
Kinect to Architecture

Leroy D’Souza, Isuru Pathirana, Dermott McMeel, Robert Amor
University of Auckland

Private Bag 92019, Auckland, New Zealand
d.mcmeel@auckland.ac.nz, trebor@cs.auckland.ac.nz

Abstract—For a client to be able to immerse themselves within an
architectural model there needs to be a natural and intuitive
interface. A keyboard and mouse based interface can detract
from the focus on the space being navigated and therefore a more
intuitive approach to such interaction needs to be identified. The
Kinect device provides significant recognition ability for whole
body gestures and its use was investigated in this project. With a
small number of gestures required for navigation an important
design criteria is the recognition accuracy and fatigue for
prolonged interaction with a model. The paper reports on the
Kinect-based navigation system as well as a user trial which
identifies the strengths and weaknesses of this approach.

Keywords-natural user interface; navigation; architecture

I. INTRODUCTION

Three-dimensional models play an important role in
architectural design since they allow architects to review,
communicate and present design proposals to clients. They also
give clients an accurate impression of the designed space and
its utility. However, navigation of the model using traditional
interface devices, such as a keyboard and mouse, inherently
limits the naturalness and the speed of interaction with the
model.

The objective of this project was to design a Natural User
Interface (NUI) that would allow users to navigate through 3D
architectural models. This would provide a more interactive
environment to conceptualise 3D space. Existing systems such
as immersive virtual environments have shown great potential
in this area. However, these systems often require users to wear
additional devices, thereby compromising the naturalness of
the system. The focus of this project is to incorporate the use of
hand gestures and body poses to allow users to interact with 3D
models.

In recent years many systems have utilised the movement
of the human arm, or hand gestures, as a means of interacting
with computers. However, several of these systems, such as
glove-based devices, compromise convenience by requiring the
user to be instrumented with bulky devices [1, 2]. They can
also prove to be too expensive for the consumer market [3].
Alternatively, vision-based recognition of hand gestures
promises natural and non-obstructive interaction, but can be
challenging due to the complexity of the human hand structure
and motion.

The recent release of Microsoft’s Kinect controller [4] has
generated significant interest with its ability to detect human
proximity and motion. Consequently, it was decided that the
use of the Kinect would be explored for gesture detection. The
designed system is a gesture-based interface that can be used
by architects to import 3D architectural models, allowing their
clients to navigate through them using the Kinect. The system
also gives visual feedback to users with the use of an on-screen
avatar.

II. RELATED WORK

A. Gesture Recognition

3D gesture recognition in virtual environments has been an
important research topic over the years. Researchers have
proposed many different methods for resolving this issue [5].
However, most systems use either motion or video sensor-
based recognition.

Motion sensor-based gesture recognition utilizes data
obtained from devices such as, acceleration measurements
from accelerometers and angular velocity from gyroscope
sensors [1, 6]. This approach has the advantage of being
unaffected by environmental factors such as lighting, but can
prove to be cumbersome for the user.

Video sensor-based gesture recognition uses the images
from one or more video sensors [7, 8]. It then uses complex
image processing algorithms to obtain gesture information.
This method is relatively inexpensive, but is mainly used for
indoor activities due to its dependency on the level of lighting.
The Microsoft Kinect uses the video sensor-based approach.
The Kinect has an advantage over traditional video sensor-
based systems because it uses infrared light to measure
proximity using time-of-flight information. Giving it a depth
accuracy to within a few centimeters and allowing it work in
low-light environments [9]. The depth data collected by the
Kinect has been used to control quadrocopters [10] and
perform finger tracking [11]. The Kinect also has a microphone
array and a RGB camera, however the focus of the project is on
its depth sensors.

B. Natural User Interfaces

The term “Natural User Interface” or NUI describes an
interface that focuses on human abilities such as touch, vision,
voice, motion and other higher cognitive functions [12]. The
main goal of a NUI is to ensure that the system conforms to the

users’ needs rather than the user having to conform to the
system. This essentially means that a successful natural user
interface can be described as one where the user takes very
little time to transition from a novice to an expert. This is a
significant step in the area of Human Computer Interaction
because the use of NUIs will avoid current restrictions present
in complex interaction with digital objects, such as the one
being faced in the field of architecture.

C. Navigation of Virtual Environments

Virtual environments have proved efficient for training in
three-dimensional spaces. It is therefore not surprising to find
architects using virtual environments to intuitively
conceptualise 3D space. Traditionally, virtual environments
have required users to familiarise themselves with the complex
techniques and equipment required to fully experience the 3D
space. These systems can at times prove to be counter-intuitive,
as it can take a long time for the user to get accustomed to the
system.

Arch-Explore was a similar project designed to provide a
natural interface to navigate 3D models using immersive
environments [13]. The system allowed users to walk through a
given miniature architectural model with the use of a Head
Mounted Display (HMD) or a complex immersive
environment. The downside to this technique was the fact that
users had to wear additional equipment.

III. A GESTURE-BASED DESIGN NAVIGATOR

The main goal of this work was to create a navigation
system which non-expert users (e.g., clients of an architect)
could utilise to explore a 3D model of a building and its
surrounding site. To achieve this we looked for approaches that
could emulate the feeling of walking through the 3D model and
that would support gestures to drive the navigation. An
important aspect of the project was to design navigational
interactions which would appear natural for a user. Since
naturalness is subjective and unique to each user, research was
conducted to find out what factors determined naturalness. It
was found to comprise of four major components: accuracy;
ease of use; memorability of the gesture; and if the actions
were fatiguing.

To enable navigation of a 3D model the core feature of the
program is to allow unconstrained movement through the
model. So gestures would be required to allow users to perform
a forward and backward motion and a way to turn or pan their
view. Since most architectural models would be multi-storey
structures, the system must also implement gestures for moving
up and down through different storeys.

For successful navigation of a 3D environment some form
of visual feedback must be provided back to the user to ensure
they know how their actions are being translated into the
virtual world. This can be done with the use of an avatar as is
typically deployed in the majority of first-person interactive
games.

As a complete system the program should also provide the
user with an option to choose the model that they wish to
navigate from a catalogue of designed buildings. Ideally this

selection should also happen with the use of gestures to
maintain the experience of immersion.

The support of standard 3D model file formats is key to the
long-term success of the program, both for loading models into
the system and visualising the model in real-time. This would
ensure that architects are not inconvenienced by having to
convert their designs to a special format solely for the use of
this platform, thereby making it both versatile and scalable.

IV. THE KINECT AS A GESTURE DETECTOR

To achieve a natural user interface hand gestures and body
poses were incorporated into the program to allow users to
experience the architectural space in a 3D model. Gestures
were also used to interface with the other aspects of the
program such as the start screen and the model selection. As
previously mentioned, the Kinect sensor is used to collect
depth data in order to perform gesture detection.

A. Gesture Detection

The Microsoft Kinect has been chosen as the video sensor
for the system. It was released by Microsoft for the Xbox 360
video game platform in 2010. The Kinect is used to receive
hand motion and gesture input from the user.

The Kinect sensor consists of a RGB camera, depth sensor
and multi-array microphone, which provide capabilities such
as, full-body 3D motion capture, facial recognition and voice
recognition. The depth sensor consists of an infrared laser
projector combined with a monochrome complementary metal-
oxide semiconductor (CMOS) sensor, which captures video
data in 3D. The sensing range of the depth sensor can be
adjusted.

The depth sensor first illuminates the scene in an infrared
depth pattern, which is invisible to the human eye (see Figure 1
for an example of an illuminated scene). The CMOS image
sensor reads back the depth pattern, which is now distorted due
to the various objects in the scene. This distortion is processed
by a System on Chip (SoC) connected to the CMOS image
sensor, producing a depth image of the scene. The data is then
transmitted to the computer via Universal Serial Bus (USB)
interface. Highlights of this method are that it is accurate to
within a few centimeters and can work in low-light conditions,
as may be found inside a room [9].

Figure 1. An infrared depth pattern.

B. Gesture Recognition

The raw data from the Kinect is obtained via the
SensorKinect driver. This raw data is processed to extract the
skeletal and gesture data of the user. The OpenNI library [14]
is used to interface between SensorKinect and the NITE
framework [14], which is used to perform skeletal tracking and
gesture detection. The Gesture Manager accesses this skeletal
data via OpenNI APIs. OpenNI was chosen as the desired
toolkit for this purpose because it provides an abstraction layer
allowing rapid and easy development of a natural user
interface.

For skeletal tracking, the NITE framework requires the user
to first perform a calibration pose, as shown in Figure 1. The
user’s body proportions are then mapped onto this skeletal
model, which consists of 15 different points, to achieve skeletal
tracking. NITE uses skeletal tracking to help facilitate gesture
detection. For example, to detect a push gesture the motion of
the hand point in relation to the torso point would be tracked.
When the relative distance between the two points has reached
a given limit, a successful push gesture event can be triggered.
However NITE is unable to perform finger detection which
inherently limits the amount of hand gestures that can be used
in this approach. The interaction of the various sub-systems is
shown in Figure 2.

Figure 2. System architecture.

V. DESIGNING GESTURES FOR NAVIGATION

To meet the requirements for natural gestures we aimed for
a minimal set of gestures that covered the core requirements of
the system for both navigation and control functions. This
enabled the choice of gestures which were easily recognisable
as distinct by the recognition toolkits, and which mapped to
movements that the users perceived as matching the desired
functionality. Aiming for a minimal set also helped the
memorability aspects with few poses to be learnt by a user. The

gestures selected and the range of movement required to trigger
a gesture were developed in an iterative manner with a small
number of test subjects. For example, in the initial set of
gestures the step forward and backward poses were not
contemplated, and were incorporated after suggestions by the
test subjects. The final set of gestures for the system are shown
in Table I.

TABLE I. GESTURES SUPPORTED.

Gesture Functionality
Point forward Move forward
Step forward Move forward
Step backward Move backward
Point up Move to an upper storey
Point down Move to a lower storey
Point left/right Pan camera left/right
Hold-up pose Calibrate user to system
Push hand forward Select
Cross arms Return to starting position
Cross arms (hold for 2 seconds) Return to model selection

When the user performs a given gesture, it is processed to
see if it is one of the gestures implemented in the system. If it is
then the gesture is added to a First-In-First-Out (FIFO) buffer.
This enables the User Interface to accurately respond to a given
sequence of gestures. To detect each of the gestures, both the
orientations and positions of the user’s hands and feet relative
to their torso is tracked. Each gesture requires the user’s hand
or feet to be in a certain position to be detected.

Figure 3. Gesture for moving forward.

The pointing forward gesture (see Figure 3) is detected by
measuring the relative distance between the right hand point

and the torso in the Z direction i.e. directly in front of the user.
This is then compared to a minimum value to trigger a pointing
forward gesture. Similarly, the pointing left/right and up/down
gestures are detected by measuring the location of the hand
point with respect to the torso point in the Z and X (sideways)
directions, and Z and Y (up or down) directions respectively.
An additional constraint was placed on the down gesture that
the user’s hand must be placed some distance below and away
from the torso. This was done to ensure that the pointing down
gesture was not accidentally triggered when the user was in the
rest position (with his/her hands to their side). The cross
gesture is detected by checking the positions of the hand,
elbows and their angular orientation. Finally the push gesture
detection is provided by the NITE framework and is detected
by sensing a continuous push motion towards the Kinect. The
body poses consist of either stepping forward by placing the
right foot ahead of the left foot or by stepping backward by
placing the right foot behind the left foot. The relative distance
between the left and the right feet in the Z direction is then
measured and if this is greater than a minimum value, the
gesture is triggered.

Initially, the minimum detection values were set to fixed
values. However, upon preliminary testing it was found that
due to variation in users’ heights, the system had trouble
detecting some of the gestures. It was then decided that to
improve the system’s capabilities, the minimum values needed
to be dynamically generated. Hence, a preliminary study of 6
users was conducted. The study involved measuring the
participants’ heights using the Kinect by calculating the
difference between the head point and the feet points. They
were then asked to perform all the different gestures
implemented in the system to the extent which they felt
comfortable, for example, pointing left till a point where he/she
did not feel any additional strain or discomfort. The ratios of
the relative X and Y distances of their hands/feet from their
torso to their height were measured for each gesture. These
ratios were then averaged to find an overall ratio for each
gesture. The gesture detection incorporated these ratios and the
height of the current user to dynamically tailor the hand and
feet positions for each user.

Figure 4. Navigating a 3D model.

VI. USER TRIAL

A user study was conducted to test how intuitive and
natural it was for users to navigate 3D architectural models
using the designed program. The user study consisted of 7
participants, with all participants being students from the
University of Auckland. Six participants had used gesture-
based interfaces previously in the context of gaming. The study
involved first allowing the participants to become familiar with
the interface and try out all the different gestures available.
They were then instructed to complete a timed test. To prevent
bias, subjects that took part in any preliminary testing were
deemed to be unsuitable for this user study.

The test setup required users to collect 8 hoops located at
various points in the model (see Figure 5 for an example
setup). The time taken to collect all the hoops was recorded.
The average response time i.e. the difference between the time
when a user saw a given hoop to the time the user collected the
hoop was also recorded. To ensure fairness the location of the
hoops was randomised for each test, however the relative
distance between each hoop was kept the same. The test was
then repeated using a keyboard, with the functionality of the
system being mapped onto keyboard keys. The times using
both the Kinect and the keyboard was analysed.

Figure 5. User trial scenario.

The users were then asked to complete a questionnaire
about the systems which consisted of two main sections. The
first section evaluated each of the gestures in 5 aspects namely,
accuracy, ease of use, level of fatigue experienced, how
memorable the gestures were and how responsive the system
was to a given gesture. This was to determine how natural and
intuitive users found the system. The second section required
them to complete an evaluation with regards to the system as a
whole. Both these sections were quantitative making use of a
5- point Likert Scale, with 5 representing either Excellent or
Strongly Agree and 1 either Poor or Strongly Disagree. The
participants were given the opportunity to provide qualitative
feedback about the feature(s) or gesture(s) they preferred the
most and the one they found most difficult to use. For a given
gesture, all the scores for a given factor, for example accuracy,
were added together and the sum was divided by the maximum
total score possible. This was used to calculate a percentage.

In Figures 6 and 7 one can see that the push gesture was
rated lowest in terms of accuracy, ease of use, memorability
and responsiveness. During the course of the project it was
found that in-built gestures, such as Swipe or Push which were
provided by NITE, could not be successfully integrated into the
program. A possible solution is to design a method to detect
these gestures manually. In terms of ease of use the cross
gesture had the highest rating and the up gesture was the most
accurate.

Figure 6. Analysis of ease of use and accuracy of gestures.

It is interesting to note that in Figure 7, pointing left/right to
browse through different models was more memorable than
using the same gesture to pan the camera. This indicates that
the naturalness of the gesture is not simply dictated by the
action itself, but rather the context that it is used in. The
average accuracy across all the gestures was 79%, the average
ease of use was 81%, the average responsiveness was 86% and
the average memorability was 89%.

Figure 7. Analysis of responsiveness and memorability of gestures.

The users also rated the gestures on how fatiguing each of
the gestures were. The higher the percentage the more fatiguing
the gesture. As can be seen in Figure 8, the push and cross
gestures caused the least amount of fatigue and the pointing
left/right was the most tiring. Most of the users stated that after
8-10 minutes of continual usage they were slightly fatigued.
This is not surprising as currently navigation involves continual
movement of the right arm.

Figure 8. Fatigue level of gestures.

The time taken to collect the hoops is shown in Table II.
The average response time with the keyboard was found to be
1.7 seconds and on the Kinect was 4.1 seconds. Both the times
to collect the hoops and the average response times are higher
on the Kinect than the keyboard. This is to be expected since
all the users had far greater prior experience using keyboard
interfaces. However, it should be noted that the main aim of the
project was not to deploy a Kinect based interface that was
faster, but rather to design a more natural interface for users.

TABLE II. TIME TO TRAVERSE THE TRIAL SCENARIO.

Time Taken Kinect Keyboard
Minimum 57s 40s
Average 81s 60s
Maximum 125s 115s

In terms of qualitative feedback, most of the users felt the
interface could be improved by incorporating the use of the left
hand in gestures. Although the program currently doesn’t
support this, it can easily be done and was not implemented
earlier due to it being deemed a low priority feature. The use of
both arms simultaneously for navigation was not implemented,
as an assumption was made that requiring both hands to control
the system would greatly fatigue the user. Users also found it
difficult to have precise control over movements and thought it
would be useful to vary the movement speed based on the
position of their arms.

VII. CONCLUSIONS AND FUTURE WORK

In this project we successfully designed a natural user
interface implementing a range of gestures for navigation of a
3D model. These gestures were able to be recognised by a
Microsoft Kinect, coupled with the NITE framework, and
support all of the major navigation features necessary to
experience a 3D scene. Testing of the system showed that
while it might be slower to perform movements, the main
characteristics of a natural interface such as accuracy of
recognition, ease of use, and memorability of gestures were
well met. The use of existing recognition frameworks
introduced some limitations include the requirement of
performing the calibration pose at the start of the program and
the lack of support for finger tracking. This forced us to
implement gestures that required fully body or limb
movements. These movements, as indicated in the user study,
fatigued the user after 8-10 minutes of continual usage. The

Kinect also had difficulty detecting people with jackets or other
forms of loose clothing. Rendering a 3D model in real-time is a
very resource intensive process, which may be problematic for
very large building models, though it can be improved with the
use of higher powered computers.

A. Future work

This project investigated the utility of 1st generation
consumer level products for gesture recognition and it is
expected that the ability of these systems will improve
dramatically over the next few years. In future the addition of
features such as finger tracking would provide users with a
much easier and less fatiguing method of navigation. An
investigation can be carried out to see if gestures involving
both hands would prove to be natural or very fatiguing. To aid
movement through a given model a mini-map should be added
to the model navigation screen, including a marker showing the
user’s current location, as is common in many game systems.
At the moment the camera view can only be moved forward,
backward and panned sideways. This should be expanded to
include a tilt feature, with an appropriate gesture being used to
perform this. Further improvements to the current system, such
as varying the speed of motion based on extent of hand
positions or a tutorial mode to familiarise users with the
interface can also be investigated. The other capabilities of the
Kinect such as the microphone array and RGB camera could
also be investigated as ancillary approaches to control the
interface using voice commands or to design a customised
avatar of the user.

REFERENCES
[1] J.-H. Kim, N. D. Thang, and T.-S. Kim, “3D hand motion tracking and

gesture recognition using a data glove,” in Industrial Electronics, 2009.
ISIE 2009. IEEE International Symposium on, July 2009, pp. 1013 –
1018.

[2] Y. Han, “A low-cost visual motion data glove as an input device to
interpret human hand gestures,” Consumer Electronics, IEEE
Transactions on, vol. 56, no. 2, pp. 501 –509, May 2010.

[3] B. Takacs, “How and why affordable virtual reality shapes the future of
education,” The International Journal of Virtual Reality, 2008, 7 (1): 53,
vol. 66, 2008.

[4] (2011) Microsoft xbox website. [Online]. Available:
http://www.xbox.com/en-US/kinect

[5] Z. gang Xu and H. lei Zhu, “Vision-based detection of dynamic
gesture,” in Test and Measurement, 2009. ICTM ’09. International
Conference on, vol. 1, Dec. 2009, pp. 223 –226.

[6] U.-X. Tan, K. Veluvolu, W. T. Latt, C. Y. Shee, C. Riviere, and W. T.
Ang, “Estimating displacement of periodic motion with inertial
sensors,” Sensors Journal, IEEE, vol. 8, no. 8, pp. 1385 –1388, Aug.
2008.

[7] M. Hasanuzzaman, V. Ampornaramveth, T. Zhang, M. Bhuiyan, Y.
Shirai, and H. Ueno, “Real-time vision-based gesture recognition for
human robot interaction,” in Robotics and Biomimetics, 2004. ROBIO
2004. IEEE International Conference on, Aug. 2004, pp. 413 –418.

[8] Y. Liu, L. Tang, K. Song, S. Wang, and J. Lin, “A multicolored vision-
based gesture interaction system,” in Advanced Computer Theory and
Engineering (ICACTE), 2010 3rd International Conference on, vol. 2,
Aug. 2010, pp. V2–281 –V2–284.

[9] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-Time Human Pose Recognition in Parts
from Single Depth Images,” in IEEE Computer Vision and Pattern
Recognition (CVPR), June 2011.

[10] J. Stowers, M. Hayes, and A. Bainbridge-Smith, “Altitude control of a
quadrotor helicopter using depth map from microsoft kinect sensor,” in
Mechatronics (ICM), 2011 IEEE International Conference on, April
2011, pp. 358 –362.

[11] V. Frati and D. Prattichizzo, “Using kinect for hand tracking and
rendering in wearable haptics,” in World Haptics Conference (WHC),
2011 IEEE, June 2011, pp. 317 –321.

[12] W. Liu, “Natural user interface- next mainstream product user
interface,” in Computer-Aided Industrial Design Conceptual Design
(CAIDCD), 2010 IEEE 11th International Conference on, vol. 1, Nov.
2010, pp. 203 –205.

[13] G. Bruder, F. Steinicke, and K. Hinrichs, “Archexplore: A natural user
interface for immersive architectural walkthroughs,” in 3D User
Interfaces, 2009. 3DUI 2009. IEEE Symposium on, March 2009, pp. 75
–82.

[14] (2011) OpenNI and NITE libraries. [Online]. Available:
http://www.openni.org/

