
TESTING SEMANTIC INTEROPERABILITY

Homan Ma1, Kwan Mei Elsa Ha2, Chun Kit Jackie Chung3, and Robert Amor4

ABSTRACT
With standardised semantic representations of construction objects able to be transferred
between major CAD systems, and other design tools, there is an expectation, supported by
compliance testing, that semantically consistent data will flow across the project team. This
assumption is questioned due to the known difficulties in mapping consistently and
completely between two distinct representations of an artifact. To test the ability of CAD,
and design tools, a number of buildings, described in a standard format, are loaded and then
saved directly back out of these tools and then checked for differences. A range of potential
differences has been postulated, and experiments show the existence of most categories of
differences when data files are examined.

KEY WORDS
Interoperability, IFC, Testing, Semantic Integrity.

INTRODUCTION
The evolving IFC standard, published by the International Alliance for Interoperability (IAI
2005), allows for the transfer of semantically rich information between applications in the
domains of architecture, engineering, construction and facility management. Unlike previous
exchange standards (e.g., DXF, IGES) which concentrated on graphical entities the IFC has
over 500 classes which describe the most common objects found in constructed works (e.g.,
walls, doors, beams, furniture, etc). With a growing number of design tools allowing for the
import and export of building information utilizing the IFC standard (e.g., Architectural
Desktop, ArchiCAD, Revit, etc) we appear to be moving towards projects where real
semantic interoperability is possible between participants in a design team.

Design tools that utilize the IFC need to pass through a certification process, where their
ability to handle a range of IFC files is tested. Those which pass this test are then branded as
IFC compliant. This is becoming increasingly important as various governments and
government agencies require IFC data for their projects. For example, in Singapore the
government require building plans to be submitted in IFC format for code compliance

1 ME candidate, Department of Computer Science, University of Auckland, Private Bag 92019, Auckland,

New Zealand, Phone +64-9-3737 599, hma007@ec.auckland.ac.nz
2 Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand,

Phone +64-9-3737 599
3 Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand,

Phone +64-9-3737 599
4 Associate Professor, Department of Computer Science, University of Auckland, Private Bag 92019,

Auckland, New Zealand, Phone +64-9-3737 599, Fax +64-9-3737 453, trebor@cs.auckland.ac.nz

 2

checking, and in the USA the GSA will require all building information to be supplied in IFC
format by late 2006.

A concern that has been of interest to the research community for the last decade has
been the ability to map information between different design tools in an accurate and
consistent manner (Banerjee et al 1987, Lerner and Habermann 1990, Eastman 1992, Zicari
1992, and Atkinson et al 2000). This research has highlighted the difficulties in guaranteeing
semantic interoperability between applications whose internal data models are quite distinct
(as is appropriate for the types of computation they undertake). Given the understanding from
this mapping research it has not been clear how IFC data would be guaranteed to be
maintained consistently as it is mapped to the very different internal data representations
within the design tools that utilize it.

The work reported in this paper investigates how well the semantics of IFC data files are
maintained when a round-trip is made through a design tool (major CAD tools). In this
experiment several ‘standard’ IFC files are loaded into a design tool and then immediately
saved back out again. The differences between the IFC file loaded into the tool and that
generated by the tool are compared and categorized.

DIFFERENCES BETWEEN REPRESENTATIONS
IFC files are standard representations that allow the semantic information from CAD models
to be transferred between different CAD systems, and so enable data sharing between
designers or professionals who work with diverse design tools. However, these design tools
have their own internal representation, since they have been optimized for different purposes,
e.g. one representation might work better for rendering, while another might be better for
large amount of computational processing. Therefore, whenever a CAD model is imported
into a design tool, it is mapped to the tool’s optimized internal data representation, and
mapped back when it is exported. In theory, this process of importing and exporting should
be lossless and data should not be modified if nothing is changed in-between the importing
and exporting processes. However, with disparate representations there can not be a complete
mapping between schemas. This investigation therefore looks at how much changes with
such mappings.

THE EXPRESS LANGUAGE
Before the description of our comparison algorithm an understanding of what data is kept
within an IFC object model needs to be attempted. The IFC schema is defined using the
EXPRESS specification language defined in ISO 10303-11, and data is transferred using the
STEP Physical File (SPF) format defined by ISO 10303-21. The EXPRESS language is a
conceptual schema language developed within STEP. It describes the structure of IFC
models: the specification of classes, the attributes that are associated with those classes, the
constraints on those classes, and also the relations which exist between classes and any other
constraints on such relations.

The EXPRESS language defines two different groups of classes – these are the entity and
type classes. Entity classes define all the possible object types that the model intends to
represent virtually whilst type classes define data types. The IFC 2X2 schema has over 500

 3

classes and describes the most common objects found in constructed works (e.g. walls, doors,
beams, furniture etc). It also describes common industrial data types (e.g. volume, torque,
temperature, etc.).

Each instance within a model must belong to one class, e.g. in a model of a house, all the
door instances belong to the door class. These door instances are all of a door type but they
are not identical. All instances theoretically within a model should be unique and should be
able to be distinguished from each other. Within the IFCs each instance of an object is
distinguished from another by means of a Globally Unique ID (GUID), which appears as one
of the attributes. However, it should be noted that some non-physical object types cannot be
readily identified as they do not have a GUID as one of their attributes. In this work only
classes with a GUID attribute are considered for comparison as this ID should distinguish to
object throughout its life.

There are many measures of difference which can be applied to an IFC data model, which
can give crude indications of similarity, through to very detailed analysis of similarity. These
measures are detailed below.

PHYSICAL FILE SIZE
A comparison of the file size of the two models may provide an indication as to whether
there will be a large variance between the models. A file twice the size of its derived model is
likely to have some differences. However, further exploration of this measure showed that
two IFC data models containing the same object instances can end up having a difference in
physical size due to differences in formatting.

DIFFERING NUMBERS OF INSTANCES
A simple count of the number of instances of each type is a measure which can be applied to
certain classes within a model. For example, the number of windows, doors, beams, etc
should not change between two models. However, it is conceivable that the number of other
objects could change without a semantic difference between two models. For example, the
number of points could be optimized to remove duplicates by a particular CAD system.

INCONSISTENT OBJECT TYPES
Object types could be missing in one model, or introduced. For example, a CAD system
could disregard certain object types which don’t have a graphical representation. It could also
introduce new object types which reflect its internal representation of the building.

INCONSISTENT ATTRIBUTE VALUES
Introduced inconsistency within the attribute values of object instances can be categorized
into the following four categories.

• Missing or introduced values: Attribute values could be dropped or created by the
design tools.

• Numerical precision loss: During the conversion process into the CAD system’s
internal storage format, numerical precision loss can be introduced. This can occur

 4

because of the difference in the data type used. For example within the original IFC
file the numerical data type might be a real number but within the CAD tool system
it is stored as an integer.

• String length differences: Similar to how numerical precision loss can be
introduced, changes in the string attribute length can also be introduced. The CAD
tool system’s internal storage format could restrict the length of attributes causing a
loss of data.

• Value differences: Attribute values could be totally different due to calculations
made within the design tool.

• Reference differences: The number of pointers to other objects in a model could
change (e.g., reaching a limit within a design tool), or even be changed to different
objects.

SCHEMA INCONSISTENCIES
The IFC file exported out of a design tool may be inconsistent with the schema, for example
some required attributes being absent, mismatched types, etc.

SPECIAL CASES
From examining the imported and exported data models it is clear that there are special cases
where differences can be ignored. These cases relate to meta-data created by design tools to
provide an audit trail of the work done on a model. With the IFC data model the majority of
these cases relate to the OwnerHistory attributes (ApplicationDeveloperDescription,
ApplicationFullName, ApplicationVersion, LastModifiedData, LastModifyingApplication
etc).

EVASYS
EVASYS (EXPRESS Evaluation System) is a system specially developed to evaluate the
similarities and differences between two IFC models under the EXPRESS schema. The
system is seperated into four components: the comparison engine, the graphical user interface
(GUI), the visualization engine, and a database (Microsoft Access).

The comparison engine performs the comparison process between the two CAD models;
the GUI provides an interface between the user and the application, allowing the user to
select a schema and then compare the two files, it also acts as a medium for the 3D object
visualization function reporting the comparison result in both textual and graphical modes.;
while the visualization engine specializes in producing 3D models.

The system utilizes a third-party component, called the IFCEngine as a sub-component
within the EVASYS system. This component, developed by TNO Building and Construction
Research reads in the target IFC models and allows the return of model data requested by the
other sub-components. The IFCEngine acts as an interface for a DLL, which is an
unmanaged C++ dynamic-linked library that provides users with a quick and easy way of

 5

accessing the different object types, their individual instances and the corresponding attribute
values..

The system was developed using C# and each component and sub-component was tested
using Nunit 2.2. The schema defined by the EXPRESS file is store within a Microsoft Access
database. The parsing of the IFC model is done by a line by line text reader.

COMPARISON ALGORITHM
A simplified version of the comparison algorithm, represented by a flow diagram, is shown
in Figure 1. The work done at each step is as described below.

Figure 1: Process for the Comparison algorithm

 6

Step 1: Prepare the data
Let File A be an IFC Model. Import into the design tool being tested and export the model
back out. Note that the model is unchanged in-between this importing and exporting process
to maintain consistency. Let File B be the IFC Model exported out of the CAD tool being
tested.

Step 2: Load Schema and IFC models
The schema is loaded into EVASYS along with the IFC models to begin the comparison
process.

Step 3: Comparison Process

Filter for matching object types

The comparison engine will select and keep all the object types which exist in both files, then
store the rest as missing object types from either file.

Filter for matching instances

The comparison engine will repeat this sub-step for each instance of each of the matching
object types. As mentioned before, the Global Unique ID (GUID) is used as the identification
of an instance, so if there is an instance in File A which has the same GUID as an instance in
File B, they can be considered as the same instance. However, this does not mean the
attributes of both instances are identical, and thus further examination is necessary.

We filter for all the instances present in both File A and File B resulting in a collection of
object types matching up between two files, each of which contains collection of instances
which exist in both files.

Attribute comparison

For each of the matching object types, we then loop through the number of matching
instances. Within each loop, we retrieve the attribute values of the current instance being
investigated from both models or/and the reference numbers used to establish relationships
with other instances within the same model and then compare them.

For simple type attributes, we check whether an attribute is equal in value to the attribute
in the corresponding model. While for relationships the attributes of the instances to which
the reference numbers from each corresponding isntances are compared.

When there are aggregation relations the comparison process is similar. We retrieve the
aggregate collection of data values or reference numbers and compare them one by one. Only
if each element in the collection in a model is the same as an element in the corresponding
collection in the other model, the attribute can be marked as identical.

If any attribute does not have the same content in any pair of instances, that pair of
instances is regarded as instances with inconsistent values; otherwise, the instances are
considered consistent.

 7

Determining if completely identical

If there are no missing object types in either file, no missing instances in either file, and no
instances that have inconsistent values, then the two models are considered identical,
otherwise they are considered different.

TEST FILES
The models used to test this concept were a mix from previous IFC demonstrations and some
exemplar buildings from CAD systems. Care was taken to ensure that during the importing
and exporting process, no changes were made to the original IFC model. The comparison of
two 10 MB IFC models took around 3-4 minutes.

RESULTS
Several buildings were run through a selection of commercial CAD systems with IFC import
and export functionality. Three examples which indicate the types of differences found from
the comparison are detailed below.

TEST CASE 1: HOTEL MODEL
File A: Hotel_Model.ifc (8,560 KB)
File B: Hotel_Model_CAD.ifc (9,251 KB)

Differences:

Analysis
The difference in File size before EVASYS was run is quite noticeable. Opening the two IFC
models using a text editor showed that File A had 147,326 lines of data while on the other
hand File B had 158,225 lines. This showed that File B had introduces new instances and this
was proven by EVASYS. The exported out file had introduced 338 new IfcPropertySet
instances and 338 IfcRelDefinesByProperties instances. What were missing were an
IfcRelAggregates instance and one IfcRelContainedInSpatialStructure.

 8

TEST CASE 2: MUNKERUD HUS6 BE
File A: Munkerud_hus6_BE.ifc (3,913 KB)
File B: Munkerud_hus6_BE_CAD.ifc (12,923 KB)

Identicals:

Differences

 9

Analysis
What should be noted is that the exported out IFC Model is missing 32 IfcBeam instances
found in the original model. The IfcBeam type represents a beam object within a CAD
drawing.

TEST CASE 2: IFG 3D SAMPLE 1
File A: IFG_3D_Sample_1.ifc (3,896 KB)
FileB: IFG 3D_Sample_CAD.ifc (10,455 KB)

Identicals:

Differences:

Analysis:
The source IFC Model of this test case was taken out of the CAD tools own sample IFC files.
Despite appearing larger physically, it is missing many instances. The key instance missing
in this case is IfcSite.

 10

CONCLUSIONS AND FUTURE WORK
Analysing the difference between an IFC file which has passed through a CAD system
without modifications being made highlights a number of changes which appear within the
model. The majority of the changes are fairly minor, some are even expected, but there are
some significant changes (e.g., the removal of beam objects) which are unexpected. While a
range of possible differences has been determined, and instances of these have been found in
the compared models, this needs to be turned into a strategy which will enable design tool
developers to ensure that they can maintain the semantic consistency of the data models that
they manipulate.

REFERENCES
Atkinson, M.P., Dmitriev, M., Hamilton, C. and Printezis, T. (2000). “Scalable and

Recoverable Implementation of Object Evolution for the PJama1 Platform” Persistent
Object Systems, 9th International Workshop, POS-9, Lillehammer, Norway, 6-8
September, 292-314.

Banerjee, J., Kim, W., Kim, H., and Korth, H. (1987). “Semantics and Implementation of
Schema Evolution in Object-Oriented Databases”, Proceedings of the 1987 ACM SIG-
MOD international conference on Management of data. San Francisco, USA, 311-322.

Eastman, C.M. (1992). “A data model analysis of modularity and extensibility in building
databases”, Building and Environment, 27(2), 135-148.

IAI (2005). International Alliance for Interoperability, web site last accessed 20/2/2006,
http://www.iai-international.org/.

Lerner, B.S. and Habermann, A.N. (1990). „Beyond schema evolution to database
reorganization”, Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Ottawa, Canada, October, 67-76.

Zicari, R. (1992). “A Framework for schema updates in an object-oriented database systems”
Morgan Kaufmann Series In Data Management Systems, 146-182.

