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Abstract—For a client to be able to immerse themselves within an 
architectural model there needs to be a natural and intuitive 
interface. A keyboard and mouse based interface can detract 
from the focus on the space being navigated and therefore a more 
intuitive approach to such interaction needs to be identified. The 
Kinect device provides significant recognition ability for whole 
body gestures and its use was investigated in this project. With a 
small number of gestures required for navigation an important 
design criteria is the recognition accuracy and fatigue for 
prolonged interaction with a model. The paper reports on the 
Kinect-based navigation system as well as a user trial which 
identifies the strengths and weaknesses of this approach. 
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I.  INTRODUCTION 

Three-dimensional models play an important role in 
architectural design since they allow architects to review, 
communicate and present design proposals to clients. They also 
give clients an accurate impression of the designed space and 
its utility. However, navigation of the model using traditional 
interface devices, such as a keyboard and mouse, inherently 
limits the naturalness and the speed of interaction with the 
model. 

The objective of this project was to design a Natural User 
Interface (NUI) that would allow users to navigate through 3D 
architectural models. This would provide a more interactive 
environment to conceptualise 3D space. Existing systems such 
as immersive virtual environments have shown great potential 
in this area. However, these systems often require users to wear 
additional devices, thereby compromising the naturalness of 
the system. The focus of this project is to incorporate the use of 
hand gestures and body poses to allow users to interact with 3D 
models. 

In recent years many systems have utilised the movement 
of the human arm, or hand gestures, as a means of interacting 
with computers. However, several of these systems, such as 
glove-based devices, compromise convenience by requiring the 
user to be instrumented with bulky devices [1, 2]. They can 
also prove to be too expensive for the consumer market [3]. 
Alternatively, vision-based recognition of hand gestures 
promises natural and non-obstructive interaction, but can be 
challenging due to the complexity of the human hand structure 
and motion. 

The recent release of Microsoft’s Kinect controller [4] has 
generated significant interest with its ability to detect human 
proximity and motion. Consequently, it was decided that the 
use of the Kinect would be explored for gesture detection. The 
designed system is a gesture-based interface that can be used 
by architects to import 3D architectural models, allowing their 
clients to navigate through them using the Kinect. The system 
also gives visual feedback to users with the use of an on-screen 
avatar. 

II. RELATED WORK 

A. Gesture Recognition 

3D gesture recognition in virtual environments has been an 
important research topic over the years. Researchers have 
proposed many different methods for resolving this issue [5]. 
However, most systems use either motion or video sensor-
based recognition. 

Motion sensor-based gesture recognition utilizes data 
obtained from devices such as, acceleration measurements 
from accelerometers and angular velocity from gyroscope 
sensors [1, 6]. This approach has the advantage of being 
unaffected by environmental factors such as lighting, but can 
prove to be cumbersome for the user. 

Video sensor-based gesture recognition uses the images 
from one or more video sensors [7, 8]. It then uses complex 
image processing algorithms to obtain gesture information. 
This method is relatively inexpensive, but is mainly used for 
indoor activities due to its dependency on the level of lighting. 
The Microsoft Kinect uses the video sensor-based approach. 
The Kinect has an advantage over traditional video sensor-
based systems because it uses infrared light to measure 
proximity using time-of-flight information. Giving it a depth 
accuracy to within a few centimeters and allowing it work in 
low-light environments [9]. The depth data collected by the 
Kinect has been used to control quadrocopters [10] and 
perform finger tracking [11]. The Kinect also has a microphone 
array and a RGB camera, however the focus of the project is on 
its depth sensors. 

B. Natural User Interfaces 

The term “Natural User Interface” or NUI describes an 
interface that focuses on human abilities such as touch, vision, 
voice, motion and other higher cognitive functions [12]. The 
main goal of a NUI is to ensure that the system conforms to the 



users’ needs rather than the user having to conform to the 
system. This essentially means that a successful natural user 
interface can be described as one where the user takes very 
little time to transition from a novice to an expert. This is a 
significant step in the area of Human Computer Interaction 
because the use of NUIs will avoid current restrictions present 
in complex interaction with digital objects, such as the one 
being faced in the field of architecture.  

C. Navigation of Virtual Environments 

Virtual environments have proved efficient for training in 
three-dimensional spaces. It is therefore not surprising to find 
architects using virtual environments to intuitively 
conceptualise 3D space. Traditionally, virtual environments 
have required users to familiarise themselves with the complex 
techniques and equipment required to fully experience the 3D 
space. These systems can at times prove to be counter-intuitive, 
as it can take a long time for the user to get accustomed to the 
system. 

Arch-Explore was a similar project designed to provide a 
natural interface to navigate 3D models using immersive 
environments [13]. The system allowed users to walk through a 
given miniature architectural model with the use of a Head 
Mounted Display (HMD) or a complex immersive 
environment. The downside to this technique was the fact that 
users had to wear additional equipment.  

III. A GESTURE-BASED DESIGN NAVIGATOR 

The main goal of this work was to create a navigation 
system which non-expert users (e.g., clients of an architect) 
could utilise to explore a 3D model of a building and its 
surrounding site. To achieve this we looked for approaches that 
could emulate the feeling of walking through the 3D model and 
that would support gestures to drive the navigation. An 
important aspect of the project was to design navigational 
interactions which would appear natural for a user. Since 
naturalness is subjective and unique to each user, research was 
conducted to find out what factors determined naturalness. It 
was found to comprise of four major components: accuracy; 
ease of use; memorability of the gesture; and if the actions 
were fatiguing.  

To enable navigation of a 3D model the core feature of the 
program is to allow unconstrained movement through the 
model. So gestures would be required to allow users to perform 
a forward and backward motion and a way to turn or pan their 
view. Since most architectural models would be multi-storey 
structures, the system must also implement gestures for moving 
up and down through different storeys. 

For successful navigation of a 3D environment some form 
of visual feedback must be provided back to the user to ensure 
they know how their actions are being translated into the 
virtual world. This can be done with the use of an avatar as is 
typically deployed in the majority of first-person interactive 
games.  

As a complete system the program should also provide the 
user with an option to choose the model that they wish to 
navigate from a catalogue of designed buildings. Ideally this 

selection should also happen with the use of gestures to 
maintain the experience of immersion.  

The support of standard 3D model file formats is key to the 
long-term success of the program, both for loading models into 
the system and visualising the model in real-time. This would 
ensure that architects are not inconvenienced by having to 
convert their designs to a special format solely for the use of 
this platform, thereby making it both versatile and scalable. 

IV. THE KINECT AS A GESTURE DETECTOR 

To achieve a natural user interface hand gestures and body 
poses were incorporated into the program to allow users to 
experience the architectural space in a 3D model. Gestures 
were also used to interface with the other aspects of the 
program such as the start screen and the model selection. As 
previously mentioned, the Kinect sensor is used to collect 
depth data in order to perform gesture detection. 

A. Gesture Detection 

The Microsoft Kinect  has been chosen as the video sensor 
for the system. It was released by Microsoft for the Xbox 360 
video game platform in 2010. The Kinect is used to receive 
hand motion and gesture input from the user. 

The Kinect sensor consists of a RGB camera, depth sensor 
and multi-array microphone, which provide capabilities such 
as, full-body 3D motion capture, facial recognition and voice 
recognition. The depth sensor consists of an infrared laser 
projector combined with a monochrome complementary metal-
oxide semiconductor (CMOS) sensor, which captures video 
data in 3D. The sensing range of the depth sensor can be 
adjusted.  

The depth sensor first illuminates the scene in an infrared 
depth pattern, which is invisible to the human eye (see Figure 1 
for an example of an illuminated scene). The CMOS image 
sensor reads back the depth pattern, which is now distorted due 
to the various objects in the scene. This distortion is processed 
by a System on Chip (SoC) connected to the CMOS image 
sensor, producing a depth image of the scene. The data is then 
transmitted to the computer via Universal Serial Bus (USB) 
interface. Highlights of this method are that it is accurate to 
within a few centimeters and can work in low-light conditions, 
as may be found inside a room [9]. 

 

Figure 1.  An infrared depth pattern. 



B. Gesture Recognition 

The raw data from the Kinect is obtained via the 
SensorKinect driver. This raw data is processed to extract the 
skeletal and gesture data of the user. The OpenNI library [14] 
is used to interface between SensorKinect and the NITE 
framework [14], which is used to perform skeletal tracking and 
gesture detection. The Gesture Manager accesses this skeletal 
data via OpenNI APIs. OpenNI was chosen as the desired 
toolkit for this purpose because it provides an abstraction layer 
allowing rapid and easy development of a natural user 
interface. 

For skeletal tracking, the NITE framework requires the user 
to first perform a calibration pose, as shown in Figure 1. The 
user’s body proportions are then mapped onto this skeletal 
model, which consists of 15 different points, to achieve skeletal 
tracking. NITE uses skeletal tracking to help facilitate gesture 
detection. For example, to detect a push gesture the motion of 
the hand point in relation to the torso point would be tracked. 
When the relative distance between the two points has reached 
a given limit, a successful push gesture event can be triggered. 
However NITE is unable to perform finger detection which 
inherently limits the amount of hand gestures that can be used 
in this approach. The interaction of the various sub-systems is 
shown in Figure 2. 

 

Figure 2.  System architecture. 

V. DESIGNING GESTURES FOR NAVIGATION 

To meet the requirements for natural gestures we aimed for 
a minimal set of gestures that covered the core requirements of 
the system for both navigation and control functions. This 
enabled the choice of gestures which were easily recognisable 
as distinct by the recognition toolkits, and which mapped to 
movements that the users perceived as matching the desired 
functionality. Aiming for a minimal set also helped the 
memorability aspects with few poses to be learnt by a user. The 

gestures selected and the range of movement required to trigger 
a gesture were developed in an iterative manner with a small 
number of test subjects. For example, in the initial set of 
gestures the step forward and backward poses were not 
contemplated, and were incorporated after suggestions by the 
test subjects. The final set of gestures for the system are shown 
in Table I. 

TABLE I.  GESTURES SUPPORTED. 

Gesture Functionality 
Point forward Move forward 
Step forward Move forward 
Step backward Move backward 
Point up Move to an upper storey 
Point down Move to a lower storey 
Point left/right Pan camera left/right 
Hold-up pose Calibrate user to system 
Push hand forward Select 
Cross arms Return to starting position 
Cross arms (hold for 2 seconds) Return to model selection 

 

When the user performs a given gesture, it is processed to 
see if it is one of the gestures implemented in the system. If it is 
then the gesture is added to a First-In-First-Out (FIFO) buffer. 
This enables the User Interface to accurately respond to a given 
sequence of gestures. To detect each of the gestures, both the 
orientations and positions of the user’s hands and feet relative 
to their torso is tracked. Each gesture requires the user’s hand 
or feet to be in a certain position to be detected.  

 

Figure 3.  Gesture for moving forward. 

The pointing forward gesture (see Figure 3) is detected by 
measuring the relative distance between the right hand point 



and the torso in the Z direction i.e. directly in front of the user. 
This is then compared to a minimum value to trigger a pointing 
forward gesture. Similarly, the pointing left/right and up/down 
gestures are detected by measuring the location of the hand 
point with respect to the torso point in the Z and X (sideways) 
directions, and Z and Y (up or down) directions respectively. 
An additional constraint was placed on the down gesture that 
the user’s hand must be placed some distance below and away 
from the torso. This was done to ensure that the pointing down 
gesture was not accidentally triggered when the user was in the 
rest position (with his/her hands to their side). The cross 
gesture is detected by checking the positions of the hand, 
elbows and their angular orientation. Finally the push gesture 
detection is provided by the NITE framework and is detected 
by sensing a continuous push motion towards the Kinect. The 
body poses consist of either stepping forward by placing the 
right foot ahead of the left foot or by stepping backward by 
placing the right foot behind the left foot. The relative distance 
between the left and the right feet in the Z direction is then 
measured and if this is greater than a minimum value, the 
gesture is triggered. 

Initially, the minimum detection values were set to fixed 
values. However, upon preliminary testing it was found that 
due to variation in users’ heights, the system had trouble 
detecting some of the gestures. It was then decided that to 
improve the system’s capabilities, the minimum values needed 
to be dynamically generated. Hence, a preliminary study of 6 
users was conducted. The study involved measuring the 
participants’ heights using the Kinect by calculating the 
difference between the head point and the feet points. They 
were then asked to perform all the different gestures 
implemented in the system to the extent which they felt 
comfortable, for example, pointing left till a point where he/she 
did not feel any additional strain or discomfort. The ratios of 
the relative X and Y distances of their hands/feet from their 
torso to their height were measured for each gesture. These 
ratios were then averaged to find an overall ratio for each 
gesture. The gesture detection incorporated these ratios and the 
height of the current user to dynamically tailor the hand and 
feet positions for each user. 

 

Figure 4.  Navigating a 3D model. 

VI. USER TRIAL 

A user study was conducted to test how intuitive and 
natural it was for users to navigate 3D architectural models 
using the designed program. The user study consisted of 7 
participants, with all participants being students from the 
University of Auckland. Six participants had used gesture-
based interfaces previously in the context of gaming. The study 
involved first allowing the participants to become familiar with 
the interface and try out all the different gestures available. 
They were then instructed to complete a timed test. To prevent 
bias, subjects that took part in any preliminary testing were 
deemed to be unsuitable for this user study. 

The test setup required users to collect 8 hoops located at 
various points in the model (see Figure 5 for an example 
setup). The time taken to collect all the hoops was recorded. 
The average response time i.e. the difference between the time 
when a user saw a given hoop to the time the user collected the 
hoop was also recorded. To ensure fairness the location of the 
hoops was randomised for each test, however the relative 
distance between each hoop was kept the same. The test was 
then repeated using a keyboard, with the functionality of the 
system being mapped onto keyboard keys. The times using 
both the Kinect and the keyboard was analysed. 

 

Figure 5.  User trial scenario. 

The users were then asked to complete a questionnaire 
about the systems which consisted of two main sections. The 
first section evaluated each of the gestures in 5 aspects namely, 
accuracy, ease of use, level of fatigue experienced, how 
memorable the gestures were and how responsive the system 
was to a given gesture. This was to determine how natural and 
intuitive users found the system. The second section required 
them to complete an evaluation with regards to the system as a 
whole. Both these sections were quantitative making use of a 
5- point Likert Scale, with 5 representing either Excellent or 
Strongly Agree and 1 either Poor or Strongly Disagree. The 
participants were given the opportunity to provide qualitative 
feedback about the feature(s) or gesture(s) they preferred the 
most and the one they found most difficult to use. For a given 
gesture, all the scores for a given factor, for example accuracy, 
were added together and the sum was divided by the maximum 
total score possible. This was used to calculate a percentage. 



In Figures 6 and 7 one can see that the push gesture was 
rated lowest in terms of accuracy, ease of use, memorability 
and responsiveness. During the course of the project it was 
found that in-built gestures, such as Swipe or Push which were 
provided by NITE, could not be successfully integrated into the 
program. A possible solution is to design a method to detect 
these gestures manually. In terms of ease of use the cross 
gesture had the highest rating and the up gesture was the most 
accurate.  

 

Figure 6.  Analysis of ease of use and accuracy of gestures. 

It is interesting to note that in Figure 7, pointing left/right to 
browse through different models was more memorable than 
using the same gesture to pan the camera. This indicates that 
the naturalness of the gesture is not simply dictated by the 
action itself, but rather the context that it is used in. The 
average accuracy across all the gestures was 79%, the average 
ease of use was 81%, the average responsiveness was 86% and 
the average memorability was 89%. 

 

Figure 7.  Analysis of responsiveness and memorability of gestures. 

The users also rated the gestures on how fatiguing each of 
the gestures were. The higher the percentage the more fatiguing 
the gesture. As can be seen in Figure 8, the push and cross 
gestures caused the least amount of fatigue and the pointing 
left/right was the most tiring. Most of the users stated that after 
8-10 minutes of continual usage they were slightly fatigued. 
This is not surprising as currently navigation involves continual 
movement of the right arm. 

 

Figure 8.  Fatigue level of gestures. 

The time taken to collect the hoops is shown in Table II. 
The average response time with the keyboard was found to be 
1.7 seconds and on the Kinect was 4.1 seconds. Both the times 
to collect the hoops and the average response times are higher 
on the Kinect than the keyboard. This is to be expected since 
all the users had far greater prior experience using keyboard 
interfaces. However, it should be noted that the main aim of the 
project was not to deploy a Kinect based interface that was 
faster, but rather to design a more natural interface for users. 

TABLE II.  TIME TO TRAVERSE THE TRIAL SCENARIO. 

Time Taken Kinect Keyboard 
Minimum 57s 40s 
Average 81s 60s 
Maximum 125s 115s 

 

In terms of qualitative feedback, most of the users felt the 
interface could be improved by incorporating the use of the left 
hand in gestures. Although the program currently doesn’t 
support this, it can easily be done and was not implemented 
earlier due to it being deemed a low priority feature. The use of 
both arms simultaneously for navigation was not implemented, 
as an assumption was made that requiring both hands to control 
the system would greatly fatigue the user. Users also found it 
difficult to have precise control over movements and thought it 
would be useful to vary the movement speed based on the 
position of their arms. 

VII. CONCLUSIONS AND FUTURE WORK 

In this project we successfully designed a natural user 
interface implementing a range of gestures for navigation of a 
3D model. These gestures were able to be recognised by a 
Microsoft Kinect, coupled with the NITE framework, and 
support all of the major navigation features necessary to 
experience a 3D scene. Testing of the system showed that 
while it might be slower to perform movements, the main 
characteristics of a natural interface such as accuracy of 
recognition, ease of use, and memorability of gestures were 
well met. The use of existing recognition frameworks 
introduced some limitations include the requirement of 
performing the calibration pose at the start of the program and 
the lack of support for finger tracking. This forced us to 
implement gestures that required fully body or limb 
movements. These movements, as indicated in the user study, 
fatigued the user after 8-10 minutes of continual usage. The 



Kinect also had difficulty detecting people with jackets or other 
forms of loose clothing. Rendering a 3D model in real-time is a 
very resource intensive process, which may be problematic for 
very large building models, though it can be improved with the 
use of higher powered computers. 

A. Future work 

This project investigated the utility of 1st generation 
consumer level products for gesture recognition and it is 
expected that the ability of these systems will improve 
dramatically over the next few years. In future the addition of 
features such as finger tracking would provide users with a 
much easier and less fatiguing method of navigation. An 
investigation can be carried out to see if gestures involving 
both hands would prove to be natural or very fatiguing. To aid 
movement through a given model a mini-map should be added 
to the model navigation screen, including a marker showing the 
user’s current location, as is common in many game systems. 
At the moment the camera view can only be moved forward, 
backward and panned sideways. This should be expanded to 
include a tilt feature, with an appropriate gesture being used to 
perform this. Further improvements to the current system, such 
as varying the speed of motion based on extent of hand 
positions or a tutorial mode to familiarise users with the 
interface can also be investigated. The other capabilities of the 
Kinect such as the microphone array and RGB camera could 
also be investigated as ancillary approaches to control the 
interface using voice commands or to design a customised 
avatar of the user. 
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