
Shyamanta M. Hazarika
Tezpur University, India

Qualitative Spatio-
Temporal Representation
and Reasoning:
Trends and Future Directions

Qualitative spatio-temporal representation and reasoning: trends and future directions / Shyamanta M. Hazarika, editor.
 p. cm.
 Includes bibliographical references and index.
 Summary: “This book is a contribution to the emerging discipline of qualitative spatial information theory within artificial
intelligence, covering both theory and application-centric research and providing a comprehensive perspective on the
emerging area of qualitative spatio-temporal representation and reasoning”-- Provided by publisher.
 ISBN 978-1-61692-868-1 (hardcover) -- ISBN 978-1-61692-870-4 (ebook) -- ISBN 978-1-4666-1654-7 (print & perpetual
access) 1. Qualitative reasoning. 2. Spatial analysis (Statistics) 3. Space and time--Mathematical models. 4. Logic,
Symbolic and mathematical. I. Hazarika, Shyamanta M.
 Q339.25.Q84 2012
 006.3’33--dc23
 2011050504

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Senior Editorial Director: Heather A. Probst
Book Production Manager: Sean Woznicki
Development Manager: Joel Gamon
Acquisitions Editor: Erika Gallagher
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

168

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

Carl Schultz
The University of Auckland, New Zealand

Robert Amor
The University of Auckland, New Zealand

Hans W. Guesgen
Massey University, New Zealand

Methodologies for Qualitative
Spatial and Temporal

Reasoning Application Design

ABSTRACT

Although a wide range of sophisticated Qualitative Spatial and Temporal Reasoning (QSTR) formalisms
have now been developed, there are relatively few applications that apply these commonsense meth-
ods. To address this problem, the authors of this chapter developed methodologies that support QSTR
application design. They established a theoretical foundation for QSTR applications that includes the
roles of application designers and users. The authors adapted formal software requirements that allow a
designer to specify the customer’s operational requirements and the functional requirements of a QSTR
application. The chapter presents design patterns for organising the components of QSTR applications,
and a methodology for defining high-level neighbourhoods that are derived from the system structure.
Finally, the authors develop a methodology for QSTR application validation by defining a complexity
metric called H-complexity that is used in test coverage analysis for assessing the quality of unit and
integration test sets.

DOI: 10.4018/978-1-61692-868-1.ch005

169

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

1. INTRODUCTION

Over the last two and a half decades researchers
have made significant progress in the theoretical
foundations and analysis of Qualitative Spatial
and Temporal Reasoning (QSTR) calculi, and
a range of commonsense formalisms have now
been developed for representing and reasoning
about different aspects of space and time (Cohn
& Renz, 2008). Moreover, while many QSTR
formalisms have been shown to be NP hard,
maximal tractable subsets of well known calculi
have been identified (Nebel & Bürckert, 1995;
Renz, 1999) and automatic methods for finding
tractable subsets have been developed (Renz,
2007), thus informing a user about the classes of
problems that are practical to solve. Techniques
have also been developed that greatly improve
reasoning performance (Westphal & Wölfl, 2009;
Li, et al., 2009).

Despite this theoretically advanced state of the
field, there is a distinct absence of applications
that make significant use of QSTR formalisms.
There are five critical barriers to QSTR application
design that have not yet been addressed.

1. 	 QSTR researchers have not clearly identified
the characteristics of the problems that can be
uniquely addressed by QSTR applications.

2. 	 In many cases, no pre-existing QSTR for-
malism will perfectly and completely satisfy
the requirements of an application. In most
cases, the designer will need to formalise
domain knowledge, and design complex,
heterogeneous models that build on top of a
mix of different existing QSTR formalisms.

3. 	 There is no methodology for developing
QSTR applications, and even researchers in
the field currently develop QSTR applica-
tions in a very ad hoc manner.

4. 	 There are no methodologies for analysing
QSTR applications, and therefore no way
to make informed design decisions. This

contributes to the problem of ad hoc QSTR
application development.

5. 	 Making QSTR accessible means having
designers from outside the field applying
QSTR, that is, the designers will not be
experts in QSTR. Design methodologies de-
rived from concepts in software engineering
are required to bridge the gap between expert
QSTR logicians and application designers
from other disciplines.

We address these issues in this chapter with
specialised methodologies for QSTR application
design, motivated by research in software engi-
neering, knowledge representation, artificial intel-
ligence, and finite model theory. Section 2 reviews
unifying frameworks and development tools in
related areas and establishes a theoretical founda-
tion for QSTR applications. Section 3 identifies
the salient characteristics of QSTR applications
that are the focus of our design methodologies.
Section 4 characterises the problems that QSTR
applications address and enumerates the tasks that
they can perform, by adapting formal software
requirements from software engineering. Sec-
tion 5 presents design patterns for organising the
components of QSTR applications, and Section
6 presents a methodology for defining high level
neighbourhoods that are derived from the system
structure. Section 7 presents a methodology that
supports designers in QSTR application validation
by identifying important classes for unit testing
and integration testing based on a novel measure
of complexity. Sections 8 and 9 present the future
work and conclusions of this chapter.

2. BACKGROUND

A number of unifying QSTR frameworks are
now being developed in order to make the field
more cohesive and accessible. Three prominent
projects are SparQ (Dylla, 2006), GQR (Gantner,
2008), and an investigation into formal algebraic

170

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

properties (Ligozat, 2004). Although developing
a library of efficient and robust implementations
of QSTR calculi is a necessary step in making
these formalisms more accessible, this does not
directly address the five key problems given in
the introduction.

Researchers in the related field of Qualitative
Reasoning (QR) have developed a workbench soft-
ware application called Garp3 (Bredeweg, 2007)
to support the process of designing and reasoning
with qualitative models. Note that QR is distinct
from QSTR as it is primarily concerned with
treating scalar quantities in a qualitative discrete
way, rather than directly modelling commonsense
spatial and temporal relationships. Garp3 is an
integrated development environment for design-
ing and reasoning about qualitative models of
physical systems. The motivation for Garp3 is
identical to the problems that the QSTR field cur-
rently encounters, namely that wider audiences
can be reluctant to employ the advanced methods
for modelling qualitative physics that have been
developed (although this problem does not appear
to be as significant as with QSTR, for example
[Iwasaki, 1997]). The central aim of Garp3 is to
overcome this inertia by supporting modellers in
specifying and reasoning about qualitative models
in a graphically based, user-friendly, homogeneous
workbench. A QSTR equivalent to Garp3 would
be highly desirable.

In the field of software engineering, the well
known Unified Modelling Language (UML)
is used to specify and visualise object oriented
software systems (Pooley, 2004). UML is par-
ticularly relevant because it is well known within
the software engineering community, and thus
by adapting UML concepts (such as use cases
and object classes) we can help to bridge the gap
between software engineers and QSTR logicians.

According to standard software engineering
practices, formal software requirements are nec-
essary for software development and validation
(Burnstein, 2003). Defining equivalent formal

requirements for QSTR applications may also be
necessary for the development of powerful QSTR
based applications. Five standard requirements
categories are operational requirements, functional
requirements, performance requirements, design
requirements, and allocated requirements (SETC,
1984). In Section 4, we adapt two of these require-
ments, namely customer’s operational require-
ments and functional requirements, to the QSTR
application domain. We also provide methodolo-
gies adapted from UML to support the designer
in specifying QSTR application requirements.

2.1. Definition of QSTR Applications

Informally, QSTR applications model, infer, and
check the consistency of object relations in a sce-
nario. We will define QSTR applications in terms
of model theory (Marker, 2002; Hodges, 1997)
and then define the roles of QSTR application
designers and users.

We use the notation ↑ to represent the exponent
operator, x↑y=xy. In model theoretic terms, a lan-
guage L (or vocabulary, or signature) is a finite
set of relation symbols R and arities aR for each
R∈R. A model M of language L (or L-structure,
or interpretation) consists of a universe U (or
domain, or underlying set) and for each relation
symbol R∈R there is a set RM ⊆ U ↑aR. That is,
M provides a concrete interpretation of the sym-
bols in L based on the underlying set U. Finally,
a scenario (or configuration, or substructure) is
a model V that can be embedded into M, that is,
an injective homomorphism f:V→U exists such
that, for each R∈R with arity a,

∀ v1, …, va ∈ Va ⋅ (v1, …, va) ∈ RV ↔
 (f(v1), …, f(va)) ∈ RM.

A QSTR application has a language L that
specifies the set of relation symbols that the de-
signer has deemed relevant to the task at hand. The
model M of a QSTR application is the interpreta-

171

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

tion of the relations, implemented using first order
constraints between the relations (what objects
must, or must not, exist in different combinations
of relations). For each relation type R∈R with arity
aR, and for each tuple of arity aR, the relation either
holds, does not hold, or is not applicable for that
tuple. Thus, for each relation symbol R∈R in the
language, a QSTR application model M requires
three sets, RM

+ (holds), RM
− (does not hold) and

RM
~ (not applicable), with the axiom:

Axiom 1. ∀ R∈R ⋅ U ↑aR = RM
+ Δ RM

− Δ RM
~,

where Δ is symmetric difference (the set theoretic
equivalent of mutual exclusion). For brevity we
will omit the M and simply write R+.

A QSTR application designer is responsible for
determining the application language and model,
given formal software requirements. This involves
selecting an appropriate set of relation symbols
and encoding an appropriate set of constraints.
Appropriateness means satisfying specific test
criteria and conditions on metrics that imply
that the software requirements have been met. A
QSTR application user constructs scenarios in a
QSTR application by specifying a model V and
employing reasoning to accomplish tasks such
as determining scenario consistency with respect
to the model M, envisioning potential future sce-

narios, and so on (a complete set of basic QSTR
application task types with respect to this model
of QSTR applications is presented in Section 4).
Table 1 summarises the relationship between
model theory, QSTR applications, and actor roles.

Often parts of the user’s scenario are indefinite
or unknown, and reasoning with the application
constraints is used to help resolve this ambiguity.
For each relation R∈R, the user can place tuples
(of objects from V) with arity aR in a fourth in-
definite set, RM

? that is mutually exclusive with
the three corresponding definite sets. This partial
scenario is a shorthand for specifying a set of
models V1,…, Vn each representing a possible
scenario.

An example of a scenario is:

•	 V={kitchen, lounge, study},
•	 adjacent+ ={(lounge, study), (lounge,

kitchen)},
•	 adjacent? ={(lounge, lounge), (study,

lounge), …},
•	 adjacent− ={},
•	 adjacent~ ={}.

The adjacent relation can be defined as sym-
metric using the constraint {(x,y) | (y,x) ∈ adja-
cent+} ⊂ adjacent+. The LHS of the constraint
as evaluated in the scenario is {(study,lounge),
(kitchen,lounge)}. The RHS as evaluated in the

Table 1. Comparing the domains of model theory, QSTR applications, and the roles of QSTR applica-
tion designers and users

172

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

scenario does not contain these tuples as required
by the proper subset relation, and so reasoning
moves the offending tuples out of adjacent? and
into adjacent+ thus satisfying symmetry.

2.2. Fundamental Operations
on QSTR Scenarios

In this section, we use our model theoretic defini-
tions to derive the complete set of fundamental
operations that can be performed on a QSTR ap-
plication model. In Section 4 we combine these
operations to enumerate a set of basic purely
qualitative tasks, and show how the application
designer can use this information to determine
their software requirements, and to develop their
QSTR application.

Given a partial scenario, what operations can
be performed on the model theoretic structure?
The features involved are language symbols, con-
straints, the scenario universe, and the collection
of sets that interpret the relation symbols. The
relation symbols and constraints are determined
at QSTR application design time and so are fixed
when reasoning about scenarios. Once a partial
scenario has been specified, either the user has

declared all the relevant objects, and thus the set
is also fixed, or objects may appear and disap-
pear from the set (e.g. in dynamic scenarios).
Thus, the only component that is variable in all
scenarios is the set of interpreting models, that is,
which models are included and which models are
excluded from the partial scenario (although the
models themselves are immutable). Furthermore,
in some applications the set of objects may also
be variable. This leaves only three fundamental
operations that can be performed on a qualitative
(partial) scenario:

•	 selecting subsets of tuples in the partial
scenario,

•	 refining the partial scenario by eliminating
particular complete scenarios, and

•	 editing the set of objects in the scenario.

Therefore, all QSTR application tasks can
be defined as a series of tuple selections, partial
scenario refinements and scenario universe edits.
Table 2 illustrates a comparison between actor
roles, variable components, and permitted opera-
tions on QSTR scenarios.

Table 2. Defines permitted fundamental operations on QSTR scenarios based on the combination of
components that are variable. The left hand column assigns actor roles to variables available. Variables
are represented by v, constants by c, non-applicable components by n/a, available operations by ✓,
and unavailable operations by . Partial scenario models distinguish between definite relations where
α={+,−,~}, and indefinite relations.

173

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

3. CHARACTERISTICS OF QSTR
APPLICATIONS

This section presents four central properties of
QSTR applications. We argue that methodolo-
gies for the development of QSTR applications
must focus on supporting the designer in these
four areas.

3.1. Reasoning across a Broad
Range of Abstraction Levels

QSTR applications often employ a broad range of
abstraction levels in the same model. For example,
a QSTR application can model very abstract high-
level emotional responses and very low-level
concrete spatial configurations of light fixtures,
compared to a numerical GIS database that simply
stores numerical descriptions of features (points
and lines describing a polygon for a region). QSTR
application designers require special techniques
for rapidly designing and validating models that
have a very layered and hierarchical structure.
Section 5 presents the concept of fragments and
two design patterns for organising QSTR applica-
tion relations.

3.2. Continuity Assumption
and Neighbourhoods for
Changing Scenarios

QSTR relies heavily on the concept of continuity,
stating that temporal and spatial objects cannot
morph and translate discontinuously, but must
change in a continuous fashion. A fundamental
relationship exists between continuity and com-
positional reasoning (the prominent reasoning
mechanism for standard QSTR calculi), and is
used directly in critical QSTR tasks such as en-
visioning. Continuity is formally defined using
conceptual neighbours and neighbourhood graphs
(Freksa, 1992).

The standard definition of conceptual neigh-
bours is (Cohn, 2008) R1 and R2 are conceptual

neighbours if it is possible for R1 to hold over a
tuple of objects at one point in time, and for R2 to
hold over the tuple at a later time, with no other
mutually exclusive relation holding over the tuple
in between. A neighbourhood graph has one node
for each relation R∈R and an edge between two
nodes if the corresponding relations are neigh-
bours. Section 6 generalises the definition of
conceptual neighbours to apply to QSTR applica-
tions, and presents a methodology for designers to
customise their conceptual neighbour definitions.

3.3. Modelling Infinite Domains

QSTR application models typically have infinite
domains, in contrast to, for example, relational
database models and Constraint Satisfaction
Programming (CSP) models which typically
have finite domains (Cohn & Renz, 2008). This
significantly complicates the process of validating
a specific QSTR calculi’s reasoning mechanism
so that even expert logicians find this to be a non-
trivial task (Wölfl, et al., 2007).

When considering the perspective of QSTR
applications, two further problems are that QSTR
applications are significantly more complicated
than a given calculi, and the application designers
are not necessarily expert logicians. Thus, more
practical software engineering based approaches
to validating constraints over infinite domains are
required for QSTR applications. Section 7 presents
novel test coverage metrics for QSTR application
validation by adapting complexity measures and
techniques from finite model theory.

3.4. Reasoning about Objects
in Multi-Dimensional Models

QSTR applications very often model multi-
dimensional structures. Prominent tasks that use
qualitative reasoning, particularly composition,
apply transitivity to determine whether a scenario
is consistent, and thus rely on relations having
an ordering. In QR relations map to scalar one

174

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

dimensional quantities, and thus have an obvious
total order. On the other hand, spatial scenarios
often apply at least two dimensions, thus admit-
ting only partial orderings. Temporal scenarios
can also apply multiple dimensions in the form
of branching and parallel time streams, resulting
in a partial ordering of events.

Multi-dimensional models significantly com-
plicate the design of qualitative reasoning methods,
as the designer needs to determine the structure
of the partial ordering to employ transitivity. This
issue is the focus of future research.

4. FORMAL SOFTWARE
REQUIREMENTS FOR
QSTR APPLICATIONS

In this section, we adapt two standard formal
requirements from software engineering, namely
customer’s operational requirements and function-
al requirements, to the QSTR application domain.

4.1. Customer’s Operational
Requirements

Customer’s operational requirements define the
essential needs of the customer (SETC, 1984).
In particular, operational requirements specify:

•	 the context of deployment,
•	 the typical environment in which the ap-

plication must function correctly,
•	 how the application will address the cur-

rent problem (mission profile),
•	 the critical aspects of the application,
•	 how the application will be used,
•	 the application’s minimum allowable effi-

ciency required to solve the problem, and
•	 the operational life cycle.

We now define critical characteristics of QSTR
problems, and show how these characteristics
determine the customer’s operational profile. By
considering how each of these characteristics relate
to the problem at hand, the designer can formalise
the requirements of the application. Figure 1 il-
lustrates an appropriate sequence for considering
some of the application characteristics based on
their dependencies. The collection of character-
istics presented below has been developed from
an analysis of the formal definitions of QSTR ap-
plications, for example to determine what aspects
of a model can vary between applications, such
as initial or ongoing dependency, and a review
of QSTR literature, for example to determine the
different environments for which researchers have
developed calculi.

Model dependency: the duration of depen-
dency on the working model during the problem

Figure 1. QSTR problem characteristics, ordered according to the dependencies between characteristics

175

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

solving process. A problem may only have initial
dependency, where all the information required
for processing is initially available, for example,
checking the qualitative consistency of an existing
spatial database. Alternatively, other problems
require information that is not initially available
and thus the dependency on the working model
is ongoing, for example, checking the consis-
tency of a spatial database whenever modifications
are made.

Task categories: QSTR tasks fall into two basic
categories, either querying the model or develop-
ing the model. Further task details are specified
in the functional requirements.

Model lifetime: the state of the application’s
working model over its lifetime. Once initialised
the working model may never change, for example,
bootstrapping a robot with a qualitative description
of an environment on which the robot runs qualita-
tive queries for accomplishing navigation tasks.
Alternatively, the working model may change,
for example, if a robot performs simultaneous
qualitative location and mapping.

Model change: models either change mono-
tonically or non-monotonically.

Model stability: the frequency of changes that
occur to a model. Models are either stable and
changes occur rarely, or volatile and changes
occur frequently.

Element relationships: elements in a model can
have simple relationships, with only superficial or
limited interaction, for example, a GIS application
that describes the qualitative spatial relationships
between arbitrary features in terms of orientation
and proximity. Alternatively, model elements
can have complex relationships, with a lot of
significant interaction and strong dependencies,
for example, a town planning GIS application that
incorporates a high degree of semantic content
about the types of buildings being modelled, and
constraints between buildings such as ensuring
all residences are suitably accessible from some
fire station.

Spatial Granularity: the spatial context of the
application model primarily defined by the scale.
Basic categories of environments for which exist-
ing QSTR calculi have been designed to reason
about, ranging from smallest to largest, are: hand
(e.g. inside a pencil case), desktop, indoor, outdoor
(e.g. a sports field), neighbourhood, geographical,
and astronomical.

Spatial Dimensionality: the number of dimen-
sions used to model spatial relationships, typically
a combination of one, two, or three dimensions,
and may also model arbitrary dimensions.

Spatial and Temporal Entities: the context of
the application model in terms the entities being
modelled. This includes time points, time inter-
vals, spatial points, spatial intervals (directed or
undirected), and spatial regions.

While this set of characteristics is likely to
be incomplete, it establishes a methodology for
specifying the customer requirements of a QSTR
application. Future research will focus on expand-
ing the list of characteristics, and determining
which characteristics are the most significant.

4.2. Functional Requirements

Functional requirements define what tasks the
system needs to be capable of performing, and
how the system will behave during execution
(SETC, 1984). These requirements are specified
as the inputs, behaviours, and outputs of system
components. In this section, we enumerate the
basic set of purely qualitative tasks that includes
tasks commonly found in the QSTR literature.
The set of basic QSTR tasks are derived by con-
sidering all possible sequences of operations that
can be performed on the application parameters,
namely the set of relations, constraints, and the
universe. Therefore, this derivation defines the
exact extent to which QSTR can be applied, and
thus provides a standard with which a software
developer can determine, firstly, whether or not
QSTR is applicable to their problem, and secondly,

176

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

what specific qualitative tasks may be suitable
for their problem.

4.2.1. Deriving Standard QSTR Tasks
Using Fundamental Operations

We define a task as a sequence of operations on
a mathematical structure. The set of basic QSTR
tasks is established by considering sequences of
operations that can be performed on the parameters
of a scenario in a QSTR application.

As presented in Section 2.1, an application has
a set of relations R and constraints C. A scenario
consists of a universe V and a set of relation state
sets R. As presented in Section 2.2, the funda-
mental operations that can be applied to scenarios
are selection, refinement and editing the scenario
universe (adding or removing objects). The select
operator can only be performed on application
parameters, i.e. R, C, and V. During application
runtime the only variables are V and the relation
state sets. This limits the number of task catego-

Table 3. Tasks that can be performed on a scenario with respect to the underlying parameters. In the
state diagram, states are black circles, tasks (composed of states) are ovals with a task label, terminat-
ing states are double-lined circles, arrows are state transitions annotated with QSTR operations, and
the arrow with no source state is the task entry point.

177

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

ries that can be performed, which will now be
enumerated. Table 3 presents a summary of the
basic tasks and their associated model parameters.

The most basic task is to simply execute a
selection operation. Querying is used to isolate
relevant subsets of a model. For example, in
Qayyum and Cohn (2007), the authors use a
qualitative description of images (adapted from
Allen’s interval calculus) to provide a method for
searching through an image database based on
semantic content. TreeSap (Schultz, et al., 2007)
is a geographic information system that accepts
qualitative queries such as “find all bus stops near
Downtown” and displays objects that meet the
given criteria.

In many cases, a QSTR application user may
not have complete information about the criteria of
the query that they want to execute, for example, a
robot reasoning with noisy sensor readings (Dylla
& Wallgrün, 2007). It may be the case that certain
conditions are more flexible than others, and
moreover, if a user executes a query that returns
no results, then it would be highly desirable for
the user to be able to relax the conditions of their
query in an intuitive way (Schultz, et al., 2006;
Guesgen, 2002). Query relaxation accepts rela-
tions that are within a threshold neighbourhood
distance of the given target relation through graph
G. Because selection is a fundamental operation,
all QSTR tasks can be relaxed using this approach,
such as relaxed consistency checking and relaxed
inference. Conceptual neighbourhoods provide
an ideal mechanism for query relaxation because
they encode the structure of relations based on
continuous change. Thus, relations that are physi-
cally similar will have a smaller distance through
the neighbourhood graph.

The next basic task is applying refinement and
universe edits. Modify changes a partial scenario
by either eliminating possible scenarios (refine-
ment) or by adding or removing objects from the
universe (universe edit).

The next task builds on the previous querying
task by testing conditions on the returned subsets,

for example to check the consistency of a sce-
nario with respect to the application constraints.
Consistency checking ensures that the model
does not break any application constraints. The
model is contradictory if an inconsistent subset
(with respect to some application constraint)
contains definite tuples, or if an indefinite subset
still violates the constraint regardless of how the
indefiniteness is resolved.

The next basic task is to execute a check con-
sistency task and then refine the model based on
the condition results. Inference accepts a partial
qualitative description of a model as premise in-
formation and infers as much about the indefinite
components of the model as possible (typically
by composing relations to approximate path-
consistency), i.e. deductive closure. Inference
typically applies the check consistency and modify
tasks to identify and eliminate inconsistent pos-
sible scenarios from a partial scenario description,
that is, moving tuples out of indefinite relations
R? and into definite relations.

These basic tasks are very general and can be
employed in any QSTR application. The follow-
ing sections build on these basic tasks by formally
characterising more specialised QSTR tasks for
models that contain two or more scenarios. In
these cases, reasoning is applied to the relation-
ship between partial scenarios in a group, and
the type of ordering between scenarios is critical
for determining the tasks that can be performed.

4.2.2. Deriving QSTR Tasks
for Multiple Scenarios

Given two or more scenarios, we can formally
characterise a number of QSTR tasks. Sequences
of scenarios representing change can refer to a
change in space (e.g. zooming into a map and
increasing the resolution) or a change in time (e.g.
modelling a car travelling down a road). Tasks that
specifically apply to sequences of scenarios are
envisioning, diagnosis, and checking consistency.

178

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

Two general multi-scenario tasks are merging
scenarios and splitting scenarios.

Checking the consistency of a sequence of
scenarios is determining whether the sequence is
valid with respect to neighbourhood graphs. That
is, for each tuple that has a relation state change in
R1 from does not hold to holds, there is a relation
R2 that holds in the previous scenario state, and
an edge from R2 to R1 in a neighbourhood graph.

Envisioning is the generation of potential
successor scenarios based on the conceptual
neighbourhood graph. Envisioning is with respect
to either (a) time, by forecasting into the future,
or (b) space, by increasing the resolution of the
model. Given a scenario, envisioning to depth
n is the set of consistent sequences of length n.

Refined envisioning selects a subset of the set
of consistent sequences. For example, contextual
information can be used to determine the most
likely sequence of scenarios. Refined envisioning
makes it possible to generate scenarios that are a
greater number of steps away from the initial sce-
nario. Contextual information includes conditional
probabilities with respect to the current scenario
state (e.g. a cup is very likely to fall if it is not on
top of some other object like a table), conditional
probabilities with respect to previous scenario
states (e.g. trajectories), and domain knowledge
about the movement patterns and behaviour of
specific objects (e.g. in a predator-prey scenario
it is more likely that a predator will follow prey,
rather than simply follow a trajectory [Van de
Weghe, 2006]).

Diagnosis is the inverse of envisioning by
generating potential predecessor scenarios based
on the conceptual neighbourhood graph. Simi-
larly, refined diagnosis is the inverse of refined
envisioning (Bhatt, 2007).

Completing sequences accepts an incomplete
sequence of scenarios (i.e. a sequence that has
gaps where some scenarios are missing) and ap-
plies a combination of envisioning and diagnosis
to determine potential scenarios that can complete
the sequence consistently.

Merging is the union of two scenarios and is
applied when the mapping of objects between
two scenarios is not known. The key challenge
is to identify and pair off objects that appear in
both scenarios by applying matching criteria with
respect to qualitative relation states and the relative
perspectives of the agents involved. This task can
be useful for combining multiple perspectives of
the same scenario, for example, from a number
of different autonomous agents. Changing space
and time can also be parameters as follows:

1. 	 Merging snapshots of a dynamic scene. For
example, a robot attempting to label dynamic
objects across a sequence of sensor readings
by referring to conceptual neighbourhoods to
decide what sequence of qualitative relations
is more likely to belong to a single object,
such as correctly labeling which object is the
‘coffee cup’ and which object is the ‘spoon’
in each scenario snapshot.

2. 	 Merging snapshots of a scene taken at differ-
ent granularities. For example, combining
satellite images taken at different heights,
such as correctly labelling which object is the
‘mountain’ and which object is the ‘house’
in each scenario snapshot.

Splitting is the inverse of merging, where a
scenario is divided into two possibly overlapping
scenarios. Splitting can be used, for example,
where agents do not need to maintain global
information about a scenario and instead can ef-
ficiently specialise in certain parts of a scenario.

4.2.3. Characterising QSTR
Application Execution Behaviour

In this section, we establish a template for the
behaviour of QSTR applications based on the
purely qualitative tasks from Section 4.2.1.
Software developers can use this to characterise
their application by explicitly incorporating task
requirements into its behaviour.

179

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

Figure 2 (left) illustrates the statechart diagram
describing the generic behaviour of QSTR applica-
tions during execution, derived from the tasks in
Table 3. States represent how the application is
manipulating the model. During the model devel-
opment state, inference tasks refine the model and
edit scenario universes. During the model query-
ing state, querying and check consistency tasks
isolate and compare relevant parts of the model.
Model changed occurs when an agent external to
the reasoning process modifies the model, such
as a user updating geographical data, or a sensor
delivering new information. Figure 2 (right) shows
the underlying low-level model operations that
are performed in each state.

This template represents all possible QSTR
application behaviour patterns, and all possible
QSTR tasks are definable as a sequence of fun-
damental operations. The significance is that, if
the designer requires a task that is not a sequence
of the fundamental QSTR operations then no

QSTR application will be able to satisfy the de-
signer’s software requirements.

5. STRUCTURING QSTR
APPLICATIONS

Certain relations in QSTR application models can
often be grouped together, because they refer to a
similar aspect of a domain at the same abstraction
level. Moreover, relations within a group often
share a constraint such as mutual exclusivity,
symmetry, having inverse pairs, and so on. To
help manage the various abstraction levels being
modelled and to speed up the design process, the
application designer requires a methodology,
analogous to design patterns, for grouping and
organising the relations and expressing constraints
over these groups.

In the area of Qualitative Reasoning (QR) about
physical systems the term model fragment refers

Figure 2. QSTR application behaviour during the execution of a software application. (left) Statechart
diagram of an executing QSTR application where circles represent states, arrows represent possible
state transitions, and the arrow annotations describe the effect of the transition on the QSTR system.
(right) Substitution of low-level state diagrams from Table 3 specifying fundamental model operations
(arrows without annotation indicate that a sub-task has been completed).

180

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

to modular, partial models composed of different
components, and can be reused and extended in
other models (Iwasaki, 1997). The concept of a
qualitative reasoning fragment is very appropriate
for representing groups of QSTR relations, and
will now be adapted to QSTR applications.

In QSTR applications, a fragment is simply a
group of relations and their constraints. For ex-
ample, Allen’s (1983) thirteen interval relations
and their constraints (mutual exclusivity and the
operators for inversion and composition) form
a fragment that can be reused in QSTR applica-
tions. Relations within fragments often share
properties. The designer can specify constraints
so that they apply to all relations in a fragment,
rather than explicitly enumerating the constraints
for each combination of relations. The following
sections present two design patterns for structur-
ing fragments, fragment definitions, and fragment
specialisations. Note that we follow the Portland
Form design pattern format (Cunningham, 1995):
<problem description (paragraph text)> Therefore:
<solution description (paragraph text)> <solution
examples>.

5.1. Design Pattern:
Fragment Definitions

Relations in one fragment can be tightly associated
to relations in a collection of other fragments be-
cause they refer to the same concept in the domain,
but at different levels of abstraction. The designer
might notice that each higher level concept is
composed of collections of lower level concepts.
That is, the lower level relations represent prop-
erties or attributes, and specific combinations of
these properties realise some particular higher
level concepts.

Therefore:
Designate the higher-level fragment as the

abstraction domain, and the lower level fragment
as the reference domain. For each abstraction
domain relation, select a subset of reference do-
main relations that together describe or define the

higher level relation; this subset is a definition of
the higher level relation.

Firstly, note that there can be more than one
definition for each higher-level concept. Secondly,
each subset should be a minimal subset, that is,
if any of the lower level relations are removed
from the definition then the subset no longer ac-
curately describes the higher-level concept. This
encourages the designer to create multiple precise
definitions that can overlap, rather than a smaller
number of fuzzy definitions.

For each definition, specify a constraint of
the form:

<conjunction of reference domain relations
in the definition>

is an improper subset of
<the higher level relation>.
For example, a mountain image is an image

with more mountains than sky, and more sky
than grass. To express this, the designer can
define two fragments, one for qualitative image
categories, including the relation mountain, and
another for qualitative differences in features of
an image, including “mountain > sky” and “sky
> grass”. The conjunction between fragments is
then implemented with the constraint

{x|x∈”mountain>sky”+ ∧ x∈”sky>grass”+}⊆
{y|y∈mountain+}.

5.2. Design Pattern:
Fragment Specialisation

Relations in one fragment can be tightly associated
to relations in exactly one other fragment because,
again, they refer to the same aspect of the domain,
but at different levels of abstraction. The designer
may notice that the difference between two frag-
ments is an issue of granularity, so that relations
in one fragment are a coarse, incomplete, ambigu-
ous, or generalised representation of relations in
another, more fine grained fragment.

Therefore:
Designate the higher-level fragment as the ab-

straction domain, and the lower-level fragment as

181

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

the reference domain. For each abstraction domain
relation, select a subset of reference domain rela-
tions that individually represent the same concept
as the abstraction domain relation, but to a more
precise degree; this subset is a specialisation.

Firstly, there is always exactly one specialisa-
tion subset for each higher-level relation. Secondly,
two specialisations for two different high-level
relations can overlap. Thirdly, each subset should
be a maximal subset, that is, if any lower-level
relations are not included in the subset then in
no way do they refine the higher-level relation.
This ensures that a specialisation represents all
possible refinements of a high-level concept, and
tends to prevent the designer ruling out potential,
albeit improbable, refinements, which would
compromise reasoning soundness. Following this
strategy, a designer can clearly identify when a
high-level relation is too coarse or general (i.e.
the specialisation subset is too large), and may
decide to either partition the overly general rela-
tion into different relations within the abstraction
domain, or introduce an entirely new intermediate
abstraction layer fragment.

For each specialisation, specify a constraint
of the form:

<disjunction of reference domain relations in
the specialisation>

is an improper subset of
<the higher level relation>.
For example, consider the incomplete temporal

information that “Mozart is older than Beethoven.”
In Freka’s semi-interval calculus (Freksa, 1992),
a time interval t1 is older than time interval t2 if
t1 started before t2. This semi-interval knowledge
says nothing about the relationship between
the endings of the two time intervals. Thus, the
high-level semi-interval relation older than can
potentially be refined to one of the following in-
terval relations: before, meets, overlaps, finished
by, or contains. The disjunction of relations is
implemented with the constraint

{(t1,t2)|(t1,t2)∈before+∨…∨(t1,t2)∈contains+}
⊆{(u1,u2)|(u1,u2)∈older than+}.

6. DESIGNING NEIGHBOURHOODS
OVER FRAGMENTS

In Section 3, we discussed how continuity about
spatial and temporal change is a standard assump-
tion in QSTR, leading to conceptual neighbours.
Cohn’s definition of conceptual neighbours is that
“...[a] pair of relations R1 and R2 are conceptual
neighbors if it is possible for R1 to hold at a certain
time, and R2 to hold later, with no third relation
holding in between” (Cohn, 2008).

Ideally, the designer would want their expected
neighbourhood for relations in a higher-level ab-
straction domain fragment to be consistent with
the neighbourhood of relations in the associated
reference domain fragment. Alternatively, the
designer should be able to derive neighbourhoods
for a group of relations if no other neighbour
information is available. However, a number of
issues arise when considering neighbourhoods
that are derived from the relationship between
fragments. For example, in many cases standard
neighbour definitions permit all high-level con-
cepts to be neighbours, producing an ineffective
neighbourhood graph.

This section presents a methodology for defin-
ing high-level neighbourhoods that are consistent
with the structure of fragments in a QSTR applica-
tion. We define conceptual neighbours in terms of
fragment constraints, and focus neighbour tests by
applying two novel aspects of conceptual neigh-
bours: path restrictions and equivalence classes.
Once the designer has decided on an appropriate
definition of a neighbour, then a neighbourhood
graph can be generated.

6.1. An Illustrative Running Example

The following running example will be used to
explain the problems with the standard neighbour-
hood definition when applied to fragments, and the
novel neighbourhood definitions that overcome
these limitations. Figure 3 illustrates a reference
domain fragment f2 that includes eight mutually

182

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

exclusive relations R1,…R8 and six mutually ex-
clusive relations R’1,…,R’6 each having a simple
totally ordered conceptual neighbourhood. Each
vertex in the grid illustrated in Figure 3 (right)
represents a valid conjunction of relations in f2,
called the fragment definition space. An abstrac-
tion domain fragment f1 includes three relations
Rx, Ry, Rz (black, striped, grey, respectively, in
Figure 3), and each of these relations has a set
of fragment definitions in f2, shown by the filled
vertices in the grid.

6.2. Defining Conceptual Neighbours
as Transitions between Low-Level
Relations

Conceptual neighbours are derived from fragment
definitions by defining transitions. First, transition
via the neighbourhood graph is defined. Given
two relations Ri, Rj from a fragment, a transition
via the neighbourhood graph g, written Δg(Ri, Rj),
is a sequence of relations that is a path in g, from
Ri to Rj. Note that there may be more than one
path, and that paths can contain cycles.

Next, transitions via fragment definitions is
defined. Let a fragment definition of relation R,
written σc(R) where c is the constraint that imple-
ments the definition as described in Section 5.1, be

a subset of relations from the reference domain that
appear in the constraint. Transitioning between two
high-level relations (from the abstraction domain
fragment) is a sequence of fragment definitions,
where adjacent fragment definitions differ by an
incremental change, i.e. they differ by exactly one
pair of adjacent lower level relations according to
the low level neighbourhood graph g.

For example, consider the fragment definitions
space in Figure 3. One transition from the frag-
ment definition {R2, R’1} to {R5, R’3} is ({R2, R’1},
{R3, R’1}, {R4, R’1}, {R5, R’1}, {R5, R’2},
{R5, R’3}), and another transition is ({R2, R’1},
{R2, R’2}, {R3, R’2}, {R4, R’2}, {R5, R’2}, {R5, R’3}).

Next, transition classes via fragment defini-
tions is defined. Consider the set of all possible
transitions via fragment definitions between
two high level relations. The ordering of some
particular low-level changes is essential. In par-
ticular, transitions can not violate the continuity
assumption by skipping relations in the low-level
neighbourhood graph g, for example, a transi-
tion (…, {R2, R’1}, {R4, R’1}…) is invalid. Other
changes can occur in any order, for example, the
transition from R3 to R4 is completely independent
of the transition from R’1 to R’2 and these transi-
tions can occur in any order.

Figure 3. Reference domain fragment f2 containing relations R1,…,R8 and R’1,…,R’6 with simple ordered
neighbourhoods (left). The fragment definition space (right) consists of fragment definitions that specify
one relation from R1,…,R8 and one relation from R’1,…,R’6. The abstraction domain fragment f1 contains
three relations Rx (black), Ry (striped), Rz (grey), that have fragment definitions in f2 illustrated in the
fragment definition space (right).

183

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

Thus, a class of transitions can be succinctly
expressed by representing a high-level transition
as a partial ordering of low-level transitions. A
transition class via fragment definitions between
two high level relations, written Δc,c’(R, R’) is a set
of transitions from Δg(R, R’) such that:

•	 for each relation Ri in σc(R) there is a tran-
sition Δg(Ri, Rj) that starts from Ri and ends
at some relation Rj in σc’(R’), and

•	 (vice versa) for each relation Rj in σc’(R’)
there is a transition Δg(Ri, Rj) that starts
from some relation Ri in σc(R) and ends Rj.

For example, one class of transitions from
{R2, R’1} to {R5, R’3} is {(R2, R3, R4, R5), (R’1,
R’2, R’3)}. Another class is {(R2, R1, R2, R3, R4,
R5), (R’1, R’2, R’3)}.

Therefore, a transition class Δc,c’(R, R’) speci-
fies a partial ordering of incremental changes at
the lower fragment definition level (i.e. from Δg)
required to move from the fragment definition
of R to the fragment definition of R’. Note that if
there are multiple paths between two low-level
relations in the low-level neighbourhood graph
g, as shown in the example (i.e. different options
for Δg) then there are multiple transition classes
and Δc,c’(R, R’) returns one class out of a set of
possible classes.

Finally, conceptual neighbours is defined. R
and R’ are neighbours in the standard sense, writ-
ten N(R, R’), if it is possible to start from a low
level fragment definition of R, make incremental
changes, and eventually transition into R’ without
passing through another relation’s fragment defini-
tion. That is, N(R, R’) is true if and only if there
is some sequence of fragment definitions that is
in some class Δc,c’(R, R’) such that none of the
fragment definitions in the sequence correspond
to some other high level relation.

For example, the relations Rx and Ry are
conceptual neighbours according to this defi-
nition because there exists a transition class
Δc,c’(R, R’) = {(R2, R3, R4, R5, R6), (R’4, R’3, R’2, R’1, R’2)}

that contains a fragment definition sequence
({R2, R’4},…,{R2, R’1},…,{R6, R’1}, {R6, R’2}) that
does not include any of Rz’s fragment definitions.

A later subsection highlights the problems
with this conceptual neighbour definition, and the
remainder of the section presents a methodology
that allows the designer to appropriately refine the
neighbour test. The next section summarises the
steps that a designer must go through in order to
derive a high-level neighbourhood graph.

6.3. Deriving a High-Level
Neighbourhood Graph

The designer can construct a high-level conceptual
neighbourhood graph gf1 by applying the follow-
ing procedure.

1. 	 Define an abstraction domain fragment f1
and a reference domain fragment f2.

2. 	 Define a low-level neighbourhood graph g
for f2.

3. 	 For each high level relation R in f1, define the
fragment definitions σci(R) into the reference
domain f2 by implementing constraints ci.

4. 	 Decide on the appropriate definition of
conceptual neighbours Nf1.

5. 	 Construct the neighbourhood graph gf1 such
that
a. 	 there is exactly one vertex for each

high level relation, and
b. 	 for each pair of high level relations

R,R’ there is an edge between the cor-
responding vertices iff Nf1(R, R’) is
true.

In practice, steps 1 and 2 will require the de-
signer to select a pair of appropriate fragments
that have already been defined in the application.
A methodology for configuring the neighbour test
is described in the following subsections, and
summarised in Section 6.9 below. The designer
can automate step 5 with a simple nested for-loop

184

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

algorithm that executes the neighbour test on each
pair of high-level relations.

6.4. Limitations of the Standard
Neighbour Definition

The problem with the standard conceptual neigh-
bour definition is that two relations possibly being
neighbours results in relations almost always
being neighbours, thus the definition is too weak
to be useful. Moreover, this may lead to counter-
intuitive neighbours. For example, as illustrated in
Figure 3, if any path from Rx to Ry is unobstructed
then the relations are considered neighbours. It
may be more intuitive in the context of a particular
application to assume that a transition between two
relations will take the most convenient, shortest
transition path. In this case, a user will expect Rx
and Ry to not be neighbours.

In order to develop more appropriate neigh-
bour definitions, the neighbour test is summarised
as follows: given a set of paths, if any of the
paths are unobstructed then the two relations are
neighbours. Hence, there are two ways to focus
the conceptual neighbour definition, by restrict-
ing the set of paths considered for determining
neighbour status, and by grouping paths together
into equivalence classes.

6.5. Path Restrictions to
Focus the Neighbour Test

The designer can avoid impractical and counter-
intuitive neighbourhoods by restricting the set of
paths used to determine whether two relations are
neighbours. Two types of paths are direct paths
and critical paths.

The direct path restriction requires that low
level neighbourhood transition sequences take
a shortest path in Δg(Ri,Rj) (note that there can
be multiple shortest paths). This ensures that all
transitions monotonically approach the target
fragment definition. Figure 4a illustrates the

admissible paths with this restriction, and that Rx
and Ry are no longer neighbours.

The critical path restriction requires that paths
only include relations that are guaranteed to con-
flict between the high-level fragment definitions
of two relations. Intuitively, certain relations in
the reference domain will be very important cues
for interpreting higher-level concepts, while some
(probably most) combinations will lie in the vast
fragment definition space between these critical
points. The necessarily conflicting relations are
the important, prototypical relations that separate
two high-level relations and therefore critical
transition paths can be a useful measure of con-
ceptual neighbour status. More formally, when
transitioning from high-level relation R to R’,
fragment definition relations with neighbourhood
graph gi fall into one of the following three cat-
egories.

•	 Transition always required: no pair of frag-
ment definitions from R and R’ share a re-
lation from gi.

•	 Transition never required: all pairs of frag-
ment definitions from R and R’ share a re-
lation from gi.

•	 Transition possibly required: some, but not
all, pairs of fragment definitions from R
and R’ share a relation from gi.

The designer can use these distinctions to
refine their neighbour definition. For example,
as illustrated in Figure 3, one fragment definition
of Rx is {R’4,R2} and one fragment definition of
Ry is {R’4,R7}, thus when transitioning from Rx
to Ry it is possible that R’4 is already satisfied
and no transition through the neighbourhood
of relations R’1,…,R’6 is required. On the other
hand, regardless of the Rx fragment definition, a
transition through the relations in R1,…,R8 will
always be required.

Figure 4b illustrates the admissible transition
paths through the critical paths where transitions

185

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

are always required, and shows that Rx and Ry are
no longer neighbours.

6.6. Transition Path Equivalence
Classes to Focus the Neighbour Test

Consider the following counter-intuitive scenario
with the standard neighbour definition illustrated
in Figure 3. The transitions required to get from a
fragment definition of Rx to a fragment definition
of Ry always include {(R3,R4),(R4,R5),(R5,R6)}. The
transitions to get from a fragment definition of
Rz to a fragment definition of Ry always include
{(R4,R5),(R5,R6)}, which is a subset of Rx’s required
transitions. Moreover, for any fragment definition
of Rx there is some fragment definition of Rz where
the required transitions to arrive at any given
fragment definition of Ry are a proper subset of
those required by the fragment definition of Rx.

Because Rz’s required transitions are a proper
subset, in some applications it might be intuitive
to view Rz as an intermediate relation between

Rx and Ry. However, the standard definition does
not distinguish this special case of intermediate
relations.

A designer can control any such special cases by
grouping a set of paths into an equivalence class.
This has the effect of removing the ordering of
transitions taken in the set of paths in the equiva-
lence class. An alternative perspective is that,
previously the neighbour test checked whether it
was possible to avoid intermediate relations, but
now it is checking the stronger condition whether
it is guaranteed to avoid intermediate relations
within the equivalence class of paths.

Equivalence classes must be applied to a
restricted set of paths (otherwise, the neighbour
test will fail whenever there are three or more
relations). Figure 4c illustrates defining the direct
paths as an equivalence class. Figure 4d illustrates
defining the critical paths as an equivalence class
so that the conflicting paths must be guaranteed
to be unobstructed, and at least one path through
the non-conflicting paths must be unobstructed.

Figure 4. Refined fragment definition spaces: (a) direct path restrictions, (b) critical path restrictions,
(c) equivalence class of direct paths, (d) equivalence class of critical paths in conjunction with a direct
path restriction

186

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

Thus, transition path equivalence classes afford
the designer considerable flexibility in defining
neighbourhoods.

6.7. Ensuring Conceptual
Neighbours are Symmetric

Neighbour status is no longer necessarily sym-
metric when the designer restricts the set of
transition paths. Although asymmetric neighbour-
hood graphs can be valid and useful, a designer
may require neighbour status to be symmetric.
The following three variations on the neighbour
definition ensure symmetry, ordered from stron-
gest to weakest. Two relations can be defined as
symmetric neighbours if:

•	 both directions are unobstructed
(conjunction),

•	 either direction is unobstructed (disjunc-
tion), and

•	 no single intermediate relation obstructs
both directions (restricted disjunction).

The first variant is the strongest stating that
both directions must be clear before the relations
are considered neighbours. The second variant
weakens this by only requiring one of the directions
to be unobstructed. The third variant states that
no single obstruction occurs in both directions, so
that two high level relations are not neighbours if
the fragment definition of a third relation obstructs
both relevant transition paths (this is useful in
cases where the designer wants the third relation
to represent a guaranteed intermediate concept in
between two relations).

6.8. Dealing with Multiple
Fragment Definitions

If a high level relation R has multiple fragment
definitions then some of its fragment definitions
may permit it to be a neighbour to some other

high level relation R’, while some of its other
fragment definitions do not. It may be the case
that only a single pair of fragment definitions out
of many possible pairs allows two relations to be
neighbours, so that in practice it is unlikely that
the two relations will be neighbours, and most
transitions between them will be obstructed.

The designer can develop a more accurate
neighbourhood graph by annotating probabili-
ties to conceptual neighbours. Assuming that all
fragment definitions of a relation R are equally
likely to be used, the probability P of employ-
ing a particular fragment definition x∈σc(R)
is P(x)=|σc(R)|-1. The probability that two high
level relations R,R’ are neighbours P(N(R,R’)) is
the sum of the probabilities of selecting pairs of
fragment definitions from each relation that are
neighbours, ∑P(x)P(y) for all x∈σc(R), y∈σc(R’)
such that (x,y)∈N.

6.9. Summary and
Engineering Implications

Table 4 presents guidelines to help the designer
select the appropriate neighbour definition. The
guidelines relate a problem that the designer can
experience when deriving neighbourhood graphs,
the appropriate actions defined in the previous
subsections, and associated effects of the action.
Note that a complete graph is not useful for any
typical task that requires a neighbourhood such
as envisioning, because it does not distinguish be-
tween relations within the fragment. Equivalently,
edgeless graphs provide no information that is
useful for performing neighbourhood-based tasks.

7. VALIDATING QSTR APPLICATION
USING H-COMPLEXITY

The aim of program validation in software en-
gineering is to determine if the system is fit for
purpose (Burnstein, 2003), explicitly evaluating

187

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

Table 4. QSTR application designer guidelines for deriving effective neighbourhood graphs. Columns
list the problems with deriving neighbourhood graphs, actions that will help to address the problem, and
related effects. Rows that contain main categories of problems and actions have a white background,
and rows that immediately follow contain specific problems and actions within a category with a grey
background.

188

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

the program in terms of its application context.
Researchers in QSTR typically apply general
first-order theorem provers (and higher) for system
validation (Wölfl, et al., 2007). However, the use
of theorem provers for application level valida-
tion is not practical in general. Firstly, applying
theorem provers can be very manually intensive,
and even expert logicians in the QSTR research
field find the task non-trivial (e.g. refer to page 292
and Section 6.2 in Cohn, et al., 1997). Secondly,
they require axioms for the logic, which in many
cases will not be available, making theorem prov-
ers impossible to use. For example, particularly
during the early stages of application design,
software developers may need to rapidly encode
informal qualitative domain knowledge with the
intention of refining the logic later if necessary.
Thus, a thorough axiomatisation would not be
necessary or appropriate.

We present a significantly different methodol-
ogy for QSTR application validation, inspired by
research in software engineering and finite model
theory. We focus on adapting two white-box testing
approaches, namely unit testing and integration
testing, so that our validation methodology can be
used iteratively during application development
(rather than as a black-box post development
validation tool).

7.1. Unit Testing and Integration
Testing for QSTR Applications

Unit testing aims to validate small components
of a program by exercising isolated aspects of
functionality in an independent way (Burnstein,
2003). We define the units of QSTR applications
to be the two set expressions on the left hand side
and right hand side of constraints. Once the units
have been exercised, the next step is to test that
the constraint’s set comparator is correct. A unit
test is simply a set of inputs and a set of expected
outputs, and the domain is the collection of rela-
tions in the unit set expression being tested.

Integration testing is used to validate the in-
teraction between different program components
(Burnstein, 2003). An integration test for a QSTR
application exercises some subset of constraints.
An integration test is a set of inputs and a set of
expected outputs, where the domain is the collec-
tion of relations that appear in the set expressions
of the constraints being tested.

The primary issue is determining which tests
the designer must execute to achieve an adequate
degree of confidence that the application is fit for
purpose. In standard software engineering, the set
of tests that can be executed on a typical software
program (called the test space) is determined by the
system inputs and outputs, and the system structure
such as statements, decisions and control paths.
Executing all possible tests is clearly impractical
and thus software engineers employ methods that
isolate critical subsets such as boundary checking,
equivalence class partitioning, and cause-effect
graphs (Burnstein, 2003).

One standard technique for identifying signifi-
cant test classes is to measure the test coverage
of some type of program component (Zhu, et al.,
1997). For example, the set of tests that execute
every statement in a program at least once is
typically considered to be a minimum coverage
requirement for validation. We adapt this software
engineering methodology by defining a concept
called homogeneous sets (called H sets). H sets
are used to measure the test coverage of QSTR
application components.

7.2. Homogeneous Sets

In model theory (Hodges, 1997; Marker, 2002),
a set X is definable (in model M) if there is some
query in first order logic that can distinguish pre-
cisely this set of objects (that is, a formula ϕ exists
such that X={(v1,…,vn)∈U n | M ⊨ϕ(v1,…,vn)},
where entails ⊨ means that the formula is true
in M).

Homogeneous sets (or H sets) are a special
class of definable sets. H sets are atomic definable

189

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

sets, that is, no query exists that can separate two
objects within the same H set, thus objects within
an H set are equivalent and indistinguishable. Let
H={h1, …, hn} be a set of homogeneous sets, where
each hi ⊆ U. By definition, h1, …, hn partition U.
We define H-complexity of a language to be |H|.

7.3. Using H Sets to
Measure Complexity

Complexity of a QSTR application language can
be considered as either the number of distinct
queries that can be expressed, or (equivalently) the
number of distinct scenarios that can be encoded.

A query is used to access a subset of objects
in a scenario, and query complexity of a language
is defined as the maximum number of unique
non-empty subsets that can be accessed by some
query. H sets are indivisible and mutually exclusive
(by definition), so the query that defines an H set
must also be the query that returns the smallest
non-empty subset of those objects. The smallest
subset containing objects from two different H
sets h1, h2 must be the union of the queries that
define those two H sets, h1∪h2. It follows that any
accessible subset of objects must be the union
of some combination of H sets, and thus query
complexity is equal to the number of different
combinations of H sets, 2|H|.

We now consider scenario complexity. Intui-
tively, qualitative models do not distinguish be-
tween numerical quantities, unlike metric systems.
If two objects in a scenario can not be separated by
a query, then the objects are considered equivalent
and indistinguishable, that is, the objects must be
in the same H set. Accordingly, if the only dif-
ference between two scenarios is the number of
indistinguishable objects in each non-empty H
set then the scenarios are considered equivalent.
Thus, a scenario equivalence class is defined by
the combination of H sets from which objects are
selected, and the number of such scenario classes,
or the scenario complexity of the language, is 2|H|.

7.4. Using H-Complexity to
Quantify Test Coverage

H sets are a natural option for analysing test classes
because, on one hand, they specify the absolute
limit for distinguishing between objects, and on
the other hand, they can be used to describe any
possible distinct set of objects. This section pres-
ents our methodology for applying H-complexity
to measure test coverage.

When quantifying test coverage, the designer
initially has a set of QSTR application compo-
nents that are currently being tested, and the set
of tests (called the test suite). Five activities that
the designer must undertake are to:

1. 	 identify the domain of the components being
tested,

2. 	 refine the test space by specifying condi-
tions that are not appropriate for exhaustive
testing,

3. 	 calculate the complexity of the original test
space and the refined test space,

4. 	 determine the class of each test in the test
suite, and

5. 	 calculate test coverage results.

The following sections present the details of
each activity.

7.5. Activity 1: Identify
Component Domains

Firstly, the designer must identify the domain (a
set of relations) of the components being tested.
For a unit test, the domain contains the relations
in the set expression, e.g. the domain of the set
expression {x1| (x1,x2)∈R1

+ ∧ (x3,x2)∈R2
~} is {R1,

R2}. For an integration test, the domain contains
the relations that appear in the subset of constraints
being tested, e.g. the domain of the constraints:

190

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

{ | (,) (,) }

{ | (,) }

{ | (,)

x x x R x x R

x x x R

x x x R

1 1 2 1 3 2 2

1 2 1 3

1 1 2

∈ ∧ ∈

= ∈

∈

+

+



33 3 2 2

1 1 4

+

+

∧ ∈

⊆ ∈

(,) }

{ | }

x x R

x x R

 	

is {R1, R2, R3, R4}.

7.6. Activity 2: Specifying Conditions
to Refine the Test Space

H-complexity is calculated as all possible combi-
nations of H sets. When considered as a test space,
each H set is being exercised in conjunction with
every other combination of H sets. However, many
H sets represent conditions that may not require
this exhaustive testing. By isolating such condi-
tions and testing them independently, the designer
can achieve a smaller, more focused and hence
more practical and effective test space.

For example, the relation in is not (usually)
symmetric, that is, if x is in y, then y cannot also be
in x. If this condition is violated then the scenario
is clearly inconsistent with the QSTR application,
regardless of the other remaining components of
the scenario. Rather than exhaustively testing
in for every unit that it is used, the designer can
isolate the erroneous symmetric condition and
test it once. They can then assume that every time
in is used the application will respond correctly
regarding symmetry. Table 5 presents our sugges-
tions for common conditions that can be used to
refine test spaces.

7.7. Activity 3: Calculating
H-Complexity

This section derives the formula for calculating
H-complexity of a language (i.e. a domain) by
counting the number of H sets, |H|. Firstly we
calculate the number of H sets permitted by a
single unary relation, and then a single relation
of arbitrary arity. We then observe that binary
relations (and higher) admit an infinite number

of H sets, making H-complexity unusable. To
overcome this we employ restrictions on the
query language to calculate the number of basic
queries that can be expressed for a set of relations.
We then show that basic queries are not Jointly
Exhaustive and Pairwise Disjoint (JEPD) and
so do not correspond to H sets. Thus, we finally
calculate H complexity as the smallest number of
unique JEPD queries that can be expressed using
combinations of basic queries.

Initially, assume that all relations have an ar-
ity of 1 (i.e. they represent qualitative properties
such as round or large). Tuples can take one of
|AR| states for a relation R (such as holds), hence
the complexity of a unary relation is |HR|=|AR|.
However, once relations have an arity greater
than 1 there are an infinite number of potential
H sets, because a binary relation constitutes a
total order. We proceed in our analysis by using
a graph to represent a scenario that consists of a
single binary relation Ri, where objects represent
vertices and directed edges represent tuples as
illustrated in Figure 5.

A set theoretic query describes the structure
of a graph and specifies the vertex to be selected
with v bound variables (universally or existen-
tially quantified), e.g.

∀x1...∃xv ⋅ x1 ≠ x2 ∧ ... ∧ x1 ≠ xv ∧... ∧ xv-1 ≠ xv.

For brevity, we will omit explicitly stating
these quantifications and conditions for all further
queries, and for simplicity, the variables in our
examples are only existentially quantified. For
example, the query {x2| (x1,x2)∈R1 ∧ (x3,x2)∈R1}
will access b from the graph of R1 in Figure 5.

While there are an infinite number of potential
graphs and unique accessible subsets, homoge-
neous sets still exist that contain indistinguishable
objects. Indeed, homogeneous sets correspond
to graph symmetries. For example, regarding
the graph of R1, no query exists that can separate
objects a and c (without directly referring to those
objects),

191

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

Table 5. Common conditions for refining test spaces

192

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

{ , } { | (,) (,) }

{ | (,) (,)

a c x x x R x x R

x x x R x x R

= ∈ ∧ ∈
= ∈ ∧ ∈

1 1 2 1 3 2 1

3 1 2 1 3 2 1
}}, 	

and the graph of R2 has three H sets, accessed by
the query

{ | (,) (,) (,)

(,) (,)

x x x R x x R x x R

x x R x x R
i 1 1 2 1 2 2 2 3 2

4 4 2 4 5 2

∈ ∧ ∈ ∧ ∈ ∧
∈ ∧ ∈ ∧∧ ∈(,) },x x R

5 3 2

namely {a, d} when i = 1 or 4, {b, e} when i = 2
or 5 and {c} when i = 3.

Given a graph of a scenario, the number of H
sets is the number of vertices minus the number
of symmetries. However, to make |HR| a func-
tion of the entire QSTR application language,
rather than just isolated scenarios (i.e. rather
than particular graphs), we apply the concept
of restricted query languages from finite model
theory (normally used for studying descriptive
complexity [Marker, 2002]). If the restricted
query language only recognises a finite number
of graphs, it will admit a finite number of H sets.
It is then possible to quantify the complexity of a
relation independent of a particular scenario, and
measure the relative difference in expressiveness
between two languages.

One common query restriction is to limit the
number of variables (vertices). Previously, queries
have referred to variables xi where i can be any

positive integer. For example, if i ≤ 2 then the
allowable tuples are (x1, x1), (x1, x2), (x2, x1), and
(x2, x2). If v is the number of variables allowed in a
query, and aR is the arity of relation R (i.e. the size
of the tuples) then for each query, the number of
tuples is v↑aR. We refer to these queries as basic
queries. For example, if v = 2 then one basic query
on a binary relation is {x1 | (x1, x1) ∈ R− ∧ (x1, x2)
∈ R+ ∧ (x2, x1) ∈ R− ∧ (x2, x2) ∈ R−}. Each tuple
can be assigned to one of |ΑR| relation states, thus,
the number of unique basic queries for relation R
is |ΑR|number of tuples, where number of tuples = v↑aR.

Previously we only referred to one relation
within a query. Given v bound variables, queries
will now take the form, {x1 | query R1, query R2,
…, query Rn}, where query Ri is one of the unique
basic queries for relation Ri. Hence, the total num-
ber of queries permitted over n relations is |basic
R1 queries| × … × |basic Rn queries|. Moreover,
each query variable can be either existentially or
universally quantified, i.e. the query can use any
one of the combinations from ∃x1 ∃x2 … ∃xv to
∀x1 ∀x2 … ∀xv. In general, the number of allowable
variable quantifications q is 2v if all combina-
tions are acceptable. Thus the number of unique
basic relations including the acceptable variable
quantifications is q × |basic R1 queries| × … ×
|basic Rn queries|.

For H sets to truly represent the maximum
refinement possible, they must be JEPD so that

Figure 5. Three graphs representing binary relations R1, R2 and R3. In R3, subgraphs {a,b} and {c,d}
correspond to basic queries, where {e,f,g} contains more than one basic query as induced subgraphs

193

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

every object in a scenario will appear in exactly
one H set. This property is critical; if it did not
hold then further refinements could be achieved by
taking H set intersections and differences. Basic
queries are not necessarily JEPD (specifically,
when their corresponding graphs are overlapping
induced subgraphs of the full scenario graph)
and so they do not specify H sets. For example,
consider the scenario graph R3 in Figure 5. If v =
2 then two basic queries are:

{x1 | (x1, x1) ∈ R− ∧ (x1, x2) ∈ R+ ∧ (x2, x1) ∈
R− ∧ (x2, x2) ∈ R−} = {a, e},

{x1 | (x1, x1) ∈ R− ∧ (x1, x2) ∈ R+ ∧ (x2, x1) ∈
R− ∧ (x2, x2) ∈ R+} = {c, e}.

Vertex e appears in both results, and therefore
the basic queries are not JEPD.

To calculate |H| we must determine the smallest
JEPD queries that contain the basic queries. This
is achieved by taking all combinations of basic
queries by intersection and difference, hence
|H|=2number of unique basic queries – 1 (we can ignore the
trailing‘−1’).

To summarise,

•	 the language being measured has a set of
relations R,

•	 AR is the number of relation states allowed
for relation R (such as holds and does not
hold),

•	 aR is the arity of relation R (e.g. binary rela-
tions have arity 2),

•	 v is the number of variables allowed in a
query (1 ≤ v),

•	 q is the number of variable quantifications
(1 ≤ q ≤ 2v), and

•	 H is the set of H sets, and |H| is the
H-complexity of the language.

The formula for calculating H-complexity is:

| | (| |

...

| |)

((

H q basic R queries

basic R queries

q A v
n

R

= ↑ ×

×
×

= ↑ ↑

2

2

1

1 ↑↑ × × ↑ ↑

= ↑ ∏ ↑ ↑∈

a A v a

q A v a

R Rn Rn

R R R

1

2

) ... ())

(()R

	

(1)

7.8. Activity 3: Calculating
H-Complexity for Refined
Test Spaces

The complexity of a language can be calculated
simply by applying the formula in the previous
section. However, once the designer has speci-
fied conditions for refining the test space, the
formula can no longer be used. In this section we
present a method for calculating the refined test
space complexity by encoding it as a Constraint
Satisfaction Problem (CSP). The designer can
then use any standard CSP solver, such as JaCoP
(Kuchcinski, 2003), to calculate the complexity.

A CSP is a finite number of variables (where
each variable has a finite domain), and a set of
constraints between variables. In our case, given
a domain of relations R and the number of allow-
able query variables v, the CSP solver will return
the number of basic queries permitted, ∏R∈R |basic
R queries|. Equation 1 from the previous section
can then be used to calculate the refined test space
complexity.

We now present our CSP encoding. Each vari-
able represents a tuple from a basic query. From
the previous section, the number of tuples for
relation R is v↑aR. Let integers 1,2,3,4 represent
holds, does not hold, not applicable, and indefinite,
respectively. For each relation R, declare v↑aR vari-
ables with domain AR, encoded as the appropriate
subset of {1,2,3,4}. Next, specify the refinement
conditions from Section 7.6. Finally, execute the
solver and have it return the number of solutions
(there is no need to record the solutions).

If computation is not too time consuming, the
solver can be executed multiple times to determine

194

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

the impact of each constraint. Do this by executing
the solver with only one constraint at a time, and
record the different complexities. Alternatively,
execute the solver with all but one constraint (for
each constraint) to quickly determine whether any
constraints are redundant.

For example, given the domain R={light,
room, warm, in}, v=2 allowable query variables,
and for every relation AR={+,−,~,?}, q=1 variable
quantification (both variables existentially quanti-
fied), the number of basic queries is:

q A v a
R R R
∏ ↑ ↑
= ↑ ↑ ⋅ ↑ ↑ ⋅ ↑ ↑ ⋅ ↑ ↑
= ⋅ ⋅ ⋅

∈R()

() () () ()4 2 1 4 2 1 4 2 1 4 2 2

16 16 16 2566

1048576= ,

yielding a completely intractable test space, with
complexity |H| = 2↑1048576. A designer then
refines this test space by specifying the follow-
ing conditions:

•	 only test when x is a light and y is a room
•	 because both object types are assumed, ig-

nore the not applicable relation state (all
relations apply for lights and rooms)

•	 the types light and room are mutually
exclusive

•	 in is not reflexive
•	 in is not symmetric
•	 nothing is ever in a light

The designer then encodes the CSP problem1
using JaCoP (Kuchcinski, 2003). Firstly the
variables are declared, using a restricted domain
that excludes not applicable. Next, the designer
encodes the constraints. (see Box 1.)

Next, the designer runs the solver which returns
27 solutions. The test space of size 227 is now
practical for certain important coverage metrics,
although further refinements can be made, for
example, choosing to only test one room at a time
(Schultz, et al., 2009).

The designer executes the solver multiple
times, each run using only one of the constraints,
and determines that constraints 1 and 4 have the
most impact. Once again, the designer executes
the solver multiple times, each run using all but
one constraint (for each constraint) and determines
that some constraints are redundant and can be
removed such as shown in Box 2.

Note that, after removing one constraint, the
process should be repeated rather than removing
multiple constraints at once.

7.9. Activity 4: Calculate the
Class of a Given Test Instance

To determine the test coverage of a given set of
tests, the designer must compare the tests to the
test space in terms of H-complexity. That is, the
designer needs to determine which combination
of H sets are exercised in a given test.

A test is a set of input premises and ex-
pected outputs. The input premise information
is a set of relations that contain object tuples,
such as within+={(a,b), (b,c)}, school+={a},
Downtown+={b}, Auckland+={c}, near−={(c,d)},
within?={(a,c)}. By convention, for each relation,
any unspecified tuples can be assumed to be in the
indefinite relation state (e.g. Auckland?={a,b,d}).
The expected output is again a set of relations that
contain object tuples, such as within+={(a,b), (b,c),
(a,c)}. A test is satisfied by a QSTR application if,
given the premises, reasoning produces a scenario
that satisfies the expected outputs.

Given a domain being tested and a test instance,
the designer needs to determine which test class
the given test is in with respect to the domain’s
test space. Using H sets we define a test class as
the premise scenario specified in the test (that is,
we ignore the expected output). To calculate the
class of a given test we use a CSP encoding.

To summarise, query variables and scenario
objects are encoded. CSP is then used to select
every possible combination of scenario objects
for the query variables, and for each combination

195

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

Box 1.

Store network = new Store();

Variable light_x     = new Variable(network, “light_x”, domain(1,2,4));

Variable light_y     = new Variable(network, “light_y”, domain(1,2,4));

Variable room_x      = new Variable(network, “room_x”, domain(1,2,4));

Variable room_y      = new Variable(network, “room_y”, domain(1,2,4));

Variable warm_x      = new Variable(network, “warm_x”, domain(1,2,4));

Variable warm_y      = new Variable(network, “warm_y”, domain(1,2,4));

Variable in_x_x      = new Variable(network, “in_x_x”, domain(1,2,4));

Variable in_y_y      = new Variable(network, “in_y_y”, domain(1,2,4));

Variable in_x_y      = new Variable(network, “in_x_y”, domain(1,2,4));

Variable in_y_x      = new Variable(network, “in_y_x”, domain(1,2,4));

//- only test when x is a light and y is a room

network.impose(new XeqC(light_x, 1));

network.impose(new XeqC(room_y, 1));

//- types “light” and “room” are mutually exclusive

network.impose(new IfThen(  new XeqC(light_x, 1),

                 new XeqC(room_x, 2)));

network.impose(new IfThen(  new XeqC(light_y, 1),

                 new XeqC(room_y, 2)));

network.impose(new IfThen(  new XeqC(room_x, 1),

                 new XeqC(light_x, 2)));

network.impose(new IfThen(  new XeqC(room_y, 1),

                 new XeqC(light_y, 2)));

//- “in” is not reflexive

network.impose(new XeqC(in_x_x, 2));

network.impose(new XeqC(in_y_y, 2));

//- “in” is not symmetric

network.impose(new IfThen(  new XeqC(in_x_y, 1),

                 new XeqC(in_y_x, 2)));

network.impose(new IfThen(  new XeqC(in_y_x, 1),

                 new XeqC(in_x_y, 2)));

//- nothing is ever “in” a “light”

network.impose(new IfThen(  new XeqC(light_x, 1),

                 new XeqC(in_y_x, 2)));

network.impose(new IfThen(  new XeqC(light_y, 1),

                 new XeqC(in_x_y, 2)));

196

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

it constructs the H set from the relation states for
the particular chosen objects.

Firstly, we use an integer coding system for
representing each unary object tuple, binary ob-
ject tuple, and so on, up to each n-ary tuple. The
following integer coding is one example of how
this can be accomplished. The greatest tuple ar-
ity (i.e. the n-ary tuples) required to express the
scenario is equal to the greatest relation arity;
in the above example the greatest relation arity
is 2. Thus, given a scenario with n objects, let
integers 0 to n − 1 represent each object. Next,
let integers n to 2n − 1 represent tuples (0, 0),
(0, 1), …, (0, n − 1), integers 2n + 1 to 3n − 1
represent tuples (1, 0), (1, 1), …, (1, n−1), and
so on; hence, n2 binary tuples are represented by
integers n to n + n2 − 1. The relationship between
the object identifiers and the tuple identifier is
(x+1)n + y (that is, the last tuple is represented
by the integer (n − 1 + 1)n + n − 1 = n + n2 − 1).

Secondly, for each allowable tuple of query
variables, create one CSP variable, with domains
of values representing every object tuple of the
appropriate arity. For example, if v=2 then six
variable tuples are required (see Box 3).

Impose the constraint that the variables are
not equal to ensure that they represent different
objects in each solution (see Box 4.)

Thirdly, encode the basic queries in terms of
H sets using the method from the previous section.
That is, for each tuple from a basic query of rela-
tion R, create a variable with a domain that rep-
resents the allowable tuple states AR, i.e. some
subset of {1,2,3,4} where integers 1,2,3,4 repre-
sent holds, does not hold, not applicable, and
indefinite, respectively. Do not encode the test
space refinement constraints.

Finally, link the scenario encoding to the basic
query encoding. For each relation, create an im-
plication constraint that associates the object tuple
selected by the query variables to the relation state

Box 2.

network.impose(new IfThen(  new XeqC(light_y, 1),

                 new XeqC(room_y, 2)));

Box 3.

Variable x = new Variable(store, “x”, 0, n-1)

Variable y = new Variable(store, “y”, 0, n-1)

Variable x_x = new Variable(store, “x_x”, n, n*n+n-1)

Variable x_y = new Variable(store, “x_y”, n, n*n+n-1)

Variable y_x = new Variable(store, “y_x”, n, n*n+n-1)

Variable y_y = new Variable(store, “y_y”, n, n*n+n-1)

Box 4.

store.impose(new Alldifferent(new Variable[]{x,y}));

store.impose(new Alldifferent(new Variable[]{x_x,x_y,y_x,y_y}));

197

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

in the H set. For example, encoding within+={(a,b),
(b,c)}, where a=0, b=1, c=2, d=3, (a,b)=5 and
(b,c)=10 requires the constraint shown in Box 5.

Note that further nested IfThenElse constraints
are required to also explicitly specify the not holds,
not applicable and indefinite states.

Execute the solver to get all solutions. The
class of a test is determined by the set of solu-
tions for the basic query encoding variables, and
the value of the object variables that satisfy those
basic queries. Once the designer knows the class
that each test is in (that is, the combination of H
sets from which objects are specified), they can
run the test coverage metrics presented in the
following section.

7.10. Activity 5: Test
Coverage Metrics

This section presents four test coverage metrics
based on H-complexity. To illustrate the test cov-
erage metrics we will use the following running
example. Let the domain being tested contain
one binary relation R that can take two states
AR={+,−}. Two query variables are allowed, v=2
and one variable quantification, q=1. The number
of query tuples is v↑aR=22=4, which are:

(x1,x1)∈R, (x1,x2)∈R, (x2,x1)∈R, and (x2,x2)∈R.

The number of basic queries is q ∏R∈R
(|AR|↑v↑aR)=1⋅24=16, which are:

b1={x1 | (x1,x1)∈R+ ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R+ ∧
(x2,x2)∈R+},

b2={x1 | (x1,x1)∈R+ ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R+ ∧
(x2,x2)∈R−},

b3={x1 | (x1,x1)∈R+ ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R− ∧
(x2,x2)∈R+},

…
b16={x1 | (x1,x1)∈R− ∧ (x1,x2)∈R− ∧ (x2,x1)∈R− ∧

(x2,x2)∈R−}.

The number of H sets is |H| = 2↑(q ∏R∈R
(|AR|↑v↑aR))=216. The number of scenario classes
is 2|H|=2↑(216). Let the example test set consist of
two tests with the following H sets:

•	 test t1: (b1, b2)
•	 test t2: (b1), (b2,b3).

Our four test coverage metrics, strictly ordered
in terms of coverage strength (from weakest to
strongest) are:

•	 tuple state coverage (TS),
•	 basic query coverage (BQ),
•	 H set coverage (H), and
•	 scenario coverage (S).

Tuple State (TS) coverage measures the num-
ber of query tuples that have taken a particular
state in at least one test. Full TS coverage means
that every query tuple has been assigned to every
allowable relation state in at least one test. This
should be viewed as an absolute minimum cov-
erage requirement that all QSTR application test
sets must satisfy. The total number of tuples with
states that a language admits is ∑R∈R |AR| ⋅ (v↑aR).
In the running example there are 4 query tuples,

Box 5.

store.impose(new IfThenElse(

  new Or(XeqC(x_y,5), XeqC(x_y,10)),  //- if variable matches a tuple

  new XeqC(within_x_y,1),         //- then H set relation state holds

  new XeqC(within_x_y,2)));       //- else relation state does not hold

198

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

and each tuple can take 2 states, giving 2⋅4=8
possible tuples with states, namely

(x1,x1)∈R+, (x1,x2)∈R+, (x2,x1)∈R+, (x2,x2)∈R+,

(x1,x1)∈R−, (x1,x2)∈R−, (x2,x1)∈R−, (x2,x2)∈R−.

The example test set contains the follow-
ing tuples (x1,x1)∈R+, (x1,x2)∈R+, (x2,x1)∈R+,
(x2,x2)∈R+, (x2,x1)∈R− , (x2,x2)∈R−. Hence percent
TS coverage is 5/8=62.5%.

Basic Query (BQ) coverage measures the
number of basic queries that have appeared in at
least one test. Full BQ coverage means that every
basic query has been used to describe some test
scenario. While stronger than full TS coverage, full
BQ coverage should also be viewed as a minimum
coverage requirement for application validation. In
the running example, the test set contains 3 basic
queries (b1, b2, b3), giving a percent BQ coverage
of 3/16=18.75%.

H set (H) coverage measures the number of
H sets that have been used to specify scenarios
in at least one test. In practice, full H coverage
is often very difficult to achieve, as it constitutes
a vast class of tests. Instead the designer should
focus on satisfying important subclasses within
full H coverage, discussed below. The running
example test set has 3 H sets, giving a percent H
coverage of 3/(216)≈0%.

Scenario (S) coverage measures the number
of scenario classes exercised in at least one test,
where a scenario class is some unique combina-
tion of H sets from which objects in the class of
scenarios are drawn. In practice, full S coverage
is impossible to achieve, except for trivially small
domains. However, after test space refinement
S coverage can be a useful measure. In the run-
ning example two scenario classes are exercised,
namely {(b1, b2)} and {(b1), (b2,b3)}. This gives a
percent S coverage of 2/(2↑216)≈0%.

Full BQ coverage is trivially easy to achieve,
for example full BQ coverage is satisfied by one
test where the scenario returns objects from all

16 basic queries. On the other hand, achieving
full H coverage is often difficult in practice, and
achieving full S coverage is, in almost all cases,
impossible. Our current research is focused on
identifying valuable classes within this test space
in terms of H and S coverage. For example, two
potentially significant H coverage criteria are

•	 all H sets that consist of exactly one basic
query, and

•	 all H sets that consist of exactly two basic
queries

The first class of tests will ensure that all
basic queries have been exercised in isolation
(giving full TS and BQ coverage). The second
class ensures that the interactions between all
pairs of basic queries have been exercised. Both
of these test classes are relatively small and often
practical to achieve. If the number of basic que-
ries is b then the test class sizes are b and b(b−1)
respectively, where the maximum size of b is (q
∏R∈R (|AR|↑v↑aR)).

8. FUTURE RESEARCH

Our long-term aim is to develop a QSTR ap-
plication development environment inspired by
Garp3 and other UML software tools. This will
be used for designing, validating and automati-
cally implementing the reasoning component of
a QSTR application, and will integrate software
tools that support the methodologies discussed in
this chapter. The workbench will allow the designer
to easily employ existing QSTR libraries such as
SparQ and GQR, structure their application by
declaring fragments and design patterns such as
fragment definitions derive high-level neighbour-
hoods, automatically generate tests from critical
test classes, and execute validation metrics such
as test coverage. Additionally, a suite of metrics
will be available that analyse an application based
on external test data, e.g. using classification

199

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

techniques on test data to analyse the quality of a
designer’s fragment definitions. Once a QSTR ap-
plication design has been finalised, our workbench
will generate a standalone implementation, such
as a jar file, that will accept a scenario description
and perform the required task, such as envisioning.

We are also planning to compile a library of
application contexts, such as a qualitative GIS
suite, an office environment suite, a sports field
suite, architectural lighting suite, and so on. Each
library component would consist of the relevant
existing QSTR calculi, along with other standard
high-level commonsense relations and rules.

9. CONCLUSION

A number of critical barriers to QSTR application
development must be addressed, namely that the
important characteristics of QSTR problems need
to be defined, QSTR application designers need
to develop task specific qualitative relations and
constraints, there are no methodologies for devel-
oping or analysing QSTR applications, and that
application designers will typically be software
engineers rather than logicians. In this chapter,
we address these problems with a collection of
methodologies that support the design and valida-
tion of QSTR applications.

We established a theoretical foundation for
QSTR applications, and used this to define the
roles of application designers and users, and to
identify three fundamental QSTR application
operations, selection, insertion, and scenario
universe modification.

We presented four central properties of QSTR
applications, specifically, reasoning across a broad
range of abstraction levels, continuity assump-
tion, modelling infinite domains, and reasoning
about objects in multi-dimensional models. Our
methodologies for QSTR application develop-
ment focused on supporting the designer in three
of these key areas.

We adapted two standard formal requirements
from software engineering for QSTR applications,
which were the customer’s operational require-
ments and functional requirements. We presented
critical characteristics of QSTR problems based
on our theoretical foundations of QSTR applica-
tions and a review of existing QSTR literature,
and showed how these characteristics determine
the customer’s operational profile. We enumer-
ated a set of significant purely qualitative tasks
that defines the exact extent to which QSTR can
be applied, and we established a template that
covers all general QSTR application behaviour
sequences in a UML state diagram.

QSTR applications are organised into groups
of relations, called fragments. We presented two
design patterns, fragment definitions, and frag-
ment generalisations, for structuring fragments.

We presented a methodology for defining
high-level neighbourhoods that are consistent
with the structure of fragments in a QSTR applica-
tion. For this, we defined two novel components
of conceptual neighbours, path restrictions and
transition equivalence classes, and showed how
the designer can use these to customise a derived
high-level neighbourhood graph.

Finally, we presented a novel methodology
for QSTR application validation, inspired by re-
search in software engineering and finite model
theory. We defined a complexity metric called H-
complexity, and developed test coverage metrics
for assessing the quality of unit and integration
test sets.

REFERENCES

Allen, J. F. (1983). Maintaining knowledge about
temporal intervals. Communications of the ACM,
26(11), 832–843. doi:10.1145/182.358434

200

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

Bhatt, M. (2007). A causal approach for modelling
spatial dynamics: A preliminary report. In Pro-
ceedings of the Workshop on Spatial and Temporal
Reasoning, 20th International Joint Conference
on Artificial Intelligence (IJCAI-07). IJCAI.

Bredeweg, B., Bouwer, A., Jellema, J., Bertels,
D., Linnebank, F., & Liem, J. (2007). Garp3: A
new workbench for qualitative reasoning and
modelling. In Proceedings of the 4th International
Conference on Knowledge Capture (K-CAP’07),
(pp. 183-184). K-CAP.

Burnstein, I. (2003). Practical software testing:
A process oriented approach. New York, NY:
Springer.

Cohn, A. (2008). Conceptual neighborhood. In
Shekhar, S., & Xiong, H. (Eds.), Encyclopedia of
GIS (p. 123). New York, NY: Springer Science.
doi:10.1007/978-0-387-35973-1_173

Cohn, A. G., & Renz, J. (2008). Qualitative spatial
representation and reasoning. In van Hermelen,
F., Lifschitz, V., & Porter, B. (Eds.), Handbook
of Knowledge Representation (pp. 551–596).
London, UK: Elsevier. doi:10.1016/S1574-
6526(07)03013-1

Cunningham, W. (1995). About the Portland form.
Retrieved on August 8, 2009, from http://c2.com/
ppr/about/portland.html.

Dylla, F., Frommberger, L., Wallgrün, J. O., &
Wolter, D. (2006). SparQ: A toolbox for qualitative
spatial representation and reasoning. In Proceed-
ings of the Workshop on Qualitative Constraint
Calculi: Application and Integration. Qualitative
Constraint Calculi.

Dylla, F., & Wallgrün, J. O. (2007). Qualitative
spatial reasoning with conceptual neighbor-
hoods for agent control. Journal of Intelligent
& Robotic Systems, 48(1), 55–78. doi:10.1007/
s10846-006-9099-4

Freksa, C. (1992). Temporal reasoning based
on semi-intervals. Artificial Intelligence, 54,
199–227. doi:10.1016/0004-3702(92)90090-K

Gantner, Z., Westphal, M., & Wölfl, S. (2008).
GQR-a fast reasoner for binary qualitative con-
straint calculi. In Proceedings of the AAAI’08
Workshop on Spatial and Temporal Reasoning
(pp. 24-29). Chicago, IL: AAAI.

Guesgen, H. W. (2002). Fuzzifying spatial rela-
tions. In Matsakis, P., & Sztandera, L. (Eds.),
Applying Soft Computing in Defining Spatial
Relations (pp. 1–16). Heidelberg, Germany:
Physica-Verlag.

Hodges, W. (1997). A shorter model theory.
Cambridge, UK: Cambridge University Press.

Iwasaki, Y. (1997). Real-world applications of
qualitative reasoning. IEEE Expert, 12(3), 16–21.
doi:10.1109/64.590068

Kuchcinski, K. (2003). Constraints-driven sched-
uling and resource assignment. ACM Transactions
on Design Automation of Electronic Systems, 8(3),
355–383. doi:10.1145/785411.785416

Li, J. J., Huang, J., & Renz, J. (2009). A divide-
and-conquer approach for solving interval algebra
networks. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI
2009), (pp. 572-577). Pasadena, CA: IJCAI.

Ligozat, G., Mitra, D., & Condotta, J. (2004).
Spatial and temporal reasoning: Beyond Allen’s
calculus. AI Communications, 17(4), 223–233.

Marker, D. (2002). Model theory: An introduction.
New York, NY: Springer Verlag.

Nebel, B., & Bürckert, H. J. (1995). Reasoning
about temporal relations: A maximal tractable
subclass of Allen’s interval algebra. Journal of the
ACM, 42(1), 43–66. doi:10.1145/200836.200848

Pooley, R. J. (2004). Applying UML advanced
application. Oxford, UK: Elsevier.

201

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

Qayyum, Z. U., & Cohn, A. G. (2007). Image
retrieval through qualitative representations over
semantic features. In Proceedings of the 18th
British Machine Vision Conference (BMVC2007),
(pp. 610-619). BMVC.

Renz, J. (1999). Maximal tractable fragments of
the region connection calculus: A complete analy-
sis. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI’99),
(pp. 448-455). Stockholm, Sweden: IJCAI.

Renz, J. (2007). Qualitative spatial and temporal
reasoning: Efficient algorithms for everyone. In
Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI-07), (pp.
526-531). Hyderabad, India: IJCAI.

Schultz, C., Amor, R., & Guesgen, H. W. (2009).
Unit testing for qualitative spatial and temporal
reasoning. In Proceedings of the 22nd Florida
Artificial Intelligence Research Society Confer-
ence (FLAIRS-22). Sanibel Island, FL: FLAIRS.

Schultz, C., Clephane, T. R., Guesgen, H. W., &
Amor, R. (2006). Utilisation of qualitative spatial
reasoning in geographic information systems. In
Proceedings of the International Symposium on
Spatial Data Handling (SDH-06), (pp. 27-42).
Vienna, Austria: SDH.

Schultz, C., Guesgen, H. W., & Amor, R. (2007).
A system for querying with qualitative distances in
networks. In Proceedings of the IEEE Internation-
al Conference on Fuzzy Systems (FUZZ-IEEE’07),
(pp. 640-645). London, UK: IEEE Press.

SETC. (1984). IEEE guide to software require-
ments specifications. New York, NY: IEEE
Computer Society.

Van de Weghe, N., Cohn, A. G., De Tré, G., & De
Maeyer, P. (2006). A qualitative trajectory calcu-
lus as a basis for representing moving objects in
geographical information systems. Control and
Cybernetics, 35(1), 97–119.

Westphal, M., & Wölfl, S. (2009). Qualitative
CSP, finite CSP, and SAT: Comparing methods
for qualitative constraint-based reasoning. In
Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence (IJCAI 2009),
(pp. 628-633). Pasadena, CA: IJCAI.

Wölfl, S., Mossakowski, T., & Schröder, L. (2007).
Qualitative constraint calculi: Heterogeneous
verification of composition tables. In Proceedings
of the 20th International Florida Artificial Intel-
ligence Research Society Conference (FLAIRS
2007), (pp. 665-670). AAAI Press.

Zhu, H., Hall, P. A. V., & May, J. H. R. (1997).
Software unit test coverage and adequacy.
ACM Computing Surveys, 29(4), 366–427.
doi:10.1145/267580.267590

KEY TERMS AND DEFINITIONS

Application Designer: Determines the QSTR
application language and model, given formal
software requirements.

Validation: Process conducted to ensure that
a software system is fit for purpose.

Complexity: A measure of the expressiveness
of a relational language; specifically, the number
of distinct scenarios that can be represented.

Requirements: The necessary properties of
the intended application for that application to
have value, such as characteristics of the domain
being modelled, the tasks that the intended sys-
tem needs to be capable of performing, and the
system’s behaviour during runtime.

Neighbourhood: A graph where vertices
represent relations are edges represent concep-
tual neighbours; two relations are conceptual
neighbours if it is possible for a tuple of objects
to transition between those relations without re-
quiring a third, intermediate relation.

202

Methodologies for Qualitative Spatial and Temporal Reasoning Application Design

Test Coverage: The proportion of a selected
class of software components exercised by a test
suite.

QSTR Applications: A class of relational
systems, typically characterised by modelling
a broad range of abstraction levels, modelling
continuity in dynamic scenarios, and modelling
infinite, partially ordered domains.

ENDNOTE

1 	 Here we have explicitly enumerated vari-
ables and constraints for clarity. In practice,
generator methods should be used that accept
a set of relation names, domains AR, and
the number of query variables v, and return
the set of variables. Convenience methods
should also be created that accept relation
names, parameter patterns, and a constraint
type, and impose the appropriate set of con-
straints (rather than explicit enumeration).

