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ABSTRACT

Although a wide range of sophisticated Qualitative Spatial and Temporal Reasoning (QSTR) formalisms 
have now been developed, there are relatively few applications that apply these commonsense meth-
ods. To address this problem, the authors of this chapter developed methodologies that support QSTR 
application design. They established a theoretical foundation for QSTR applications that includes the 
roles of application designers and users. The authors adapted formal software requirements that allow a 
designer to specify the customer’s operational requirements and the functional requirements of a QSTR 
application. The chapter presents design patterns for organising the components of QSTR applications, 
and a methodology for defining high-level neighbourhoods that are derived from the system structure. 
Finally, the authors develop a methodology for QSTR application validation by defining a complexity 
metric called H-complexity that is used in test coverage analysis for assessing the quality of unit and 
integration test sets.
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1. INTRODUCTION

Over the last two and a half decades researchers 
have made significant progress in the theoretical 
foundations and analysis of Qualitative Spatial 
and Temporal Reasoning (QSTR) calculi, and 
a range of commonsense formalisms have now 
been developed for representing and reasoning 
about different aspects of space and time (Cohn 
& Renz, 2008). Moreover, while many QSTR 
formalisms have been shown to be NP hard, 
maximal tractable subsets of well known calculi 
have been identified (Nebel & Bürckert, 1995; 
Renz, 1999) and automatic methods for finding 
tractable subsets have been developed (Renz, 
2007), thus informing a user about the classes of 
problems that are practical to solve. Techniques 
have also been developed that greatly improve 
reasoning performance (Westphal & Wölfl, 2009; 
Li, et al., 2009).

Despite this theoretically advanced state of the 
field, there is a distinct absence of applications 
that make significant use of QSTR formalisms. 
There are five critical barriers to QSTR application 
design that have not yet been addressed.

1. 	 QSTR researchers have not clearly identified 
the characteristics of the problems that can be 
uniquely addressed by QSTR applications.

2. 	 In many cases, no pre-existing QSTR for-
malism will perfectly and completely satisfy 
the requirements of an application. In most 
cases, the designer will need to formalise 
domain knowledge, and design complex, 
heterogeneous models that build on top of a 
mix of different existing QSTR formalisms.

3. 	 There is no methodology for developing 
QSTR applications, and even researchers in 
the field currently develop QSTR applica-
tions in a very ad hoc manner.

4. 	 There are no methodologies for analysing 
QSTR applications, and therefore no way 
to make informed design decisions. This 

contributes to the problem of ad hoc QSTR 
application development.

5. 	 Making QSTR accessible means having 
designers from outside the field applying 
QSTR, that is, the designers will not be 
experts in QSTR. Design methodologies de-
rived from concepts in software engineering 
are required to bridge the gap between expert 
QSTR logicians and application designers 
from other disciplines.

We address these issues in this chapter with 
specialised methodologies for QSTR application 
design, motivated by research in software engi-
neering, knowledge representation, artificial intel-
ligence, and finite model theory. Section 2 reviews 
unifying frameworks and development tools in 
related areas and establishes a theoretical founda-
tion for QSTR applications. Section 3 identifies 
the salient characteristics of QSTR applications 
that are the focus of our design methodologies. 
Section 4 characterises the problems that QSTR 
applications address and enumerates the tasks that 
they can perform, by adapting formal software 
requirements from software engineering. Sec-
tion 5 presents design patterns for organising the 
components of QSTR applications, and Section 
6 presents a methodology for defining high level 
neighbourhoods that are derived from the system 
structure. Section 7 presents a methodology that 
supports designers in QSTR application validation 
by identifying important classes for unit testing 
and integration testing based on a novel measure 
of complexity. Sections 8 and 9 present the future 
work and conclusions of this chapter.

2. BACKGROUND

A number of unifying QSTR frameworks are 
now being developed in order to make the field 
more cohesive and accessible. Three prominent 
projects are SparQ (Dylla, 2006), GQR (Gantner, 
2008), and an investigation into formal algebraic 
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properties (Ligozat, 2004). Although developing 
a library of efficient and robust implementations 
of QSTR calculi is a necessary step in making 
these formalisms more accessible, this does not 
directly address the five key problems given in 
the introduction.

Researchers in the related field of Qualitative 
Reasoning (QR) have developed a workbench soft-
ware application called Garp3 (Bredeweg, 2007) 
to support the process of designing and reasoning 
with qualitative models. Note that QR is distinct 
from QSTR as it is primarily concerned with 
treating scalar quantities in a qualitative discrete 
way, rather than directly modelling commonsense 
spatial and temporal relationships. Garp3 is an 
integrated development environment for design-
ing and reasoning about qualitative models of 
physical systems. The motivation for Garp3 is 
identical to the problems that the QSTR field cur-
rently encounters, namely that wider audiences 
can be reluctant to employ the advanced methods 
for modelling qualitative physics that have been 
developed (although this problem does not appear 
to be as significant as with QSTR, for example 
[Iwasaki, 1997]). The central aim of Garp3 is to 
overcome this inertia by supporting modellers in 
specifying and reasoning about qualitative models 
in a graphically based, user-friendly, homogeneous 
workbench. A QSTR equivalent to Garp3 would 
be highly desirable.

In the field of software engineering, the well 
known Unified Modelling Language (UML) 
is used to specify and visualise object oriented 
software systems (Pooley, 2004). UML is par-
ticularly relevant because it is well known within 
the software engineering community, and thus 
by adapting UML concepts (such as use cases 
and object classes) we can help to bridge the gap 
between software engineers and QSTR logicians.

According to standard software engineering 
practices, formal software requirements are nec-
essary for software development and validation 
(Burnstein, 2003). Defining equivalent formal 

requirements for QSTR applications may also be 
necessary for the development of powerful QSTR 
based applications. Five standard requirements 
categories are operational requirements, functional 
requirements, performance requirements, design 
requirements, and allocated requirements (SETC, 
1984). In Section 4, we adapt two of these require-
ments, namely customer’s operational require-
ments and functional requirements, to the QSTR 
application domain. We also provide methodolo-
gies adapted from UML to support the designer 
in specifying QSTR application requirements.

2.1. Definition of QSTR Applications

Informally, QSTR applications model, infer, and 
check the consistency of object relations in a sce-
nario. We will define QSTR applications in terms 
of model theory (Marker, 2002; Hodges, 1997) 
and then define the roles of QSTR application 
designers and users.

We use the notation ↑ to represent the exponent 
operator, x↑y=xy. In model theoretic terms, a lan-
guage L (or vocabulary, or signature) is a finite 
set of relation symbols R and arities aR for each 
R∈R. A model M of language L (or L-structure, 
or interpretation) consists of a universe U (or 
domain, or underlying set) and for each relation 
symbol R∈R there is a set RM ⊆ U ↑aR. That is, 
M provides a concrete interpretation of the sym-
bols in L based on the underlying set U. Finally, 
a scenario (or configuration, or substructure) is 
a model V that can be embedded into M, that is, 
an injective homomorphism f:V→U exists such 
that, for each R∈R with arity a,

∀ v1, …, va ∈ Va ⋅ (v1, …, va) ∈ RV ↔
 (f(v1), …, f(va)) ∈ RM.

A QSTR application has a language L that 
specifies the set of relation symbols that the de-
signer has deemed relevant to the task at hand. The 
model M of a QSTR application is the interpreta-
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tion of the relations, implemented using first order 
constraints between the relations (what objects 
must, or must not, exist in different combinations 
of relations). For each relation type R∈R with arity 
aR, and for each tuple of arity aR, the relation either 
holds, does not hold, or is not applicable for that 
tuple. Thus, for each relation symbol R∈R in the 
language, a QSTR application model M requires 
three sets, RM

+ (holds), RM
− (does not hold) and 

RM
~ (not applicable), with the axiom:

Axiom 1. ∀ R∈R ⋅ U ↑aR = RM
+ Δ RM

− Δ RM
~,

where Δ is symmetric difference (the set theoretic 
equivalent of mutual exclusion). For brevity we 
will omit the M and simply write R+.

A QSTR application designer is responsible for 
determining the application language and model, 
given formal software requirements. This involves 
selecting an appropriate set of relation symbols 
and encoding an appropriate set of constraints. 
Appropriateness means satisfying specific test 
criteria and conditions on metrics that imply 
that the software requirements have been met. A 
QSTR application user constructs scenarios in a 
QSTR application by specifying a model V and 
employing reasoning to accomplish tasks such 
as determining scenario consistency with respect 
to the model M, envisioning potential future sce-

narios, and so on (a complete set of basic QSTR 
application task types with respect to this model 
of QSTR applications is presented in Section 4). 
Table 1 summarises the relationship between 
model theory, QSTR applications, and actor roles.

Often parts of the user’s scenario are indefinite 
or unknown, and reasoning with the application 
constraints is used to help resolve this ambiguity. 
For each relation R∈R, the user can place tuples 
(of objects from V) with arity aR in a fourth in-
definite set, RM

? that is mutually exclusive with 
the three corresponding definite sets. This partial 
scenario is a shorthand for specifying a set of 
models V1,…, Vn each representing a possible 
scenario.

An example of a scenario is:

•	 V={kitchen, lounge, study},
•	 adjacent+ ={(lounge, study), (lounge, 

kitchen)},
•	 adjacent? ={(lounge, lounge), (study, 

lounge), …},
•	 adjacent− ={},
•	 adjacent~ ={}.

The adjacent relation can be defined as sym-
metric using the constraint {(x,y) | (y,x) ∈ adja-
cent+} ⊂ adjacent+. The LHS of the constraint 
as evaluated in the scenario is {(study,lounge), 
(kitchen,lounge)}. The RHS as evaluated in the 

Table 1. Comparing the domains of model theory, QSTR applications, and the roles of QSTR applica-
tion designers and users 
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scenario does not contain these tuples as required 
by the proper subset relation, and so reasoning 
moves the offending tuples out of adjacent? and 
into adjacent+ thus satisfying symmetry.

2.2. Fundamental Operations 
on QSTR Scenarios

In this section, we use our model theoretic defini-
tions to derive the complete set of fundamental 
operations that can be performed on a QSTR ap-
plication model. In Section 4 we combine these 
operations to enumerate a set of basic purely 
qualitative tasks, and show how the application 
designer can use this information to determine 
their software requirements, and to develop their 
QSTR application.

Given a partial scenario, what operations can 
be performed on the model theoretic structure? 
The features involved are language symbols, con-
straints, the scenario universe, and the collection 
of sets that interpret the relation symbols. The 
relation symbols and constraints are determined 
at QSTR application design time and so are fixed 
when reasoning about scenarios. Once a partial 
scenario has been specified, either the user has 

declared all the relevant objects, and thus the set 
is also fixed, or objects may appear and disap-
pear from the set (e.g. in dynamic scenarios). 
Thus, the only component that is variable in all 
scenarios is the set of interpreting models, that is, 
which models are included and which models are 
excluded from the partial scenario (although the 
models themselves are immutable). Furthermore, 
in some applications the set of objects may also 
be variable. This leaves only three fundamental 
operations that can be performed on a qualitative 
(partial) scenario:

•	 selecting subsets of tuples in the partial 
scenario,

•	 refining the partial scenario by eliminating 
particular complete scenarios, and

•	 editing the set of objects in the scenario.

Therefore, all QSTR application tasks can 
be defined as a series of tuple selections, partial 
scenario refinements and scenario universe edits. 
Table 2 illustrates a comparison between actor 
roles, variable components, and permitted opera-
tions on QSTR scenarios.

Table 2. Defines permitted fundamental operations on QSTR scenarios based on the combination of 
components that are variable. The left hand column assigns actor roles to variables available. Variables 
are represented by v, constants by c, non-applicable components by n/a, available operations by ✓, 
and unavailable operations by . Partial scenario models distinguish between definite relations where 
α={+,−,~}, and indefinite relations. 
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3. CHARACTERISTICS OF QSTR 
APPLICATIONS

This section presents four central properties of 
QSTR applications. We argue that methodolo-
gies for the development of QSTR applications 
must focus on supporting the designer in these 
four areas.

3.1. Reasoning across a Broad 
Range of Abstraction Levels

QSTR applications often employ a broad range of 
abstraction levels in the same model. For example, 
a QSTR application can model very abstract high-
level emotional responses and very low-level 
concrete spatial configurations of light fixtures, 
compared to a numerical GIS database that simply 
stores numerical descriptions of features (points 
and lines describing a polygon for a region). QSTR 
application designers require special techniques 
for rapidly designing and validating models that 
have a very layered and hierarchical structure. 
Section 5 presents the concept of fragments and 
two design patterns for organising QSTR applica-
tion relations.

3.2. Continuity Assumption 
and Neighbourhoods for 
Changing Scenarios

QSTR relies heavily on the concept of continuity, 
stating that temporal and spatial objects cannot 
morph and translate discontinuously, but must 
change in a continuous fashion. A fundamental 
relationship exists between continuity and com-
positional reasoning (the prominent reasoning 
mechanism for standard QSTR calculi), and is 
used directly in critical QSTR tasks such as en-
visioning. Continuity is formally defined using 
conceptual neighbours and neighbourhood graphs 
(Freksa, 1992).

The standard definition of conceptual neigh-
bours is (Cohn, 2008) R1 and R2 are conceptual 

neighbours if it is possible for R1 to hold over a 
tuple of objects at one point in time, and for R2 to 
hold over the tuple at a later time, with no other 
mutually exclusive relation holding over the tuple 
in between. A neighbourhood graph has one node 
for each relation R∈R and an edge between two 
nodes if the corresponding relations are neigh-
bours. Section 6 generalises the definition of 
conceptual neighbours to apply to QSTR applica-
tions, and presents a methodology for designers to 
customise their conceptual neighbour definitions.

3.3. Modelling Infinite Domains

QSTR application models typically have infinite 
domains, in contrast to, for example, relational 
database models and Constraint Satisfaction 
Programming (CSP) models which typically 
have finite domains (Cohn & Renz, 2008). This 
significantly complicates the process of validating 
a specific QSTR calculi’s reasoning mechanism 
so that even expert logicians find this to be a non-
trivial task (Wölfl, et al., 2007).

When considering the perspective of QSTR 
applications, two further problems are that QSTR 
applications are significantly more complicated 
than a given calculi, and the application designers 
are not necessarily expert logicians. Thus, more 
practical software engineering based approaches 
to validating constraints over infinite domains are 
required for QSTR applications. Section 7 presents 
novel test coverage metrics for QSTR application 
validation by adapting complexity measures and 
techniques from finite model theory.

3.4. Reasoning about Objects 
in Multi-Dimensional Models

QSTR applications very often model multi-
dimensional structures. Prominent tasks that use 
qualitative reasoning, particularly composition, 
apply transitivity to determine whether a scenario 
is consistent, and thus rely on relations having 
an ordering. In QR relations map to scalar one 
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dimensional quantities, and thus have an obvious 
total order. On the other hand, spatial scenarios 
often apply at least two dimensions, thus admit-
ting only partial orderings. Temporal scenarios 
can also apply multiple dimensions in the form 
of branching and parallel time streams, resulting 
in a partial ordering of events.

Multi-dimensional models significantly com-
plicate the design of qualitative reasoning methods, 
as the designer needs to determine the structure 
of the partial ordering to employ transitivity. This 
issue is the focus of future research.

4. FORMAL SOFTWARE 
REQUIREMENTS FOR 
QSTR APPLICATIONS

In this section, we adapt two standard formal 
requirements from software engineering, namely 
customer’s operational requirements and function-
al requirements, to the QSTR application domain.

4.1. Customer’s Operational 
Requirements

Customer’s operational requirements define the 
essential needs of the customer (SETC, 1984). 
In particular, operational requirements specify:

•	 the context of deployment,
•	 the typical environment in which the ap-

plication must function correctly,
•	 how the application will address the cur-

rent problem (mission profile),
•	 the critical aspects of the application,
•	 how the application will be used,
•	 the application’s minimum allowable effi-

ciency required to solve the problem, and
•	 the operational life cycle.

We now define critical characteristics of QSTR 
problems, and show how these characteristics 
determine the customer’s operational profile. By 
considering how each of these characteristics relate 
to the problem at hand, the designer can formalise 
the requirements of the application. Figure 1 il-
lustrates an appropriate sequence for considering 
some of the application characteristics based on 
their dependencies. The collection of character-
istics presented below has been developed from 
an analysis of the formal definitions of QSTR ap-
plications, for example to determine what aspects 
of a model can vary between applications, such 
as initial or ongoing dependency, and a review 
of QSTR literature, for example to determine the 
different environments for which researchers have 
developed calculi.

Model dependency: the duration of depen-
dency on the working model during the problem 

Figure 1. QSTR problem characteristics, ordered according to the dependencies between characteristics
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solving process. A problem may only have initial 
dependency, where all the information required 
for processing is initially available, for example, 
checking the qualitative consistency of an existing 
spatial database. Alternatively, other problems 
require information that is not initially available 
and thus the dependency on the working model 
is ongoing, for example, checking the consis-
tency of a spatial database whenever modifications 
are made.

Task categories: QSTR tasks fall into two basic 
categories, either querying the model or develop-
ing the model. Further task details are specified 
in the functional requirements.

Model lifetime: the state of the application’s 
working model over its lifetime. Once initialised 
the working model may never change, for example, 
bootstrapping a robot with a qualitative description 
of an environment on which the robot runs qualita-
tive queries for accomplishing navigation tasks. 
Alternatively, the working model may change, 
for example, if a robot performs simultaneous 
qualitative location and mapping.

Model change: models either change mono-
tonically or non-monotonically.

Model stability: the frequency of changes that 
occur to a model. Models are either stable and 
changes occur rarely, or volatile and changes 
occur frequently.

Element relationships: elements in a model can 
have simple relationships, with only superficial or 
limited interaction, for example, a GIS application 
that describes the qualitative spatial relationships 
between arbitrary features in terms of orientation 
and proximity. Alternatively, model elements 
can have complex relationships, with a lot of 
significant interaction and strong dependencies, 
for example, a town planning GIS application that 
incorporates a high degree of semantic content 
about the types of buildings being modelled, and 
constraints between buildings such as ensuring 
all residences are suitably accessible from some 
fire station.

Spatial Granularity: the spatial context of the 
application model primarily defined by the scale. 
Basic categories of environments for which exist-
ing QSTR calculi have been designed to reason 
about, ranging from smallest to largest, are: hand 
(e.g. inside a pencil case), desktop, indoor, outdoor 
(e.g. a sports field), neighbourhood, geographical, 
and astronomical.

Spatial Dimensionality: the number of dimen-
sions used to model spatial relationships, typically 
a combination of one, two, or three dimensions, 
and may also model arbitrary dimensions.

Spatial and Temporal Entities: the context of 
the application model in terms the entities being 
modelled. This includes time points, time inter-
vals, spatial points, spatial intervals (directed or 
undirected), and spatial regions.

While this set of characteristics is likely to 
be incomplete, it establishes a methodology for 
specifying the customer requirements of a QSTR 
application. Future research will focus on expand-
ing the list of characteristics, and determining 
which characteristics are the most significant.

4.2. Functional Requirements

Functional requirements define what tasks the 
system needs to be capable of performing, and 
how the system will behave during execution 
(SETC, 1984). These requirements are specified 
as the inputs, behaviours, and outputs of system 
components. In this section, we enumerate the 
basic set of purely qualitative tasks that includes 
tasks commonly found in the QSTR literature. 
The set of basic QSTR tasks are derived by con-
sidering all possible sequences of operations that 
can be performed on the application parameters, 
namely the set of relations, constraints, and the 
universe. Therefore, this derivation defines the 
exact extent to which QSTR can be applied, and 
thus provides a standard with which a software 
developer can determine, firstly, whether or not 
QSTR is applicable to their problem, and secondly, 
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what specific qualitative tasks may be suitable 
for their problem.

4.2.1. Deriving Standard QSTR Tasks 
Using Fundamental Operations

We define a task as a sequence of operations on 
a mathematical structure. The set of basic QSTR 
tasks is established by considering sequences of 
operations that can be performed on the parameters 
of a scenario in a QSTR application.

As presented in Section 2.1, an application has 
a set of relations R and constraints C. A scenario 
consists of a universe V and a set of relation state 
sets R. As presented in Section 2.2, the funda-
mental operations that can be applied to scenarios 
are selection, refinement and editing the scenario 
universe (adding or removing objects). The select 
operator can only be performed on application 
parameters, i.e. R, C, and V. During application 
runtime the only variables are V and the relation 
state sets. This limits the number of task catego-

Table 3. Tasks that can be performed on a scenario with respect to the underlying parameters. In the 
state diagram, states are black circles, tasks (composed of states) are ovals with a task label, terminat-
ing states are double-lined circles, arrows are state transitions annotated with QSTR operations, and 
the arrow with no source state is the task entry point. 
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ries that can be performed, which will now be 
enumerated. Table 3 presents a summary of the 
basic tasks and their associated model parameters.

The most basic task is to simply execute a 
selection operation. Querying is used to isolate 
relevant subsets of a model. For example, in 
Qayyum and Cohn (2007), the authors use a 
qualitative description of images (adapted from 
Allen’s interval calculus) to provide a method for 
searching through an image database based on 
semantic content. TreeSap (Schultz, et al., 2007) 
is a geographic information system that accepts 
qualitative queries such as “find all bus stops near 
Downtown” and displays objects that meet the 
given criteria.

In many cases, a QSTR application user may 
not have complete information about the criteria of 
the query that they want to execute, for example, a 
robot reasoning with noisy sensor readings (Dylla 
& Wallgrün, 2007). It may be the case that certain 
conditions are more flexible than others, and 
moreover, if a user executes a query that returns 
no results, then it would be highly desirable for 
the user to be able to relax the conditions of their 
query in an intuitive way (Schultz, et al., 2006; 
Guesgen, 2002). Query relaxation accepts rela-
tions that are within a threshold neighbourhood 
distance of the given target relation through graph 
G. Because selection is a fundamental operation, 
all QSTR tasks can be relaxed using this approach, 
such as relaxed consistency checking and relaxed 
inference. Conceptual neighbourhoods provide 
an ideal mechanism for query relaxation because 
they encode the structure of relations based on 
continuous change. Thus, relations that are physi-
cally similar will have a smaller distance through 
the neighbourhood graph.

The next basic task is applying refinement and 
universe edits. Modify changes a partial scenario 
by either eliminating possible scenarios (refine-
ment) or by adding or removing objects from the 
universe (universe edit).

The next task builds on the previous querying 
task by testing conditions on the returned subsets, 

for example to check the consistency of a sce-
nario with respect to the application constraints. 
Consistency checking ensures that the model 
does not break any application constraints. The 
model is contradictory if an inconsistent subset 
(with respect to some application constraint) 
contains definite tuples, or if an indefinite subset 
still violates the constraint regardless of how the 
indefiniteness is resolved.

The next basic task is to execute a check con-
sistency task and then refine the model based on 
the condition results. Inference accepts a partial 
qualitative description of a model as premise in-
formation and infers as much about the indefinite 
components of the model as possible (typically 
by composing relations to approximate path-
consistency), i.e. deductive closure. Inference 
typically applies the check consistency and modify 
tasks to identify and eliminate inconsistent pos-
sible scenarios from a partial scenario description, 
that is, moving tuples out of indefinite relations 
R? and into definite relations.

These basic tasks are very general and can be 
employed in any QSTR application. The follow-
ing sections build on these basic tasks by formally 
characterising more specialised QSTR tasks for 
models that contain two or more scenarios. In 
these cases, reasoning is applied to the relation-
ship between partial scenarios in a group, and 
the type of ordering between scenarios is critical 
for determining the tasks that can be performed.

4.2.2. Deriving QSTR Tasks 
for Multiple Scenarios

Given two or more scenarios, we can formally 
characterise a number of QSTR tasks. Sequences 
of scenarios representing change can refer to a 
change in space (e.g. zooming into a map and 
increasing the resolution) or a change in time (e.g. 
modelling a car travelling down a road). Tasks that 
specifically apply to sequences of scenarios are 
envisioning, diagnosis, and checking consistency. 
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Two general multi-scenario tasks are merging 
scenarios and splitting scenarios.

Checking the consistency of a sequence of 
scenarios is determining whether the sequence is 
valid with respect to neighbourhood graphs. That 
is, for each tuple that has a relation state change in 
R1 from does not hold to holds, there is a relation 
R2 that holds in the previous scenario state, and 
an edge from R2 to R1 in a neighbourhood graph.

Envisioning is the generation of potential 
successor scenarios based on the conceptual 
neighbourhood graph. Envisioning is with respect 
to either (a) time, by forecasting into the future, 
or (b) space, by increasing the resolution of the 
model. Given a scenario, envisioning to depth 
n is the set of consistent sequences of length n.

Refined envisioning selects a subset of the set 
of consistent sequences. For example, contextual 
information can be used to determine the most 
likely sequence of scenarios. Refined envisioning 
makes it possible to generate scenarios that are a 
greater number of steps away from the initial sce-
nario. Contextual information includes conditional 
probabilities with respect to the current scenario 
state (e.g. a cup is very likely to fall if it is not on 
top of some other object like a table), conditional 
probabilities with respect to previous scenario 
states (e.g. trajectories), and domain knowledge 
about the movement patterns and behaviour of 
specific objects (e.g. in a predator-prey scenario 
it is more likely that a predator will follow prey, 
rather than simply follow a trajectory [Van de 
Weghe, 2006]).

Diagnosis is the inverse of envisioning by 
generating potential predecessor scenarios based 
on the conceptual neighbourhood graph. Simi-
larly, refined diagnosis is the inverse of refined 
envisioning (Bhatt, 2007).

Completing sequences accepts an incomplete 
sequence of scenarios (i.e. a sequence that has 
gaps where some scenarios are missing) and ap-
plies a combination of envisioning and diagnosis 
to determine potential scenarios that can complete 
the sequence consistently.

Merging is the union of two scenarios and is 
applied when the mapping of objects between 
two scenarios is not known. The key challenge 
is to identify and pair off objects that appear in 
both scenarios by applying matching criteria with 
respect to qualitative relation states and the relative 
perspectives of the agents involved. This task can 
be useful for combining multiple perspectives of 
the same scenario, for example, from a number 
of different autonomous agents. Changing space 
and time can also be parameters as follows:

1. 	 Merging snapshots of a dynamic scene. For 
example, a robot attempting to label dynamic 
objects across a sequence of sensor readings 
by referring to conceptual neighbourhoods to 
decide what sequence of qualitative relations 
is more likely to belong to a single object, 
such as correctly labeling which object is the 
‘coffee cup’ and which object is the ‘spoon’ 
in each scenario snapshot.

2. 	 Merging snapshots of a scene taken at differ-
ent granularities. For example, combining 
satellite images taken at different heights, 
such as correctly labelling which object is the 
‘mountain’ and which object is the ‘house’ 
in each scenario snapshot.

Splitting is the inverse of merging, where a 
scenario is divided into two possibly overlapping 
scenarios. Splitting can be used, for example, 
where agents do not need to maintain global 
information about a scenario and instead can ef-
ficiently specialise in certain parts of a scenario.

4.2.3. Characterising QSTR 
Application Execution Behaviour

In this section, we establish a template for the 
behaviour of QSTR applications based on the 
purely qualitative tasks from Section 4.2.1. 
Software developers can use this to characterise 
their application by explicitly incorporating task 
requirements into its behaviour.
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Figure 2 (left) illustrates the statechart diagram 
describing the generic behaviour of QSTR applica-
tions during execution, derived from the tasks in 
Table 3. States represent how the application is 
manipulating the model. During the model devel-
opment state, inference tasks refine the model and 
edit scenario universes. During the model query-
ing state, querying and check consistency tasks 
isolate and compare relevant parts of the model. 
Model changed occurs when an agent external to 
the reasoning process modifies the model, such 
as a user updating geographical data, or a sensor 
delivering new information. Figure 2 (right) shows 
the underlying low-level model operations that 
are performed in each state.

This template represents all possible QSTR 
application behaviour patterns, and all possible 
QSTR tasks are definable as a sequence of fun-
damental operations. The significance is that, if 
the designer requires a task that is not a sequence 
of the fundamental QSTR operations then no 

QSTR application will be able to satisfy the de-
signer’s software requirements.

5. STRUCTURING QSTR 
APPLICATIONS

Certain relations in QSTR application models can 
often be grouped together, because they refer to a 
similar aspect of a domain at the same abstraction 
level. Moreover, relations within a group often 
share a constraint such as mutual exclusivity, 
symmetry, having inverse pairs, and so on. To 
help manage the various abstraction levels being 
modelled and to speed up the design process, the 
application designer requires a methodology, 
analogous to design patterns, for grouping and 
organising the relations and expressing constraints 
over these groups.

In the area of Qualitative Reasoning (QR) about 
physical systems the term model fragment refers 

Figure 2. QSTR application behaviour during the execution of a software application. (left) Statechart 
diagram of an executing QSTR application where circles represent states, arrows represent possible 
state transitions, and the arrow annotations describe the effect of the transition on the QSTR system. 
(right) Substitution of low-level state diagrams from Table 3 specifying fundamental model operations 
(arrows without annotation indicate that a sub-task has been completed).
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to modular, partial models composed of different 
components, and can be reused and extended in 
other models (Iwasaki, 1997). The concept of a 
qualitative reasoning fragment is very appropriate 
for representing groups of QSTR relations, and 
will now be adapted to QSTR applications.

In QSTR applications, a fragment is simply a 
group of relations and their constraints. For ex-
ample, Allen’s (1983) thirteen interval relations 
and their constraints (mutual exclusivity and the 
operators for inversion and composition) form 
a fragment that can be reused in QSTR applica-
tions. Relations within fragments often share 
properties. The designer can specify constraints 
so that they apply to all relations in a fragment, 
rather than explicitly enumerating the constraints 
for each combination of relations. The following 
sections present two design patterns for structur-
ing fragments, fragment definitions, and fragment 
specialisations. Note that we follow the Portland 
Form design pattern format (Cunningham, 1995): 
<problem description (paragraph text)> Therefore: 
<solution description (paragraph text)> <solution 
examples>.

5.1. Design Pattern: 
Fragment Definitions

Relations in one fragment can be tightly associated 
to relations in a collection of other fragments be-
cause they refer to the same concept in the domain, 
but at different levels of abstraction. The designer 
might notice that each higher level concept is 
composed of collections of lower level concepts. 
That is, the lower level relations represent prop-
erties or attributes, and specific combinations of 
these properties realise some particular higher 
level concepts.

Therefore:
Designate the higher-level fragment as the 

abstraction domain, and the lower level fragment 
as the reference domain. For each abstraction 
domain relation, select a subset of reference do-
main relations that together describe or define the 

higher level relation; this subset is a definition of 
the higher level relation.

Firstly, note that there can be more than one 
definition for each higher-level concept. Secondly, 
each subset should be a minimal subset, that is, 
if any of the lower level relations are removed 
from the definition then the subset no longer ac-
curately describes the higher-level concept. This 
encourages the designer to create multiple precise 
definitions that can overlap, rather than a smaller 
number of fuzzy definitions.

For each definition, specify a constraint of 
the form:

<conjunction of reference domain relations 
in the definition>

is an improper subset of
<the higher level relation>.
For example, a mountain image is an image 

with more mountains than sky, and more sky 
than grass. To express this, the designer can 
define two fragments, one for qualitative image 
categories, including the relation mountain, and 
another for qualitative differences in features of 
an image, including “mountain > sky” and “sky 
> grass”. The conjunction between fragments is 
then implemented with the constraint

{x|x∈”mountain>sky”+ ∧ x∈”sky>grass”+}⊆
{y|y∈mountain+}.

5.2. Design Pattern: 
Fragment Specialisation

Relations in one fragment can be tightly associated 
to relations in exactly one other fragment because, 
again, they refer to the same aspect of the domain, 
but at different levels of abstraction. The designer 
may notice that the difference between two frag-
ments is an issue of granularity, so that relations 
in one fragment are a coarse, incomplete, ambigu-
ous, or generalised representation of relations in 
another, more fine grained fragment.

Therefore:
Designate the higher-level fragment as the ab-

straction domain, and the lower-level fragment as 
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the reference domain. For each abstraction domain 
relation, select a subset of reference domain rela-
tions that individually represent the same concept 
as the abstraction domain relation, but to a more 
precise degree; this subset is a specialisation.

Firstly, there is always exactly one specialisa-
tion subset for each higher-level relation. Secondly, 
two specialisations for two different high-level 
relations can overlap. Thirdly, each subset should 
be a maximal subset, that is, if any lower-level 
relations are not included in the subset then in 
no way do they refine the higher-level relation. 
This ensures that a specialisation represents all 
possible refinements of a high-level concept, and 
tends to prevent the designer ruling out potential, 
albeit improbable, refinements, which would 
compromise reasoning soundness. Following this 
strategy, a designer can clearly identify when a 
high-level relation is too coarse or general (i.e. 
the specialisation subset is too large), and may 
decide to either partition the overly general rela-
tion into different relations within the abstraction 
domain, or introduce an entirely new intermediate 
abstraction layer fragment.

For each specialisation, specify a constraint 
of the form:

<disjunction of reference domain relations in 
the specialisation>

is an improper subset of
<the higher level relation>.
For example, consider the incomplete temporal 

information that “Mozart is older than Beethoven.” 
In Freka’s semi-interval calculus (Freksa, 1992), 
a time interval t1 is older than time interval t2 if 
t1 started before t2. This semi-interval knowledge 
says nothing about the relationship between 
the endings of the two time intervals. Thus, the 
high-level semi-interval relation older than can 
potentially be refined to one of the following in-
terval relations: before, meets, overlaps, finished 
by, or contains. The disjunction of relations is 
implemented with the constraint

{(t1,t2)|(t1,t2)∈before+∨…∨(t1,t2)∈contains+}
⊆{(u1,u2)|(u1,u2)∈older than+}.

6. DESIGNING NEIGHBOURHOODS 
OVER FRAGMENTS

In Section 3, we discussed how continuity about 
spatial and temporal change is a standard assump-
tion in QSTR, leading to conceptual neighbours. 
Cohn’s definition of conceptual neighbours is that 
“...[a] pair of relations R1 and R2 are conceptual 
neighbors if it is possible for R1 to hold at a certain 
time, and R2 to hold later, with no third relation 
holding in between” (Cohn, 2008).

Ideally, the designer would want their expected 
neighbourhood for relations in a higher-level ab-
straction domain fragment to be consistent with 
the neighbourhood of relations in the associated 
reference domain fragment. Alternatively, the 
designer should be able to derive neighbourhoods 
for a group of relations if no other neighbour 
information is available. However, a number of 
issues arise when considering neighbourhoods 
that are derived from the relationship between 
fragments. For example, in many cases standard 
neighbour definitions permit all high-level con-
cepts to be neighbours, producing an ineffective 
neighbourhood graph.

This section presents a methodology for defin-
ing high-level neighbourhoods that are consistent 
with the structure of fragments in a QSTR applica-
tion. We define conceptual neighbours in terms of 
fragment constraints, and focus neighbour tests by 
applying two novel aspects of conceptual neigh-
bours: path restrictions and equivalence classes. 
Once the designer has decided on an appropriate 
definition of a neighbour, then a neighbourhood 
graph can be generated.

6.1. An Illustrative Running Example

The following running example will be used to 
explain the problems with the standard neighbour-
hood definition when applied to fragments, and the 
novel neighbourhood definitions that overcome 
these limitations. Figure 3 illustrates a reference 
domain fragment f2 that includes eight mutually 
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exclusive relations R1,…R8 and six mutually ex-
clusive relations R’1,…,R’6 each having a simple 
totally ordered conceptual neighbourhood. Each 
vertex in the grid illustrated in Figure 3 (right) 
represents a valid conjunction of relations in f2, 
called the fragment definition space. An abstrac-
tion domain fragment f1 includes three relations 
Rx, Ry, Rz (black, striped, grey, respectively, in 
Figure 3), and each of these relations has a set 
of fragment definitions in f2, shown by the filled 
vertices in the grid.

6.2. Defining Conceptual Neighbours 
as Transitions between Low-Level 
Relations

Conceptual neighbours are derived from fragment 
definitions by defining transitions. First, transition 
via the neighbourhood graph is defined. Given 
two relations Ri, Rj from a fragment, a transition 
via the neighbourhood graph g, written Δg(Ri, Rj), 
is a sequence of relations that is a path in g, from 
Ri to Rj. Note that there may be more than one 
path, and that paths can contain cycles.

Next, transitions via fragment definitions is 
defined. Let a fragment definition of relation R, 
written σc(R) where c is the constraint that imple-
ments the definition as described in Section 5.1, be 

a subset of relations from the reference domain that 
appear in the constraint. Transitioning between two 
high-level relations (from the abstraction domain 
fragment) is a sequence of fragment definitions, 
where adjacent fragment definitions differ by an 
incremental change, i.e. they differ by exactly one 
pair of adjacent lower level relations according to 
the low level neighbourhood graph g.

For example, consider the fragment definitions 
space in Figure 3. One transition from the frag-
ment definition {R2, R’1} to {R5, R’3} is ({R2, R’1}, 
{R3, R’1}, {R4, R’1}, {R5, R’1}, {R5, R’2}, 
{R5, R’3}), and another transition is ({R2, R’1}, 
{R2, R’2}, {R3, R’2}, {R4, R’2}, {R5, R’2}, {R5, R’3}).

Next, transition classes via fragment defini-
tions is defined. Consider the set of all possible 
transitions via fragment definitions between 
two high level relations. The ordering of some 
particular low-level changes is essential. In par-
ticular, transitions can not violate the continuity 
assumption by skipping relations in the low-level 
neighbourhood graph g, for example, a transi-
tion (…, {R2, R’1}, {R4, R’1}…) is invalid. Other 
changes can occur in any order, for example, the 
transition from R3 to R4 is completely independent 
of the transition from R’1 to R’2 and these transi-
tions can occur in any order.

Figure 3. Reference domain fragment f2 containing relations R1,…,R8 and R’1,…,R’6 with simple ordered 
neighbourhoods (left). The fragment definition space (right) consists of fragment definitions that specify 
one relation from R1,…,R8 and one relation from R’1,…,R’6. The abstraction domain fragment f1 contains 
three relations Rx (black), Ry (striped), Rz (grey), that have fragment definitions in f2 illustrated in the 
fragment definition space (right).
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Thus, a class of transitions can be succinctly 
expressed by representing a high-level transition 
as a partial ordering of low-level transitions. A 
transition class via fragment definitions between 
two high level relations, written Δc,c’(R, R’) is a set 
of transitions from Δg(R, R’) such that:

•	 for each relation Ri in σc(R) there is a tran-
sition Δg(Ri, Rj) that starts from Ri and ends 
at some relation Rj in σc’(R’), and

•	 (vice versa) for each relation Rj in σc’(R’) 
there is a transition Δg(Ri, Rj) that starts 
from some relation Ri in σc(R) and ends Rj.

For example, one class of transitions from  
{R2, R’1} to {R5, R’3} is {(R2, R3, R4, R5), (R’1, 
R’2, R’3)}. Another class is {(R2, R1, R2, R3, R4, 
R5), (R’1, R’2, R’3)}.

Therefore, a transition class Δc,c’(R, R’) speci-
fies a partial ordering of incremental changes at 
the lower fragment definition level (i.e. from Δg) 
required to move from the fragment definition 
of R to the fragment definition of R’. Note that if 
there are multiple paths between two low-level 
relations in the low-level neighbourhood graph 
g, as shown in the example (i.e. different options 
for Δg) then there are multiple transition classes 
and Δc,c’(R, R’) returns one class out of a set of 
possible classes.

Finally, conceptual neighbours is defined. R 
and R’ are neighbours in the standard sense, writ-
ten N(R, R’), if it is possible to start from a low 
level fragment definition of R, make incremental 
changes, and eventually transition into R’ without 
passing through another relation’s fragment defini-
tion. That is, N(R, R’) is true if and only if there 
is some sequence of fragment definitions that is 
in some class Δc,c’(R, R’) such that none of the 
fragment definitions in the sequence correspond 
to some other high level relation.

For example, the relations Rx and Ry are 
conceptual neighbours according to this defi-
nition because there exists a transition class  
Δc,c’(R, R’) = {(R2, R3, R4, R5, R6), (R’4, R’3, R’2, R’1, R’2)} 

that contains a fragment definition sequence  
({R2, R’4},…,{R2, R’1},…,{R6, R’1}, {R6, R’2}) that 
does not include any of Rz’s fragment definitions.

A later subsection highlights the problems 
with this conceptual neighbour definition, and the 
remainder of the section presents a methodology 
that allows the designer to appropriately refine the 
neighbour test. The next section summarises the 
steps that a designer must go through in order to 
derive a high-level neighbourhood graph.

6.3. Deriving a High-Level 
Neighbourhood Graph

The designer can construct a high-level conceptual 
neighbourhood graph gf1 by applying the follow-
ing procedure.

1. 	 Define an abstraction domain fragment f1 
and a reference domain fragment f2.

2. 	 Define a low-level neighbourhood graph g 
for f2.

3. 	 For each high level relation R in f1, define the 
fragment definitions σci(R) into the reference 
domain f2 by implementing constraints ci.

4. 	 Decide on the appropriate definition of 
conceptual neighbours Nf1.

5. 	 Construct the neighbourhood graph gf1 such 
that
a. 	 there is exactly one vertex for each 

high level relation, and
b. 	 for each pair of high level relations 

R,R’ there is an edge between the cor-
responding vertices iff Nf1(R, R’) is 
true.

In practice, steps 1 and 2 will require the de-
signer to select a pair of appropriate fragments 
that have already been defined in the application. 
A methodology for configuring the neighbour test 
is described in the following subsections, and 
summarised in Section 6.9 below. The designer 
can automate step 5 with a simple nested for-loop 
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algorithm that executes the neighbour test on each 
pair of high-level relations.

6.4. Limitations of the Standard 
Neighbour Definition

The problem with the standard conceptual neigh-
bour definition is that two relations possibly being 
neighbours results in relations almost always 
being neighbours, thus the definition is too weak 
to be useful. Moreover, this may lead to counter-
intuitive neighbours. For example, as illustrated in 
Figure 3, if any path from Rx to Ry is unobstructed 
then the relations are considered neighbours. It 
may be more intuitive in the context of a particular 
application to assume that a transition between two 
relations will take the most convenient, shortest 
transition path. In this case, a user will expect Rx 
and Ry to not be neighbours.

In order to develop more appropriate neigh-
bour definitions, the neighbour test is summarised 
as follows: given a set of paths, if any of the 
paths are unobstructed then the two relations are 
neighbours. Hence, there are two ways to focus 
the conceptual neighbour definition, by restrict-
ing the set of paths considered for determining 
neighbour status, and by grouping paths together 
into equivalence classes.

6.5. Path Restrictions to 
Focus the Neighbour Test

The designer can avoid impractical and counter-
intuitive neighbourhoods by restricting the set of 
paths used to determine whether two relations are 
neighbours. Two types of paths are direct paths 
and critical paths.

The direct path restriction requires that low 
level neighbourhood transition sequences take 
a shortest path in Δg(Ri,Rj) (note that there can 
be multiple shortest paths). This ensures that all 
transitions monotonically approach the target 
fragment definition. Figure 4a illustrates the 

admissible paths with this restriction, and that Rx 
and Ry are no longer neighbours.

The critical path restriction requires that paths 
only include relations that are guaranteed to con-
flict between the high-level fragment definitions 
of two relations. Intuitively, certain relations in 
the reference domain will be very important cues 
for interpreting higher-level concepts, while some 
(probably most) combinations will lie in the vast 
fragment definition space between these critical 
points. The necessarily conflicting relations are 
the important, prototypical relations that separate 
two high-level relations and therefore critical 
transition paths can be a useful measure of con-
ceptual neighbour status. More formally, when 
transitioning from high-level relation R to R’, 
fragment definition relations with neighbourhood 
graph gi fall into one of the following three cat-
egories.

•	 Transition always required: no pair of frag-
ment definitions from R and R’ share a re-
lation from gi.

•	 Transition never required: all pairs of frag-
ment definitions from R and R’ share a re-
lation from gi.

•	 Transition possibly required: some, but not 
all, pairs of fragment definitions from R 
and R’ share a relation from gi.

The designer can use these distinctions to 
refine their neighbour definition. For example, 
as illustrated in Figure 3, one fragment definition 
of Rx is {R’4,R2} and one fragment definition of 
Ry is {R’4,R7}, thus when transitioning from Rx 
to Ry it is possible that R’4 is already satisfied 
and no transition through the neighbourhood 
of relations R’1,…,R’6 is required. On the other 
hand, regardless of the Rx fragment definition, a 
transition through the relations in R1,…,R8 will 
always be required.

Figure 4b illustrates the admissible transition 
paths through the critical paths where transitions 
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are always required, and shows that Rx and Ry are 
no longer neighbours.

6.6. Transition Path Equivalence 
Classes to Focus the Neighbour Test

Consider the following counter-intuitive scenario 
with the standard neighbour definition illustrated 
in Figure 3. The transitions required to get from a 
fragment definition of Rx to a fragment definition 
of Ry always include {(R3,R4),(R4,R5),(R5,R6)}. The 
transitions to get from a fragment definition of 
Rz to a fragment definition of Ry always include 
{(R4,R5),(R5,R6)}, which is a subset of Rx’s required 
transitions. Moreover, for any fragment definition 
of Rx there is some fragment definition of Rz where 
the required transitions to arrive at any given 
fragment definition of Ry are a proper subset of 
those required by the fragment definition of Rx.

Because Rz’s required transitions are a proper 
subset, in some applications it might be intuitive 
to view Rz as an intermediate relation between 

Rx and Ry. However, the standard definition does 
not distinguish this special case of intermediate 
relations.

A designer can control any such special cases by 
grouping a set of paths into an equivalence class. 
This has the effect of removing the ordering of 
transitions taken in the set of paths in the equiva-
lence class. An alternative perspective is that, 
previously the neighbour test checked whether it 
was possible to avoid intermediate relations, but 
now it is checking the stronger condition whether 
it is guaranteed to avoid intermediate relations 
within the equivalence class of paths.

Equivalence classes must be applied to a 
restricted set of paths (otherwise, the neighbour 
test will fail whenever there are three or more 
relations). Figure 4c illustrates defining the direct 
paths as an equivalence class. Figure 4d illustrates 
defining the critical paths as an equivalence class 
so that the conflicting paths must be guaranteed 
to be unobstructed, and at least one path through 
the non-conflicting paths must be unobstructed. 

Figure 4. Refined fragment definition spaces: (a) direct path restrictions, (b) critical path restrictions, 
(c) equivalence class of direct paths, (d) equivalence class of critical paths in conjunction with a direct 
path restriction
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Thus, transition path equivalence classes afford 
the designer considerable flexibility in defining 
neighbourhoods.

6.7. Ensuring Conceptual 
Neighbours are Symmetric

Neighbour status is no longer necessarily sym-
metric when the designer restricts the set of 
transition paths. Although asymmetric neighbour-
hood graphs can be valid and useful, a designer 
may require neighbour status to be symmetric. 
The following three variations on the neighbour 
definition ensure symmetry, ordered from stron-
gest to weakest. Two relations can be defined as 
symmetric neighbours if:

•	 both directions are unobstructed 
(conjunction),

•	 either direction is unobstructed (disjunc-
tion), and

•	 no single intermediate relation obstructs 
both directions (restricted disjunction).

The first variant is the strongest stating that 
both directions must be clear before the relations 
are considered neighbours. The second variant 
weakens this by only requiring one of the directions 
to be unobstructed. The third variant states that 
no single obstruction occurs in both directions, so 
that two high level relations are not neighbours if 
the fragment definition of a third relation obstructs 
both relevant transition paths (this is useful in 
cases where the designer wants the third relation 
to represent a guaranteed intermediate concept in 
between two relations).

6.8. Dealing with Multiple 
Fragment Definitions

If a high level relation R has multiple fragment 
definitions then some of its fragment definitions 
may permit it to be a neighbour to some other 

high level relation R’, while some of its other 
fragment definitions do not. It may be the case 
that only a single pair of fragment definitions out 
of many possible pairs allows two relations to be 
neighbours, so that in practice it is unlikely that 
the two relations will be neighbours, and most 
transitions between them will be obstructed.

The designer can develop a more accurate 
neighbourhood graph by annotating probabili-
ties to conceptual neighbours. Assuming that all 
fragment definitions of a relation R are equally 
likely to be used, the probability P of employ-
ing a particular fragment definition x∈σc(R) 
is P(x)=|σc(R)|-1. The probability that two high 
level relations R,R’ are neighbours P(N(R,R’)) is 
the sum of the probabilities of selecting pairs of 
fragment definitions from each relation that are 
neighbours, ∑P(x)P(y) for all x∈σc(R), y∈σc(R’) 
such that (x,y)∈N.

6.9. Summary and 
Engineering Implications

Table 4 presents guidelines to help the designer 
select the appropriate neighbour definition. The 
guidelines relate a problem that the designer can 
experience when deriving neighbourhood graphs, 
the appropriate actions defined in the previous 
subsections, and associated effects of the action. 
Note that a complete graph is not useful for any 
typical task that requires a neighbourhood such 
as envisioning, because it does not distinguish be-
tween relations within the fragment. Equivalently, 
edgeless graphs provide no information that is 
useful for performing neighbourhood-based tasks.

7. VALIDATING QSTR APPLICATION 
USING H-COMPLEXITY

The aim of program validation in software en-
gineering is to determine if the system is fit for 
purpose (Burnstein, 2003), explicitly evaluating 
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Table 4. QSTR application designer guidelines for deriving effective neighbourhood graphs. Columns 
list the problems with deriving neighbourhood graphs, actions that will help to address the problem, and 
related effects. Rows that contain main categories of problems and actions have a white background, 
and rows that immediately follow contain specific problems and actions within a category with a grey 
background. 
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the program in terms of its application context. 
Researchers in QSTR typically apply general 
first-order theorem provers (and higher) for system 
validation (Wölfl, et al., 2007). However, the use 
of theorem provers for application level valida-
tion is not practical in general. Firstly, applying 
theorem provers can be very manually intensive, 
and even expert logicians in the QSTR research 
field find the task non-trivial (e.g. refer to page 292 
and Section 6.2 in Cohn, et al., 1997). Secondly, 
they require axioms for the logic, which in many 
cases will not be available, making theorem prov-
ers impossible to use. For example, particularly 
during the early stages of application design, 
software developers may need to rapidly encode 
informal qualitative domain knowledge with the 
intention of refining the logic later if necessary. 
Thus, a thorough axiomatisation would not be 
necessary or appropriate.

We present a significantly different methodol-
ogy for QSTR application validation, inspired by 
research in software engineering and finite model 
theory. We focus on adapting two white-box testing 
approaches, namely unit testing and integration 
testing, so that our validation methodology can be 
used iteratively during application development 
(rather than as a black-box post development 
validation tool).

7.1. Unit Testing and Integration 
Testing for QSTR Applications

Unit testing aims to validate small components 
of a program by exercising isolated aspects of 
functionality in an independent way (Burnstein, 
2003). We define the units of QSTR applications 
to be the two set expressions on the left hand side 
and right hand side of constraints. Once the units 
have been exercised, the next step is to test that 
the constraint’s set comparator is correct. A unit 
test is simply a set of inputs and a set of expected 
outputs, and the domain is the collection of rela-
tions in the unit set expression being tested.

Integration testing is used to validate the in-
teraction between different program components 
(Burnstein, 2003). An integration test for a QSTR 
application exercises some subset of constraints. 
An integration test is a set of inputs and a set of 
expected outputs, where the domain is the collec-
tion of relations that appear in the set expressions 
of the constraints being tested.

The primary issue is determining which tests 
the designer must execute to achieve an adequate 
degree of confidence that the application is fit for 
purpose. In standard software engineering, the set 
of tests that can be executed on a typical software 
program (called the test space) is determined by the 
system inputs and outputs, and the system structure 
such as statements, decisions and control paths. 
Executing all possible tests is clearly impractical 
and thus software engineers employ methods that 
isolate critical subsets such as boundary checking, 
equivalence class partitioning, and cause-effect 
graphs (Burnstein, 2003).

One standard technique for identifying signifi-
cant test classes is to measure the test coverage 
of some type of program component (Zhu, et al., 
1997). For example, the set of tests that execute 
every statement in a program at least once is 
typically considered to be a minimum coverage 
requirement for validation. We adapt this software 
engineering methodology by defining a concept 
called homogeneous sets (called H sets). H sets 
are used to measure the test coverage of QSTR 
application components.

7.2. Homogeneous Sets

In model theory (Hodges, 1997; Marker, 2002), 
a set X is definable (in model M) if there is some 
query in first order logic that can distinguish pre-
cisely this set of objects (that is, a formula ϕ exists 
such that X={(v1,…,vn)∈U n | M ⊨ϕ(v1,…,vn)}, 
where entails ⊨ means that the formula is true 
in M).

Homogeneous sets (or H sets) are a special 
class of definable sets. H sets are atomic definable 
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sets, that is, no query exists that can separate two 
objects within the same H set, thus objects within 
an H set are equivalent and indistinguishable. Let 
H={h1, …, hn} be a set of homogeneous sets, where 
each hi ⊆ U. By definition, h1, …, hn partition U. 
We define H-complexity of a language to be |H|.

7.3. Using H Sets to 
Measure Complexity

Complexity of a QSTR application language can 
be considered as either the number of distinct 
queries that can be expressed, or (equivalently) the 
number of distinct scenarios that can be encoded.

A query is used to access a subset of objects 
in a scenario, and query complexity of a language 
is defined as the maximum number of unique 
non-empty subsets that can be accessed by some 
query. H sets are indivisible and mutually exclusive 
(by definition), so the query that defines an H set 
must also be the query that returns the smallest 
non-empty subset of those objects. The smallest 
subset containing objects from two different H 
sets h1, h2 must be the union of the queries that 
define those two H sets, h1∪h2. It follows that any 
accessible subset of objects must be the union 
of some combination of H sets, and thus query 
complexity is equal to the number of different 
combinations of H sets, 2|H|.

We now consider scenario complexity. Intui-
tively, qualitative models do not distinguish be-
tween numerical quantities, unlike metric systems. 
If two objects in a scenario can not be separated by 
a query, then the objects are considered equivalent 
and indistinguishable, that is, the objects must be 
in the same H set. Accordingly, if the only dif-
ference between two scenarios is the number of 
indistinguishable objects in each non-empty H 
set then the scenarios are considered equivalent. 
Thus, a scenario equivalence class is defined by 
the combination of H sets from which objects are 
selected, and the number of such scenario classes, 
or the scenario complexity of the language, is 2|H|.

7.4. Using H-Complexity to 
Quantify Test Coverage

H sets are a natural option for analysing test classes 
because, on one hand, they specify the absolute 
limit for distinguishing between objects, and on 
the other hand, they can be used to describe any 
possible distinct set of objects. This section pres-
ents our methodology for applying H-complexity 
to measure test coverage.

When quantifying test coverage, the designer 
initially has a set of QSTR application compo-
nents that are currently being tested, and the set 
of tests (called the test suite). Five activities that 
the designer must undertake are to:

1. 	 identify the domain of the components being 
tested,

2. 	 refine the test space by specifying condi-
tions that are not appropriate for exhaustive 
testing,

3. 	 calculate the complexity of the original test 
space and the refined test space,

4. 	 determine the class of each test in the test 
suite, and

5. 	 calculate test coverage results.

The following sections present the details of 
each activity.

7.5. Activity 1: Identify 
Component Domains

Firstly, the designer must identify the domain (a 
set of relations) of the components being tested. 
For a unit test, the domain contains the relations 
in the set expression, e.g. the domain of the set 
expression {x1| (x1,x2)∈R1

+ ∧ (x3,x2)∈R2
~} is {R1, 

R2}. For an integration test, the domain contains 
the relations that appear in the subset of constraints 
being tested, e.g. the domain of the constraints:
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is {R1, R2, R3, R4}.

7.6. Activity 2: Specifying Conditions 
to Refine the Test Space

H-complexity is calculated as all possible combi-
nations of H sets. When considered as a test space, 
each H set is being exercised in conjunction with 
every other combination of H sets. However, many 
H sets represent conditions that may not require 
this exhaustive testing. By isolating such condi-
tions and testing them independently, the designer 
can achieve a smaller, more focused and hence 
more practical and effective test space.

For example, the relation in is not (usually) 
symmetric, that is, if x is in y, then y cannot also be 
in x. If this condition is violated then the scenario 
is clearly inconsistent with the QSTR application, 
regardless of the other remaining components of 
the scenario. Rather than exhaustively testing 
in for every unit that it is used, the designer can 
isolate the erroneous symmetric condition and 
test it once. They can then assume that every time 
in is used the application will respond correctly 
regarding symmetry. Table 5 presents our sugges-
tions for common conditions that can be used to 
refine test spaces.

7.7. Activity 3: Calculating 
H-Complexity

This section derives the formula for calculating 
H-complexity of a language (i.e. a domain) by 
counting the number of H sets, |H|. Firstly we 
calculate the number of H sets permitted by a 
single unary relation, and then a single relation 
of arbitrary arity. We then observe that binary 
relations (and higher) admit an infinite number 

of H sets, making H-complexity unusable. To 
overcome this we employ restrictions on the 
query language to calculate the number of basic 
queries that can be expressed for a set of relations. 
We then show that basic queries are not Jointly 
Exhaustive and Pairwise Disjoint (JEPD) and 
so do not correspond to H sets. Thus, we finally 
calculate H complexity as the smallest number of 
unique JEPD queries that can be expressed using 
combinations of basic queries.

Initially, assume that all relations have an ar-
ity of 1 (i.e. they represent qualitative properties 
such as round or large). Tuples can take one of 
|AR| states for a relation R (such as holds), hence 
the complexity of a unary relation is |HR|=|AR|. 
However, once relations have an arity greater 
than 1 there are an infinite number of potential 
H sets, because a binary relation constitutes a 
total order. We proceed in our analysis by using 
a graph to represent a scenario that consists of a 
single binary relation Ri, where objects represent 
vertices and directed edges represent tuples as 
illustrated in Figure 5.

A set theoretic query describes the structure 
of a graph and specifies the vertex to be selected 
with v bound variables (universally or existen-
tially quantified), e.g.

∀x1...∃xv ⋅ x1 ≠ x2 ∧ ... ∧ x1 ≠ xv ∧... ∧ xv-1 ≠ xv.

For brevity, we will omit explicitly stating 
these quantifications and conditions for all further 
queries, and for simplicity, the variables in our 
examples are only existentially quantified. For 
example, the query {x2| (x1,x2)∈R1 ∧ (x3,x2)∈R1} 
will access b from the graph of R1 in Figure 5.

While there are an infinite number of potential 
graphs and unique accessible subsets, homoge-
neous sets still exist that contain indistinguishable 
objects. Indeed, homogeneous sets correspond 
to graph symmetries. For example, regarding 
the graph of R1, no query exists that can separate 
objects a and c (without directly referring to those 
objects),
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Table 5. Common conditions for refining test spaces 
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namely {a, d} when i = 1 or 4, {b, e} when i = 2 
or 5 and {c} when i = 3.

Given a graph of a scenario, the number of H 
sets is the number of vertices minus the number 
of symmetries. However, to make |HR| a func-
tion of the entire QSTR application language, 
rather than just isolated scenarios (i.e. rather 
than particular graphs), we apply the concept 
of restricted query languages from finite model 
theory (normally used for studying descriptive 
complexity [Marker, 2002]). If the restricted 
query language only recognises a finite number 
of graphs, it will admit a finite number of H sets. 
It is then possible to quantify the complexity of a 
relation independent of a particular scenario, and 
measure the relative difference in expressiveness 
between two languages.

One common query restriction is to limit the 
number of variables (vertices). Previously, queries 
have referred to variables xi where i can be any 

positive integer. For example, if i ≤ 2 then the 
allowable tuples are (x1, x1), (x1, x2), (x2, x1), and 
(x2, x2). If v is the number of variables allowed in a 
query, and aR is the arity of relation R (i.e. the size 
of the tuples) then for each query, the number of 
tuples is v↑aR. We refer to these queries as basic 
queries. For example, if v = 2 then one basic query 
on a binary relation is {x1 | (x1, x1) ∈ R− ∧ (x1, x2) 
∈ R+ ∧ (x2, x1) ∈ R− ∧ (x2, x2) ∈ R−}. Each tuple 
can be assigned to one of |ΑR| relation states, thus, 
the number of unique basic queries for relation R 
is |ΑR|number of tuples, where number of tuples = v↑aR.

Previously we only referred to one relation 
within a query. Given v bound variables, queries 
will now take the form, {x1 | query R1, query R2, 
…, query Rn}, where query Ri is one of the unique 
basic queries for relation Ri. Hence, the total num-
ber of queries permitted over n relations is |basic 
R1 queries| × … × |basic Rn queries|. Moreover, 
each query variable can be either existentially or 
universally quantified, i.e. the query can use any 
one of the combinations from ∃x1 ∃x2 … ∃xv to 
∀x1 ∀x2 … ∀xv. In general, the number of allowable 
variable quantifications q is 2v if all combina-
tions are acceptable. Thus the number of unique 
basic relations including the acceptable variable 
quantifications is q × |basic R1 queries| × … × 
|basic Rn queries|.

For H sets to truly represent the maximum 
refinement possible, they must be JEPD so that 

Figure 5. Three graphs representing binary relations R1, R2 and R3. In R3, subgraphs {a,b} and {c,d} 
correspond to basic queries, where {e,f,g} contains more than one basic query as induced subgraphs
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every object in a scenario will appear in exactly 
one H set. This property is critical; if it did not 
hold then further refinements could be achieved by 
taking H set intersections and differences. Basic 
queries are not necessarily JEPD (specifically, 
when their corresponding graphs are overlapping 
induced subgraphs of the full scenario graph) 
and so they do not specify H sets. For example, 
consider the scenario graph R3 in Figure 5. If v = 
2 then two basic queries are:

{x1 | (x1, x1) ∈ R− ∧ (x1, x2) ∈ R+ ∧ (x2, x1) ∈ 
R− ∧ (x2, x2) ∈ R−} = {a, e},

{x1 | (x1, x1) ∈ R− ∧ (x1, x2) ∈ R+ ∧ (x2, x1) ∈ 
R− ∧ (x2, x2) ∈ R+} = {c, e}.

Vertex e appears in both results, and therefore 
the basic queries are not JEPD.

To calculate |H| we must determine the smallest 
JEPD queries that contain the basic queries. This 
is achieved by taking all combinations of basic 
queries by intersection and difference, hence 
|H|=2number of unique basic queries – 1 (we can ignore the 
trailing‘−1’).

To summarise,

•	 the language being measured has a set of 
relations R,

•	 AR is the number of relation states allowed 
for relation R (such as holds and does not 
hold),

•	 aR is the arity of relation R (e.g. binary rela-
tions have arity 2),

•	 v is the number of variables allowed in a 
query (1 ≤ v),

•	 q is the number of variable quantifications 
(1 ≤ q ≤ 2v), and

•	 H is the set of H sets, and |H| is the 
H-complexity of the language.

The formula for calculating H-complexity is:
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7.8. Activity 3: Calculating 
H-Complexity for Refined 
Test Spaces

The complexity of a language can be calculated 
simply by applying the formula in the previous 
section. However, once the designer has speci-
fied conditions for refining the test space, the 
formula can no longer be used. In this section we 
present a method for calculating the refined test 
space complexity by encoding it as a Constraint 
Satisfaction Problem (CSP). The designer can 
then use any standard CSP solver, such as JaCoP 
(Kuchcinski, 2003), to calculate the complexity.

A CSP is a finite number of variables (where 
each variable has a finite domain), and a set of 
constraints between variables. In our case, given 
a domain of relations R and the number of allow-
able query variables v, the CSP solver will return 
the number of basic queries permitted, ∏R∈R |basic 
R queries|. Equation 1 from the previous section 
can then be used to calculate the refined test space 
complexity.

We now present our CSP encoding. Each vari-
able represents a tuple from a basic query. From 
the previous section, the number of tuples for 
relation R is v↑aR. Let integers 1,2,3,4 represent 
holds, does not hold, not applicable, and indefinite, 
respectively. For each relation R, declare v↑aR vari-
ables with domain AR, encoded as the appropriate 
subset of {1,2,3,4}. Next, specify the refinement 
conditions from Section 7.6. Finally, execute the 
solver and have it return the number of solutions 
(there is no need to record the solutions).

If computation is not too time consuming, the 
solver can be executed multiple times to determine 
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the impact of each constraint. Do this by executing 
the solver with only one constraint at a time, and 
record the different complexities. Alternatively, 
execute the solver with all but one constraint (for 
each constraint) to quickly determine whether any 
constraints are redundant.

For example, given the domain R={light, 
room, warm, in}, v=2 allowable query variables, 
and for every relation AR={+,−,~,?}, q=1 variable 
quantification (both variables existentially quanti-
fied), the number of basic queries is:

q A v a
R R R
∏ ↑ ↑
= ↑ ↑ ⋅ ↑ ↑ ⋅ ↑ ↑ ⋅ ↑ ↑
= ⋅ ⋅ ⋅

∈R( )

( ) ( ) ( ) ( )4 2 1 4 2 1 4 2 1 4 2 2

16 16 16 2566

1048576= ,

yielding a completely intractable test space, with 
complexity |H| = 2↑1048576. A designer then 
refines this test space by specifying the follow-
ing conditions:

•	 only test when x is a light and y is a room
•	 because both object types are assumed, ig-

nore the not applicable relation state (all 
relations apply for lights and rooms)

•	 the types light and room are mutually 
exclusive

•	 in is not reflexive
•	 in is not symmetric
•	 nothing is ever in a light

The designer then encodes the CSP problem1 
using JaCoP (Kuchcinski, 2003). Firstly the 
variables are declared, using a restricted domain 
that excludes not applicable. Next, the designer 
encodes the constraints. (see Box 1.)

Next, the designer runs the solver which returns 
27 solutions. The test space of size 227 is now 
practical for certain important coverage metrics, 
although further refinements can be made, for 
example, choosing to only test one room at a time 
(Schultz, et al., 2009).

The designer executes the solver multiple 
times, each run using only one of the constraints, 
and determines that constraints 1 and 4 have the 
most impact. Once again, the designer executes 
the solver multiple times, each run using all but 
one constraint (for each constraint) and determines 
that some constraints are redundant and can be 
removed such as shown in Box 2.

Note that, after removing one constraint, the 
process should be repeated rather than removing 
multiple constraints at once.

7.9. Activity 4: Calculate the 
Class of a Given Test Instance

To determine the test coverage of a given set of 
tests, the designer must compare the tests to the 
test space in terms of H-complexity. That is, the 
designer needs to determine which combination 
of H sets are exercised in a given test.

A test is a set of input premises and ex-
pected outputs. The input premise information 
is a set of relations that contain object tuples, 
such as within+={(a,b), (b,c)}, school+={a}, 
Downtown+={b}, Auckland+={c}, near−={(c,d)}, 
within?={(a,c)}. By convention, for each relation, 
any unspecified tuples can be assumed to be in the 
indefinite relation state (e.g. Auckland?={a,b,d}). 
The expected output is again a set of relations that 
contain object tuples, such as within+={(a,b), (b,c), 
(a,c)}. A test is satisfied by a QSTR application if, 
given the premises, reasoning produces a scenario 
that satisfies the expected outputs.

Given a domain being tested and a test instance, 
the designer needs to determine which test class 
the given test is in with respect to the domain’s 
test space. Using H sets we define a test class as 
the premise scenario specified in the test (that is, 
we ignore the expected output). To calculate the 
class of a given test we use a CSP encoding.

To summarise, query variables and scenario 
objects are encoded. CSP is then used to select 
every possible combination of scenario objects 
for the query variables, and for each combination 
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Box 1.

Store network = new Store(); 

Variable light_x         = new Variable(network, “light_x”, domain(1,2,4)); 

Variable light_y         = new Variable(network, “light_y”, domain(1,2,4)); 

Variable room_x          = new Variable(network, “room_x”, domain(1,2,4)); 

Variable room_y          = new Variable(network, “room_y”, domain(1,2,4)); 

Variable warm_x          = new Variable(network, “warm_x”, domain(1,2,4)); 

Variable warm_y          = new Variable(network, “warm_y”, domain(1,2,4)); 

Variable in_x_x          = new Variable(network, “in_x_x”, domain(1,2,4)); 

Variable in_y_y          = new Variable(network, “in_y_y”, domain(1,2,4)); 

Variable in_x_y          = new Variable(network, “in_x_y”, domain(1,2,4)); 

Variable in_y_x          = new Variable(network, “in_y_x”, domain(1,2,4)); 

 

//- only test when x is a light and y is a room 

network.impose(new XeqC(light_x, 1)); 

network.impose(new XeqC(room_y, 1)); 

 

//- types “light” and “room” are mutually exclusive 

network.impose(new IfThen(  new XeqC(light_x, 1), 

                                 new XeqC(room_x, 2))); 

network.impose(new IfThen(  new XeqC(light_y, 1),  

                                 new XeqC(room_y, 2))); 

network.impose(new IfThen(  new XeqC(room_x, 1), 

                                 new XeqC(light_x, 2))); 

network.impose(new IfThen(  new XeqC(room_y, 1),  

                                 new XeqC(light_y, 2))); 

  

//- “in” is not reflexive 

network.impose(new XeqC(in_x_x, 2));  

network.impose(new XeqC(in_y_y, 2)); 

  

//- “in” is not symmetric 

network.impose(new IfThen(  new XeqC(in_x_y, 1), 

                                 new XeqC(in_y_x, 2))); 

network.impose(new IfThen(  new XeqC(in_y_x, 1), 

                                 new XeqC(in_x_y, 2))); 

  

//- nothing is ever “in” a “light” 

network.impose(new IfThen(  new XeqC(light_x, 1), 

                                 new XeqC(in_y_x, 2))); 

network.impose(new IfThen(  new XeqC(light_y, 1), 

                                 new XeqC(in_x_y, 2)));
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it constructs the H set from the relation states for 
the particular chosen objects.

Firstly, we use an integer coding system for 
representing each unary object tuple, binary ob-
ject tuple, and so on, up to each n-ary tuple. The 
following integer coding is one example of how 
this can be accomplished. The greatest tuple ar-
ity (i.e. the n-ary tuples) required to express the 
scenario is equal to the greatest relation arity; 
in the above example the greatest relation arity 
is 2. Thus, given a scenario with n objects, let 
integers 0 to n − 1 represent each object. Next, 
let integers n to 2n − 1 represent tuples (0, 0), 
(0, 1), …, (0, n − 1), integers 2n + 1 to 3n − 1 
represent tuples (1, 0), (1, 1), …, (1, n−1), and 
so on; hence, n2 binary tuples are represented by 
integers n to n + n2 − 1. The relationship between 
the object identifiers and the tuple identifier is 
(x+1)n + y (that is, the last tuple is represented 
by the integer (n − 1 + 1)n + n − 1 = n + n2 − 1).

Secondly, for each allowable tuple of query 
variables, create one CSP variable, with domains 
of values representing every object tuple of the 
appropriate arity. For example, if v=2 then six 
variable tuples are required (see Box 3).

Impose the constraint that the variables are 
not equal to ensure that they represent different 
objects in each solution (see Box 4.)

Thirdly, encode the basic queries in terms of 
H sets using the method from the previous section. 
That is, for each tuple from a basic query of rela-
tion R, create a variable with a domain that rep-
resents the allowable tuple states AR, i.e. some 
subset of {1,2,3,4} where integers 1,2,3,4 repre-
sent holds, does not hold, not applicable, and 
indefinite, respectively. Do not encode the test 
space refinement constraints.

Finally, link the scenario encoding to the basic 
query encoding. For each relation, create an im-
plication constraint that associates the object tuple 
selected by the query variables to the relation state 

Box 2.

network.impose(new IfThen(  new XeqC(light_y, 1),  

                                 new XeqC(room_y, 2)));

Box 3.

Variable x = new Variable(store, “x”, 0, n-1) 

Variable y = new Variable(store, “y”, 0, n-1) 

Variable x_x = new Variable(store, “x_x”, n, n*n+n-1) 

Variable x_y = new Variable(store, “x_y”, n, n*n+n-1) 

Variable y_x = new Variable(store, “y_x”, n, n*n+n-1) 

Variable y_y = new Variable(store, “y_y”, n, n*n+n-1)

Box 4.

store.impose(new Alldifferent(new Variable[]{x,y})); 

store.impose(new Alldifferent(new Variable[]{x_x,x_y,y_x,y_y}));
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in the H set. For example, encoding within+={(a,b), 
(b,c)}, where a=0, b=1, c=2, d=3, (a,b)=5 and 
(b,c)=10 requires the constraint shown in Box 5.

Note that further nested IfThenElse constraints 
are required to also explicitly specify the not holds, 
not applicable and indefinite states.

Execute the solver to get all solutions. The 
class of a test is determined by the set of solu-
tions for the basic query encoding variables, and 
the value of the object variables that satisfy those 
basic queries. Once the designer knows the class 
that each test is in (that is, the combination of H 
sets from which objects are specified), they can 
run the test coverage metrics presented in the 
following section.

7.10. Activity 5: Test 
Coverage Metrics

This section presents four test coverage metrics 
based on H-complexity. To illustrate the test cov-
erage metrics we will use the following running 
example. Let the domain being tested contain 
one binary relation R that can take two states 
AR={+,−}. Two query variables are allowed, v=2 
and one variable quantification, q=1. The number 
of query tuples is v↑aR=22=4, which are:

(x1,x1)∈R, (x1,x2)∈R, (x2,x1)∈R, and (x2,x2)∈R.

The number of basic queries is q ∏R∈R 
(|AR|↑v↑aR)=1⋅24=16, which are:

b1={x1 | (x1,x1)∈R+ ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R+ ∧ 
(x2,x2)∈R+},

b2={x1 | (x1,x1)∈R+ ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R+ ∧ 
(x2,x2)∈R−},

b3={x1 | (x1,x1)∈R+ ∧ (x1,x2)∈R+ ∧ (x2,x1)∈R− ∧ 
(x2,x2)∈R+},

…
b16={x1 | (x1,x1)∈R− ∧ (x1,x2)∈R− ∧ (x2,x1)∈R− ∧ 

(x2,x2)∈R−}.

The number of H sets is |H| = 2↑(q ∏R∈R 
(|AR|↑v↑aR))=216. The number of scenario classes 
is 2|H|=2↑(216). Let the example test set consist of 
two tests with the following H sets:

•	 test t1: (b1, b2)
•	 test t2: (b1), (b2,b3).

Our four test coverage metrics, strictly ordered 
in terms of coverage strength (from weakest to 
strongest) are:

•	 tuple state coverage (TS),
•	 basic query coverage (BQ),
•	 H set coverage (H), and
•	 scenario coverage (S).

Tuple State (TS) coverage measures the num-
ber of query tuples that have taken a particular 
state in at least one test. Full TS coverage means 
that every query tuple has been assigned to every 
allowable relation state in at least one test. This 
should be viewed as an absolute minimum cov-
erage requirement that all QSTR application test 
sets must satisfy. The total number of tuples with 
states that a language admits is ∑R∈R |AR| ⋅ (v↑aR). 
In the running example there are 4 query tuples, 

Box 5.

store.impose(new IfThenElse( 

  new Or(XeqC(x_y,5), XeqC(x_y,10)),   //- if variable matches a tuple 

  new XeqC(within_x_y,1),                //- then H set relation state holds 

  new XeqC(within_x_y,2)));             //- else relation state does not hold
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and each tuple can take 2 states, giving 2⋅4=8 
possible tuples with states, namely

(x1,x1)∈R+, (x1,x2)∈R+, (x2,x1)∈R+, (x2,x2)∈R+,

(x1,x1)∈R−, (x1,x2)∈R−, (x2,x1)∈R−, (x2,x2)∈R−.

The example test set contains the follow-
ing tuples (x1,x1)∈R+, (x1,x2)∈R+, (x2,x1)∈R+, 
(x2,x2)∈R+, (x2,x1)∈R− , (x2,x2)∈R−. Hence percent 
TS coverage is 5/8=62.5%.

Basic Query (BQ) coverage measures the 
number of basic queries that have appeared in at 
least one test. Full BQ coverage means that every 
basic query has been used to describe some test 
scenario. While stronger than full TS coverage, full 
BQ coverage should also be viewed as a minimum 
coverage requirement for application validation. In 
the running example, the test set contains 3 basic 
queries (b1, b2, b3), giving a percent BQ coverage 
of 3/16=18.75%.

H set (H) coverage measures the number of 
H sets that have been used to specify scenarios 
in at least one test. In practice, full H coverage 
is often very difficult to achieve, as it constitutes 
a vast class of tests. Instead the designer should 
focus on satisfying important subclasses within 
full H coverage, discussed below. The running 
example test set has 3 H sets, giving a percent H 
coverage of 3/(216)≈0%.

Scenario (S) coverage measures the number 
of scenario classes exercised in at least one test, 
where a scenario class is some unique combina-
tion of H sets from which objects in the class of 
scenarios are drawn. In practice, full S coverage 
is impossible to achieve, except for trivially small 
domains. However, after test space refinement 
S coverage can be a useful measure. In the run-
ning example two scenario classes are exercised, 
namely {(b1, b2)} and {(b1), (b2,b3)}. This gives a 
percent S coverage of 2/(2↑216)≈0%.

Full BQ coverage is trivially easy to achieve, 
for example full BQ coverage is satisfied by one 
test where the scenario returns objects from all 

16 basic queries. On the other hand, achieving 
full H coverage is often difficult in practice, and 
achieving full S coverage is, in almost all cases, 
impossible. Our current research is focused on 
identifying valuable classes within this test space 
in terms of H and S coverage. For example, two 
potentially significant H coverage criteria are

•	 all H sets that consist of exactly one basic 
query, and

•	 all H sets that consist of exactly two basic 
queries

The first class of tests will ensure that all 
basic queries have been exercised in isolation 
(giving full TS and BQ coverage). The second 
class ensures that the interactions between all 
pairs of basic queries have been exercised. Both 
of these test classes are relatively small and often 
practical to achieve. If the number of basic que-
ries is b then the test class sizes are b and b(b−1) 
respectively, where the maximum size of b is (q 
∏R∈R (|AR|↑v↑aR)).

8. FUTURE RESEARCH

Our long-term aim is to develop a QSTR ap-
plication development environment inspired by 
Garp3 and other UML software tools. This will 
be used for designing, validating and automati-
cally implementing the reasoning component of 
a QSTR application, and will integrate software 
tools that support the methodologies discussed in 
this chapter. The workbench will allow the designer 
to easily employ existing QSTR libraries such as 
SparQ and GQR, structure their application by 
declaring fragments and design patterns such as 
fragment definitions derive high-level neighbour-
hoods, automatically generate tests from critical 
test classes, and execute validation metrics such 
as test coverage. Additionally, a suite of metrics 
will be available that analyse an application based 
on external test data, e.g. using classification 
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techniques on test data to analyse the quality of a 
designer’s fragment definitions. Once a QSTR ap-
plication design has been finalised, our workbench 
will generate a standalone implementation, such 
as a jar file, that will accept a scenario description 
and perform the required task, such as envisioning.

We are also planning to compile a library of 
application contexts, such as a qualitative GIS 
suite, an office environment suite, a sports field 
suite, architectural lighting suite, and so on. Each 
library component would consist of the relevant 
existing QSTR calculi, along with other standard 
high-level commonsense relations and rules.

9. CONCLUSION

A number of critical barriers to QSTR application 
development must be addressed, namely that the 
important characteristics of QSTR problems need 
to be defined, QSTR application designers need 
to develop task specific qualitative relations and 
constraints, there are no methodologies for devel-
oping or analysing QSTR applications, and that 
application designers will typically be software 
engineers rather than logicians. In this chapter, 
we address these problems with a collection of 
methodologies that support the design and valida-
tion of QSTR applications.

We established a theoretical foundation for 
QSTR applications, and used this to define the 
roles of application designers and users, and to 
identify three fundamental QSTR application 
operations, selection, insertion, and scenario 
universe modification.

We presented four central properties of QSTR 
applications, specifically, reasoning across a broad 
range of abstraction levels, continuity assump-
tion, modelling infinite domains, and reasoning 
about objects in multi-dimensional models. Our 
methodologies for QSTR application develop-
ment focused on supporting the designer in three 
of these key areas.

We adapted two standard formal requirements 
from software engineering for QSTR applications, 
which were the customer’s operational require-
ments and functional requirements. We presented 
critical characteristics of QSTR problems based 
on our theoretical foundations of QSTR applica-
tions and a review of existing QSTR literature, 
and showed how these characteristics determine 
the customer’s operational profile. We enumer-
ated a set of significant purely qualitative tasks 
that defines the exact extent to which QSTR can 
be applied, and we established a template that 
covers all general QSTR application behaviour 
sequences in a UML state diagram.

QSTR applications are organised into groups 
of relations, called fragments. We presented two 
design patterns, fragment definitions, and frag-
ment generalisations, for structuring fragments.

We presented a methodology for defining 
high-level neighbourhoods that are consistent 
with the structure of fragments in a QSTR applica-
tion. For this, we defined two novel components 
of conceptual neighbours, path restrictions and 
transition equivalence classes, and showed how 
the designer can use these to customise a derived 
high-level neighbourhood graph.

Finally, we presented a novel methodology 
for QSTR application validation, inspired by re-
search in software engineering and finite model 
theory. We defined a complexity metric called H-
complexity, and developed test coverage metrics 
for assessing the quality of unit and integration 
test sets.
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KEY TERMS AND DEFINITIONS

Application Designer: Determines the QSTR 
application language and model, given formal 
software requirements.

Validation: Process conducted to ensure that 
a software system is fit for purpose.

Complexity: A measure of the expressiveness 
of a relational language; specifically, the number 
of distinct scenarios that can be represented.

Requirements: The necessary properties of 
the intended application for that application to 
have value, such as characteristics of the domain 
being modelled, the tasks that the intended sys-
tem needs to be capable of performing, and the 
system’s behaviour during runtime.

Neighbourhood: A graph where vertices 
represent relations are edges represent concep-
tual neighbours; two relations are conceptual 
neighbours if it is possible for a tuple of objects 
to transition between those relations without re-
quiring a third, intermediate relation.
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Test Coverage: The proportion of a selected 
class of software components exercised by a test 
suite.

QSTR Applications: A class of relational 
systems, typically characterised by modelling 
a broad range of abstraction levels, modelling 
continuity in dynamic scenarios, and modelling 
infinite, partially ordered domains.

ENDNOTE

1 	 Here we have explicitly enumerated vari-
ables and constraints for clarity. In practice, 
generator methods should be used that accept 
a set of relation names, domains AR, and 
the number of query variables v, and return 
the set of variables. Convenience methods 
should also be created that accept relation 
names, parameter patterns, and a constraint 
type, and impose the appropriate set of con-
straints (rather than explicit enumeration).


