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Abstract—This paper proposes a novel approach to define
the geographic space focusing on the integration of common
geographical specification of the space with complex semantics
aimed at a more active role of the space inside information
processing tasks. Generic data (called Activity) is processed in
the space model in order to retrieve a well defined behaviour of
the interest parameters on the target spaces. A domain-specific
semantic understanding of the whole data ecosystem allows one
to overcome of unrealistic assumptions to switch to an effective
reasoning on the space.
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I. INTRODUCTION

The major advances of the last few years in Information
and Communication Technology (ICT) have radically changed
the view and the understanding of most systems, as well as
their applications inside the Information Society (IS). The
unstoppable tendency towards Big Data [1], that exceed the
processing capacity of conventional database systems or do not
fit the structures of common database architectures, implies the
need of alternative ways to process information in order to gain
value. Apart from the problem of size, due to availability and
popularity of sources (e.g. Social Media, Social Networks) and
the great number of prosumers, data often move and change
too fast. Furthermore, the heterogeneity of the information,
both with the intrinsic complexity of certain content (e.g.
Social Object [2]), implies in most cases a contextual meaning
of data. Consolidated high performance techniques for the
creation, distribution, use, integration and manipulation of
information on specific sets of data are not adequate for this
new evolving context. In function of the subjects, objects,
problems and scopes, researchers are working on specific
solutions in order to dynamically accommodate large sets of
requirements. Data associated to large scale environments (e.g.
cities) implicitly reflect complex social dynamics as well as
significant economic, political, and cultural activities. Cities
are the places where people live, work, spend most of their life
and perform everyday activities, as individual and as part of
a community. The integration of data and space models (GIS)
provides a global data environment where the information can
be associated to the space. GIS are being affected by the
Big Data revolution as well as by other technological trends
[3]. Common GIS models, mostly reflecting only a physical
view of the space, are useful to support basic operations (e.g.
geographical filtering or aggregation) though with limitations
(e.g. interoperability [4]) but, due to the intrinsic limitations of

the physical view of the space, play a poor or passive role in
the critical phases of the data’ lifecycle (e.g. analysis). The
processing of data [5] is the key factor, inside IS, to gain
competitiveness by using Information Technology (IT) in a
creative and productive way aimed at the knowledge economy
model. This paper proposes a novel approach to define the
space that focuses on the integration of common physical views
of the space with complex semantics aimed at a more active
role of the space inside information processing tasks. More
concretely, generic data (called Activity) is processed with the
space model in order to retrieve a well defined behaviour of
the interest parameters on the target spaces. Evidently, this
kind of process can significantly vary in function of the target
domain/application, as well as in function of the considered
parameters. In this context, the activity is resulting from light
processing of large scale data streams and it is considered
exclusively from a quantitative point of view [6]. A qualitative
analysis is interesting, and the object of ongoing studies, but
is out of the scope of the paper. In this study, the nature of the
parameters of objects of study does not affect the proposed
model or the techniques for the analysis and the processing
of the information. So just the most generic semantics is
associated to the concept of activity in the style of ”something
is happening there”, ”people are there doing something” or
”this place is popular” in a certain period of time under
consideration. A domain-specific semantic understanding of
a whole data ecosystem allows one to overcome unrealistic
assumptions (e.g. the homogeneity of the space) to switch to
an effective semantic reasoning on the space. The impact of
the space inside data processing tasks can be significant and
can have a critical role when, as in the case of Big Data,
great amounts of implicit information have to be converted
into explicit intelligible knowledge.

II. MODELLING METROPOLITAN ACTIVITY

Information processing on a large scale is a knowledge
intensive set of tasks that applies complex techniques in order
to generate the expected outcomes. In most cases, in order
to assure their effectiveness and correctness, those processes
require human-like processing of the data (or information).
Sometimes the expectations about certain processes is a real
challenge since it is implicitly assumed that a machine pro-
cesses data better than humans would do, under the completely
unrealistic assumption of human-scale for the information,
complex data can be ambiguous for humans too, including
when the context of the information is defined. Apart from
those intrinsic limitations, the fact that big data is not always



better data [6] is often not emphasized enough: large scale
information allows an innumerable set of advantages (such as
statistical analysis [7]) but introduces several problems (lack of
accuracy and reliability for example [8]). Two different simple
schema for modelling metropolitan activities on the space level
are shown in fig. 1. They propose a similar conceptual structure
since provide their output on the base of the same input model
that includes:

• Asserted Data. These are the data/information to pro-
cess. Asserted data can have a completely different
meaning and function due to the context in which they
are considered. For example, they could be synony-
mous of available or reliable data, the outcomes of
some processing over big data, as well as any other
fact input to the system.

• Space Model. This is the context to which asserted
data are associated and in which asserted data are
processed. The nature of this model determines the
two different schemas for data/information processing
considered in the paper. A space model that exclu-
sively reflects a physical view of the space (fig. 1,
left) assumes a data infrastructure in which data is
associated to the space according to some logic on
the model of a GIS. Filtering, federations and more in
general geographic-aware computation (e.g.[9]) is well
supported. Overcoming the physical view of the space
and integrating it with a semantic perspective of the
space[10] allows one to switch from a data infrastruc-
ture to an ecosystem of data: subjects and objects are
defined according to a semantic approach including
semantic properties as well as the relations among
the concepts composing the model. The processing
schema (fig. 1, right) is strongly affected because the
extended capabilities in terms of expressivity can have
direct and critical implications on the process itself
(e.g. semantic reasoning[11]).

• Rules. Both data and information processing assume
some kind of manipulation or change of the input
to achieve some knowledge or goal. This process is
normally driven by an extensive set of rules.

Whichever parameter of interest related to a certain space
yi∈S(t) can be asserted or not asserted. In the first case, it is
already one of the output for the process; in the second case
it has to be calculated or inferred by the process. Modelling
metropolitan activity mostly consists of defining the rules
to deduce or calculate the values for not asserted activity
parameters from the asserted ones. They have to be processed
(fig. 1) assuming as input the asserted data in the context of
the space they are related to.

A. Mathematical approach: Assuming the homogeneity of the
space

The mathematical approach is based on a strictly physical
view of the space. For instance, the space is a discrete envi-
ronment that can be described at different levels of abstraction
and detail. According to this approach, the specification of a
space is exhaustively provided by:

Fig. 1. Mathematical (left) and semantic (right) approach.

• Space Partitioning. The Domain Space (S) is assumed
to be composed of a number of subspaces or contain-
ers. A-priori there are no constraints (e.g. disjointness)
but specific applications can introduce some of them.
Even though the semantics of the defined space are
not specified, by adopting this approach spaces should
have the same level of abstraction (e.g. districts or
places). Mixed composition of spaces are evidently
possible but, because of the simplicity of the space
model, could resulting confusion and, so, are quite
hard to match concrete scenarios. Examples of parti-
tioning are showed in fig. 2 (panel 1,2 and 4).

• Neighbour (N). Once the spaces composing S have
been defined, they can be related to each other accord-
ing to some relation. Since the mathematical approach
reflects a physical view of the space, the context
of a space is defined according to a position-based
logic that just expresses the physical proximity among
spaces. An example is shown in fig. 2 (panel 1).

Summarizing, due to the lack of specific semantics, the
view of a space is simple and can be defined as in eq. 1. ys
is the activity parameter associated to the space s.

s ∈ S ⇒ s(N(s, k), ys), k ∈ S (1)

Each non-asserted activity value can be calculated accord-
ing to eq. 2 which, due to the lack of semantics, represents the
only set of rules applicable to the whole space domain S. Each
related space provides an independent contribution (eq. 2).

yi(t) = yk − α(x, t)∃N(i, k) ∧ yi /∈ Asserted(y) (2)

The overall activity value is obtained by collecting k single
contributions according to the eq. 3. w parameters are used to
allow different weights for the different contributions.

yi(t) =

∑
k wk(yk − α(x, t))

k
(3)

∃N(i, k) ∧ yi /∈ Asserted(y), wk = const

Eq. 3 is implemented by alg. 1. This simple algorithm
processes the context information for each space starting
from the spaces associated with asserted data (that cannot be



Fig. 2. Examples of relations.

modified in this version of the algorithm). The function α is
associated with the continuity of the space: lower values of α
determine soft changes in the activity parameter for contiguous
spaces (high continuity); on the contrary, high values mean
strong changes among contiguous spaces (low continuity). In
the context of this work the α function is simplified and defined
as positive constant value.

Algorithm 1 Processing Rules
1: RulesS is eq( 2)
2: for each i ∈ S do
3: RULESS

4: end for

Regardless of the complexity of α, the greater limitation of
the mathematical approach resides in the model itself: focusing
exclusively on a physical view of the space intrinsically implies
the assumption of full homogeneity for the target spaces. In
other words, the model, due to the poor context information,
does not allow one to distinguish among spaces that are
considered all the same from a computational point of view
even though they are not the same in reality. As discussed in
the next section, this results in poor capabilities in terms of
analysis.

B. Semantic approach: Reasoning on the Space

The Semantic approach extends the previous one by in-
troducing further capabilities in terms of representation and
analysis. More concretely, the semantic understanding of the
space integrates previous concepts with the following:

• Extended Space Partitioning. It is assumed the whole
space is composed of multiple layers or levels of
abstraction. A space can be associated with a concrete
level of abstraction through the parameter la. Two
different kind of space (with two different levels of
abstraction) are considered in this study case: the
Public Space (pa=0) and the District (pa=1). An
example of extended space partitioning is shown in
fig. 2 (panel 3).

• Dependent (D). This relation is used to specify a de-
pendence of a space with another. It is often confused
with the N relation (as previously described) even
though it has a completely different nature and seman-
tics: there is no relation at all between D and physical

proximity even though it is quite common to have
a dependency amongst close spaces. Furthermore, in
contrast to N, D is not a bilateral relation. An example
is showed in fig. 2 (panel 2).

• Parent (P). This relation establishes a logic link among
spaces associated with different logic levels (from a
lower to a higher one). For example, public spaces
can be related to their districts through this relation.
An example is showed in fig. 2 (panel 3). The parent
relation is, for instance, a logic relation: it can reflect
a physical inclusion (the lower space being physically
in the higher one) but it has not to have. In fact it
is common to define logic containers that have no
physical relation with the spaces included but semantic
relations established by some property or parameter.
Evidently the relation is not reversible.

• Other Relations. The semantic relations included in
a specific model are usual to be considered do-
main/application specific. However there are at least
two relations that are generic enough to be included
in most models: Pair (PA) and Inclusion (I). The first
one (PA) establishes a semantic similitude between
two spaces on the basis of a concrete set of properties
or parameters. An example of pair spaces is showed
in fig. 2 (panel 4). It plays a critical role when
processing semantic properties (out of the scope of
the paper). Inclusion expresses a physical inclusion
of a space (normally at a lower level) with another
one. It is used to provide details inside spaces or
complex compositions of them. These two relations
are important to have a picture of the whole model
but have a minor role in the use case proposed in the
paper.

• Semantic Properties (SP). These are used in order to
characterize the different spaces according to a certain
classification or behaviour. The use cases shown in the
paper focus on semantic relations. In real applications,
properties play a role similar to relations since they
provide a further set of input for the reasoners. Apart
from their use, the most relevant difference at the level
of model between properties and relations consists in
the fact that properties are normally associated to a
single space and relations usual involve two or more
spaces (and eventually properties).

The whole set of relations for S defines the Semantic
Relations (SR). Semantic Properties are generically referred as
a set SP of properties associated with the considered space.
According to this approach the vision at a single space is
extended as in eq. 4.

s ∈ S ⇒ s(pas, SR(s, ), SP (s), ys) (4)

The reasoner processes the context information for each
space starting from spaces associated with asserted data (that
cannot be modified) exactly as the algorithm previously pro-
posed (alg. 2). But it can reason on semantic relations and
apply different rules and function for semantic matchings.
That is a strong added value in the context of a complex
environment like the space. In this paper, two different sets



of rules are considered for the semantic approach. The first
one is eq. 2 changing N for D. The second one is defined as
in eq. 5 and 6.

yi(t) = yk − β(x, t)α(x, t)
∃D(i, k) ∧ yi /∈ Asserted(y)

(5)

yi(t) =

∑
k wk(yk − β(x, t)α(x, t))

k
∃D(i, k) ∧ yi /∈ Asserted(y), wk = const

(6)

β is a parameter associated with the homogeneity of upper
spaces. It reflects an estimation of how much the spaces related
(through P) are semantically similar. It is strongly in contrast
with the previous approach that implicitly assumes a whole
and homogeneous upper space. In this context the β function
is simplified and defined as a constant value. This is a strong
difference with respect to the physical view that assumes the
logic space is a whole and, consequently, the definition of
static patterns. An example of semantic matching is provided
by alg. 3. It allows the reasoner to understand if it is processing
spaces inside the same upper container eventually applying a
different set of rules.

Algorithm 2 Reasoning on Space
1: Rulesa is eq( 2), N ← D
2: Rulesb is eq( 5)
3: for each i ∈ S do
4: if Eval(SR(i, ), C) then
5: RULESa

6: else
7: RULESb

8: end if
9: end for

Algorithm 3 An example of Semantic Matching
1: Function Eval (SR(i, k), C): Boolean
2: C1 ← ∃P (i, p), p ∈ S
3: C2 ← ∃P (k, p), p ∈ S
4: if ∃p : (C1 ∧ C2) then
5: return true
6: else
7: return false
8: end if
9: EndFunction

III. AN APPLICATION SCENARIO: PUBLIC SPACES INSIDE
METROPOLITAN ECOSYSTEMS

In this section the model is applied to a simple scenario
resulting from composing public spaces inside metropolitan
ecosystems. A public space is a social space that is generally
open and accessible to people. A low scale example is pro-
posed: a set of spaces (pa=0) is defined in the context of a
simple understanding of a metropolitan area (pa=2) including
districts (pa=1) in which spaces are defined (or are associated
to). A physical view of the space (as previously defined in the
paper) is proposed as an application of common techniques.

It is compared with the corresponding approach by using
semantic reasoning on the space. A physical analysis of the
space inside a semantic reasoner can be obtained simply
assuming β = 1. Six different scenarios, characterized by
increasing complexity, are proposed in fig. 3. Two asserted
data (yA=8 and yG=10) respectively for spaces A and G
are provided as input for the reasoner. Fig. 4 proposes a
comparison between the distributions obtained by applying
the two approaches to those scenarios, assuming β = 2 for
the semantic approach. As shown, the two techniques produce
exactly the same results for the first scenario. That is because
of its simplicity (fig. 3): spaces are defined all in the context
of the same district, so the reasoner is unable to recognize and
process the context of the information. In this kind of scenario,
the physical and semantic view of the information are the same.
Once the complexity of the context is progressively introduced
(from scenario 2 to 6), the capabilities of a physical perspective
are evidently limited and the information is processed by an
actor that is looking at the ecosystem as a simple ”observer”:
it looks at the space, it can see but cannot understand what is
is watching. On the contrary, the extended analysis provided
by the semantic approach allows an extensive understanding
of the space and its context. Consequently, the reasoner can
process the data according to the semantics of the target space
providing a context-aware output. In fig. 5 average values of
the distributions are considered as a function of the parameter
β that can vary inside a range of values. Apart from the already
mentioned limitations of the physical approach (β = 1), de-
tected patterns propose a regular decrease: reasoners are able to
detect different districts and distribute values among neighbour
spaces according to the homogeneity (β) associated to the
upper spaces. Apart from scenario 1 (already discussed), there
is another clear exception to the dominant pattern (scenario
4). In this paper we implicitly assumed the complexity of
a scenario as directly related to the number of spaces and
relations defined. This is a good approximation, acceptable
in most case studies, but not a proper formal pattern. In fact,
according to this view of the complexity of the space, scenario
4 should propose average values between the scenario 3 and
the scenario 5. But the obtained values are mostly in line
with the pattern of scenario 3 (a bit higher in the considered
range). This is because (fig. 3) scenario 4 is directly derived
from scenario 3 introducing the space H and its context. This
space is not really adding complexity to the overall space but
it is just extending the space in one direction. So the expected
relaxing of the values of distributions is not detected. On the
contrary, there is a little contraction of values: the difference
of pattern between scenarios 3 and 4 is mostly explained
by the relations of the space H that is directly dependent
on the space B and influences the space E. The previously
proposed scenarios represents the progressive characterization
of a real environment corresponding to a small section of
the city of Auckland (New Zealand). Due to the generality
of the relations adopted to semantically describe the space,
the resulting perspective has not a specific focus and mostly
reflects the point of view of a generic observer (e.g. a citizen).
The public spaces of the scenario 6 are showed in fig. 6. Public
spaces are painted by using different colors in function of the
activity associated to each of them: the gray is associated to
a no available activity value; yellow/orange tones indicate a
low activity, as well as the red scale marks medium (light red)
or high (dark red) activity. The map up in the figure shows



Fig. 3. Scenarios.

Fig. 4. A quantitative comparison between views.



Fig. 5. Average values of distributions in function of β.

the input to the reasoner. This input represents a quantitative
estimation of the activity according to complex data sources
(social networks in this case). As shown in the picture is not
possible to associate a significant activity value for all the
spaces, even when they are very central and popular places
(as in this case). The lack of information does not mean
poor activity. More realistically, the information is implicit and
strongly distributed inside contents. In fact, the input picture
is not realistic at all, though it is provided by using real
data. The same approach is followed for low level activities
detected. They could be reliable results but it’s also possible
that most relevant information was not explained by using
direct data processing. Only medium/high activity detected by
direct observations are considered as assertions (input data)
for the reasoner. Details about the technique used to process
social data are out of the scope of the paper. The output of the
reasoner is shown in fig. 6 for both the mathematical (bottom
left) and the semantic (bottom right) approach. The capabilities
of the reasoner to understand the context information are
extremely limited if only the physical space is processed. As
shown in the picture, the reasoner propagates the activity in
the whole space according to a linearly decreasing pattern.
On the contrary, the semantic approach allows the reasoner to
propagate based on a effective analysis of the context space.

IV. MAIN LIMITATIONS

The effective application of this approach mostly depends
on the capability to define a domain-specific view of the
physical space in a formal instance of the model (including the
reference vocabulary, semantic relations and properties) as well
as the rules to process it. This assumption can be considered
as fully realistic in most cases where domain specialists are
involved in the process. This is, for example, the case of social
studies aimed at the understanding and evaluation of complex
dynamics and behaviours.
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