincrement T-expansion index k0mg
else break; fit's the (km + 1)'th copy:g
fend of codeword at level m foundg

end loop;

end else begin fsymbol level reached - read next symbolg
i := i+ 1;
k00 := x[i];
fThe snapshots in Example 4.2.10 are taken at this pointg
end;

end;

begin

i := 0; finitialise string pointerg
x :=ATCodeCodeWord; fthis is the codeword we want to convertg
tconvert(n); frun conversiong
output((k0n; k

0

n�1; : : : ; k
0

1; k
0

0)); foutput resultg
end.

Figure 4.1. A T-Code decoder: the pseudo-code routine above converts the T-
Code codeword x from S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

recursively into a T-depletion codeword dn(x) =
(k0n; k

0

n�1; : : : ; k
0

1; k
0

0). Note that the T-expansion indices k0i are determined in decreasing
order of i, which permits the use of a single storage register (global variable) in this recursive
routine.

60 T-Depletion Codes

� decode x[1] = 0: \snapshot" (0; 0; 0; 0). Upon return to the calling procedure,

it is determined that the (0) is a copy of p1, i.e., (0) = d0(p1) = (0). Thus k01

is incremented to k01 = 1. The next run through the loop resets k00 to 0 before

the second snapshot is taken.

� decode x[2] = 1: \snapshot" (0; 0; 1; 1). Upon return to the calling procedure,

it is determined that (1) 6= d0(p1) = (0). Thus, the procedure itself returns to

its own calling level, where (1; 1) is determined not to be a copy of p2, i.e.,

(1; 1) 6= d1(p2) = (0; 1), and program execution returns to the next higher level.

There, it is found that (0; 1; 1) = d2(p3), and k03 is incremented to k03 = 1. In

the next run of the loop, k02; k
0
1, and k00 are successively reset to 0: (1; 0; 0; 0)

is the state of the register just before the third snapshot.

� decode x[3] = 0: \snapshot" (1; 0; 0; 0), another copy of p1. Increment k01 to

k01 = 1 and reset k00: (1; 0; 1; 0) just before the fourth snapshot.

� decode x[4] = 1: \snapshot" (1; 0; 1; 1), (1; 1) 6= d0(p1) and (1; 1) 6= d0(p2),

but (0; 1; 1) = d2(p3), i.e., we have found another copy of p3. Increment k03 to

k03 = 2 and reset k00; k
0
1; k

0
2: (2; 0; 0; 0) before the �fth snapshot.

� decode x[5] = 0: \snapshot" (2; 0; 0; 0), a copy of p1. Increment k01 and reset

k00, etc.

� decode x[6] = 1: \snapshot" (2; 0; 1; 1). As before, increment k03 and reset

k02; k
0
1; k

0
0 etc. Now, k

0
3 = k3, i.e., no more instances of p3 can follow.

� decode x[7] = 0: \snapshot" (3; 0; 0; 0), a copy of p1. Increment k01 and reset

k00 as before: (3; 0; 1; 0) just before the eighth snapshot.

� decode x[8] = 1: \snapshot" (3; 0; 1; 1). What seems like another copy of p3

is in fact the remainder of the codeword: as k03 = k3, the 1 must be the literal,

4.2 The Structure of T-Code Codewords and T-Depletion Codes 61

i.e., k00 = 1. The program returns to its top level and outputs (3; 0; 1; 1). We

combine p33p
0
2p

1
1k

0
0 = (01)310011 = 01010101 to verify our result.

In a full decoder, we may use the �xed-length representation of the �nal T-depletion

codeword output as an address into a look-up table containing the real (�xed-length)

decoding of the corresponding T-Code codeword.

4.2.4 Storage Requirements for T-Depletion Codewords

As mentioned above, conventional variable-length encoders often require the storage

of both the codeword string and length. In these cases, the size of the �eld used to

store the codeword string is often based on the length of the longest codeword in

the code set. This format permits the representation of both �nal and intermediate

encoder states: an incompletely encoded codeword may be represented by the full

codeword string accompanied by a length value that is shorter than the string. Let

us consider the storage cost associated with a codeword:

Example 4.2.11 (Storage Requirements)

Consider the codeword 01010111 from a variable-length binary code whose longest

codeword is, e.g., nine bits long. The codeword may be represented in a �xed-length

binary register by, e.g., a four bit length �eld and the codeword string itself, padded

with 0's to the right (the dot indicates the border between length �eld and the padded

string):

1000:010101110

A partially encoded (or transmitted) codeword, e.g., its �rst �ve bits, can be repre-

sented as follows:

0101:010101110

62 T-Depletion Codes

As multibase numbers, T-depletion codewords for a given T-Code set may also be

stored in a �xed-length format. The storage resource requirement of this format

is given by the total number of m-ary register cells required to store all entries of

the multibase number. The storage of a single entry with base (ki + 1) requires

dlogm(ki + 1)e m-ary register cells2. To store an arbitrary T-depletion codeword

from S(k1;k2;:::;kn)
(p1;p2;:::;pn)

in an m-ary register, we hence require

L =
nX

i=0

dlogm(ki + 1)e (4.12)

m-ary register cells. In the equation above, (ki+1) is the i'th base of our multibase

number.

Example 4.2.12 (Storage Requirements for T-Depletion Codewords)

Consider the binary set S
(1;1;3)
(0;1;01) from the previous examples, and presume that we

wish to store a T-depletion codeword from this set in a binary (m = 2) register.

Then L = 5, i.e., we require a 5-bit register.

If we used the format from Example 4.2.11 to store one of the codewords in S(1;1;3)
(0;1;01),

we would require nine bits to store the string, and another four to store the length

information, i.e., a total of thirteen bits.

Note that if logm(ki + 1) 62 IN for some i, there is some inherent ine�ciency in

the m-ary representation of the multibase number (k0n; k
0
n�1; : : : ; k

0
1; k

0
0). However,

this ine�ciency is always less than n+ 1 digits in the m-ary representation.

The binary depletion codewords used in [45, 26, 7] implicitly assume that

k0n = k0n�1 = : : : = k01 = 1, and m = 2. In this case, the presence or absence of the

T-pre�x pi in a T-Code codeword is indicated by a single bit in the T-depletion

codeword. A binary T-Code codeword from such a simple T-Code set at T-aug-

mentation level n may thus be represented by a binary register with n+ 1 bits.

2dye denotes the smallest integer that is larger than or equal to y

4.3 Discussion 63

4.3 Discussion

This chapter introduced a �xed-length representation of T-Code codewords, the

T-depletion code format. It can be derived from the recursive structure of T-

Code codewords. The T-depletion codes are thus an e�cient encoding for T-Code

codewords as they replace the actual codewords by their structural \blueprints".

Converters between T-Code and T-depletion code formats may be regarded as

encoders and decoders for T-Codes.

However, the multibase number format associated with the T-depletion code-

words also permits the representation of multibase numbers that do not correspond

to T-Code codewords. As we shall see in Chapter 6, these numbers may be inter-

preted as incomplete codewords or intermediate decoder states | a feature that

can ultimately be used to represent arbitrary variable-length codes in a T-depletion

format. Unfortunately though, for a T-Code decoder operating into a look-up table,

these \other" multibase numbers pose a problem, which is discussed in the next

chapter.

64 T-Depletion Codes

C H A P T E R 5

Contiguous Range Index Conversion

The underlying multibase number representation of T-
depletion codewords may be used as an address into a look-
up table. Such a look-up table may be required, for exam-
ple, in a decoder as described in the previous chapter. This
chapter shows this addressing scheme to be wasteful, and
proposes a simple algorithm to convert T-depletion code-
words into a contiguous range index.

5.1 Simple Addressing

The previous chapter introduced T-depletion codewords | in essence a multibase

number format that can be used to represent T-Code codewords by means of record-

ing the \literal symbol" and the number of T-pre�x copies introduced by each

T-augmentation. This gives rise to a simple indexing scheme, where we obtain a

unique index I for every codeword x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

as1

I(x) = k00 +
nX
i=1

2
4k0i

i�1Y
j=0

(kj + 1)

3
5 : (5.1)

1This index is used in the notation for simple T-Code sets discussed in 2.4

65

66 Contiguous Range Index Conversion

In a decoder of the type discussed in the previous chapter, this index may be used as

an address into a look-up table where the �nal decodings of the T-Code codewords

are stored. The number of distinct addresses possible under this scheme may be

obtained by setting k00 = k0 and k0i = ki for all i in the equation above. Comparing

this with Theorem 2.3.3 on the cardinality of T-Code sets reveals that the number

of addresses possible under the above scheme exceeds the number of codewords in

the corresponding T-Code set for all n > 1.

Hence, there must be multibase numbers that either do not correspond to a

T-Code codeword, or that correspond to the same codeword as some other multi-

base number. The next chapter proves that the former is the case and the latter

impossible. However, as the decoding algorithm presented in the last chapter yields

only one distinct output for each T-Code codeword, we may assume for the moment

that our decoders use this algorithm as their \front end".

Ideally, the decoder should not require more than one address per codeword,

and the required index range is given by the T-Code set's cardinality. However, the

comparison of Equation (5.1) with Theorem 2.3.3 shows that the range of I may

be close to twice the real requirement2. In a look-up table, the cost of providing

extra storage at addresses that are never accessed may be considered signi�cant.

Rather than using the simple index from Equation (5.1), we would thus prefer

a contiguous range integer index. That is, an index that maps, say, all integers

between 0 and #S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1 uniquely to the T-Code codewords in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

.

This chapter presents such an index.

2In the case of simple binary T-Codes.

5.2 From T-Depletion Codes to Contiguous Indices 67

5.2 From T-Depletion Codes to Contiguous Indices

We are looking for a contiguous index starting at 0 and running up to #S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

�

1. That is, we require an algorithm that takes a T-depletion codeword as its input

and outputs the corresponding index. Similarly, we require an algorithm that maps

an index straight to its corresponding T-depletion codeword.

To accomplish this, it is useful to de�ne the concept of parents and descendants

of T-Code codewords:

De�nition 5.2.1 (Parents and Descendants)

Consider a codeword x 2 S
(k1;k2;:::;km)
(p1;p2;:::;pm) and a codeword y 2 S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

, where n > m

and

y = p
k0n
n p

k0n�1

n�1 : : : p
k0m+1

m+1 x (5.2)

such that k0m+1; : : : ; k
0
n are the respective T-expansion indices in the T-depletion

codeword of y. Then x is called a parent of y, and y is called a descendant of x.

In the following, the proposed contiguous range integer index of the codeword

x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

will be denoted In(x). We also adopt the convention that if x 2

S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

but x 62 S
(k1;k2;:::;km)
(p1;p2;:::;pm) for m < n, the index Im(x) will be the index of the

parent of x in S
(k1;k2;:::;km)
(p1;p2;:::;pm) , i.e., for x = p

k0n
n p

k0n�1

n�1 : : : p
k01
1 k

0
0 we have

Im(x) = Im(p
k0m
m p

k0m�1

m�1 : : : p
k01
1 k

0
0): (5.3)

Assume that we wish to convert the codeword x with its associated T-depletion

codeword

dn(x) = (k0n; k
0
n�1; : : : ; k

0
1; k

0
0)

into its contiguous range integer index In(x). We may now propose an index

and show that it satis�es the criteria of uniqueness, contiguity, and the parent-

descendant relationship of Equation (5.3).

68 Contiguous Range Index Conversion

Proposition 5.2.2

The mapping I0 : S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

! IN, with

I0(x) = k00; (5.4)

is a contiguous integer index at T-augmentation level 0.

This is the trivial case and requires no further discussion. We adopt I0(x) as our

index at T-augmentation level 0 and propose a derivation for indices at higher

T-augmentation levels:

Proposition 5.2.3

Let Im(x) be the contiguous integer index at T-augmentation level m with 0 � m <

n. The mapping Im+1 : S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

! IN, with

Im+1(x) =

8>>>>>>><
>>>>>>>:

Im(x) + k0m+1

�
#S

(k1;k2;:::;km)
(p1;p2;:::;pm) � 1

�
for Im(x) � Im(pm+1) _ k0m+1 = km+1

Im(x) + k0m+1

�
#S

(k1;k2;:::;km)
(p1;p2;:::;pm) � 1

�
� 1

for Im(x) > Im(pm+1) ^ k0m+1 < km+1

(5.5)

is a contiguous integer index at T-augmentation level m+ 1.

Proof: by induction over n.

Uniqueness: I0(x) is obviously unique for all codewords in S. We also note that

Equation (5.5) does not permit negative indices. Presume that there are two

distinct codewords y; y� 2 S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

such that In+1(y) = In+1(y
�). The

T-expansion indices of y and y� at level n+1 are k�n+1 and k��n+1 respectively.

Without loss of generality, we may assume that In(y) � In(y
�). There are

four cases:

5.2 From T-Depletion Codes to Contiguous Indices 69

1. In+1(y) = In(y) + k�n+1(#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1) and In+1(y
�) = In(y

�) +

k��n+1(#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1): with the indices at level n+ 1 presumed equal,

we may write

In(y)� In(y
�) = (k��n+1 � k�n+1)(#S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1):

For the term on the left hand side, the properties of the index at level n

imply that In(y)�In(y
�) � (#S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

�1). Since the right hand side

is a multiple of (#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1), the left hand side can only either be

zero or #S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1. For the �rst case, we require k��n+1 = k�n+1 and

In(y) = In(y
�), which is impossible because it implies y = y�. The second

case implies k��n+1 = k�n+1+1, In(y) = (#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

�1), and In(y
�) = 0.

Since this rules out k��n+1 = k�n+1, we require both In(y) � In(pn+1) and

In(y
�) � In(pn+1). With In(y) = #S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1, we get In(pn+1) =

#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1, i.e., pn+1 must be the parent of y in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

such

that y = p
k�n+1+1

n+1 . However, we concluded that k�n+1 < kn+1, such that y

cannot be in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

.

2. In+1(y) = In(y) + k�n+1(#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1) and In+1(y
�) = In(y

�) +

k��n+1(#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1) � 1. Following the same argument as above,

we get

In(y)� In(y
�) + 1 = (k��n+1 � k�n+1)(#S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1):

In order to match the term on the right hand side, the term on the left

hand side can only assume the values of 0 or (#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1). The

�rst case implies In(y) = In(y
�) � 1 which contradicts our assumption

that In(y) � In(y
�). In the second case, we require k��n+1 = k�n+1+1, and

either

� In(y) = #S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 2 and In(y
�) = 0, or

70 Contiguous Range Index Conversion

� In(y) = #S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1 and In(y
�) = 1.

As k��n+1 = k�n+1+1 implies that k
�
n+1 < kn+1, we require In(y) � In(pn+1).

At the same time we know that In(y
�) > In(pn+1). As all indices must

be non-negative, the �rst option is ruled out by In(y
�) = 0 > In(pn+1).

The second option requires In(pn+1) to simultaneously be 0 at least as

large as #S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1, which is impossible.

3. In+1(y) = In(y) + k�n+1(#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1) � 1 and In+1(y
�) = In(y

�) +

k��n+1(#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1). This yields

In(y)� In(y
�)� 1 = (k��n+1 � k�n+1)(#S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1):

Here, the left hand side can only be zero because of the range of the

indices. It follows that k��n+1 = k�n+1, which implies that k
��
n+1; k

�
n+1 < kn+1

and hence In(y
�) � In(pn+1). It also implies that In(y) = In(y

�) + 1.

Since In(y) > In(pn+1) we get In(y
�) = In(pn+1), i.e., pn+1 is the parent

of y� in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. This means that the parent of y� in S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

is p
k��n+1+1

n+1 . However, since k��n+1 < kn+1, this string is not a codeword in

S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

.

4. In+1(y) = In(y) + k�n+1(#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1) � 1 and In+1(y
�) = In(y

�) +

k��n+1(#S(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1)� 1. Again,

In(y)� In(y
�) = (k��n+1 � k�n+1)(#S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1):

Since In(y
�) > In(pn+1), the left hand side can only be zero, which

implies that y and y� have the same parent in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. Furthermore,

we have k��n+1 = k�n+1 which means that y = y�. This contradicts our

assumption that they are distinct.

Contiguity: the minimum value of In+1(x) is given by the minimum value of

In(x), which is 0. The maximum value is given by the maximum value of

5.2 From T-Depletion Codes to Contiguous Indices 71

In(x) + kn+1(#S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

� 1), which is #S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

� 1. Since In+1(x)

exists for every x 2 S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

, uniqueness of In+1(x) implies contiguity.

Parent-Descendant-Relationship: this is satis�ed because the In(x) depends

only on the T-expansion indices at levels 0 to n.

Thus, In(x) is a contiguous integer index for S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. 2

The motivation behind Propositions 5.2.2 and 5.2.3 lies in the copying process of

the T-augmentation. During a T-augmentation from S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

to S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

,

the T-pre�x pn+1 is removed from the original list and all but the \last" copy of

the list (for which k0n+1 = kn+1). Accordingly, all codewords with a parent whose

index falls below that of pn+1, are simply given an \index o�set" (T-expansion index

times length of the list without T-pre�x). Those with a parent index above that of

pn+1 are treated the same way, except that they are also shifted by one position to

compensate for the removal of pn+1 from the original codeword list. Codewords in

the last copy (k0n+1 = kn+1) are never shifted, because the codeword pkn+1+1
n+1 needs

to be accounted for.

The conversion is illustrated in the following example, based on our example set

S
(1;1;3)
(0;1;01) (cf. Table 2.1).

Example 5.2.4 (Index Conversion of a T-Depletion Codeword)

The T-depletion code d3(010100) = (2; 0; 1; 0) of the codeword 010100 may be con-

verted as follows:

We start with the binary alphabet S = f0; 1g as the T-Code set at T-augmenta-

tion level 0. The indices of the codewords in this set are:

72 Contiguous Range Index Conversion

codeword I0
0 0
1 1

The codeword that our T-depletion code refers to ends in a 0, and thus has the

index I0(x) = 0. The next step is to �nd the indices for S
(1)
(0) . From the table above,

the index for p1 = 0 is 0, and with k1 = 1 we obtain the following \copies" of S: 1

and 00; 01. The codewords in the latter copy have the T-pre�x p1 with k01 = k1 = 1.

The new indices are:

codeword I1
1 0
00 1
01 2

We see here that the index of the codeword 1 has dropped by one, because its

original index I0(1) = 1 was larger than that of the T-pre�x p1, I0(0) = 0. The

index for 01 is not adjusted downwards because it is the \last" copy of S. The

index to watch, however, is I1(00), as 00 is the su�x of our codeword. It has been

calculated using equation 5.5:

I1(x) = I1(00) = I0(x) + k01 (#S � 1)

= I0(0) + 1(2� 1) = 0 + 1(2� 1)

= 1: (5.6)

In the next step, we take the T-pre�x p2 and note its index, I1(p2) = I1(1) = 2.

The copies of S
(1)
(0) in the next table consist of the codewords 00; 01 (zero'th copy)

and 11; 100; 101 (�rst copy). The indices for S
(1;1)
(0;1) are:

5.2 From T-Depletion Codes to Contiguous Indices 73

codeword I2
00 0
01 1
11 2
100 3
101 4

We can see that the removal of 1 from the zero'th copy has a�ected the indices

for 00 and 01 because their indices I1(00) = 1 and I1(01) = 2 were larger than

I1(p2) = I1(1) = 0. I2(x) is calculated using k02 = 0:

I2(x) = I2(00) = I1(x) + k02
�
#S

(1)
(0) � 1

�
� 1

= I1(00) + k02
�
#S(1)

(0) � 1
�
� 1

= 1 + 0(3� 1)� 1

= 0: (5.7)

At the third T-augmentation level, we have k3 = 3 and thus a total of four

copies (counting from zero): 00, 11, 100, 101 (zero'th copy), 0100, 0111, 01100,

01101 (�rst copy), 010100, 010111, 0101100, 0101101 (second copy), and 01010100,

01010101, 01010111, 010101100, 010101101 (third copy). The index of the T-pre�x,

I2(p3) = I2(01) = 1. The �nal indices are thus

codeword I3 codeword I3
00 0 010111 9
11 1 0101100 10
100 2 0101101 11
101 3 01010100 12
0100 4 01010101 13
0111 5 01010111 14
01100 6 010101100 15
01101 7 010101101 16
010100 8

The index for 010100 in particular is given by

I3(010100) = I2(010100) + k03
�
#S

(1;1)
(0;1) � 1

�

74 Contiguous Range Index Conversion

= I2(00) + 2 (5� 1)

= 0 + 8

= 8; (5.8)

using k03 = 2. Note that this time, I2(00) < I2(p3) = I2(01), such that there is no

need to adjust the index downwards. The reader may verify that the other indices

may be obtained from the T-depletion codes in table 4.2 in the same manner.

The calculation of an index requires the knowledge of the indices for the T-

pre�xes at all lower levels, i.e., I0(p1); I1(p2); : : : ; In�1(pn). These may be obtained

either in advance (suitable for a hardware or software implementation) or recursively

during the indexing process (suitable for software implementations only, where

speed is not an issue).

5.3 From Contiguous Indices to T-Depletion Codes

Given an index In(x) for a codeword x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, one may ask how to �nd the

associated T-depletion codeword. The following recursive rules reverse the indexing

process:

k0m =

8>>>><
>>>>:

$
Im(x)

#S
(k1;k2;:::;km�1)

(p1;p2;:::;pm�1)
�1

%
for

$
Im(x)

#S
(k1;k2;:::;km�1)

(p1;p2;:::;pm�1)
�1

%
� km

km otherwise

(5.9)

5.4 Discussion 75

Im�1(x) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Im(x)� k0m(#S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

� 1) for

Im(x)� k0m(#S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

� 1)

< Im�1(pm)
or

km = k0m

Im(x)� k0m(#S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

� 1) + 1 otherwise

(5.10)

5.4 Discussion

The contiguous integer index introduced in the last section provides a tool for the

conversion of T-depletion codes into an address that is suitable for an e�cient

look-up table. A conversion in the reverse direction is also possible. A decoder

that decodes, say, T-Code codewords representing ASCII characters, may thus be

built as a three stage device: T-Code codeword to T-depletion codeword conversion,

followed by T-depletion codeword to index conversion, followed by the �nal look-up

table. Under resource considerations this is not an ine�cient design, as the �rst two

conversions require resources that that depend on the number of T-augmentation

levels and the T-expansion parameters involved. This becomes negligible compared

to the size of the look-up table as the cardinality of the T-Code set increases.

At �rst glance, the \holes" in the simple addressing scheme are unused resources.

However, as the next chapter shows, they have a well-de�ned signi�cance.

76 Contiguous Range Index Conversion

C H A P T E R 6

Storing Arbitrary Variable-Length

Codes in T-Depletion Code Format

The previous chapter has left an open question: if some
multibase numbers in a T-depletion code format do not
actually correspond to a valid T-depletion codeword for a
T-Code set, then what is their signi�cance? This chapter
shows that they have in fact a well-de�ned role to play:
they correspond uniquely to the proper pre�xes of T-Code
codewords and may thus be interpreted as intermediate de-
coder states. This opens a way to store arbitrary variable-
length codewords in T-depletion code format, leaving us
with another | as yet still open | problem.

6.1 Pseudo-T Codewords

The contiguous-range indexing algorithm presented in the last chapter was devel-

oped to overcome one problem: not all multibase numbers corresponding to the

T-depletion code format for a given T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

yield a valid T-Code

codeword if used as input to the encoder algorithm presented in Chapter 4. The

index conversion provides a \workaround" which can be used at the decoder side,

77

78 Storing Arbitrary Variable-Length Codes in T-Depletion Code Format

i.e., the focus so far has been on those multibase numbers that correspond to T-

Code codewords. In this chapter, we will explain the signi�cance of those multibase

numbers that do not correspond to T-Code codewords.

The reader may have noticed that Theorem 4.2.3 demands that all T-Code code-

words conform to a certain format, that is, the format speci�ed by Equation (4.5).

However, the theorem does not claim that all strings satisfying this format are nec-

essarily T-Code codewords. Given a T-Code set S(k1;k2;:::;kn)
(p1;p2;:::;pn)

, consider a string x for

which \T-expansion indices" k0i with 0 � k0i � ki exist such that x may be written

in the form given by Equation (4.5).

For example, the string x = 01010110 satis�es Equation (4.5) for S
(1;1;3)
(0;1;01) if it

is written as x = (01)311000, i.e., if we choose k03 = 3, k02 = 1, k01 = 0, and k00 = 0.

Thus, x may be represented in the T-depletion code format. However, it is evident

from Table 2.1 that x 62 S
(1;1;3)
(0;1;01). Such strings will be referred to as \pseudo-T

codewords":

De�nition 6.1.1 (Pseudo-T Codewords)

Strings x 62 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

that may be written in the form of Equation (4.5) for

some k0i with 0 � k0i � ki for i = 0; : : : ; n are called pseudo-T codewords for

S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. We also de�ne the empty string � to be a pseudo-T codeword. The set

of all pseudo-T codewords for S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is denoted �
�
S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

�
.

This de�nition provides for the existence of pseudo-T codewords, but tells little

about their properties. The following theorem provides us with an alternative to

this de�nition and an insight into the structure of pseudo-T codewords.

Theorem 6.1.2 (Decomposition of Pseudo-T Codewords)

The set of all pseudo-T codewords for S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

may be written as

�
�
S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

�
= fxjx = p

k0n
n p

k0n�1

n�1 : : : p
k01
1 �; 0 � k0i � ki; i = 1; : : : ; ng: (6.1)

6.1 Pseudo-T Codewords 79

Proof: by induction over n. We note that for n = 0, where � (S) = f�g, the

assertion is true.

We now require proof that

�
�
S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

�
� fxjx = p

k0n+1

n+1 p
k0n
n p

k0n�1

n�1 : : : p
k01
1 �; 0 � k0i � ki; i = 1; : : : ; n+ 1g

and

�
�
S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

�
� fxjx = p

k0n+1

n+1 p
k0n
n p

k0n�1

n�1 : : : p
k01
1 �; 0 � k0i � ki; i = 1; : : : ; n+ 1g:

\�": let x 2 �
�
S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

�
. We need to show that there are k0i with 0 �

k0i � ki such that x = p
k0n+1

n+1 p
k0n
n p

k0n�1

n�1 : : : p
k01
1 .

If x = �, then this is true if k0i = 0 for all i. If x 6= �, then by De�nition 6.1.1,

x satis�es Equation (4.5) such that

x = p
k00n+1

n+1 p
k00n
n p

k00n�1

n�1 : : : p
k001
1 k000 : (6.2)

There are two cases:

1. p
k00n
n p

k00n�1

n�1 : : : p
k001
1 k000 2 S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

: since x 62 S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

, Equation (2.1) im-

plies that this is only possible if k00n+1 < kn+1 and p
k00n
n p

k00n�1

n�1 : : : p
k001
1 k000 = pn+1. In

this case, choose k0n+1 = k00n+1+1 and k0i = 0 for i � n to satisfy the assertion.

2. p
k00n
n p

k00n�1

n�1 : : : p
k001
1 k000 2 �

�
S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

�
: by induction hypothesis, there are k0i

such that

p
k00n
n p

k00n�1

n�1 : : : p
k001
1 k000 = p

k0n
n p

k0n�1

n�1 : : : p
k01
1 (6.3)

and hence choose k0n+1 = k00n+1 to satisfy the assertion.

\�": here, the aim is to show that any word x = p
k0n+1

n+1 p
k0n
n p

k0n�1

n�1 : : : p
k01
1 with

0 � k0i � ki for i � n+1 is not in S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

but nevertheless is either the empty

string � or satis�es Equation (4.5) for some 0 � k00i � ki for i � n+1. Lemma 4.2.1

and the pre�x-freeness of S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

guarantee that x 62 S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

.

80 Storing Arbitrary Variable-Length Codes in T-Depletion Code Format

If k0i = 0 for all i, then x = � and the assertion is trivially satis�ed. If k0i > 0

for some i, then de�ne m such that k0m > 0 and k0i = 0 for all i < m. Since

pm 2 S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

, Theorem 4.2.3 may be used to write

pm = p
k00m�1

m�1 : : : p
k001
1 k000 (6.4)

for some k00i with 0 � k00i � ki for i = 0; : : : ; m�1. Now set k00m = k0m�1 and k00i = k0i

for i > m to satisfy Equation (4.5).

This concludes the proof of Theorem 6.1.2. 2

Together, Theorems 4.2.3 and 6.1.2 yield an alternative expression for the T-

Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

in a non-recursive form:

S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

=
[

0�k01�k1;:::

:::;0�k0n�kn;

k002S

fp
k0n
n p

k0n�1

n�1 : : : p
k01
1 k

0
0g n

[
0�k01�k1;:::

:::;0�k0n�kn

fp
k0n
n p

k0n�1

n�1 : : : p
k01
1 g:

(6.5)

What is the signi�cance of pseudo-T codes? Comparing Equation (6.1) with Equa-

tion (4.5), we �nd that for all k00 2 S and x 2 �
�
S(k1;k2;:::;kn)
(p1;p2;:::;pn)

�
, strings of the form

xk00 satisfy the general form of T-Code codewords in Equation (4.5). This motivates

the following theorem:

Theorem 6.1.3 (Pseudo-T Codewords are Proper Pre�xes of T-Codes)

Every pseudo-T codeword for S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is a proper pre�x of a T-Code codeword

in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. Conversely, every proper pre�x of a T-Code codeword in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is a pseudo-T codeword for S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. That is,

�
�
S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

�
=
n
x 2 S?j9y 2 S+ s.t. xy 2 S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

o
(6.6)

Proof: the inclusion

�
�
S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

�
�
n
x 2 S?j9y 2 S+ s.t. xy 2 S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

o

6.1 Pseudo-T Codewords 81

follows from Theorem 6.1.2 and Lemma 4.2.1. The inclusion

�
�
S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

�
�
n
x 2 S?j9y 2 S+ s.t. xy 2 S

(k1;k2;:::;kn)
(p1;p2;:::;pn)

o

may be proven by induction as follows:

Let x be a T-Code codeword in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, and let x[1 : i] for i = 0; : : : ; jxj � 1

denote its proper pre�x comprising the �rst i symbols in x, where x[1 : 0] = �.

By Theorem 4.2.3, x has the form of Equation (4.5) and thus x[1 : jxj � 1] is a

pseudo-T codeword by Theorem 6.1.2.

By the induction hypothesis, let x[1 : i] with jx[1 : i]j > 0 be a pseudo-T code-

word. Then, by De�nition 6.1.1, it may be written in the form of Equation (4.5).

Thus, by Theorem 6.1.2, x[1 : i� 1] is a pseudo-T codeword. 2

Every pseudo-T-Code codeword may be written in the form of Equation (4.1)

and, with the exception of the empty word �, every pseudo-T-Code codeword may

be written in the form of Equation (4.5). It follows from Lemma 4.2.2 that both of

these forms are unique.

In the decoding tree of a T-Code set, the T-Code codewords thus occupy the

leaf (terminal) nodes of the tree, whereas the pseudo-T codewords represent all the

internal (branch) nodes of the decoding tree. As a decoder traverses the tree, it

will encounter these branching nodes. Pseudo-T codewords may thus be interpreted

as intermediate decoder states that occur in an incomplete decoding. In fact, the

reader may verify from the \snapshots" in Example 4.2.10 that this is in fact the

case for the decoder algorithm presented in Chapter 4. As the next section shows,

this enables us to represent any �nite and pre�x-free variable-length code by a

T-depletion codeword.

82 Storing Arbitrary Variable-Length Codes in T-Depletion Code Format

6.2 Pseudo-T Codewords and Variable-Length
Codes

If any pre�x of a T-Code codeword may be represented in a T-depletion code-

word format, then any pre�x-free variable-length code C can be represented in this

way, provided there exists a T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

such that all codewords in C

are pre�xes of codewords in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

.

De�nition 6.2.1 (Covering Code Sets)

Let C;C 0 � S+ be �nite and pre�x-free variable-length codes. C 0 is said to be a

covering set of C i�

8x 2 C : 9 y 2 S?; z 2 C 0 s.t. xy = z: (6.7)

In this case, we also say that \C 0 covers C".

The concept of covering code sets may be visualised by considering the decoding

trees of the two sets involved. However, we must ask whether there is a covering

T-Code set for every code C.

Theorem 6.2.2 (Existence of Covering T-Code Sets)

For any �nite and pre�x-free code C � S+, there exists a T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

that covers C.

Proof: a covering T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

for a given code C may always be found

with the following algorithm:

1. start with S at T-augmentation level m = 0, and de�ne some lexicographical

order on the elements of C.

2. if S
(k1;k2;:::;km)
(p1;p2;:::;pm) covers C, �nish.

6.2 Pseudo-T Codewords and Variable-Length Codes 83

3. from the lexicographical order on C, select the �rst element x 2 C that is not

a pre�x of any codeword in S
(k1;k2;:::;km)
(p1;p2;:::;pm) . Since S

(k1;k2;:::;km)
(p1;p2;:::;pm) is complete and

pre�x-free, there exists a unique codeword x0 2 S
(k1;k2;:::;km)
(p1;p2;:::;pm) such that x0 is a

proper pre�x of x. Set pm+1 = x0, km+1 = 1, and T-augment to S
(k1;k2;:::;km+1)
(p1;p2;:::;pm+1)

.

Increment m and continue with step 2.

This algorithm is guaranteed to terminate, because

� in the third step, jxj (the length of x) is �nite. However, since T-Code sets

are complete, the length of x0 in step 3 increases with each T-augmentation

(as long as x is not a pre�x of x0). Thus, jx0j will eventually reach or exceed

jxj, such that x becomes a pre�x of x0, i.e., the number of T-augmentations

for a given x is �nite.

� the number of strings in C (i.e., the number of possible x) is �nite, such that

the total number of T-augmentations must be �nite.

This proves the existence of covering T-Code sets. 2

It is obvious that there is no unique covering T-Code set for a given C. For

example, any T-augmentation of a covering T-Code set yields another covering T-

Code set. Restricting T-expansion parameters to a value of 1, or using a particular

lexicographical order on C in the above algorithm, are also arbitrary constraints

which, if changed, may lead to vastly di�erent solutions.

Under \storage cost" considerations, the covering T-Code set of our choice would

obviously be a T-Code set for which the storage cost of the T-depletion code format

is minimised. The algorithm proposed in the proof above, however, does not work

optimally in this sense. This is illustrated by the following example:

84 Storing Arbitrary Variable-Length Codes in T-Depletion Code Format

Example 6.2.3 (Ine�ciency of Covering T-Code Sets)

Let S = f0; 1g be the binary alphabet. Consider the code

C = f0000; 0001; 00100; 00101; 0011; 01; 100; 101; 11g:

C is actually a T-Code set, S
(1;1;1)
(0;1;00), and from Section 4.2.4 we know that its T-

depletion codewords require 4 bits of storage. However, using the above algorithm

(presuming a lexicographical ordering of the codewords in C as listed above), we

obtain the covering T-Code set S
(1;1;1;1)
(0;00;001;1), which requires 5 bits of storage.

An \optimal" algorithm in the sense of �nding a covering T-Code set with minimal

storage cost remains an open problem.

6.3 Discussion

The fact that all multibase numbers in the T-depletion codeword format have a

well-de�ned signi�cance is perhaps somewhat surprising. However, it is also quite

satisfying as it clearly addresses the question of storage e�ciency. The decoder

algorithm presented in Chapter 4 uses only a single multibase register | we now

understand that this is the minimum storage required to represent all decoder

states.

The representation of arbitrary variable-length codes in a T-depletion code for-

mat is potentially interesting both from an application point of view and in attempt-

ing to explain the self-synchronisation capabilities of variable-length codes [50].

C H A P T E R 7

Hierarchical Coding Alphabets and

T-Codes

In the previous chapters, the recursive nature of the T-
Code set construction has been a dominant topic. This
chapter shows that the hierarchy of T-Code sets leads to
a natural hierarchy of decodings in strings composed of T-
Code codewords. T-decomposition, a convenient way to
recover T-Code set information from one of the longest
codewords in a set, is discussed as an application.

7.1 Hierarchical Coding Alphabets

The notion of hierarchical coding alphabets is by no means a feature connected

exclusively with T-Codes. In fact, there are many instances in which hierarchical

coding appears implicitly:

Consider, for example, the \Collected Works of William Shakespeare" or similar

literary works stored as a single text �le on a computer. Such a �le may be divided

into volumes, chapters, paragraphs, sentences, words, bytes and bits, which may be

regard as hierarchical layers of encoding.

85

86 Hierarchical Coding Alphabets and T-Codes

A boundary between two volumes coincides with a boundary between two chap-

ters, a boundary between two chapters always coincides with a boundary between

two paragraphs, and so on. In the other direction of this hierarchy, however, bound-

aries are not generally shared across the hierarchy: a boundary between bits is gen-

erally not also a boundary between bytes | a principle that holds at each layer of

the coding hierarchy: an upper layer (e.g., words) shares its codeword boundaries

with the lower layer(s) (e.g., bytes and bits), but the reverse is not true.

De�nition 7.1.1 (Hierarchical Codes)

A series of code sets C1; C2; C3; : : : Cn, for which Ci+1 � C+
i for all i < n, is called

a code hierarchy. The code sets C1; C2; C3; : : : Cn are called hierarchical codes or

hierarchical coding alphabets.

Thus, we may think of a \higher level" coding alphabet as being composed of

symbols from a \lower level" code set.

Lemma 7.1.2 (T-Codes are Hierarchical Codes)

A T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

and its intermediate set are hierarchical codes.

Proof: follows from De�nition 2.1.1. 2

This conclusion (pre-empted somewhat by the previous chapters) has relatively

far-reaching consequences. For example, a string of codewords from S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

may

be viewed as a string of codewords from any one of its intermediate T-Code sets. As

we shall see in the next chapter, this is the basis of the T-Code self-synchronisation

theory.

The same concept may be applied to boundaries between codewords:

7.1 Hierarchical Coding Alphabets 87

S 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1)
(1) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1;1)
(1;10) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1;1;3)
(1;10;0) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

Table 7.1. 0-, 1-, 2-, and 3-boundaries between codewords from intermediate T-Code sets
in a binary string.

De�nition 7.1.3 (n-Boundary)

Consider a �nite string x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

+
. A codeword boundary between two code-

words in the decoding of x over S(k1;k2;:::;kn)
(p1;p2;:::;pn)

is called an n-boundary.

Example 7.1.4 (n-Boundaries)

Table 7.1 shows the 0-, 1-, 2-, and 3-boundaries in the binary string

100100101001110101111:

The following corollary establishes the hierarchical relationship:

Lemma 7.1.5 (Hierarchy of n-Boundaries)

For every m � n, an n-boundary is also an m-boundary.

Proof: follows from De�nition 2.1.1. 2

In the reverse direction, the following lemma applies:

Lemma 7.1.6 (A Su�cient Condition for n-Boundaries)

In a �nite string x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

+
, every (n � 1)-boundary following a codeword

other than pn is also a n-boundary.

88 Hierarchical Coding Alphabets and T-Codes

Proof: follows from De�nition 2.1.1. 2

We may ask under which conditions strings in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

+
are also strings in

S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

+
. The following lemma provides a su�cient condition:

Lemma 7.1.7 (A Su�cient Condition for Hierarchy in Strings)

Consider a �nite string x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

+
. If the last codeword in the decoding of x

over S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is not pn+1, then x 2 S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

+
.

Proof: presume that the condition is satis�ed, i.e., the last codeword in the de-

coding of x over S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is not pn+1. Then we may split the decoding of

x into substrings of the form pk
0

n+1y
0, where k is some non-negative integer and

y0 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

nfpn+1g. It su�ces to show that each substring of this form is in

S
(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

+
.

We distinguish two cases:

1. k0 � kn+1 for all substrings involved: in this case, pk
0

n+1y
0 2 S

(k1;k2;:::;kn+1)
(p1;p2;:::;pn+1)

for

all substrings and the assertion is true.

2. k0 > kn+1 for some of the substrings: in this case, we may factor out one

or more codewords of the form pkn+1+1
n+1 from the substring(s) concerned such

that the previous case is satis�ed. 2

A practical application of the hierarchical nature of T-Codes is the T-decom-

position 1 of strings from S+. It permits the construction of the entire code set

T-Code set from the knowledge of one of its longest codewords. In a communication

situation, it is thus su�cient to transmit any one of the longest codewords to the

receiver | rather than having to transmit the whole code set. The next section

discusses T-decomposition in detail.

1the T-decomposition algorithm here should not be confused with the \decomposition" of
codewords as described in Chapter 4. The latter is not an algorithm, but merely states the fact
that a string may be written as a concatenation of the substrings speci�ed.

7.2 T-Decomposition of Strings in S? 89

7.2 T-Decomposition of Strings in S?

The original T-decomposition algorithm was found empirically by Mark Titch-

ener [48]. On his suggestion, Nicolescu investigated and eventually proved the

existence and uniqueness of a T-decomposition for every string x 2 S? in his

\Uniqueness Theorem for T-Codes" [36]. These results may be stated in a modi�ed

form as follows:

Theorem 7.2.1 (Uniqueness Theorem for T-Codes)

String de�nes set: there exists a known mapping

�S : S? �! fXjX is a T-Code set over Sg

such that for any a 2 S and x 2 S?, the string xa is one of the longest

codewords in the T-Code set �S(x).

Set uniqueness: �S is 1-to-1 and onto.

Proof: Part 1: existence of �S. It su�ces to show the existence of an unambiguous

algorithm that derives a set of T-pre�xes and T-expansion parameters from every

string x 2 S? such that

x = pknn pkn�1

n�1 : : : pk11 : (7.1)

This is the appropriate form for the longest codewords in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

with the last

symbol removed (cf. Equation (4.5)). Note that n itself may also be determined by

the algorithm. Provided that such an algorithm exists, we may use it to perform

the mapping �S.

Consider the following algorithm:

90 Hierarchical Coding Alphabets and T-Codes

1. Set m = 0.

2. Decode xa as a string of codewords from S
(k1;k2;:::;km)
(p1;p2;:::;pm) .

3. If xa decoded into a single codeword from S
(k1;k2;:::;km)
(p1;p2;:::;pm) , set n = m and �nish.

4. Otherwise, set the T-pre�x pm+1 to be the second-to-last codeword in the

decoding over S
(k1;k2;:::;km)
(p1;p2;:::;pm) .

5. Count the number of adjacent copies of pm+1 that immediately precede the

second-to-last codeword. Add 1 to this number, and de�ne it to be the T-

expansion parameter km+1.

6. T-augment with pm+1 and km+1.

7. Increment m by 1 and goto step 2 above.

All of this is straightforward, provided that the decoding in the second step

exists. This needs to be proven. For m = 0 this is trivial. For m > 0, we need to

show that xa will decode as a string of codewords from S
(k1;k2;:::;km)
(p1;p2;:::;pm) , provided it is

a string of codewords over S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

.

We may write xa as follows:

xa = y0pkmm y; (7.2)

where y 2 S(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

and y0 2 S(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

?
, such that y0 does not end in

pm | all copies of pm at this position are combined in the string pkmm . For xa

to be a string in S
(k1;k2;:::;km)
(p1;p2;:::;pm)

+
, it su�ces to show that it is a concatenation of

strings in S
(k1;k2;:::;km)
(p1;p2;:::;pm)

+
. As pkmm y 2 S

(k1;k2;:::;km)
(p1;p2;:::;pm) , and y0 ends in a codeword from

S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

nfpmg, this condition is satis�ed by Lemma 7.1.6. We now de�ne �S

as the above algorithm, which concludes the proof of Part 1.

7.2 T-Decomposition of Strings in S? 91

Part 2: �S is 1-to-1 and onto. From Theorem 4.2.3, we know that for any given

T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, there is exactly one x 2 S? for which �S(x) = S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

.

We also know that the above algorithm is unambiguous (this follows from the unique

decodability). Hence, �S is onto.

�S is 1-to-1 if and only if no two distinct T-Code sets over S share any of their

longest codewords. We may prove this as follows: presume that there are two dis-

tinct T-Code sets at T-augmentation levels m and n, that share the same longest

codeword xa. We further presume that their T-prescriptions are in the canon-

ical form with T-pre�xes p1; p2; : : : ; pm and �1; �2; : : : ; �n, and with T-expansion

parameters k1; k2; : : : ; km and �1; �2; : : : ; �n respectively.

The T-augmentation levels m and n are bounded by the length jxj of x, since

each T-augmentation must contribute at least one alphabet symbol to x.

According to Theorem 4.2.3, there would have to be two distinct decompositions

of xa and thus of x itself:

x = pkmm pkm�1

m�1 : : : pk11 (7.3)

and

x = ��n
n ��n�1

n�1 : : : ��1
1 : (7.4)

Since p1; �1 2 S, we may conclude that p1 = �1. Without loss of generality, we may

assume that �1 � k1. If �1 > k1, p2 must end in p1. However, the only codeword

at the second T-augmentation level that ends in p1 is p
k1+1
1 which implies that the

�rst T-prescription is not canonical. Hence, k1 = �1

Since xa may now be decoded over S
(k1)
(p1)

, we may apply a similar argument to

conclude that p2 = �2 and k2 = �2, etc. Because there are only �nitely many

T-augmentation levels to consider, we may conclude that the two T-prescriptions

must be identical. This contradicts our initial assumption that they are distinct.

2

92 Hierarchical Coding Alphabets and T-Codes

De�nition 7.2.2 (T-Decomposition)

The algorithm introduced in the above proof is called T-decomposition.

T-decomposition has several interesting implications. From a theoretical point

of view, it is remarkable that the longest codewords are unique to each T-Code set.

Moreover, not only do the longest codewords act as \�ngerprints" for a T-Code set,

it is also possible to reconstruct the set as such from the knowledge of the alphabet

and any one of the longest codewords. From a practical point of view, this permits

the e�cient communication of the whole decoding tree by sending just a single

codeword. Inherent in this, however, is the observation that the longest codewords

carry all the information about the tree itself.

Example 7.2.3 (T-Decomposition)

Let x = 011000101010 and a = 1, and and let xa = 0110001010101 be the longest

codeword in some T-Code set. Decoded over S = f0; 1g, we obtain the following

codeword boundaries indicated by a dot:

xa = 0:1:1:0:0:0:1:0:1:0:1:0:1:

from which we identify p1 = 0 and k1 = 1. Decoded over S
(1)
(0) we obtain

xa = 01:1:00:01:01:01:01:

i.e., p2 = 01 and k2 = 3. Hence, decoded over S
(1;3)
(0;01), we get

xa = 011:00:01010101:

such that p3 = 00, k3 = 1, and p4 = 011 with k4 = 1. The reader may wish to verify

that xa = 0110001010101 is indeed one of the longest codewords of S
(1;3;1;1)
(0;01;00;011).

7.3 Discussion 93

7.3 Discussion

As we have seen, the recursive construction of the T-Code sets leads to a coding

hierarchy involving all of the intermediate T-Code sets. This hierarchy is consistent

with the results on T-Code codeword structure that were presented in Chapter 4.

It also forms the basis for the T-Code synchronisation mechanism which will be

discussed in Chapter 8.

We have seen that is possible to encode any arbitrary T-Code set in the form of

one of its longest codewords. The coding hierarchy ensures the decodability of this

encoding, i.e., it ensures that we can reconstruct the T-Code set from the knowledge

of one of its longest codewords. The unique relationship between strings in S+ and

T-Code sets further suggests that this is a very e�cient encoding.

The next chapter shows how the coding hierarchy may be used to explain T-

Code self-synchronisation.

94 Hierarchical Coding Alphabets and T-Codes

C H A P T E R 8

T-Code Self-Synchronisation

One of the distinguishing properties of T-Codes is their
strong tendency towards self-synchronisation. This chap-
ter discusses concepts of general variable-length code syn-
chronisation. It then revisits the T-Code self-synchronisa-
tion model, which is based on the hierarchical coding model
introduced in Chapter 7. The treatment includes a proof
of statistical self-synchronisability for T-Code sets, using a
\small" decoder model. Options for faster synchronisation
with more sophisticated decoders are discussed. For further
treatment, two standard decoder models are proposed.

8.1 Synchronisation Concepts

The general model of our communication process was discussed in Chapter 1: in-

formation is emitted by an information source and subsequently encoded by an

encoder. In our model, the encoder substitutes each source symbol by a codeword

| a �nite string over the channel alphabet S. We further assumed that all code-

words are from a �nite, pre�x-free subset C � S+ which we called our code set.

Assuming that the source emits an in�nite string of source symbols, we thus get a

95

96 T-Code Self-Synchronisation

stream of symbols from S at the encoder's output.

This symbol stream is then passed through the channel which may introduce

symbol errors by insertion, deletion, or corruption of individual symbols. The

symbol stream is then decoded by a decoder that at most possesses the a-priori

information on the code used by the encoder and, of course, any information that

is received through the channel. There are no side channels in our model through

which the decoder could receive additional information. We also presume that the

decoder is a hard-decision decoder, i.e., recognises exactly #S di�erent symbols on

the channel.

The concept of synchronisation generally aims at establishing the correct loca-

tion of codeword boundaries in the received symbol stream. While the above model

is consistent with that of other authors, there is no consensus in the literature as

to what it is exactly that constitutes \synchronisation". There are a number of

di�erent aspects to consider:

� It is possible to simply consider the correctness of the decoder output as an

indicator for synchronisation. This can be problematic under certain circum-

stances, as correct output is sometimes possible even if the decoder is not

operating at the intended codeword boundaries. Consider, for example, a de-

coder decoding the binary codeword 00 in a bitstream that consists entirely

of zeros. In the case of a T-Code decoder, there is the possibility of an \error

echo" (cf., e.g., [47, 17]).

� The above concept may be extended by demanding that the decoder resolve

the intended codeword boundaries correctly. This concept is assumed by sev-

eral authors, including Gilbert and Moore [13], Ferguson and Rabinowitz [9]

and Montgomery and Abrahams [34]. To con�rm synchronisation here, we

e�ectively require an external observer with additional information on the

8.1 Synchronisation Concepts 97

correct position of the codeword boundaries. For example, a decoder that

starts decoding at an arbitrary position in a symbol stream may be synchro-

nised from the outset. However, in our communication model, there is no

possibility for the decoder to immediately establish this fact.

� A third approach | perhaps the most conservative | is taken by Wei and

Scholtz [53]:

\: : : synchronization is achieved when the receiver can indicate the

�rst symbol of some codeword in the received symbol stream with

zero probability of error."

This approach does not require an independent observer, provided that the

decoder is able to derive synchronisation information from the received symbol

stream. In other words, Wei and Scholtz require that the decoder be aware of

its current synchronisation status. In this case, however, it is assumed that

the received symbol stream is su�ciently error-free such that the decoder can

establish synchronisation with absolute con�dence.

� Yet another approach to synchronisation is possible by only considering the

decoder side: if the decoder can derive synchronisation information from the

symbol stream, it is usually possible to model the synchronisation mechanism

as a state machine automaton. This approach has been used by a number

of authors, including Gilbert [12], Neumann [35], Maxted and Robinson [33],

Perrin and Schuetzenberger [37], and Takishima, Wada, and Murakami [41].

It is also the approach that has traditionally been used for the treatment of

T-Code synchronisation.

The concept of decoder \awareness" raises the question of decoder intervention:

some coding schemes (especially when block codes are involved) require decoder

98 T-Code Self-Synchronisation

intervention to synchronise. That is, once the decoder has su�cient information to

indicate the �rst symbol of a codeword, it must intervene to realign itself with that

codeword boundary.

An example for this is the 7Eh ag used as a synchronising token in HDLC

frames on Ethernets [31]. In this case, the decoder is made aware of its lack of

synchronisation and intervenes to restore correct alignment with the new codeword

boundary. In comma-free coding [15] or bounded delay codes [14], a decoder oper-

ating without correct codeword boundary alignment will also become aware of this

fact and realign itself accordingly.

However, even if the decoder is able to derive its own synchronisation status,

explicit decoder intervention is not always required. Unlike block codes, variable-

length codes are often \statistically synchronisable", i.e., self-synchronising (see

Gilbert and Moore [13], Neumann [35], Ferguson and Rabinowitz [9], Maxted and

Robinson [33], Takishima, Wada, and Murakami [41]). Provided that we have a

su�ciently well-de�ned concept of what constitutes synchronisation, we may de�ne

statistically synchronisable codes along the lines of Wei and Scholtz [53]:

De�nition 8.1.1 (Statistically Synchronisable Codes)

Consider a pre�x-free code C, and a source encoded with codewords from C. Let

Psynch(q) denote the probability that the decoder automaton, starting in an unsyn-

chronised state, will be in its synchronised state after receiving q symbols. If

lim
q!1

Psynch(q) = 1; (8.1)

then C is called statistically synchronisable.

Note that this de�nition does not explictly require that the decoder be aware of

its synchronisation status. It does however require a de�nition of what constitutes

\synchronisation".

8.2 De�ning a Synchronisation Model 99

8.2 De�ning a Synchronisation Model

As discussed above, the concept of \synchronisation" is not uniquely de�ned. It

is thus essential to specify a synchronisation model for use in this thesis. This

synchronisation model assumes that

1. \synchronisation" denotes the �nal state of an automaton. We also demand

that the state of the automaton be visible, i.e., that the decoder is aware of

its current synchronisation status and can tell us whether it thinks that it is

synchronised.

2. the symbol error rate is su�ciently low such that the synchronisation process

takes place in an error-free part of the symbol stream. This is equivalent to

the case of a decoder starting at an arbitrary position in an error-free symbol

stream.

3. coincidental operation at the correct codeword boundaries is not a su�cient

criterion for synchronisation.

4. the decoder is totally unsynchronised at the start of the synchronisation pro-

cess.

This approach has the advantage that it is | apart from the assumption about

the error-freeness of the symbol stream | conservative. In particular, the inherent

decoder awareness implies that the expected synchronisation delay (ESD) obtained

for a code under this model will generally exceed the ESD for a model that merely

requires operation with respect to the intended codeword boundaries.

100 T-Code Self-Synchronisation

8.3 The T-Code Self-Synchronisation Mechanism

From Chapter 7, we already know that the T-Codes are hierarchical codes. We

recall also that a string of codewords from a T-Code set may be regarded as a

string of codewords from any of the intermediate T-Code sets, the lowest of which

is the alphabet S itself. The boundary between individual codewords from an in-

termediate set at T-augmentation level m is referred to as an m-boundary. We also

recall that the decoding algorithm presented in Chapter 4 exploits this hierarchy

by decoding codewords recursively.

It is this hierarchy that not only implies statistical synchronisability for T-Codes,

but also permits the decoder to determine its current synchronisation status.

As discussed before, we assume that decoder starts at an arbitrary position in

a symbol stream, and that the decoder will not encounter any errors during the

synchronisation process.

We may assume that the decoder is in synchronisation with respect to S at the

start of the synchronisation process. In the case of a hierarchical code such as a

T-Code set, we may regard the symbol stream as a sequence of codewords from each

of the hierarchical levels, in our case the T-augmentation levels. Hence, the decoder

may �nd itself synchronised with respect to some intermediate T-Code set at, say,

T-augmentation level m, at some stage during the process. Since this T-Code set

shares all of its codeword boundaries (m-boundaries) with all of the intermediate

T-Code sets at lower levels, a decoder that has identi�ed an m-boundary must be

synchronised with respect to these sets at lower levels, too.

De�nition 8.3.1 (Synchronisation Level)

Consider a T-Code decoder for a T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. Let S
(k1;k2;:::;km)
(p1;p2;:::;pm) be the

highest-level intermediate T-Code set of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

for which the decoder has been

able to derive synchronisation. Then the decoder is said to operate at synchroni-

8.3 The T-Code Self-Synchronisation Mechanism 101

sation level m.

Note that the above de�nition explicitly includes the T-prescription being used.

For T-Code sets with multiple T-prescriptions, we thus have the choice between

multiple sets of synchronisation levels. This is not problematic as long as we restrict

ourselves to a single one of these T-prescriptions for our discussion.

For the time being, we assume that our decoder is a recursive decoder of the

type presented in Chapter 4. That is, the decoder operates over all intermediate

T-Code sets simultaneously.

To derive synchronisation information, we require the decoder to perform an

additional task: whenever a T-depletion codeword at level m < n is returned by

the decoder routine to the calling routine, the decoder should be able to:

1. compare the T-depletion codeword returned with the T-pre�x pm+1, and

2. if the match is negative and the decoder operates at synchronisation level m,

increment the decoder's synchronisation level to m + 1.

With the synchronisation level initially set to 0, the decoder may indeed derive

synchronisation information this way because all but one of the codewords x at

T-augmentation level m+ 1 are of the form

x = p
k0m+1

m+1 y; (8.2)

where y 2 S
(k1;k2;:::;km)
(p1;p2;:::;pm)nfpm+1g. Thus, if the codeword decoded at synchronisation

level m does not match pm+1, it will be the su�x of a codeword in S
(k1;k2;:::;km+1)
(p1;p2;:::;pm+1)

,

and the decoder has found an (m+ 1)-boundary. Titchener and Hunter [51] called

this the \pre�x condition".

Since this comparison is performed as part of the normal decoding process, it

is guaranteed that the detection of an n-boundary will terminate the decoding of

102 T-Code Self-Synchronisation

the current (possibly corrupt) codeword at level n, because a negative comparison

with pn coincides with the return to the top level of the recursive decoder routine.

Explicit intervention by the decoder is thus not required | it is already decoding

at the correct synchronised position.

Theorem 8.3.2 (T-Codes are Statistically Synchronisable)

Consider a T-Code decoder that is receiving a semi-in�nite sequence of codewords

from a T-Code set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. For m � n let P (x;m) denote the probability of

occurrence of a codeword x from S
(k1;k2;:::;km)
(p1;p2;:::;pm) in the sequence and let P (x; n) >

0 for all x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. Further presume that the decoder starts decoding at

synchronisation level � = 0 at some arbitrary point �0 within the sequence (i.e.,

not necessarily at an n-boundary). Let P (� = n; �0+ �) denote the probability that

the decoder will operate at synchronisation level � = n after reception of � further

symbols from S. Then

lim
�!1

P (� = n; �0 + �) = 1; (8.3)

which implies that S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is a statistically synchronisable code.

Proof: by induction over �. Since the decoder starts at synchronisation level 0,

all we have to show is that if the decoder operates at some synchronisation level

� = m < n, it will eventually encounter a codeword from S
(k1;k2;:::;km)
(p1;p2;:::;pm)nfpm+1g

which enables it to switch to synchronisation level � = m + 1. This is guaranteed

as P (x;m) > 0 for all x 2 S
(k1;k2;:::;km)
(p1;p2;:::;pm) , which in turn is guaranteed as P (x; n) > 0

for all x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. 2

Viewed externally and leaving the synchronisation information aside, our de-

coder cannot be distinguished from any other decoder for variable-length codes.

Hence, T-Codes are statistically synchronisable irrespective of the decoder's con-

struction.

8.3 The T-Code Self-Synchronisation Mechanism 103

Example 8.3.3 (Simple Synchronisation)

Consider the binary T-Code set

S
(2;1;1)
(1;0;010) = f00; 0110; 0111; 10; 110; 111; 01000;

010010; 0100110; 0100111; 01010; 010110; 010111g:

Further imagine that we wish to synchronise on the bit stream

0110101 : : :

Initially, we are in synchronism only with respect to S = f0; 1g. We decode the �rst

codeword over S (the end of the codeword is marked by a period):

0:110101 : : :

Since 0 6= p1, the decoder can switch to synchronisation level 1. This means

the next codeword boundary we need to look at follows a codeword from S
(2)
(1) =

f0; 10; 110; 111g:

0:110:101 : : :

Since 110 6= p2, the decoder can switch to synchronisation level 2. Finally, we

decode over S
(2;1)
(1;0) = f10; 110; 111; 00; 010; 0110; 0111g:

0:110:10:1 : : :

Since 110 6= p3, the decoder can switch to synchronisation level 3 and is now fully

synchronised.

104 T-Code Self-Synchronisation

8.3.1 Synchronising Earlier

If the decoder is allowed to be \more sophisticated", it may be able to derive syn-

chronisation information earlier. This was discussed by Titchener and Hunter [51]

who proposed a test for a \su�x condition".

For example, an m-boundary that is also an (m + 1)-boundary could also be

an (m + 2)-boundary and so forth. A decoder that has arrived at an m-boundary

could test whether it is also an (m+1)-boundary. If yes, the decoder could further

test whether it is also an (m+ 2)-boundary, and so forth. Thus, the decoder could

synchronise earlier.

The coding hierarchy of the T-Codes suggests an inductive approach to earlier

synchronisation, whereby the synchronisation level is increased incrementally until

the decoder can no longer conclude that the codeword boundary found is a codeword

boundary at the next higher level.

Let m denote the synchronisation level that the decoder achieved before the

decoding of the last codeword x such that x 2 S
(k1;k2;:::;km)
(p1;p2;:::;pm) . Now assume that the

decoder has been able to determine that the codeword boundary following x is

an m0-boundary, where m < m0 < n. We may ask whether there is a su�cient

condition that tells us whether an m0-boundary is also an (m0 + 1)-boundary.

Alternatively, we may look for a necessary condition that an m0-boundary must

satisfy to possibly not qualify as (m0+1)-boundary, i.e., a condition that blocks the

decoder from immediate further synchronisation. We recall that an m0-boundary

that is not an (m0+1)-boundary would have to follow a copy of the T-pre�x pm0+1,

and hence may de�ne a blocking condition as follows:

De�nition 8.3.4 (Blocking Condition)

A decoder at synchronisation level m0 that cannot | within its capability for as-

sessing the information available to it from the communication channel | exclude

8.3 The T-Code Self-Synchronisation Mechanism 105

the possibility that an m0-boundary that it has reached marks the end of pm0+1, is

said to have encountered a blocking condition.

In other words, a blocking condition prevents a decoder from increasing its syn-

chronisation level and requires the decoding of at least one more codeword at level

m0.

As mentioned in the above de�nition, the occurrence of a blocking condition is

potentially dependent on the decoder's degree of sophistication. We formulate a

necessary condition for the occurrence of a blocking condition as follows:

Theorem 8.3.5 (Blocking Pre-Condition)

Consider a decoder for S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

that has decoded a codeword x 2 S
(k1;k2;:::;km)
(p1;p2;:::;pm)

and has established synchronisation to level m0 with m � m0 < n at the codeword

boundary following x. The decoder may encounter a blocking condition with respect

to pm0+1 only if

pm0+1 �
S
(k1;k2;:::;km)

(p1;p2;:::;pm)

x; (8.4)

i.e., if x is a su�x of pm0+1 in the decoding of pm0+1 over S
(k1;k2;:::;km)
(p1;p2;:::;pm) .

Proof: the codeword boundaries preceding and succeeding x are adjacent m-

boundaries. A blocking condition can only occur if x could be marking the end

of pm0+1.

However, the boundary preceding pm0+1 would have to be an m0-boundary and

hence by hierarchical inference an m-boundary. As pm0+1 2 S
(k1;k2;:::;km)
(p1;p2;:::;pm)

+
, all m-

boundaries within pm0+1 must also correspond to m-boundaries in the received

symbol stream. Hence, x must be a su�x of pm0+1 in the decoding of pm0+1 over

S
(k1;k2;:::;km)
(p1;p2;:::;pm) . 2

Note that the blocking pre-condition proposed here is stricter than the \su�x

106 T-Code Self-Synchronisation

condition" proposed by Titchener and Hunter [51],

pm0+1 �S
x; (8.5)

which only requires x to be a su�x of pm0+1 over S. The blocking pre-condition

introduced here is also much easier to implement in a recursive decoder than the

\su�x condition" | all that is required is a comparison between the T-depletion

code for x and the relevant entries in the T-depletion code for pm0+1.

If the blocking pre-condition for synchronisation level m0+1 is not satis�ed, the

decoder has obviously reached that synchronisation level. This tends to be the case

in most situations. Of more interest, however, are cases where the blocking pre-

condition is satis�ed. A decoder may now utilise all available information received

since the start of the synchronisation process in order to determine whether there

is actually a blocking condition or not.

Assume that the decoder encounters a blocking pre-condition following the re-

ception of a string d 2 S+ after the start of the synchronisation process. This

marks a blocking condition under the following three mutually exclusive and com-

plementary circumstances:

Case 1: where x = pm0+1. (This is the trivial case.)

Case 2: where pm0+1 �S
d �

S
x, and d is \boundary compatible" with pm0+1. That

is, the symbol stream d received since the start of the decoding is a su�x (over

S) of pm0+1, and pm0+1 is longer than d and x. Furthermore, known codeword

boundaries in d up to level m must be \compatible" with the corresponding

boundaries in pm0+1: each symbol boundary in pm0+1 is a j-boundary but not

a (j + 1)-boundary at some known level j < m0. Similarly, the boundaries

immediately preceding and following pm0+1 at at least m0-boundaries. The

corresponding boundaries in d must be \compatible", i.e., it must be possible

8.3 The T-Code Self-Synchronisation Mechanism 107

that they are boundaries at the same levels. See subsection 8.3.2 for a more

detailed explanation and an example. In this case, symbols transmitted be-

fore the start of the synchronisation process could complement the received

symbols to yield pm0+1.

Case 3: where d �
S
pm0+1 �

S
(k1;k2;:::;km)

(p1;p2;:::;pm)

x, i.e., pm0+1 is a su�x (over S) of d, and

pm0+1 and d are \boundary compatible".

A decoder that can \remember" d (and thus the con�rmed codeword boundaries for

the various synchronisation levels attained) may now be able to establish whether

any of these three cases is satis�ed, or whether the blocking pre-condition raised a

\false alarm". If a decoder lacks this memory and logic, it must err on the side of

caution in which case the blocking pre-condition becomes a full blocking condition.

Hence we see once more that the delay in the synchronisation process may depend

to an extent on the actual decoder implementation.

It is thus essential to nominate which decoder model is being assumed if one

wishes to make statements on parameters such as the expected synchronisation

delay of a T-Code set.

In this thesis, the treatment is generally restricted to two models:

a minimal decoder. This model assumes that the decoder is merely able to com-

pare a codeword x 2 S
(k1;k2;:::;km)
(p1;p2;:::;pm) with pm+1. The outcome of this comparison

is a Boolean value which may be used to increment the synchronisation level.

In the context of the work by Titchener and Hunter, this corresponds to a

decoder that only tests for the \pre�x condition". This is the minimum func-

tionality required in a decoder in order to be able to derive synchronisation

information. We have already used this model above in our proof of statistical

synchronisability.

108 T-Code Self-Synchronisation

a maximal decoder. Here, we assume that the decoder is able to utilise all in-

formation contained in d and in the prescription for S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

in order to

determine its current synchronisation level.

The following example demonstrates the advantages of the maximal decoder model:

Example 8.3.6 (Early Synchronisation)

Consider once more the T-Code set and the bit stream from Example 8.3.3. Initially,

we are in synchronism only with respect to S = f0; 1g. We decode the �rst codeword

over S (the end of the codeword is marked by a period):

0:110101 : : :

Since 0 6= p1, the decoder can switch to synchronisation level 1. However, we do

get a blocking condition with respect to level 2 because 0 = p2. This means the

next codeword boundary we need to look at still follows a codeword from S
(2)
(1) =

f0; 10; 110; 111g:

0:110:101 : : :

Since 110 6= p2, the decoder can now switch to synchronisation level 2. Also, 110

is not a su�x of p3 = 010 over S
(2)
(1) , so the decoder can switch to synchronisation

level 3 and is fully synchronised, two bits \earlier" than in the previous example.

8.3.2 Boundary Compatibility

The \boundary compatibility" criterion is based on the boundary information that

the decoder derives as it synchronises into d. For each symbol boundary in d, the

decoder is able to derive maximum and minimum values for the level j for which

the boundary is a j-boundary but not a (j+1)-boundary. The (known) boundaries

within pm0+1 have to be compatible with this, i.e., they must fall within the range

established by the decoder.

8.3 The T-Code Self-Synchronisation Mechanism 109

Example 8.3.7 (Boundary Compatibility)

Consider the binary T-Code set S
(2;1;1;1)
(0;01;1;001) and the strings 101001 and 10101001,

which mark the �rst bits in two di�erent synchronisation scenarios.

Synchronising into the �rst string, the decoder is able to establish the following

minimum/maximum values for j at each symbol boundary, denoted here by sub-

scripts and superscripts:

4
01

4
10

0
01

4
10

0
00

0
01

4
?

Before the �rst bit, the decoder is completely unsynchronised, i.e., the boundary

preceding it could be anything between a 0-boundary and a 4-boundary. After the

�rst bit, the decoder is able to tell that it has reached a 1-boundary, which may also

be a boundary at a higher level. At this point, we have a blocking pre-condition with

respect to p2 = 01.

Closer inspection reveals that the boundaries (denoted by subscripts) in and

around p2 are: 10011. Since the �rst corresponding boundary is not contained in

our above string, we must establish whether the 0-boundary in the middle of p2 falls

within the range 0 to 4, and whether the 1-boundary at the end falls within the range

1 to 4. They both do, and hence we have a blocking condition.

We then decode the next codeword at level 1, which is 01 = p2. In our string,

its internal boundary is at least and at most a 0-boundary, whereas the boundary

at its end is at least a 1-boundary and at most a 4-boundary. Since the codeword

causes a blocking condition, the decoder remains at level 1.

The next codeword is 001, which permits a transition to level 3, but it causes a

blocking pre-condition with respect to level 4. The internal boundaries within 001

are both 0-boundaries. The boundaries in and around p4 are 3120011000013. All

of these fall within the range established above, which means there is a blocking

condition. Thus, the decoder remains at level 3 at the end of the string, i.e., we

may replace the question mark with a 3.

110 T-Code Self-Synchronisation

Now consider the second string:

4
01

4
10

0
01

4
10

0
01

4
10

0
00

0
01

4
?

It di�ers from the �rst string only in that there is an extra codeword p2 = 01

decoded at level 1, and we once again get a blocking pre-condition when we decode

the 001 codeword at the end. Now, however, the 3-boundary at the beginning of p4

is incompatible with the boundary after the second bit in our string, which is at least

and at most a 0-boundary. Hence, there is no blocking condition, and the decoder

can advance to synchronisation level 4.

8.4 Generalised vs. simple T-Codes

The T-Code self-synchronisation mechanism as discovered and explained by Titch-

ener and Hunter does not have to be changed when generalised rather than simple T-

Codes are involved [50] as the hierarchical model on which the self-synchronisation

is based remains the same. A blocking condition does not depend on which T-pre�x

string causes it, and which position that string has in the actual codeword at the

higher level.

Furthermore, if a maximal decoder is used, the self-synchronisation mechanism

does not change with the type of T-prescription used. In this case, the over-

all synchronisation behaviour of a T-Code set remains the same under expansion

and contraction of the associated T-prescription (cf. Chapter 3). If for some T-

augmentation level m, we have pkm+1
m = pm+1, the absence of a blocking condition

with respect to pm implies the absence of a blocking condition with respect to pm+1.

Hence, a decoder that operates at level i will never have to operate at level m+ 1.

Conversely, a decoder transition from a synchronisation level below m to level m+1

will always be prevented by a blocking condition with respect to pm.

8.5 Discussion 111

8.5 Discussion

Applying the strict hierarchical coding model presented in Chapter 7 to explain

the T-Code self-synchronisation has several advantages. Firstly, it permits the

rather simple proof of statistical synchronisability given in this chapter. It does

not explicitly require the results by Gilbert and Moore [13] | an alternative would

have been to show that the greatest common divisor of codeword lengths in any

T-Code set is 1.

Secondly, the hierarchical structure of the T-Codes o�ers the opportunity to

\keep an eye" on the synchronisation process | we can derive synchronisation in-

formation straight from the decoder. This enables us to take a more conservative

approach towards concepts such as statistical synchronisability and expected syn-

chronisation delay. Many other variable-length codes may be self-synchronising,

too, but have no obvious way of letting the decoder derive information on its syn-

chronisation status.

This chapter has used the hierarchical coding model to suggest the stricter

criterion for the \su�x condition", implemented here in the form of the blocking

condition criteria and the blocking pre-condition.

The amount of synchronisation information that may be utilised depends on

two factors: �rstly, on the information present in the symbol stream; secondly, on

the decoder's sophistication, i.e., the extent to which the decoder is able to utilise

the information contained in the incoming symbol stream. Hence, it is prudent to

de�ne the type of decoder that is assumed when discussing T-Code synchronisation-

related issues. The method of calculation of the T-Code synchronisation delays in

the next chapter assumes a maximal decoder.

112 T-Code Self-Synchronisation

It is further interesting to consider the work of authors who have suggested

methods for modifying Hu�man codes to improve their synchronisation properties.

Perrin and Schuetzenberger [37], for example, give an example of a \synchronising

pre�x code", which is identical to the binary T-Code set S
(1;1)
(0;1) . The same code set

is proposed by Takishima, Wada, and Murakami [41]. They also conclude that two

other codes (sets C11 and C13 in their paper), which in our notation are the T-Code

sets S
(3)
(0) and S

(1;1)
(0;01), have good synchronisation properties.

C H A P T E R 9

Calculating the Expected

Synchronisation Delay

The T-Code self-synchronisation mechanism permits the
calculation of an expected synchronisation delay (ESD),
i.e., an expectation value for the number of symbols that
an unsynchronised decoder has to receive before it can con-
�rm that it is synchronised. This chapter presents a new
approach to calculating the ESD. The computational com-
plexity of the method presented is also discussed.

9.1 Modelling the T-Code Self-Synchronisation
Mechanism as a Discrete Markov Chain

The expected synchronisation delay (ESD)1 is the number of alphabet symbols that

a totally unsynchronised decoder needs to receive before it can determine that it is

1the term expected synchronisation delay is that used by Titchener and Hunter. Another ex-
pression that essentially describes the same quantity (subject to the de�nition of synchronisation
that is used) is synchronization acquisition delay [16]. Higgie [26] uses the term average synchro-
nisation delay (ASD), but also mentions ESD and average re-synchronisation delay.

113

114 Calculating the Expected Synchronisation Delay

synchronised. The problem of ESD calculation for T-Code sets was �rst discussed

by Titchener and Hunter [51], and this discussion initially follows in their footsteps.

The T-Code self-synchronisation mechanism, as discussed in the previous chap-

ter, may be modelled as a discrete time Markov chain. For this purpose, we require

a �nite set of discrete states, events that bring about transitions between these

states, and transition probabilities associated with these events.

In our case, the synchronisation levels represent the states. During the synchro-

nisation process, transitions between synchronisation levels take place and eventu-

ally terminate the synchronisation process at the highest possible synchronisation

level. We now de�ne the events that cause transitions, and also their associated

probabilities.

Up to this point, the ESD calculation presented here follows the model pre-

sented by Titchener and Hunter [51]. However, Titchener and Hunter took a

symbol-oriented approach: that is, the principal event that causes transitions is

the reception of an individual symbol. As a result, additional states are required

at most synchronisation levels. The number of additional states that are required

depends on the T-pre�xes chosen for each level and grows as the T-pre�xes become

more complex with an increase in T-augmentation level. Titchener and Hunter give

an example of a T-Code set at T-augmentation level 11 that requires a total of sixty

states [51].

This increases the total number of possible transitions, which in turn imposes a

large degree of computational complexity on the ESD calculation | this is notice-

able especially for large T-Code sets [46].

The approach presented here is codeword-oriented rather than symbol-oriented

and, by comparison, is based on n+1 states for a T-Code set, i.e., 12 for the above

example. It was proposed by the author together with Mark Titchener in [21].

9.2 Calculating the Expected Synchronisation Delay (ESD) 115

A further abridged description appeared in [22]. This method is based on the

synchronisation mechanism discussed in the last chapter, i.e., assuming a maximal

decoder model, and was chosen primarily for completeness. Less sophisticated

decoders may be treated similarly.

A codeword-oriented approach has the advantage of being less complex. In

addition, it is possible to accommodate widely varying codeword probabilities.

9.2 Calculating the Expected Synchronisation De-
lay (ESD)

The expected synchronisation delay (ESD) is de�ned as the average number

of symbols in S that the decoder has to receive before it can conclude that it

has achieved synchronisation with respect to the highest-level set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, and

is a function of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

. Without loss of generality, we will use assume that

the T-pre�xes and T-expansion parameters for S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

constitute a canonical

T-prescription (if several T-prescriptions for S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

exist).

For simplicity, however, we will mostly drop the explicit reference to S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

in our notation, as it is unambiguous that all quantities to be discussed are functions

of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

or its intermediate T-Code sets (and hence expressible as functions

of S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

) and its associated source probabilities.

We calculate the ESD for S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, ESD(S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

), as the sum over the

expected delays at the intermediate synchronisation levels:

ESD(S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

) =
n�1X
m=0

Pv(m) �(m): (9.1)

In this equation, Pv(m) is the visitation probability , the probability that the

decoder will ever decode a codeword while being at synchronisation level m during

116 Calculating the Expected Synchronisation Delay

the process of synchronisation. This is equivalent to saying that Pv(m) is the �a

priori probability of encountering a blocking condition with respect to pm+1 during

the synchronisation process.

The expected level synchronisation delay �(m) is the average number of

symbols from S decoded while the decoder operates at level m.

We �rst show how to calculate the visitation probability Pv(m) and then calcu-

late �(m) in Section 9.2.2.

9.2.1 Calculating the Visitation Probability Pv(m)

In our synchronisation model, the decoder always starts at synchronisation level

m = 0, with visitation probability Pv(0) = 1. For m > 0, the decoder may \skip"

one or more of the levels if it decodes a codeword at a level below m that does not

cause a blocking condition with respect to a T-pre�x below pm+2. In such cases

Pv(m) � 1 (of course, if we used a very simple decoder model, the decoder could

only advance by one synchronisation level at at time, and Pv(m) = 1 for all m).

The visitation probability Pv(m) may be expressed as a recursive sum2:

Pv(m) =
m�1X
i=0

TimPv(i); (9.2)

where Tim denotes3 the probability that a transition from level i will carry the

decoder through to level m > i.

No transition from any level i carries the decoder beyond synchronisation level

n, thus we have the trivial identity

nX
m=0

Tim = 1; (9.3)

2Equation (9.2) may also be expressed as an eigenvalue problem if the Tim are rede�ned to
include \transitions" from a particular level to itself.

3Note that the Tim we use here should not be confused with the Tim used in [51, 46]: in our
case, the indices i and m refer to synchronisation levels, not base alphabet symbols.

9.2 Calculating the Expected Synchronisation Delay (ESD) 117

where we de�ne Tim = 0 for m � i. The latter is a consequence of our assumption

that there will be no further symbol errors during the course of synchronisation. 4

Calculating Tim:

The Tim may be determined as follows. The receipt of a codeword x 2 S
(k1;k2;:::;ki)
(p1;p2;:::;pi)

npi+1

by the decoder may precipitate a transition to various levels m > i, or may leave

the decoder in S
(k1;k2;:::;ki)
(p1;p2;:::;pi)

, depending on x and in some cases on symbols received

prior to x. If x precipitates a transition (under at least some circumstances), it is

a transition codeword.

We de�ne P (x; i;m) to be the probability that the receipt of x in at synchro-

nisation level i precipitates a transition to S(k1;k2;:::;km)
(p1;p2;:::;pm) . Any codeword x 6= pi+1 in

S
(k1;k2;:::;ki)
(p1;p2;:::;pi)

causes a transition to a higher level set, and we get

Tim =
X

x2S
(k1;k2;:::;ki)

(p1;p2;:::;pi)
nfpi+1g

P (x; i)P (x; i;m)

1� P (pi+1; i)
(9.4)

where P (x; i) is the probability of decoding the codeword x in a decoding over

S
(k1;k2;:::;ki)
(p1;p2;:::;pi)

. The denominator 1�P (pi+1; i) reects the probability of decoding the

T-pre�x pi+1 as a next codeword, which has the e�ect of delaying the transition to

a higher set. It is required here for normalisation purposes.

If pm+1 n�
S
(k1;k2;:::;ki)

(p1;p2;:::;pi)

x (Theorem (8.3.5)), there is no blocking pre-condition and

P (x; i;m) = 0. If pm+1 n�
S
(k1;k2;:::;ki)

(p1;p2;:::;pi)

x for all i � m < n, we have P (x; i;m) = 0

and P (x; i; n) = 1 respectively. In practice, this is the case for most combinations

of x, i and m, and corresponds to a reduction in the computational e�ort (see

4Note that Pv(n) and Tin have no relevance to the calculation of the ESD (see Equation (9.1)).
However, as T-Codes are statistically synchronisable, we have Pv(n) = 1, which may be used in
practice to check the feasibility of the Pv(m) and Tim calculated.

118 Calculating the Expected Synchronisation Delay

section 9.4.3). We now calculate P (x; i;m) for those x for which a blocking pre-

condition occurs.

Accounting for Blocking Conditions

Possible blocking conditions have to be investigated whenever a blocking pre-

condition is encountered, i.e., when for some level i < m

pm+1 �
S
(k1;k2;:::;ki)

(p1;p2;:::;pi)

x;

but pm0+1 n�
S
(k1;k2;:::;ki)

(p1;p2;:::;pi)

x for all m0 where i � m0 < m.

In this case, the probability P (x; i;m) for a transition from level i to level m,

upon receipt of x, equals the probability that a blocking condition with respect to

pm+1 occurs. In cases where the blocking pre-condition pm+1 �
S
(k1;k2;:::;ki)

(p1;p2;:::;pi)

s is not

satis�ed, this probability is zero.

We know which x, i, and m satisfy the blocking pre-condition because all of the

intermediate code sets are known. However, we do not know exactly which | or

even how many | symbols precede x in an actual decoding situation.

Determining the probability of a blocking condition following the receipt of x

thus requires determining the possible symbol combinations that may precede x

and would cause a blocking condition. The probability of a blocking condition is

then simply the probability that the decoder encounters one of these situations.

Where the blocking pre-condition holds, the decoder may encounter one of three

distinct cases (see Section 8.3.1):

Case 1: x = pm+1. Here, a blocking condition exists irrespective of any symbols

received prior to x, and P (x; i;m) = 1.

9.2 Calculating the Expected Synchronisation Delay (ESD) 119

Case 2: pm+1 �S
d �

S
x and boundary compatibility between pm+1 and d, corre-

sponding to the situation where decoding has started after the beginning of

a string that could be pm+1.

Case 3: d �
S
pm+1 �

S
(k1;k2;:::;ki)

(p1;p2;:::;pi)

x and boundary compatibility between pm+1 and

d. This accounts for the case where decoding has started before the beginning

of a string that could be pm+1.

While the �rst case is trivial, calculating P (x; i;m) for the last two cases requires

more e�ort as we need to account for all possible strings z that could precede x

in a real decoding situation, such that d = zx. We know that the decoder is at

synchronisation level i at the boundary between z and x. Hence, z must be a

synchronising string for level i, i.e., it must synchronise the decoder exactly to

level i but not further.

Synchronising strings: According to [49], a string that synchronises a decoder

to level i is of the form

xs(i) = pm1
1 pm2

2 : : : pmi
i x0; (9.5)

where m1; m2; : : : ; mi 2 IN and x0 2
n
S
(k1;k2;:::;ki�1)
(p1;p2;:::;pi�1)

[f�g
o
nfpig. Titchener's equa-

tion implies that only the decoding of T-pre�xes causes blocking conditions. For

some T-Code sets, this is indeed the case, namely those sets for which the T-pre�xes

are chosen such that blocking conditions can only occur if x = pm+1.

However, this is not always the case. In the very case that we are discussing at

the moment, we suspect that a transition codeword x decoded at level m could be

the end of pm+1. Note that x does not have to be a T-pre�x at any T-augmentation

level for this to occur. If we cannot rule out that m is the end of a copy of pm+1

in a practical decoding situation, we have a blocking condition, and x gets inserted

120 Calculating the Expected Synchronisation Delay

into the synchronising string. If we continue decoding and the decoder eventually

synchronises to a level beyond m + 1, then x becomes part (but not su�x of) the

particular instance of the synchronising string for that level. Unless x is a T-pre�x

of the set at a lower level, the resulting synchronising string does not satisfy the

above equation.

A necessary and su�cient form of Titchener's equation may be obtained by

modifying it such that transitions during the synchronisation process are attributed

explicitly to the transition codewords that cause them.

Let x(ij ; ij0) be a codeword in S
(k1;k2;:::;kij)

(p1;p2;:::;pij)
that causes a transition between levels

ij and ij0. For i1 < : : : < ij < : : : < i, we get:

xs(i) = pm0
1 x(0; i1) : : : p

mj�1

ij�1
x(ij�1; ij)p

mj

ij
x(ij; i): (9.6)

where m0; m1; : : : ; mj 2 IN Note that the x(ij; ij0) may depend to an extent on

the substring to the left of their position in xs(i). x(ij; ij0) 6= pij0+1 are subject to

blocking conditions that depend on previous symbols. This needs to be taken into

account.

The strings described by the previous equation include only such strings that

just synchronise the decoder to level i. That is, no proper pre�x of an xs(i) that

satis�es Equation (9.6) is a synchronising string. To include all potential candidates

for blocking strings, we must thus allow for the possibility that a run of T-pre�xes

pi+1 has held the decoder at level i. That is, we are interested in all strings that

synchronise the decoder to level i but not further.

Allowing for this, Equation (9.6) becomes5:

xs(i) = pm0
1 x(0; i1) : : : p

mj�1

ij�1+1x(ij�1; ij)p
mj

ij+1x(ij; i)p
mj+1

i+1 : (9.7)

We now attempt a \naive" de�nition of a probability of occurrence for xs as the

5we also keep in mind that � is a \string" that synchronises a decoder to level 0

9.2 Calculating the Expected Synchronisation Delay (ESD) 121

product of the probability of occurrence of its components:

P (xs(i)) = P (p1; 0)
m0P (x(0; i1); 0) � : : :

: : : � P (pij�1+1; ij�1)
mj�1P (x(ij�1; ij); ij�1)P (pij+1; ij)

mj

�P (x(ij; i); ij)P (pi+1; i)
mj+1 : (9.8)

The \ problem" with this de�nition is that if we added the P (xs(i)) for all synchro-

nising strings xs(i), the sum would generally not add up to one, and thus P (xs(i))

does not constitute a \meaningful" probability. This has two reasons:

� some synchronising strings in the form of Equation (9.7) are pre�xes of others.

E.g., we can take any xs(i) and append a copy of pi+1, and thus obtain a

another synchronising string. Thus, the P (xs(i)) do not refer to mutually

exclusive events.

� not all combinations of codewords at ascending levels yield synchronising

strings.

The \problem", however, is merely a lack of normalisation:

� consider that in our scenario, all synchronising strings are followed by x, a

codeword other than pi+1. If we account for x, then no synchronising string

followed by x is a pre�x of another synchronising string followed by x. Hence,

the terms P (xs(i))P (x; i) describe mutually exclusive events. However, as

P (x; i) is a common factor in P (xs(i))P (x; i) for all synchronising strings

xs(i), it is merely a normalisation factor which we may include if required or

omit if not.

� the second point of concern was that P (xs(i)) is not conditional on xs(i)

being a synchronising string. Making the probability conditional is also

only a matter of a multiplying all P (xs(i)) by a common factor, namelyhP
xs(i) P (xs(i))

i�1
.

122 Calculating the Expected Synchronisation Delay

Hence, we could normalise the P (xs(i)) if we wanted to. However, we shall see

shortly that neither normalisation factor is required.

Blocking strings: Synchronising strings z that cause a blocking condition are

called blocking strings. Thus, blocking strings are a subset of all synchronising

strings, and P (x; i;m) is the probability that we encounter a blocking string rather

than another synchronising string in an actual decoding situation.

Calculating P (x; i;m): P (x; i;m) is the probability that we have a blocking

string given that we have a synchronising string. Hence, P (x; i;m) is given by the

cumulative probability of occurrence of all blocking strings xsb(i) divided by the

cumulative probability of occurrence of all synchronising strings xs(i):

P (x; i;m) =

P
xsb(i) P (xsb(i))P
xs(i) P (xs(i))

: (9.9)

Our \normalisation problem" disappears at this point: the normalisation factors

that we would require are the same for both numerator and denominator and hence

cancel out.

Still, this equation poses a problem: there are in�nitely many synchronising

strings and generally also in�nitely many blocking strings - so how do we calculate

the sums? The problem is caused by the unbounded runs of T-pre�xes in the

synchronising strings, i.e., m0; : : : ; mj are unbounded.

However, the problem is minor. Consider synchronising strings that are identical

except for a run of mj0 T-pre�xes pij0+1. For these strings, P (xs(i)) only di�ers by a

factor of P (pij0+1; ij0)
mj0 , where mj0 can generally take any value between zero and

in�nity. When taking the sum over P (xs(i)) for these strings in Equation (9.9), we

can factor the common part out and are left with a term that can be expressed as

9.2 Calculating the Expected Synchronisation Delay (ESD) 123

a geometric series:

1X
mj0=0

P (pij0+1; ij0)
mj0 =

1

1� P (pij0+1; ij0)
: (9.10)

We can only do this if the actual number of T-pre�xes in a run has no inuence

on whether the synchronising string is a blocking string or not. There is also the

possibility of blocking conditions at lower levels caused by x(ij; ij0) that satisfy a

blocking pre-condition. In the latter case, this could imply that for certain pij0+1

and mj0 , the resulting string is not a synchronising string.

However, the two extra criteria that distinguish a blocking string from a mere

synchronising string only apply to a �nite portion of the synchronising string in

question: the part where it \overlaps" what could be pm+1. This �nite substring

may always be covered by �nite runs of T-pre�xes. The presence or absence of

blocking conditions at lower levels are also brought about by �nite substrings. In

such cases we may thus treat an in�nite run of T-pre�xes as a combination of a

�nite run and an in�nite one. Hence, we are able to group all in�nte runs, and the

number of relevant cases that we need to evaluate is indeed �nite.

How can one �nd all relevant synchronising and blocking strings? The algo-

rithm suggested here is a recursive search. Starting at level i and with z = �, we

recursively add T-pre�xes and x(ij; ij0) to the left of z until we obtain synchronising

strings.

When the length of the recursively constructed string exceeds jpm+1j � jxj, we

only add T-pre�xes to the left if there is an unresolved blocking pre-condition due

to some x(ij; ij0) that was added before. If not, we account for them collectively in

the sum of probabilities.

All synchronising strings found are entered into a list, which also includes their

unnormalised probability of occurrence (with the geometric series factor for T-pre�x

runs included). Each string is tested for the two blocking string criteria, and the

124 Calculating the Expected Synchronisation Delay

sums in Equation (9.9) are taken, which yields P (x; i;m) as desired.

A Feasibility Check

The treatment of blocking conditions is non-trivial. It may therefore be helpful to

know that there is a way of checking the feasibility of a set of P (x; i;m) that one

has calculated: since no transition beyond the top level set S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

is possible,

we get the identity
nX
l=i

P (x; i; l) = 1; (9.11)

where P (x; i; i) denotes the probability of the decoder remaining at level i. For

x 6= pi+1, we have P (x; i; i) = 0, otherwise P (x; i;m) = 0 for m > i. For the

\interesting" cases of multiple blocking conditions, we may hence check if

nX
l=i+1

P (x; i; l) = 1: (9.12)

This also implies that, should we wish to determine the ESD of a set S
(k1;k2;:::;kn0)
(p1;p2;:::;pn0)

derived from S(k1;k2;:::;kn)
(p1;p2;:::;pn)

by further T-augmentations, all P (x; i; n) and thus all Tin

and Pv(n) have to be recalculated.

9.2.2 Calculating � (m)

Once the visitation probabilities Pv(m) have been determined, we calculate the

expected level synchronisation delay �(m) for each T-augmentation level m < n.

This delay comprises two parts:

1. the pre�x delay. This is the average delay introduced by the decoding of m

consecutive T-pre�xes pm+1 over S
(k1;k2;:::;km)
(p1;p2;:::;pm) which prevents the decoder from

making a transition to a higher set. The T-pre�x delay is thus the sum of the

lengths of the T-pre�x strings each weighted by the probability of decoding

9.3 Two Examples: Calculating the ESD of Binary T-Code Sets 125

it m times:

�p(m) =
1X

m=1

jpm+1jP (pm+1; m)m = jpm+1j
P (pm+1; m)

1� P (pm+1; m)
; (9.13)

where we have used the identity 1
1��

=
P1

m=0 �
m.

2. the su�x delay arising from the decoding of a transition codeword, i.e., the

average length of the transition codewords at level m. To obtain the su�x

delay, we need to look at each individual codeword x in S
(k1;k2;:::;km)
(p1;p2;:::;pm) except

for the T-pre�x pm+1, and multiply its length by P (x;m)=(1 � P (pm+1; m).

The su�x delay is thus given by

�s(m) =
X

x2S
(k1;k2;:::;km)

(p1;p2;:::;pm)
npm+1

jsj
P (x;m)

1� P (pm+1; m)
: (9.14)

Adding the two parts gives the expected level synchronisation delay

�(m) = �p(m) + �s(m) =
X

x2S
(k1;k2;:::;km)

(p1;p2;:::;pm)

jxj
P (x;m)

1� P (pm+1; m)
: (9.15)

Taking the sum over all levels we get, according to Equation (9.1),

ESD(S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

) =
n�1X
m=0

Pv(m)
X

x2S
(k1;k2;:::;km)

(p1;p2;:::;pm)

jxj
P (x;m)

1� P (pm+1; m)
: (9.16)

In the case of a perfectly matched source, i.e., when P (x;m) = #S�jxj, we get:

ESD(S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

) =
n�1X
m=0

Pv(m)
X

x2S
(k1;k2;:::;km)

(p1;p2;:::;pm)

jxj

[#S]jxj
�
1� 1

#Sjpm+1j

� : (9.17)

The next section illustrates this by way of two examples.

9.3 Two Examples: Calculating the ESD of Binary
T-Code Sets

The two following examples show how the ESD for the binary sets S
(1;1;1;1;1)
(0;1;00;01;11) and

S
(2;1;1)
(0;001;01) may be calculated using the above approach. ESD(S

(1;1;1;1;1)
(0;1;00;01;11)) has been

126 Calculating the Expected Synchronisation Delay

calculated by Titchener in [46] on page B4 to be 10.82292 bits6 and may be used

for comparison. Due to its relative simplicity, this example set allows us to empha-

sise some of the essential aspects of the ESD calculation. In contrast, the second

example, S
(2;1;1)
(0;001;01) introduces the treatment of non-trivial blocking conditions.

9.3.1 ESD(S
(1;1;1;1;1)
(0;1;00;01;11))

Consider the alphabet S = f0; 1g and the simple T-Code set S
(1;1;1;1;1)
(0;1;00;01;11) derived

from S by simple T-augmentation with T-pre�xes 0,1,00,01, and 11. S(1;1;1;1;1)
(0;1;00;01;11)

and all its intermediate sets are listed in Table 9.1 on page 127.

We will now show how Pv(m) and �(m) may be calculated for each level m =

0; : : : ; 4. As S = f0; 1g is a binary alphabet, #S = 2. We also assume that the

codewords in S
(1;1;1;1;1)
(0;1;00;01;11) and its intermediate sets are optimally matched to the

source, i.e., that P (x;m) = 2�jxj.

� T-augmentation/synchronisation level 0. As mentioned in the previously, all

decoding starts at this level, and Pv(0) = 1 by default. The �(0) is given by:

�(0) = 1�
1

21
�
1� 1

21

� + 1�
1

21
�
1� 1

21

� = 2: (9.18)

In preparation for the next levels, we calculate the transition probabilities

T0m. As can be seen from the table, only the codeword 1 causes a transition,

which encounters a blocking condition as 1 = p2. Thus P (1; 0; 1) = 1, and

P (x; 0; m) = 0 for all other choices of x and m. Equation (9.4) yields

T01 =
X

x2S
(k1;k2;:::;k0)

(p1;p2;:::;p0)
np1

P (x; 0)P (x; 0; 1)

1� P (p1; 0)
= 1: (9.19)

� T-augmentation/synchronisation level 1. We are now dealing with the inter-

6For most practical applications, a lesser degree of precision should be su�cient.

9.3 Two Examples: Calculating the ESD of Binary T-Code Sets 127

Intermediate T-Code sets of S
(1;1;1;1;1)
(0;1;00;01;11) at T-augmentation levels 0-5

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

S S
(1)
(0) S

(1;1)
(0;1) S

(1;1;1)
(0;1;00) S

(1;1;1;1)
(0;1;00;01) S

(1;1;1;1;1)
(0;1;00;01;11)

0
1 ! 1

00 ! 00
01 ! 01 ! 01

11 ! 11 ! 11
100 ! 100 ! 100 ! 100
101 ! 101 ! 101 ! 101

0000 ! 0000 ! 0000
0001 ! 0001 ! 0001
0011 ! 0011 ! 0011
00100 ! 00100 ! 00100
00101 ! 00101 ! 00101

0101 ! 0101
0111 ! 0111
01100 ! 01100
01101 ! 01101
010000 ! 010000
010001 ! 010001
010011 ! 010011
0100100 ! 0100100
0100101 ! 0100101

1111
...

110100101

Table 9.1. Listing of the T-Code sets S, S
(1)
(0) , S

(1;1)
(0;1) , S

(1;1;1)
(0;1;00), S

(1;1;1;1)
(0;1;00;01), and S

(1;1;1;1;1)
(0;1;00;01;11)

based on the T-augmentation of S = A = f0; 1g. The arrows indicate transitions during the
synchronisation process. A transition in a particular line carries the decoder to the set pointed
at by the last arrow in the line.

128 Calculating the Expected Synchronisation Delay

mediate set S
(k1)
(p1)

= S
(1)
(0) . From Equation (9.2),

Pv(1) =
0X

i=0

Ti1Pv(i) = T01Pv(0) = 1: (9.20)

With p2 = 1,

�(1) = 1 + 1 + 1 = 3: (9.21)

The situation with outgoing transitions from S
(1)
(0) is a little more complicated

than before, since there are now two transition codewords, 00 and 01. The

codeword 00 marks a 2-boundary and thus permits the decoder to switch to

S(k1;k2;:::;k2)
(p1;p2;:::;p2)

= S(1;1)
(0;1) for decoding. Since 00 is the T-pre�x p3 for the third level

set S
(1;1;1)
(0;1;00), the decoder encounters a blocking condition and cannot switch

any further. Thus P (00; 1; 2) = 1. The codeword 01, however, marks a 3-

boundary, where it encounters a blocking condition because 01 = p4. Hence

P (01; 1; 3) = 1.

With P (00; 1) = P (01; 1) = 1
4
, the probability of decoding the T-pre�x p2 = 1

is P (1; 1) = 1
2
. This yields T12 =

1
2
and T13 =

1
2
. All other T1m are zero.

� T-augmentation/synchronisation level 2. The decoding set is now S(k1;k2)
(p1;p2)

=

S
(1;1)
(0;1) . As before, we �rst calculate Pv(2):

Pv(2) =
1X

i=0

Ti2Pv(i) = T12Pv(1) =
1

2
; (9.22)

where we have used the previous results, in particular that T02 = 0. �(2) now

has �ve terms:

�(2) =
2

3
+
2

3
+
2

3
+
1

2
+
1

2
= 3: (9.23)

The transition codewords in S
(1;1)
(0;1) come in three avours: 01 marks a 3-

boundary, 11 a 4-boundary, and 100 and 101 mark a 5-boundary, i.e., cause

transitions to the �nal set S
(1;1;1;1;1)
(0;1;00;01;11). Hence P (01; 2; 3) = 1, P (11; 2; 4) = 1,

P (100; 2; 5) = 1, and P (101; 2; 5) = 1. The probabilities of occurrence for

9.3 Two Examples: Calculating the ESD of Binary T-Code Sets 129

these transition codewords are P (01; 2) = 1
4
, P (11; 2) = 1

4
, P (100; 2) = 1

8
and

P (101; 2) = 1
8
. The probability of occurrence for the third level T-pre�x is

P (00; 2) = 1
4
.This yields T23 =

1
3
, T24 =

1
3
, and T25 =

1
3
.

� T-augmentation/synchronisation level 3, with S
(k1;k2;:::;k3)
(p1;p2;:::;p3)

= S
(1;1;1)
(0;1;00).

Pv(3) =
2X

i=0

Ti3Pv(i)

= T13Pv(1) + T23Pv(2)

=
1

2
+
1

3

1

2
=

2

3
: (9.24)

�(3) is contributed to by nine codewords:

�(3) =
2

3
+
2

3
+
1

2
+
1

2
+
1

3
+
1

3
+
1

3
+

5

24
+

5

24
=

15

4
: (9.25)

All codewords in S(1;1;1)
(0;1;00) cause transitions to the �nal set, with the exception

of the fourth level T-pre�x 01 and the �fth level T-pre�x 11 | the only other

transition codeword. Hence P (11; 3; 4) = 1, and thus T34 =
1
3
and T35 =

2
3
.

� T-augmentation/synchronisation level 4 with S
(k1;k2;:::;k4)
(p1;p2;:::;p4)

= S
(1;1;1;1;1)
(0;1;00;01).

Pv(4) =
7

18
: (9.26)

S(1;1;1;1;1)
(0;1;00;01) is also the largest intermediate set, so the �(4) is a correspondingly

large expression:

�(4) =
2

3
+
1

2
+
1

2
+
1

3
+
1

3
+
1

3

+
5

24
+

5

24
+
1

3
+
1

3
+

5

24

+
5

24
+
1

8
+
1

8
+
1

8
+

7

96

+
7

96

=
225

48
(9.27)

T45 = 1 as all transitions from this level go to the top level set.

130 Calculating the Expected Synchronisation Delay

Having calculated all contributing terms, we may now take the sum over m:

ESD(S
(1;1;1;1;1)
(0;1;00;01;11)) = 1� 2

+ 1� 3

+
1

2
� 3

+
2

3
�
15

4

+
7

18
�
225

48

=
1039

96

= 10:822916 (9.28)

This agrees precisely with the value obtained in [46]. A quick consistency check

also yields Pv(5) = Pv(2)T25 + Pv(3) + T35 + Pv(4)T45 = 1.

9.3.2 ESD(S
(2;1;1)
(0;001;01))

The T-Code set S
(2;1;1)
(0;001;01) and its intermediate sets are listed in Table 9.2 on

page 131. Unlike the previous example, we are faced with non-trivial blocking
conditions. Again, we shall assume that P (x;m) = 2�jxj. As before, we start at
level 0:

� T-augmentation level 0. By default, Pv(0) = 1, and �(0) = 2 just like in

the previous example. Again, we calculate the T0m for use at higher levels.

This requires the calculation of P (x; 0; m). The only transition codeword is

1, which always marks a 1-boundary. At �rst glance we may suspect that

1 also marks a 2-boundary or a 3-boundary depending on the previously

decoded symbols. This ambiguity arises because 1 is a su�x (over S) of

the T-pre�xes p2 = 001 and p3 = 01 and thus satis�es the blocking pre-

condition with respect to these. In the case of p2, x = 1 6= p2, and thus we

search for synchronising and blocking strings. We �nd that z = �, z = 0,

9.3 Two Examples: Calculating the ESD of Binary T-Code Sets 131

T-Code sets at T-augmentation levels 0-3

m = 0 m = 1 m = 2 m = 3

S S
(2)
(0) S

(2;1)
(0;001) S

(2;1;1)
(0;001;01)

0

1 ! 1
?
! 1

?
! 1

01 ! 01
000 ! 000 ! 000
001

0011 ! 0011
00101 ! 00101
001000 ! 001000
001001 ! 001001

011
01000
010011
0100101
01001000
01001001

Table 9.2. Listing of the T-Code sets S, S
(2)
(0) , S

(2;1)
(0;001), and S

(2;1;1)
(0;001;01), based on the T-

augmentation of S = f0; 1g. The arrows indicate possible transitions during the synchroni-
sation process. A transition in a particular line carries the decoder to the set pointed at by
the last arrow in the line. Transitions marked with a \?" indicate a blocking pre-condition.

z = 00, and z = 0?00 are the relevant synchronising strings for level 0,

and all of them are blocking strings. Thus P (1; 0; 1) = 1. By implication,

P (1; 0; 2) = P (1; 0; 3) = 0. Hence, we have T01 = 1 and T02 = T03 = 0.

� T-augmentation level 1. Using the previous results, Pv(1) = 1, and �(1) = 2.

There is only one (trivial) blocking condition to take into account at this level,

due to 01 = p3, which leads to P (01; 1; 2) = 1, and thus T12 =
2
7
. Note that

the 1, if decoded as a codeword at the �rst level, does not cause a blocking

pre-condition. While it is a su�x of the third-level T-pre�x p3 = 01 when

p3 is decoded over S, it is not a su�x under a decoding with respect to S
(2)
(0) .

T13 =
5
7
.

� T-augmentation level 2. Pv(2) =
2
7
, and �(2) = 21

8
. T23 = 1.

132 Calculating the Expected Synchronisation Delay

Summing up, we get

ESD(S
(2;1;1)
(0;001;01)) = 1� 2 + 1� 2 +

2

7
�
21

8
= 4:75: (9.29)

Our consistency check shows again that Pv(3) = 1 for the Pv(m) and Tim used.

9.4 Special Cases and Computational Complexity

9.4.1 T-Expansion Parameters

Expansion parameters have no special signi�cance in the algorithm presented above,

as the T-pre�x delay accounts for repetitive T-pre�x patterns. Longer codewords

due to T-expansion parameters km > 1 are also treated in exactly the same way as

before in calculating the su�x delay. This does not come as a surprise since the

T-Code synchronisation mechanism does not depend on T-expansion parameters.

9.4.2 Mismatched Sources

If the source is not matched perfectly to the T-Code set used, i.e., when P (x; n) 6=

#S�jxj for some x 2 S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

, we have to calculate the P (x;m) for all x and all

m from the (known) source statistics for S(k1;k2;:::;kn)
(p1;p2;:::;pn)

. Since every codeword in a set

S
(k1;k2;:::;km)
(p1;p2;:::;pm) has a unique decoding over S

(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

, we may compute P (x;m�1)

from the relevant probabilities at level m, using the relationship

P (x;m� 1) =

P
x02S

(k1;k2;:::;km)

(p1;p2;:::;pm)

P (x0; m)jx0jx;m�1P
x02S

(k1;k2;:::;km)

(p1;p2;:::;pm)

P (x0; m)jx0jm�1
; (9.30)

where jx0jx;m�1 denotes the number of occurrences of x 2 S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

in the

S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

-decoding of x0, and jx0jm�1 denotes the total number of codewords

from S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

in the S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

-decoding of x0.

9.4 Special Cases and Computational Complexity 133

The numerator of this expression may be thought of as the number of occur-

rences of x in an average codeword from S
(k1;k2;:::;km)
(p1;p2;:::;pm) . The denominator may be

thought of as the \length" of that average codeword, measured in codewords over

S
(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

, thus normalising the number of occurrences of x to a probability.

A recursive top-down application of Equation (9.30), starting with m = n yields

the desired probabilities for all intermediate sets.

9.4.3 Computational Complexity

The computational complexity of our new algorithm has practical signi�cance as it

governs both the speed of calculation and its memory requirements. Both the speed

and the memory requirements may be speci�ed in \Big-O"-notation (see, e.g., [1]).

For the computation of �(m) for eachm, the delay contribution of each codeword

in the intermediate sets up to S
(k1;k2;:::;kn�1)
(p1;p2;:::;pn�1)

needs to be taken into account. Each

intermediate set S
(k1;k2;:::;km)
(p1;p2;:::;pm) contains at most half the number of codewords of the

next higher set S
(k1;k2;:::;km+1)
(p1;p2;:::;pm+1)

plus pm+1. Thus the total number of codewords that

have to be inspected for each level is always less than 2#S
(k1;k2;:::;kn�1)
(p1;p2;:::;pn�1)

+n. Memory

is required for the probabilities P (x;m). Summing up over all values ofm, the total

memory requirement and the execution time of the �(m) calculations are thus each

of order O(#S(k1;k2;:::;kn)
(p1;p2;:::;pn)

) = O(2n).

The computation of the Pv(m) consists mostly of the computation of the set

transition probabilities Tim.

The matrix Tim itself is of order O(n2). For each Tim, #S
(k1;k2;:::;ki)
(p1;p2;:::;pi)

codewords

need to be inspected to obtain the P (x; i;m). This part of algorithm does not

require any signi�cant amount of memory since we have already accounted for the

P (x;m) elsewhere. The execution time is roughly the same for most P (x; i;m),

which yields O(2n�1) using similar arguments to those presented above. Blocking

134 Calculating the Expected Synchronisation Delay

pre-conditions are rather rare for large sets and the number of relevant synchronising

and blocking strings small compared to the general size of the set. Hence they do

not require a lot of processing compared to the rest of the set, such that we may

assume that their contribution in terms of required storage and execution time is

usually negligible.

The execution time for the computation of the Pv(m) is therefore of order

O(2nn2). We may therefore claim that the total algorithm is of order O(2nn2),

provided that the source is perfectly matched.

In the case of a mismatched source, an individual calculation for P (x;m� 1) is

of order O(#S
(k1;k2;:::;km)
(p1;p2;:::;pm)) � O(2m). For the whole intermediate set S

(k1;k2;:::;km�1)
(p1;p2;:::;pm�1)

,

approximately 2m of these calculations have to be performed, i.e., for the whole

intermediate set we have an operation of O(22m). This implies that the algorithm

for all intermediate sets is of order O(22n). For large sets with mismatched sources,

this is the dominant operation.

9.5 Discussion

The algorithm presented here permits a precise computation of the ESD of any T-

Code set based on any alphabet, driven by a source with arbitrary source statistics.

The algorithm has the potential to be implemented as a computer program, and

would provide an e�cient engineering tool for T-Code communication applications.

C H A P T E R 1 0

Approaches to Source Coding With

T-Codes

The classic area of application for variable-length codes
is data compression by source coding. Hu�man codes are
perhaps the best-known example for this. This chapter dis-
cusses the problem of �nding the T-Code set that o�ers the
best compression for a given source statistic.

10.1 Source Coding

Source coding assumes the following situation: an information source emits a �nite

number Ns of distinct source symbols �i in a continuous stream. P (�i) denotes

the probability that the next source symbol emitted by the source is �i. Each

�i is assigned a unique variable-length codeword x(�i) from a pre�x-free code set

C 2 S+.

The expected redundancy r of this encoding is given by the di�erence between

the weighted mean of the codeword lengths of the encoded source and the source's

135

136 Approaches to Source Coding With T-Codes

entropy (cf. Shannon [39]):

r =
X
i

P (�i)
h
jx(�i)j+ log#S P (�i)

i
(10.1)

The simple source coding model generally assumes that P (�i) is independent

of previously emitted symbols | an assumption that does not hold in many prac-

tical cases. Still, in many cases this presents a fair approximation and signi�cant

compression gains may be achieved by minimising r.

Hu�man [30] introduced his now famous algorithm for the construction of a

pre�x-free variable-length code with minimal redundancy, assuming such a simple

source coding model. His algorithm has found many practical applications. It is

used in the pack command under UNIX and for the compression of DCT coe�cients

in the popular JPEG image compression.

The Hu�man algorithm starts with given source probabilities P (�i) and yields

a variable-length code set over S with minimal r. This code set is generally not

the only possible one that minimises r. One of the reasons for this is that r does

not depend on the code itself, but merely on the code length distribution, i.e.,

the histogram function of codeword lengths. This is a result of the jx(�i)j-term

in Equation (10.1). Codes that share the same code length distribution are hence

equivalent in the sense of Equation (10.1).

Capocelli, Giancarlo, and Taneja [4] presented bounds on the redundancy of

Hu�man codes. Similar work was also undertaken by Gallager [11] and Johnsen [32].

10.2 Source Coding with T-Codes

Source coding with T-Codes requires a di�erent approach than Hu�man coding.

Whereas the Hu�man algorithm is constrained only by P (�i) and the requirement

to minimise r, the requirement that the �nal code be a T-Code set places an

10.2 Source Coding with T-Codes 137

additional constraint on the process. This renders the Hu�man algorithm unusable

for our purposes.

Unfortunately, it also means that there is not always a T-Code set for which r

can be minimised to the same value as for a Hu�man code for the same source, as

illustrated in the following example:

Example 10.2.1 (T-Code sets with Non-Minimal Redundancy)

Consider a source with six symbols and associated probabilities 1
4
, 1
4
, 1
8
, 1
8
, 1
8
, and 1

8

respectively. If we were to use a block code for encoding, we would require a 3-bit

code. The Hu�man code

C = f00; 01; 100; 101; 110; 111g

yields minimum redundancy with an average codeword length of 2.5 bits, such that

the block code features a redundancy of r = 0:5 bits. The closest T-Code set we can

obtain here is, e.g., the set S
(1;1)
(0;1) which has r = 0:125.

Thus, there is often a trade-o� in e�ciency when a T-Code set is used for source

coding. This trade-o� may be more than compensated by other bene�ts such as

good self-synchronisation.

This poses the question as to how we may �nd a T-Code set with minimal r for

a given source.

For many practical applications it may be su�cient | and quicker to resolve |

to simply soften the criterion somewhat and look for a T-Code set with a \small"

r, rather than the smallest r achievable.

To date, the only strategy that has been identi�ed for minimising r is to perform

an exhaustive search of all feasible code length distributions. This approach was

�rst presented by the author in [17]. This chapter presents a much improved version

of this algorithm.

138 Approaches to Source Coding With T-Codes

10.3 The Search Algorithm

The search algorithm presented here operates mainly as a recursive \divide-and-

conquer" algorithm. This section discusses the general structure of the algorithm,

whereas the following section (10.4) takes a detailed look at the techniques used.

Since the code length distribution determines the redundancy, the algorithm

simply works with the set distributions rather than with the full code sets. As the

number of possible distributions is e�ectively unlimited, the algorithm uses several

feasibility criteria that permit us to use a \branch-and-bound" technique [28, 3],

which limits the number of sets that we need to search. These will be discussed in

the next section.

The algorithm consists of two parts (see also Figure 10.1 above and Figure 10.2
overleaf):

1. Initialisation: sets up global parameters such as the variables for recording

the best redundancy and distribution found so far. It also sets the \seed"

distribution of the alphabet (i.e., #S codewords of length 1, zero codewords

for all other lengths) and uses it as the base distribution for the recursive

matching subroutine.

2. Recursive matching subroutine. If the base distribution is large enough to en-

code the source, the procedure �rst calculates the redundancy associated with

the base distribution and updates the global records on the best redundancy

set, if applicable.

Starting with the shortest available T-pre�x length, the procedure loops

through all combinations of available T-pre�x lengths and T-expansion pa-

rameters that meet the feasibility criteria that we have yet to discuss (see

below). For each combination, it creates a code length distribution corre-

sponding to a T-augmentation from the base distribution. Any distributions

10.3 The Search Algorithm 139

program recursivesearch

var

global bestredundancy: float;
global bestset: TCodeSet;
global P (�i): array[1..Ns] of float;
baseset: TCodeSet;
f a TCodeSet here consists of a code length distributiong
f and a T-prescription, with T-pre�x lengths g
f rather than full T-pre�xes g

procedure recursive match(baseset); f forward declaration, see Figure 10.2 g

f main program code starts here g
begin

baseset:=alphabet;
f the code length distribution of baseset consists of g
f #S symbols of length 1 and no symbols of other lengths. g
f The T-prescription is empty. g
bestset:=none;
f we have yet to �nd a matching set g
bestredundancy:=infinity;
f any large enough set will match this! g
input(P (�i));
recursive match(baseset);
f call the recursive routine g
output(bestset,bestredundancy)

end.

Figure 10.1. pseudo code (part 1) of a recursive search algorithm used to �nd the T-
Code set distribution with the lowest redundancy for a given source probability distribution:
main routine. Some details have been omitted to underline the basic concept. The recursive
matching procedure is listed in part 2 (see Figure 10.2).

140 Approaches to Source Coding With T-Codes

procedure recursive match(baseset)
var

newredundancy: float;
tmpset: TCodeSet;
p: integer; ffor T-pre�x lengthg
k: integer; ffor T-expansion parameterg

begin

f �rst calculate redundancy for the baseset g
f provided it is large enough to encode the source g
if (size(baseset) >= Ns) then begin

newredundancy:=redundancy(baseset,P (�i));
f update records for best set if appropriate g
if (newredundancy < bestredundancy) then begin

bestset:=baseset;
bestredundancy:=newredundancy;

end;

end

f now loop through all feasible T-pre�x lengths g
f choose shortest available codeword �rst.g
p:=shortest(basedistribution);
f However, p must be as least as long as the T-pre�x g
f of the last virtual T-augmentation. g
if (p<lastp(baseset)) then begin

p:=lastp(baseset);
f if no codewords of that length exist g
f increase p until we �nd one g
while (basedistribution[p]==0) do p:=p+1;

end;

while feasible(p) begin

f loop through all feasible k g
k:=1;
while feasible(p,k) do begin

tmpset:=v taugment(baseset,p,k);
recursive match(tmpset);
f get next higher k g
k:=next prime(k+1)-1;

end;

f get next higher p g
f p:=nextp(p,baseset);

end;

end;

Figure 10.2. pseudo code (part 2) of a recursive search algorithm used to �nd the T-Code
set distribution with the lowest redundancy for a given source probability distribution. This
listing describes the recursive routine. The individual feasibility criteria are discussed in the
main text of this chapter. Some details have been omitted to underline the basic concept.

10.4 Feasibility Criteria and Simpli�cations 141

thus obtained are used by the procedure as the base distributions for recursive

calls to itself.

At the end of the algorithm's run, all feasible distributions have been generated, and

the best achievable redundancy is known. A set of T-pre�x lengths and T-expansion

parameters for a code set with this redundancy is also returned.

10.4 Feasibility Criteria and Simpli�cations

This section discusses the techniques that are used to ensure that

� the search algorithm terminates,

� the search of multiple equivalent code length distributions is avoided,

� the code length distributions are restricted to codeword lengths of interest,

� code length distributions that cannot yield a minimum redundancy are avoided

if possible.

10.4.1 Virtual T-Augmentation

Since the code length distribution is the determining factor in the calculation of r,

two code sets with the same code length distribution have the same redundancy.

Hence, rather than searching for a \best set", we may restrict ourselves to searching

for the best distribution and a \recipe" that permits the construction of a set which

features that distribution. For this purpose, the algorithm uses a technique called

\virtual T-augmentation".

Let �C denote the code length distribution function of a code C, such that �C(l)

denotes the number of codewords of length l in the code set C, and de�ne �C(l) = 0

142 Approaches to Source Coding With T-Codes

for l � 0. Then

�S(l) =

(
#S if l = 1
0 otherwise

(10.2)

and

�
S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)

(l) =

8>>><
>>>:

�
S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

(l)� 1 if l = jpn+1j

Pkn+1

k0
n+1=0

�
S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

(l � k0n+1jpn+1j) otherwise
(10.3)

The last equation de�nes the virtual T-augmentation. Note that only the length of

the T-pre�xes plays a role here | if S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

contains more than one codeword

of the intended T-pre�x length jpn+1j, then �
S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)

(l) does not depend on

which of these is chosen as the T-pre�x in a corresponding \real" T-augmentation.

On the other hand, the choice of T-expansion parameters has a signi�cant inuence

on �
S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)

(l).

Virtual T-augmentation permits us to manipulate T-Code set code length dis-

tributions rather than full sets, which is exactly what is required if we wish to

minimise the redundancy r.

10.4.2 Avoiding Multiple Equivalent T-Prescriptions

As mentioned above, two code sets will have the same redundancy r if they have

the same code length distribution. Hence, it is su�cient to generate the code

length distribution for just one such set to obtain r for all sets having the same

distribution. In particular, two T-Code sets share the same distribution if they

have been generated by equivalent T-prescriptions (cf. 3) | in this case we are

simply generating the distribution for the same set.

An obvious way of preventing this duplication of distributions is to specify that

all set T-prescriptions must be in their anti-canonical form (see Chapter 3). Even

though we are not dealing with full T-Code sets here, we know that set distributions

corresponding to a non-anti-canonical T-prescription can also be generated by a

10.4 Feasibility Criteria and Simpli�cations 143

corresponding anti-canonical T-prescription, and hence we can restrict our search to

the latter. It su�ces to demand that the T-expansion parameters used must be one

less than a prime number. Since the number of primes in any larger �nite interval

of IN is signi�cantly less than the number of natural numbers in that interval, this

constraint saves a signi�cant amount of computation time.

10.4.3 Non-Decreasing T-Pre�x Lengths

Limiting the T-prescriptions to the anti-canonical form is only one way of elim-

inating duplicate code length distributions. Further savings are possible if the

T-pre�xes are used in ascending order of length:

Consider the form of codewords in S
(k1;k2;:::;kn)
(p1;p2;:::;pn)

as presented in Theorem 4.2.3,

x = p
k0n
n p

k0n�1

n�1 : : : p
k01
1 k00; (10.4)

and the form of the associated pseudo-T codewords from Theorem 6.1.2

x� = p
k0n
n p

k0n�1

n�1 : : : p
k01
1 �; with 0 � k0i � ki for i = 1; : : : ; n: (10.5)

Given a �xed set of T-pre�x lengths and T-expansion parameters for these two

equations, neither of the code length distributions that these two equations give

rise to is changed by \swapping" the order of any two adjacent substrings of the

form p
k0m�1

m�1 and p
k0m
m for 2 � m � n. I.e., for \adjacent" T-augmentations,

�
S
(k1;k2;:::;kn�1;kn)

(p1;p2;:::;pn�1;pn)

= �
S
(k1;k2;:::;kn;kn�1)

(p1;p2;:::;pn;pn�1)

; (10.6)

provided that both S
(k1;k2;:::;kn�1;kn)
(p1;p2;:::;pn�1;pn)

and S
(k1;k2;:::;kn;kn�1)
(p1;p2;:::;pn;pn�1)

exist.

Here, we have two cases to consider:

� jpnj � jpn�1j. In this case, pn 2 S
(k1;k2;:::;kn�2)
(p1;p2;:::;pn�2)

and both sets exist. If we

demand that T-pre�xes should be used in ascending order of length for all

144 Approaches to Source Coding With T-Codes

virtual T-augmentations, we generate the distribution for the second set and

hence, by equivalence, cover the �rst set, too.

� jpnj > jpn�1j. In this case, the latter set may not exist: if pn 62 S
(k1;k2;:::;kn�2)
(p1;p2;:::;pn�2)

,

then pn must be generated as a result of the (n� 1)'th T-augmentation and

hence jpnj > jpn�1j. If we demand non-decreasing T-pre�x lengths for all

virtual T-augmentations, we will generate the distribution for the �rst set.

Whether the second set exists or not is thus unimportant as its possible code

length distribution is covered by default. 2

From the above we may conclude that it is safe to require that the T-pre�x length

should be non-decreasing for all successive virtual T-augmentations.

10.4.4 Assignment of Codewords

When calculating the redundancy of a T-Code set, one must of course assign source

symbols to codewords. This is obviously done in rank order of probability, i.e., the

shortest codewords in the T-Code set get assigned to the highest probabilities such

that

P (�i) > P (�i0)) jx(�i)j � jx(�i0)j: (10.7)

This implies that some of the longer codewords in the T-Code set may be unas-

signed. In turn, this yields a feasibility criterion for the choice of T-pre�x lengths

and T-expansion parameters.

10.4.5 Feasibility of a Virtual T-Augmentation

Presume that the present distribution �
S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

contains a su�cient number of

codewords to enable us to encode the source. Let L and ` be the length of the longest

and shortest assigned codewords in the present distribution. Further let jpn+1j be

10.4 Feasibility Criteria and Simpli�cations 145

the T-pre�x length, and kn+1 the T-expansion parameter under consideration. Then

we can require that

kn+1jpn+1j+ ` < L: (10.8)

The left hand side of this inequality is the length of the shortest codeword that

would be newly created in this (virtual) T-augmentation. If this length is not

shorter than the longest codeword assigned so far, then no source symbol can be

assigned a shorter codeword in the new distribution and hence r will not decrease.

Nor would any of the newly created codewords in this distribution serve as sen-

sible T-pre�xes. Consequently, it does not make sense to further investigate this

distribution.

As any codeword that is used as a T-pre�x for a virtual T-augmentation is no

longer available in the T-augmented set, the criterion may be tightened further: we

may require that at any new T-augmentation produce at least two new codewords

shorter than L | one to compensate for the loss of the T-pre�x codeword, and

one to achieve more e�cient encoding as above. Hence, we de�ne `2 as the length

for which there are at least two codewords with length smaller than or equal to `2.

The previous equation thus becomes:

kn+1jpn+1j+ `2 < L: (10.9)

Note that this requirement puts a bound on the number of sets that need to be

searched and hence guarantees that the search algorithm will terminate.

10.4.6 Redundancy Criterion

The feasibility criteria presented so far are independent of the probabilities of oc-

currence of the source symbols that we wish to encode. Given a certain number of

source symbols and using only the feasibility criteria above, the search algorithm

146 Approaches to Source Coding With T-Codes

would thus always search the same number of distributions. The criterion intro-

duced here is used to determine the feasibility of distributions on the basis of the

source symbol probabilities:

Presume that we have established an upper bound for the redundancy of the

most e�cient T-Code set, e.g., from a set distribution whose redundancy we have

previously calculated. As we calculate the redundancy for a newly generated distri-

bution, we may without loss of generality add the P (�i)jx(�i)j in order of decreasing

P (�i) and watch the sum's value after each addition. Once the sum exceeds the

previously established bound, we know that the present set is not a contender for

the most e�cient encoding. This saves some work.

To improve on the previous bound, a T-augmentation leading to a more e�cient

set must change the code length distribution for codeword lengths up to the length

at which the initial set's redundancy summation exceeded the bound. This requires

a T-pre�x of less than that length. Invoking the results on the length order of T-

pre�xes from above, we obtain a replacement value for L in Equation (10.9) for

further T-augmentations with the present set distribution as the base distribution.

10.4.7 Maximum Feasible Codeword Length

Another signi�cant saving can be made if we acknowledge that codewords above a

certain length are simply of no interest. Given a coding alphabet with #S symbols,

we know that any complete code set C over S with a maximal codeword length of

jx̂j must have a minimum number of codewords:

#C � (jx̂j � 1)(#S � 1) + #S: (10.10)

If we require exactly Ns = #C codewords, we obtain a bound on the maximum

10.4 Feasibility Criteria and Simpli�cations 147

codeword length possible:

Lm = jx̂j =

&
Ns � 1

#S � 1

'
; (10.11)

where dqe denotes the smallest integer greater than or equal to q. Given Ns, we

may choose k = Lm � 1 and any p 2 S to obtain a T-Code set S
(k)
(p) such that

the longest codewords in S(k)
(p) are of length Lm. Since S

(k)
(p) has a su�cient number

of codewords to encode the source, we may ask whether it is possible to encode

the source more e�ciently with a T-Code set that requires us to assign codewords

longer than Lm.

Theorem 10.4.1 (Maximum Codeword Length)

There exists no source with Ns symbols such that the T-Code set with the lowest re-

dundancy in an encoding of that source requires the assignment of codewords longer

than Lm.

A formal proof of this theorem is an open problem. However, it is easy to give a

\handwaving argument" for why the theorem is sensible: consider S
(k)
(p) as above.

S
(k)
(p) is not only a T-Code set, but also the possible outcome of a Hu�man code

construction process. Of all Hu�man codes possible for a source with Ns charac-

ters, S
(k)
(p) is the one with the longest possible codewords. Since the Hu�man code

construction yields a minimum redundancy code for a given source, all possible

Hu�man codes for the source

� yield the same or a lower redundancy than S
(k)
(p) , and

� use only codewords up to length Lm.

As S
(k)
(p) is a T-Code set, it sets a bound on the redundancy for the set we wish

to �nd. The redundancy criterion we have introduced above may be applied here

in a similar way | any improvement in the redundancy that could be achieved

148 Approaches to Source Coding With T-Codes

requires an increase in the number of codewords that are shorter than Lm. This

then enables \codeword assignment swapping", i.e., the codeword(s) that are used

as T-pre�x(es) disappear, but their loss must be outweighed by a gain from the

additional codewords created, i.e., it must be possible for source symbols with

previously longer assignments to \move up" the tree. Since the longest possible

assignment in a completely �lled tree is of length Lm, any \better" tree cannot

have any longer codewords assigned.

This leaves only those sets with codewords up to length Lm or less to consider.

2

Thus we may assume that the virtual T-augmentations in our algorithm do not

need to keep track of codeword lengths larger than Lm.

Furthermore, it means that a virtual T-augmentation is not feasible unless

kjpj+ `2 < Lm: (10.12)

This complements the already established rule for L: we now have a feasibility

criterion that also works for sets that are too small to encode the source. For larger

sets, we may simply replace Lm by L.

It should be noted that the other feasibility criteria mentioned in this chapter

ensure on their own that the algorithm will terminate. However, in practice, the

main bene�t of the theorem is that it permits some savings to be made with respect

to memory requirements and computation time, as the size of the distributions is

limited.

10.4.8 Dropping the Logarithms

If we take a closer look at Equation (10.1), we notice that the term with the

logarithms of the source symbol probabilities is constant. We may hence drop it

when comparing the redundancies of two sets.

10.5 Performance of the Search Algorithm 149

10.5 Performance of the Search Algorithm

One problem of the algorithm presented above is its execution time, which depends

primarily on the number of set distributions that have to be searched. As a general

rule, this increases with Ns. However, due to the redundancy bound feasibility

criterion, it also has a strong dependence on the source symbol probabilities. Fig-

ure 10.3 shows the number of sets searched for Ns source symbol probabilities.

Figure 10.4 shows the CPU time taken by a 250 MHz DEC AlphaServer 2100A for

which the algorithm was implemented in C as a CMEX function for MATLAB. It

is evident from this that the source probability distribution is itself the dominant

factor in determining the execution time of the algorithm.

Figure 10.5 further shows that the \skew" in the distribution also has a direct

inuence on the number of sets searched.

10.6 Other Approaches

Mark Titchener [43] has suggested another approach for source coding with T-

Codes. It exploits the fact that the largest e�ciency gains are made with the

shortest codewords. He proposes to encode the source as a Hu�man code to obtain

an optimal codeword length distribution. Starting with the shortest codewords in

that distribution, one must then try to construct a T-Code set that matches it

closely.

While this may not yield a T-Code set with the lowest achievable redundancy,

it will generally yield one with a low redundancy, thus achieving the bulk of the

compression savings. This is well justi�ed in a number of practical situations, e.g.,

where only approximate source statistics are known and the additional ine�ciency

would be small compared to the errors in the symbol probabilities.

150 Approaches to Source Coding With T-Codes

0 10 20 30 40 50 60 70 80 90
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

number of source symbols

nu
m

be
r

of
 d

is
tr

ib
ut

io
ns

 s
ea

rc
he

d

Figure 10.3. The execution time of the matching algorithm presented in this chapter
depends primarily on the number of sets that the algorithm has to search. This number
in turn depends on the number of source symbols, Ns, and their associated probabilities of
occurrence. In the above plot, �fteen skewed probability distributions were randomly generated
for each Ns and used as input to the matching algorithm (assuming a binary alphabet). The
centre curve shows the average number of sets searched by the matching algorithm in this
experiment. The top and bottom curves show the largest/smallest number of sets searched
for each set of �fteen runs. It is evident that the source probability distribution itself has a
paramount inuence on the number of sets that need to be searched.

10.6 Other Approaches 151

20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

number of source symbols

C
P

U
 ti

m
e

us
ed

 [s
ec

on
ds

]

Figure 10.4. Execution time of the matching algorithm presented in this chapter for sources
with Ns between 27 and 77. Fifteen skewed probability distributions were randomly generated
for each Ns and used as input to the matching algorithm (assuming a binary alphabet). The
centre curve shows the average CPU time taken by the matching algorithm in this experiment.
The top and bottom curves show the highest/lowest CPU time for each set of �fteen runs.
Note: CPU times shown are as reported by MATLAB (for distributions with Ns less than
about 27, the minimum reported CPU time was often zero such that these runs had to be
left out for scaling reasons).

152 Approaches to Source Coding With T-Codes

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

2

10
3

10
4

10
5

skew factor

nu
m

be
r

of
 d

is
tr

ib
ut

io
ns

 s
ea

rc
he

d

Figure 10.5. The number of sets that need to be searched to �nd the best match for a given
source size Ns depends strongly on the source probabilities. For the plot above, probability
distributions of size Ns = 30 were randomly generated with a \skew factor" bias. Low skew
factors correspond to a small ratio between highest and lowest probability in the distribution.
High skew factors correspond to a high ratio. For each skew factor (in 0:01 increments),
�fteen distributions were generated and matched. It is evident that distributions with small
skew factors generally require more sets to be searched.

10.7 Discussion 153

10.7 Discussion

When we wish to �nd the most e�cient T-Code set for a given set of source symbol

probabilities, the constraints set by the T-augmentation construction prevent us

from using the well-known Hu�man code construction algorithm. To date, the only

exact solution to this problem appears to be an exhaustive search of all feasible

T-Code code length distributions.

The number of distributions that need to be searched for this purpose may

be restricted by the use of a number of feasibility criteria in a branch-and-bound

algorithm. The introduction of additional criteria has now led to the algorithm

presented above, which is a substantial improvement on the algorithm presented by

the author in [17]. In fact, it is now possible to match sources with several dozen

symbols faster than a dozen symbols under the previous algorithm. The algorithm's

output are the T-expansion parameters and T-pre�x lengths of a T-Code set with

minimal redundancy. This leaves a choice when it comes to picking the T-pre�xes.

It is thus possible to select a set on the basis of other properties, such as a minimal

ESD.

While these recent improvements give the algorithm practical value, it still seems

that the execution time can only be bounded by some exponential function. In

other words, the algorithm seems to be of order O(exp(Ns)). This still compares

unfavourably to the Hu�man algorithm which is of order O(Ns
2).

Further improvements to the method presented are conceivable. For example,

one approach could be in the form of new feasibility criteria | the author doubts

that he has exhausted all possibilities. However, any savings obtained in this way

will have to be weighed against the costs of such additional feasibility tests. Ad-

ditional criteria are more likely to be of bene�t if they lead to a \pruning" of the

search tree close to the root, or if they rule out a large proportion of sets that would

154 Approaches to Source Coding With T-Codes

otherwise be searched. This also suggests that using a \breadth �rst" algorithm

rather than the current \depth �rst" approach may result in a signi�cant reduction

in computational complexity.

Another improvement could derive from the parallelisation of the algorithm.

Given a base distribution, the recursive calls for di�erent T-augmentations may be

processed in parallel, on a multi-processor machine or over a distributed network

with a good load balancing scheme. The gains here might extend beyond those

due to the extra processing power available: the initial shape of most T-Code

code length distributions is formed during the �rst few T-augmentations, and these

short codewords have the most signi�cant inuence on the code's redundancy. If

these short distributions could be processed in parallel, updated (i.e., lower) bounds

for the branch-and-bound could become available earlier and might save parallel

searches from unnecessary recursions.

For some practical implementations, the algorithm suggested by Titchener may

also prove to be the most economic. This could be the case especially when large

sources are involved, the encoding speed is paramount, and the e�ciency is only of

secondary importance.

C H A P T E R 1 1

Outlook and Conclusions

This chapter summarises the open problems that arise from
this thesis and other research on T-Codes. Possible av-
enues of further research are also discussed.

11.1 Open Problems on T-Codes

The research undertaken for this thesis has left some open problems, some of which

have already been mentioned:

� �nding an optimal covering T-Code set for an arbitrary variable-length code

such that the storage cost in T-depletion format is minimised. This problem

is somewhat similar to the problem of matching a given source probability

distribution which has been discussed in Chapter 10.

� T-Code self-synchronisation, still regarded as a partially open problem a few

years ago, is now well understood in the context of hierarchical coding alpha-

bets (see Chapters 8 and 9). However, some research still remains to be done

in an associated area opened by Mark Titchener [50]: the synchronisation of

155

156 Outlook and Conclusions

general variable-length codes based on the T-Code model. Titchener suggests

that the synchronisation process of a general variable-length code C is closely

related to that of T-Code sets that share a large number of codewords with C.

The more of the short (and hence more frequent) codewords are shared, the

better will the T-Code set in question model the synchronisation behaviour

of C. Finding the T-Code set that most closely mimics the synchronisation

behaviour of a given variable-length code is an open problem. It is similar to

the other problems mentioned above, except that the aim here is to minimise

the ESD. An added problem here is that the automaton concept of T-Code

synchronisation is not easily transferable to variable-length codes in general.

� �nding the most e�cient T-Code set for the encoding of a given source.

An algorithm similar in execution time to the recursive bottom-up-top-down

method used in the generation of Hu�man codes would certainly be extremely

useful. The present approaches (exhaustive search, as presented in the pre-

vious chapter, and approximation of Hu�man code length distributions, as

proposed by Titchener) are either too slow or not guaranteed to �nd the most

e�cient T-Code set. However, this should not detract from the usability of

T-Codes for source coding purposes | the largest compression gains are made

by coding the shortest codewords properly, which are relatively easy to match

using both methods mentioned above.

� maximum feasible codeword length. The formal proof for Theorem 10.4.1 is

still an open problem, although perhaps not a di�cult one.

� improvements to the search algorithm presented in Chapter 10, in particular

with respect to parallelisation.

� a practical implementation of the ESD calculation in Chapter 9 as a computer

program.

11.1 Open Problems on T-Codes 157

The research for this thesis has also touched on and identi�ed a number of other

areas that in the author's opinion warrant further research:

� channel coding. The choice of T-pre�xes in the T-augmentation process may

be exploited to construct T-Code sets that permit matching an information

source to the frequency response of the communication channel. Some prelim-

inary work in this area was done by the author together with Mark Titchener

and Radu Nicolescu [20].

� synchronisation and soft-decision decoding. It was noted in Chapter 8 that

the synchronisation information that can be provided by a T-Code decoder

is based on the assumption that no further symbol errors have occurred since

the beginning of the synchronisation process.

In practice, this is an answer to the question: \provided the last <number>

symbols were received correctly, are you (the decoder) synchronised?" In

other words, the decoder's answer is a conditional probability.

In practical applications, it could be desirable to have a general con�dence

value rather than a conditional probability. This could be achieved by us-

ing soft-decision decoding (cf., e.g., [8]) to ascertain the probability that a

bit is in error. Thus, it would be possible to associate a general con�dence

value with the decoder synchronisation level. This could be useful under cir-

cumstances where secondary symbol errors (that occur after the start of the

synchronisation process) may lead to loss of synchronisation.

� string generation. Nicolescu's uniqueness result, as recon�rmed in Chapter 3,

o�ers more than just a simple way of communicating a T-Code set between

encoder and decoder. In particular, it establishes T-augmentation not only as

a set generation algorithm, but also as a string generation algorithm. Nico-

lescu's result means that we can generate any �nite string by means of a

158 Outlook and Conclusions

recursive string copying process. This may yield further insights into the

structure and complexity of �nite strings.

� compression: the source coding approach presented in Chapter 10 is only one

approach towards compression. Lempel-Ziv compression [54], which searches

for recurring patterns in a string, is an example of a di�erent approach. The

recursive structure of strings that can be read by T-decomposition, and the

e�cient nature of the T-depletion codes suggest that it may be possible to

develop a similar but possibly more e�cient algorithm for string compression.

� cryptography: the equivalence relations for T-prescriptions point at some

potential for T-Codes in cryptographic applications. The signi�cance of prime

numbers in this context is also of some interest.

� error control techniques exploiting the good synchronisation behaviour of T-

Codes.

11.2 Conclusion

This thesis has discussed a wide range of issues related to robust source coding with

T-Codes, with a focus on the recursive structure of the codes. The main results

presented in the thesis were:

� a con�rmation of Nicolescu's work on the equivalence of multiple T-prescript-

ions.

� the derivation of the generalized T-depletion codes: a recursive, �xed-length,

multibase number representation of T-Code codewords.

� the description of an encoder and decoder model that convert between T-

depletion codewords and T-Code codewords and vice versa.

11.2 Conclusion 159

� an interpretation of the multibase number space spanned by the T-depletion

codes as a representation for T-Code codewords and all their proper pre�xes.

The thesis further showed how this feature may be used to represent arbitrary

variable-length codes as multibase numbers.

� an algorithm that converts between T-depletion codewords and a contiguous

integer index, which may be of importance especially in low-cost decoders.

� a T-Code synchronisation theory that permits faster synchronisation detec-

tion under some circumstances.

� a recursive codeword-based algorithm for the calculation of the expected syn-

chronisation delay (ESD) of T-Code sets that o�ers a lower computational

complexity.

� a recursive search algorithm that yields the T-Code set with the minimum

redundancy for a given source. It utilizes various equivalence and feasibility

criteria to signi�cantly restrict the search space.

However, as the above list of topics in the previous section shows, the T-Codes

continue to o�er a variety of interesting avenues for research. Some of these may

lead to applications of great practical signi�cance. Compression and encryption

algorithms are but one promising area. Much work remains to be done.

160 Outlook and Conclusions

Bibliography

[1] A. V. Aho and J. D. Ullman. Foundations of Computer Science. Computer
Science Press, 1992.

[2] J. Berstel and D. Perrin. Theory of Codes. Academic Press Inc., 1985.

[3] E. J. Borowski and J. M. Borwein. Collins Reference Dictionary Mathematics.
Collins, 1989.

[4] R. M. Capocelli, R. Giancarlo, and I. J. Taneja. Bounds on the Redundancy
of Hu�man Codes. IEEE Trans. Inform. Theory, 32(6):854{857, November
1986.

[5] R. W. M. Chan. Variable Length Error Control Codes. PhD thesis, The
University of Auckland, 1996.

[6] K.-L. Chung. E�cient Hu�man Decoding. Information Processing Letters,
61:97{99, 1997.

[7] B. Honary F. Zolghadr and M. Darnell. Statistical Real-Time Channel Evalu-
ation (SRTCE) Technique Using Variable-Length T-Codes. IEE Proceedings,
136(4):259{266, August 1989.

[8] P. G. Farrell, B. K. Honary, and S. D. Bate. Adaptive Product Codes with
Soft/Hard Decision Decoding. In H. J. Beker and F. C. Piper, editors, Cryp-
tography and Coding, The Institute of Mathematics & ITS Applications Con-
ference Series, pages 95{111. Oxford Science Publications, 1989.

[9] T. J. Ferguson and J. H. Rabinowitz. Self Synchronizing Hu�man Codes. IEEE
Trans. Inform. Theory, 30(4):687{693, July 1984.

[10] K. J. Frith. Investigation into the Synchronisation Properties of the CCITT
Fax Coding Techniques. M.E. project report, The University of Auckland,
Auckland, New Zealand, January 1993.

161

162 Bibliography

[11] R. G. Gallager. Variations on a Theme by Hu�man. IEEE Trans. Inform.
Theory, 24(6):668{674, November 1978.

[12] E. N. Gilbert. Synchronization of Binary Messages. IRE Trans. Inform. The-
ory, 10:933{967, 1960.

[13] E. N. Gilbert and E. F. Moore. Variable Length Binary Encodings. Bell Syst.
Tech. J., 38:933{967, July 1959.

[14] S. W. Golomb and B. Gordon. Codes with Bounded Synchronization Delay.
Inform. and Contr., 8:355{376, August 1965.

[15] S. W. Golomb, B. Gordon, and L. R. Welch. Comma-Free Codes. Can. J.
Math., 10(2):202{209, 1958.

[16] S. W. Golomb, R. E. Peile, and R. A. Scholtz. Basic Concepts in Informa-
tion Theory and Coding | The Adventures of Secret Agent 00111. Plenum
Publishing Corporation, 1994.

[17] U. G�unther. Data Compression and Serial Communication with Generalized
T-Codes. Journal of Universal Computer Science, 2(11):769{795, November
1996.

[18] U. G�unther, P. Hertling, R. Nicolescu, and M. R. Titchener. Representing
Variable-Length Codes in Fixed-Length T-Depletion Format in Encoders and
Decoders. Journal of Universal Computer Science, 3(11):1207{1225, November
1997.

[19] U. G�unther, P. Hertling, R. Nicolescu, and M. R. Titchener. Representing
Variable-Length Codes in Fixed-Length T-Depletion Format in Encoders and
Decoders. CDMTCS Research Report 44, The University of Auckland, Auck-
land, New Zealand, August 1997.

[20] U. G�unther, R. Nicolescu, and M.R. Titchener. Even T-Code Sets. Tamaki
Report Series 10, The University of Auckland, Auckland, New Zealand, De-
cember 1995.

[21] U. G�unther and M. R. Titchener. Calculating the Expected Synchronization
Delay for T-Code Sets. IEE Proceedings | Communications, 144:121, June
1997.

[22] U. G�unther and M. R. Titchener. Calculating the Expected Synchronization
Delay for T-Code Sets. In I. G. Richardson, editor, Proceedings of AVSPN'97,
September 1997.

Bibliography 163

[23] R.W. Hamming. Coding and Information Theory. Prentice-Hall, second edi-
tion, 1986.

[24] N. G. Harlick. A Comparison between JPEG Compressed Images Using Hu�-
man and T-Codes and Transmitted over a UHF Radio Link. M.Phil (Engi-
neering) project report, The University of Auckland, Auckland, New Zealand,
December 1993.

[25] N. G. Harlick. Using T-Codes in an Implementation of JPEG Image Com-
pression. M.Phil (Engineering) project report, The University of Auckland,
Auckland, New Zealand, December 1993.

[26] G. R. Higgie. Analysis of the Families of Variable-Length Self-Synchronizing
Codes called T-Codes. PhD thesis, The University of Auckland, 1991.

[27] G. R. Higgie. Database of Best T-Codes. IEE Proceedings | Computers and
Digital Techniques, 143:213{218, July 1996.

[28] F. S. Hillier and G. J. Lieberman. Introduction to Operations Research.
McGraw-Hill, 5th edition, 1990.

[29] D. S. Hirschberg and D. A. Lelewer. E�cient Decoding of Pre�x Codes. Com-
munications of the ACM, 33(4):449{459, April 1990.

[30] D. Hu�man. A Method for the Construction of Minimum Redundancy Codes.
Proc. Inst. Radio Eng., 40:1098{1101, September 1952.

[31] ISO/IEC. Information Technology | Telecommunications and Information
Exchange Between Systems | High-Level Data Link Control (HDLC) pro-
cedures | Frame structure, December 1993. ISO/IEC Standard, reference
number: ISO/IEC 3309:1993(E).

[32] O. Johnsen. On the Redundancy of Binary Hu�man Codes. IEEE Trans.
Inform. Theory, 26(2):220{222, 1980.

[33] J. C. Maxted and J. P. Robinson. Error Recovery for Variable Length Codes.
Bell Syst. Tech. J., 31(6), November 1985.

[34] B. L. Montgomery and J. Abrahams. Synchronization of Binary Source Codes.
IEEE Trans. Inform. Theory, 32(6):849{854, November 1986.

[35] P. Neumann. E�cient Error-Limiting Variable Length Codes. IEEE Trans.
Inform. Theory, 8:292{304, July 1962.

[36] R. Nicolescu. Uniqueness Theorems for T-Codes. Tamaki Report Series 9, The
University of Auckland, September 1995.

164 Bibliography

[37] D. Perrin and M.-P. Schuetzenberger. Synchronizing Pre�x Codes and Au-
tomata and the Road Coloring Problem. Contemporary Mathematics, 135:295{
318, 1992.

[38] M. J. Roberts. Techniques for Determining the Best T-Codes. Master's thesis,
The University of Auckland, October 1993.

[39] C. E. Shannon. A Mathematical Theory of Communications. Bell Systems
Technical Journal, 27:379, July 1948.

[40] C. E. Shannon. A Mathematical Theory of Communications. Bell Systems
Technical Journal, 27:623, October 1948.

[41] Y. Takishima, M. Wada, and H. Murakami. Error States and Synchronization
Recovery For Variable Length Codes. IEEE Trans. Commun., 42(2-4):783{
792, February 1994.

[42] H. Tanaka. Data Structure of Hu�man Codes and its Application to E�cient
Encoding and Decoding. IEEE Trans. Inform. Theory, 33(1):154{156, January
1987.

[43] M. R. Titchener. verbal communication.

[44] M. R. Titchener. Technical Note: Digital Encoding by Way of New T-codes.
IEE Proceedings | Computers and Digital Techniques, 131(4):151{153, 1984.

[45] M. R. Titchener. Construction and Properties of the Augmented and Binary-
Depletion codes. IEE Proceedings | Computers and Digital Techniques,
132(3):163{169, May 1985.

[46] M. R. Titchener. The Augmented and Binary Depletion T-codes. PhD thesis,
The University of Auckland, May 1986.

[47] M. R. Titchener. A Character Error Bound for the T-code Synchronization
Process. IEE Proceedings | Computers and Digital Techniques, 134(3):155{
158, May 1987.

[48] M. R. Titchener. Unequivocal Codes:- String Complexity and Compressibility.
Tamaki T-Code Project Series 1, The University of Auckland, Auckland, New
Zealand, August 1993. ISSN 1174-314X.

[49] M. R. Titchener. Generalized T-Codes: an Extended Construction Algorithm
for Self-Synchronizing Variable-Length Codes. IEE Proceedings | Computers
and Digital Techniques, 143(3):122{128, June 1996.

Bibliography 165

[50] M. R. Titchener. The Synchronization of Variable-Length Codes. IEEE Trans.
Inform. Theory, 43(2):683{691, March 1997.

[51] M. R. Titchener and J. J. Hunter. Synchronization Process for the Variable-
Length T-codes. IEE Proceedings | Computers and Digital Techniques,
133(1):54{64, 1985.

[52] M. R. Titchener and S. Wackrow. T-Code Online Development Environment.
Tamaki T-Code Project Series 8, The University of Auckland, Auckland, New
Zealand, October 1995. ISSN 1174-314X.

[53] V. K. W. Wei and R. A. Scholtz. On the Characterization of Statistically
Synchronizable Codes. IEEE Trans. Inform. Theory, 26(6):733{735, November
1980.

[54] J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-Rate
Coding. IEEE Trans. Inform. Theory, 24(5):530{536, September 1978.

Index

n-boundary, 85

blocking condition, 102
accounting for, 113
multiple, 116

blocking pre-condition, 103
blocking strings, 114
boundaries between codewords, 85

cardinality of T-Code sets, 32
channel, 13

bandwidth, 14
code

complete, 19
pre�x-free, 19
statistically synchronisable, 96

code length distribution, 130, 135
code set, 18

covering, 80
codes, hierarchical, 84
codeword, 18
codeword index

simple, 63
communication model, 13
completeness, 19

of T-Code sets, 31
complexity, 23
compression, 21
concatenation

notation, 17
conversion

T-Codes to T-depletion codes, 56

T-depletion codes to T-Codes, 55
covering code sets, 80
covering T-Code set, 80

decodability
instantaneous, 19
unique, 19

decoder, 46
recursive, 57

decoder model
maximal, 105, 110
minimal, 105

decoding
unique, 19

decoding tree, 37
T-augmentation of, 38

depletion codes, binary, 47
descendant (of T-Code codeword), 65

empty string (�), 18
encoder, 46
ESD, 109

and T-expansion parameters, 125
calculation
codeword-oriented, 110
symbol-oriented, 110

computational complexity, 126
examples, 119
for individual synchronisation lev-

els, 111
for mismatched sources, 126

167

168 INDEX

expected level synchronisation delay,
111

expected synchronisation delay (see ESD),
109

generalised T-augmentation, 26

hierarchical codes, 84
Hu�man code, 22

canonical, 46
Hu�man codes, 130

applications, 130

index
contiguous range, 65

information
sink, 13
source, 13

Kraft inequality, 20

Lempel-Ziv, 22
literal symbol, 51
look-up table, 46

Markov chain, discrete time, 110
maximal decoder, 105
minimal decoder, 105
multibase number, 53

notation, 16
conversion, 34

parent (of T-Code codeword), 65
pre�x, 18

proper, 18
pre�x condition, 99
pre�x delay, 118
pre�x-free, 19
pre�x-freeness

of T-Code sets, 30
prime number, 136
probability

visitation, 111

pseudo-T codeword, 75
as proper pre�x of T-Code code-

word, 78

recursive decoder, 57
redundancy, 130

criterion for search algorithm, 139

search algorithm for most e�cient T-
Code set, 131

feasibility criteria, 134
performance, 142
pseudo code listing, 132

self-synchronisation, 96
of T-Codes, 98

simple T-augmentation, 26
simple T-Code sets, 28
soft-decision decoding, 151
source coding, 21, 129

assignment of codewords, 138
maximum codeword length, 140
redundancy, 130

string
concatenation, 18
empty, 18
length, 18
length in codewords, 19

su�x condition, 102
su�x delay, 118
symbol

channel, 18
source, 18

symbols
alphabet, 17
concatenation, 17

synchronisation
HDLC frame, 96

synchronisation level, 98, 110

T-augmentation
de�nition, 25
example of, 26

INDEX 169

generalised, 26
level, 27
simple, 26

T-Code
history, 23

T-Code codewords
decomposition of, 50
structure of, 48

T-Code self-synchronisation, 109
T-Code set, 27

alternative notation for simple, 34
cardinality of, 32
completeness, 31
covering, 80
example, 28
intermediate, 28
decomposition of, 51

pre�x-freeness of, 30
simple, 28

T-decomposition, 86
T-depletion code, 53, 75
T-depletion codes

storage requirements, 59
T-expansion index, 51
T-expansion parameter, 26, 39
T-expansion parameters

no inuence on ESD, 125
T-pre�x, 26, 39

monotonously increasing length in
search algorithm, 136

T-prescription, 40
anti-canonical, 42, 136
avoiding multiple in search algo-

rithm, 136
canonical, 42, 111
contraction of, 42
expansion of, 40

uniqueness theorem (Nicolescu), 87

variable-length code, 75
variable-length codes

�xed-length format, 45
virtual T-augmentation, 135
visitation probability, 111

