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Abstract—Traceability benchmarks are essential for the 
evaluation of traceability recovery techniques. This includes the 
validation of an individual traceability technique itself and the 
objective comparison of the technique with other traceability 
techniques. However, it is generally acknowledged that it is a real 
challenge for researchers to obtain or build meaningful and 
robust benchmarks. This is because of the difficulty of obtaining 
or creating suitable benchmarks. In this paper, we describe an 
approach to enable researchers to establish affordable and robust 
benchmarks. We have designed rigorous manual identification 
and verification strategies to determine whether or not a link is 
correct. We have developed a formula to calculate the probability 
of errors in benchmarks. Analysis of error probability results 
shows that our approach can produce high quality benchmarks, 
and our strategies significantly reduce error probability in them.  

Keywords—traceability benchmark; benchmark development 

I. INTRODUCTION 

It is well recognized that rigorous traceability technology 
plays a critical role in the software development process [1, 2, 
8, 19]. Such support helps developers to assess the 
completeness of an implementation against all stated 
requirements, to identify reusable software components, to 
support impact analysis while changes occur, and to 
comprehend and maintain systems [1, 2, 19]. In the last decade, 
researchers have put great effort into inventing new traceability 
recovery techniques [1, 11, 13, 14, 20, 23], either automatic or 
semi-automatic, to retrieve traceability links in a software 
system with as many correct links and as few incorrect links as 
possible. An outstanding research question is how to examine 
the performance of a recovery technique, validate the 
technique, and compare its performance with other recovery 
techniques. An essential element for the traceability recovery 
technique evaluation process is the use of effective traceability 
benchmarks [7, 9, 21]. A traceability benchmark serves as a 
basis for evaluation of one technique and the comparison of 
multiple techniques [7]. Without such a benchmark, whether a 
link generated by the recovery technique is correct or not 
remains uncertain, and whether any correct links are missed is 
unclear. Without such data, the performance of a recovery 
technique cannot be measured or compared with the 
performance of others. In addition, improvements to the 
recovery technique cannot be determined or quantified. 
However, it is a major challenge for researchers to obtain or 
establish meaningful and robust benchmarks to evaluate 

recovery approaches, due to the difficulty of obtaining or 
creating such benchmarks [8]. 

Traceability benchmarks can be acquired or developed in 
three ways. First, a benchmark for a project can be built by 
project developers during the software development process. 
This type of benchmark is the most attractive due to its 
apparent reliability and accuracy. Unfortunately, in practice 
traceability within the software development process has 
seldom been employed in most organizations. This is due to its 
high cost, complexity, time-consuming nature, and error-
proneness [10, 16, 17]. This results in there being almost no 
publicly available projects containing very robust benchmarks 
[5]. Second, we can evaluate a new recovery technique with 
benchmarks developed by other researchers and/or applied by 
them to other software projects. However, a major problem 
with this approach is that different recovery techniques often 
address different issues and are applied to different artifacts. 
This results in limited ability to adapt or use benchmarks from 
the work of others [9]. For example, a benchmark that was built 
to include links between requirements and design documents, 
while very useful for testing recovery techniques between these 
types of artifacts, is not at all suitable to evaluate a recovery 
technique that captures links between source code and 
documentation or between source code and unit tests. Third, we 
can establish our own benchmarks to meet our specific 
recovery technique evaluation needs. Due to the well-known 
difficulty of obtaining or using the above two types of 
benchmarks, researchers usually create their own benchmarks 
to conduct evaluations of their new recovery techniques [5, 8, 
9, 11]. Nevertheless, a major issue arises here: how do we 
actually go about building affordable and robust traceability 
benchmarks? Most research to date has focused on the theory, 
basic principles, or the establishment of all-inclusive 
traceability benchmarks [5, 9]. Unfortunately, there are no 
generally agreed or applied approaches or guidelines that have 
been proposed to assist researchers in manually building robust 
benchmarks for identifying and verifying links in a system. 

In this paper, we propose a new approach and guidelines to 
help researchers who want to develop their own traceability 
benchmarks and use these to facilitate evaluation and 
comparison of their own and others traceability recovery 
techniques. The main objective of a recovery technique is to 
trace links between artifacts in a system. A new recovery 
technique is normally evaluated by comparing the set of its 
retrieved links with an “oracle” i.e. the known, true link set of 



the system, in order to compute its precision, recall, or F-
measure. The oracle link set of a system consists of all of the 
actual correct links for the system. Hence, the crucial part of 
the development of traceability benchmarks is manually 
finding and verifying correct links between artifacts. We have 
designed and tested rigorous manual identification and 
verification strategies to assist researchers to capture links and 
verify them. In our approach, every link is analyzed by at least 
two analysts before the determination of its status is made i.e. 
whether it is a correct/true or incorrect link. We propose a 
formula to calculate the probability of errors (e.g. 5% or 10% 
erroneous links) in the created oracle link set. We have 
employed this approach to create a very robust benchmark for 
JDK1.5. We employed the formula to compute the probabilities 
of 5% and 10% errors in our JDK1.5 oracle link set. The result 
shows that the actual probability of there being ≥ 5% error 
links in this oracle link set is very low, around 0.1%. Moreover, 
our error probability calculation shows that our rigorous 
manual identification and verification strategies can 
significantly reduce the error probability in the oracle link set.  

This paper is organized as follows. We firstly provide a 
background to traceability benchmarks and the motivation for 
this research. We introduce our approach to establishing a 
traceability benchmark and a formula to calculate its error 
probability. Next we describe a benchmark that we developed 
using our new approach. We then compute the probability of 
errors in our created JDK1.5 oracle link set. We also analyze 
the cost-quality tradeoffs in establishing a robust traceability 
benchmark. Finally, we discuss the limitations of our approach 
and threats to validity. 

II. BACKGROUND AND MOTIVATION 

Sim et al. [21] define a benchmark in software engineering 
as a standard test or set of tests employed to compare the 
performance of alternative tools or techniques. They claim that 
successful benchmarks must meet seven requirements: 
accessibility, affordability, clarity, relevance, solvability, 
portability, and scalability. Oppenheimer et al. [15] claim that 
benchmarks provide researchers with an approach to quantify 
design tradeoffs and a yardstick to measure and inspire 
progress. Because of the importance of benchmarks in the 
evaluation process, Cleland-Huang et al. [8] identify building 
traceability benchmarks as one of the key challenge areas in 
their Grand Challenges in Traceability. 

Few papers have been published to tackle this challenge in 
the software traceability area. In the Grand Challenges in 
Traceability, a traceability benchmark is defined in terms of a 
traceability task, a set of data sets on which the task is to be 
performed, and finally a set of metrics that will be used to 
evaluate the task [8]. Dekhtyar et al. [9] establish the basic 
principle of organization of traceability benchmarks, which 
comprises five components: dataset, tasks, measures, answer 
sets, and data representation format (the latter is optional). To 
be successful, traceability benchmarks need to satisfy five 
requirements: support for traceability in multiple fields of 
software engineering, independence of methodology, ground 
truth, accuracy testing, and scalability testing [9]. According to 
this principle, Charrada et al. [5] propose a traceability 
benchmark that includes nine types of artifacts and with end-to-

end traceability links. This benchmark is developed based on 
AquaLush, an irrigation system. A visual experimental 
workbench, named TraceLab, was developed for designing and 
executing traceability experiments to help new researchers to 
establish research environments or help existing researchers to 
perform more rigorous evaluations [7]. 

Although researchers have put some effort into building 
meaningful traceability benchmarks, there are three barriers 
impeding the realization of this challenge. The first barrier is 
the lack of publicly available projects that include traceability 
links. In general, open source projects exclude links between 
artifacts or contain only partial traceability. The benchmarks of 
commercial projects are confidential in most cases. Moreover, 
it is difficult to accomplish traceability in practice because 
tracing and maintaining links is arduous, time-consuming, 
error-prone, and costly [10, 16, 17]. These issues make it 
difficult to acquire publicly available benchmarks [5, 7].  

The second challenge is the diversity of traceability issues 
tackled by traceability recovery techniques. Most recovery 
techniques address specific traceability problems because of 
the researchers’ expertise or project funding [9]. For example, 
Antoniol et al. [1] use Probabilistic Model and Vector Space 
Model to recover links between code and documentation to 
assist maintainers. Marcus and Maletic [14] introduce Latent 
Semantic Indexing to improve the performance of Information 
Retrieval models. Hayes et al. [11] aim to improve the 
requirements tracing process for independent verification and 
validation analysts. Besides targeting different traceability 
issues, recovery techniques utilize different artifacts to examine 
and evaluate their performance. For instance, Antoniol et al. [1] 
and Marcus and Maletic [14] focus on tracing links between 
code and documentation. Hayes et al. [11] recover links 
between requirements and design specifications. Bacchelli et 
al. [4] seek to find links between code and emails. Moreover, 
researchers need to build tools implementing their recovery 
techniques in order to perform the evaluation. These tools may 
accept limited programming languages. For example, our own 
traceability recovery tool only traces links in software projects 
that are written in Java [6]. In addition, the language used to 
write comments and documents generated during the software 
development process affects the possibility of the adaptation or 
employment by other traceability techniques. For example, 
Documents in Albergate utilized by Antoniol et al. [1] and 
Marcus and Maletic [14] are written in Italian. For researchers 
who are not familiar with Italian, it is difficult to process these 
documents. These issues lead to difficulty when adapting 
benchmarks from others’ work.  

The last barrier is the difficulty of manually establishing 
robust traceability benchmarks [5, 11]. Recovery techniques 
mainly involve tracing links between artifacts in a system [9]. 
Hence, the most important part of a benchmark during 
evaluation and comparison of recovery techniques is the oracle, 
or true traceability link set, which is a set of correct/true links 
between artifacts. However, manually tracing links from one 
artifact to another is arduous, time-consuming, and error-prone. 
Due to the first two hindrances, researchers often have to 
develop their own benchmarks to meet their specific needs. For 
example, Hayes et al. [11] built a benchmark for the CM-1 data 
set to evaluate the tracing between requirements and design 



documents. They used a group of analysts to manually verify 
links retrieved by RETRO [12], a special-purpose tool designed 
exclusively for requirements tracing. Bacchelli et al. [3, 4] 
establish five benchmarks (for ArgoUML, Freenet, JMeter, 
Mina, and OpenJPA) to target links between code and emails. 
They manually annotated classes mentioned in emails and 
verified these annotations with a group of six participants. 
There are three key issues that emerge while manually creating 
traceability benchmarks: how to find an appropriate dataset, 
how to manually identify correct links between artifacts, and 
how to verify links to be correct or incorrect. The three issues 
have rarely been touched on in the software traceability 
community. Moreover, there are currently no guidelines or 
approaches that have been proposed to assist researchers in 
developing meaningful and robust traceability benchmarks. 
These challenges motivated us to develop an approach to 
establish affordable, meaningful, and robust traceability 
benchmarks easily and effectively. 

III. TRACEABILITY BENCHMARK DEVELOPMENT 

As mentioned earlier, Dekhytar et al. [9] define a 
traceability benchmark to consist of five main components: 
dataset, tasks, answer sets, measures, and (optionally) data 
representation format. We employ this definition to design our 
traceability benchmarks. In our research, we are concerned 
with the evaluation of traceability recovery techniques. These 
generally deal with the issue of the recovery of links between 
artifacts. Hence, we define a traceability benchmark to include 
tasks, dataset, oracle/true traceability link sets, and measures. 
We replace answer sets with oracle/true traceability link sets to 
satisfy our concerns. We propose five steps to establish a 
traceability benchmark: task identification, artifact selection, 
project selection, oracle/true traceability link set development, 
and evaluation metrics. The following sections describe these 
five steps in detail. 

A. Task Identification 

The first step for building a traceability benchmark is to 
address what tasks the benchmark is developed to accomplish. 
This depends upon what issues the recovery technique under 
evaluation is concentrating on. For example, some recovery 
techniques focus on tracing links between requirements and 
design documents, some aim to find links between source code 
and documents, and so on. The tasks must reflect these issues. 
For instance, if the evaluated recovery technique aims to trace 
links between source code and documentation, then the task is 
to recover links between code and documents. 

B. Artifact Selection 

Based on the tasks, the second step is to choose appropriate 
artifacts. If one of the tasks is the recovery of links between 
source code and documentation, then the dataset should be the 
collection of code files and documents that are produced during 
the software development process. To decide on what kinds of 
documents to select relies on their availability in the selected 
project. If the selected project only provides requirements and 
design documents, then we can only trace links between code 
and requirements and/or design documents. Furthermore, using 
a particular document detail level e.g. the class or method level 

for code, and the section or paragraph level for documents, is 
decided by the particular recovery technique that needs to be 
evaluated. If the traceability technique retrieves links between 
classes and sections in documents, then the artifact dataset 
includes classes and sections of documents. 

C. Project Selection 

The next step is to search for appropriate projects from 
which to obtain artifacts to analyze. An appropriate project 
possesses four properties. 1) The project must include artifacts 
that are chosen in step two. For example, if the artifacts 
selected in step two are requirements and design documents, 
then the selected project must contain the two types of 
documents. 2) The project should be of a reasonable size. The 
larger the size of the project is, the more resources, time, and 
cost are required to manually build links. If the benchmark 
builder has limited resources, then one of the feasible ways is 
to choose projects of small size or to use a part of large 
projects. For instance, if a project contains a large number of 
requirements and design documents, a feasible way is to 
choose a part of the requirements and their corresponding 
design documents. 3) The programming language used is 
accepted by the tool that implements the traceability technique 
under evaluation. Some such tools have no requirements on 
programming languages. Hence, the chosen projects can be 
written in any programming language. But others may only 
accept certain programming languages, such as Java, C#, or 
C++ etc. This requires that the chosen projects must be written 
in a language that can be accepted by the tool. 4) Documents 
and comments in the project must be written in a language that 
can be understood by any participant involved in benchmark 
development. For example, if documents and comments in a 
project are written in French, it is impossible for participants 
who cannot understand French to identify links in this project. 

D. Oracle/True Link Set Development 

After selecting the appropriate projects and artifacts, we can 
start building the oracle link set. At the start, we need to decide 
the source artifact and the target artifact. All links are 
bidirectional, so defining the source and target artifacts is 
principally to help users to more easily identify links. For the 
sake of simplicity, the source artifact should be the less 
complicated one, or the one that can be easily divided into sets 
or groups. For example, when recovering links between code 
and documents, source code is normally used as the source 
artifact. However, in [4], emails are used as the source artifact 
because their source code includes many versions of 
ArgoUML. Next, traceability rules need to be set up to 
facilitate the identification and verification of links. We apply 
the rule defined by [5] as fundamental: an element A and an 
element B are related if B is derived from A or if B provides 
additional and useful information about A. This rule can be 
extended to satisfy specific concerns. For example, for defining 
links between code and documents, this rule can be changed to: 
a class A and a section B in documents are related if B directly 
mentions A’s name or identifier, or if B describes tasks that A 
should fulfill. Then we can start manually identifying and 
verifying links between selected artifacts in the selected 
project. 



Figure 1 illustrates our strategies for oracle link set 
development. Our link identification and verification strategies 
are inspired by the works of [3] and [11], who establish their 
own benchmarks through manually verifying links by a group 
of participants. Our strategies are designed to remedy any 
potential bias that could add incorrect links to the oracle link 
set. Our strategies include three stages. We take the traceability 
between classes and sections as our example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The strategy of oracle traceability link set development 

At the first stage, the source artifact is divided into 
overlapping sets. (1). Each element of the source artifact can be 
assigned to two different sets. The number of sets depends on 
how much workload is assigned to each participant. The less 
the workload allocated to each participant, the smaller number 
of elements each set contains, and the more participants that 
need to be used. Next, according to the number of the sets, a 
group of participants needs to be recruited. These participants 
are required to have at least some knowledge about the selected 
project, called junior participants. Then every participant is 
allocated a set (2). They then manually identify links between 

the artifact in the set and another selected artifact based on the 
traceability rule mentioned above (3). In our example, we use 
classes as the source artifact and split all collected classes into 
6 groups. 6 junior participants are then employed, each having 
a background of Java programming experience. Each is 
assigned a set and is required to find links between classes in 
the set and sections in the documentation based on the 
traceability rule. 

After these participants complete their tasks, another group 
of participants with good understanding of the selected project, 
called senior participants, is recruited to verify these retrieved 
links based on the traceability rule (4). The link verification 
aims to identify the status of each retrieved link, whether or not 
it is correct, and to capture links that are missed by the previous 
participants. The number of participants still depends on how 
much workload is needed for each participant. If it is a 
reasonable workload for an analyst to verify all retrieved links, 
then using one senior analyst is enough. Otherwise, these 
retrieved links are split into overlapping sets. Every participant 
is responsible for one set. If participants all consider a link is 
true, then this link is in the set of agreed links, otherwise it is in 
the set of conflict links (5). For example, a class is assigned to 
two participants in the first group and two participants in the 
second group. If the four participants all identify the same link 
related to the class, then this link is considered as an agreed 
link. Otherwise, this link is considered as a conflict link as it is 
not unanimously recovered by the four participants. After the 
first stage, an agreed link set is generated. Each link in this set 
is agreed to be true by all participants who are allocated the 
source artifact of the link. 

At the second stage, the set of conflict links generated at the 
first stage is randomly divided into overlapping sets, the 
number of which is based on how much workload each 
participant needs to undertake. A new group of participants are 
recruited based on the number of overlapping sets. Each of 
them is assigned a set to verify the conflict links by carefully 
studying the content in the selected artifacts (6). At this stage 
every conflict link is analyzed by two participants. If a link is 
considered to be a true link by the two participants, then this 
link is added to the set of agreed links, otherwise, it is a conflict 
link (7). In our example, every participant is required to 
carefully study the text of sections and the source code before 
making the decisions. After the second stage, an agreed link set 
is produced. Each link in this set is agreed to be true by two 
participants. 

At the third stage, a senior analyst is employed to verify the 
set of conflict links produced at the second stage (8). This 
analyst carefully learns the content of the selected artifacts and 
also consults with another senior analyst to determine whether 
or not a conflict link is correct. In this example, the senior 
analyst needs to carefully learn the content of sections and the 
comments in classes. Each conflict link is analyzed by at least 
three participants, who have either identified the link at the first 
stage or have verified the link at the second or third stages. 
When three or more participants agree that a conflict link is not 
correct, this link is considered to be incorrect and is discarded; 
otherwise it is considered to be a true link (9). The third stage 
creates an agreed link set, in which every link is agreed to be 
true by at least three participants. 
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Finally, the three agreed link sets produced at the three 
stages are merged together to form the oracle traceability link 
set for the selected artifacts in the selected project. At the first 
stage, an agreed link is simultaneously captured by all 
participants who are allocated the source artifact of the link. At 
the second stage, an agreed link is unanimously considered to 
be true by two participants who have verified this link. At the 
third stage, an agreed link is agreed to be true by at least three 
participants who have identified or verified it in the three 
stages. They are stored in a file (e.g. a XML document, a table, 
a matrix etc.) to facilitate researchers to use and interpret them. 

1) Probability of errors 
After the establishment of the oracle link set for a project, 

an issue arises: what is the probability of errors (e.g. 1%, 5%, 
or 10% errors) in this oracle link set? To analyze this 
probability we build a formula to calculate the error probability 
based on the following three assumptions: 

First, we assume that the probability of an error being made 
is dependent on the type of participant and stage. For example, 
we might make the following assumptions: 1) Junior analysts 
have an error probability of 20%, i.e. during link recovery, a 
junior analyst produces 20% incorrect links. 2) Senior analysts 
have an error probability of 10%. 3) If a senior analyst consults 
with another senior analyst, this senior analyst has an error 
probability of 5%; thus, he/she retrieves 5% incorrect links. 

Second, we assume that links are independent. A link’s 
recovery doesn’t affect the probability of any other link’s 
recovery. Moreover, the status (i.e. correct or incorrect) of any 
individual link doesn’t affect the probability of recovering any 
other link and the probability of the status of any other 
retrieved link. For the sake of simplicity, we assume that every 
link has the same likelihood of being retrieved.  

Third, we assume that errors made on links are 
independent; so an error made on any individual link does not 
affect the probabilities of errors on other links. Errors here 
include the errors of judging an actual correct link to be an 
incorrect link, judging an actual incorrect link to be a correct 
link, or failing to recover an actual correct link. The probability 
of making an error on a link does not influence the probability 
of an error made on any other link.  

The oracle link set comprises three agreed link sets 
produced in the three stages. These link sets are independent. 
The probability of errors in the oracle link set is defined as: 
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N is the size of the oracle link set, i.e. the total number of 
links in the oracle link set. k is the total number of stages, here 
an oracle link set is established through three stages (k=3). ni is 
the size of the agreed link set at the ith stage, i.e. the number of 
agreed links at the ith stage. Pr[ei] is the probability of errors in 
the agreed link set of the ith stage. It is defined as: 
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mi is the number of participants at the ith stage. Pr(xj) is the 
probability of incorrect links captured by the jth participant at 
the ith stage. Pr(yi) is the probability of participants 
simultaneously making the same mistake. For example, at the 
first stage, a class is assigned to three participants, all 
participants generate the same link for this class, and then this 
link goes to the agreed link set. We treat this link as a true link. 
But if this link is actually an incorrect link, Pr(y1) represents 
the probability of the three participants all making the same 
mistake of capturing the incorrect link at the same time at the 
first stage. Errors in Pr(xj) and Pr(yi) are distributed in the 
binomial distribution. We use the following binomial 
probability formula [22] to compute Pr(xj) and Pr(yi). 
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n = number of trials. For Pr(xj), n = the number of agreed 
links retrieved by jth participant at the ith stage; For Pr(yi), n = 
the number of participants who identify a link in the agreed 
link set at the ith stage. 

x = number of successes among n trials. For Pr(xj), x = xj = 
the number of errors (e.g. 5% or 10% errors) in the agreed link 
set retrieved by jth participant at the ith stage; For Pr(yi), x = yi 
refers to at least x participants who consider a link is true at the 
ith stage. In other words, x = the number of participants who 
identify or verify a link in the agreed link set at the ith stage. 

p = probability of success in any one trial. For Pr(xj), p = 
0.2 (20%) for junior analysts, p = 0.1 (10%) for senior analysts, 
p = 0.05 (5%) for a senior analyst consulting another senior 
analyst. For Pr(yi), p = the average/mean error probability of n 
participants. 

q = probability of failure in any one trial (q = 1 - p) 

The error probability of links (Pr[E]) in the oracle link set 
depends on the error probability (Pr[ei]) of links in each agreed 
link set generated at each stage. The error probability (Pr[ei]) 
of links at each stage largely relies on each participant’s error 
probability (Pr(xj)) and the probability of several participants ( 
≥ yi) making the same mistake (Pr(yi)).  

E. Evaluation Metrics 

After the development of the oracle link set, we can 
perform an evaluation and comparison of the traceability 
recovery technique under study to other techniques. The 
common metrics used in the evaluation of recovery techniques 
are precision, recall, and F-measure. These three metrics 
depend on three figures: correct links retrieved, incorrect links 
retrieved, and missing links. Correct links retrieved are those 
that are correctly captured by the recovery technique. Incorrect 
links are those that are wrongly detected by the recovery 
technique. Total links retrieved combines these two kinds of 
links. Links that are not found by the recovery technique are 
called missing links. Total correct links are the sum of correct 
links retrieved and missing links.  

Precision can be defined as the ratio of the number of 
correct retrieved links over the total number of retrieved links. 
If precision equals 1, it means that all the recovered links are 



correct, though there could be correct links that were not 
recovered. 

Precision = Correct links retrieved / Total links retrieved 

Recall is the ratio of the number of correct retrieved links 
over the total number of correct links. Recall = 1 indicates that 
all correct links are recovered, but there may be incorrect 
recovered links. 

Recall = Correct links retrieved / Total correct links 

The F-measure combines precision and recall based on their 
weighted harmonic mean to measure the effectiveness of 
retrieval. β is an adjustable weight to favor precision over 
recall. β=1 weights precision and recall equally. β=2 weights 
recall twice as much as precision. β=0.5 weights precision 
twice as much as recall. 

F-measure = ((β2+1)Precision×Recall) / (β2Precision)+Recall) 

Two sets of traceability links between selected artifacts are 
prepared in order to compute precision, recall, and F-measure. 
One set is produced by a traceability recovery system under 
evaluation. The other set is the oracle link set for the selected 
artifacts. The latter is critical as it is a crucial factor in 
determining the number of correct and missing links. 
Comparison of the two sets is then conducted to determine 
whether a link is correct, incorrect, or missing. 

IV. CASE STUDY 

To validate the effectiveness of our approach, we have set 
up a case study to build a traceability benchmark for the 
evaluation of our traceability recovery technique introduced in 
[6]. This benchmark comprises four components: tasks, dataset, 
oracle/true traceability link set, and measures. 

Tasks. Our particular recovery technique aims to capture 
traceability links between source code and documentation. 
Hence, the task is to trace links between code and documents. 

Dataset. According to the task, the dataset is the collection 
of source code and documents. As our recovery technique [6] 
goes down to the class level in code and section level in 
documents, the dataset consists of classes and sections in 
documents. The system we used is JDK 1.5, a free open source 
software system for Java developers. We chose to use three 
packages (java.awt, javax.naming, and javax.print) from the 
JDK1.5 source code and their associated documentation. These 
three packages were chosen because of the availability and 
detail of corresponding natural language documents describing 
these parts of the system. Three documents [18] explain in 
detail the structure of packages. For example, JPS_PDF.pdf 
describes how the Java printing support works and which 
functions are implemented by which Java classes in the 
javax.print package. Table 1 describes the packages in JDK 1.5 
and their corresponding PDF documents used in this study, as 
well as the number of Java classes and the number of sections 
in them. We divided these PDF files into sections based on 
their headings. For example, if a PDF document contains 10 
headings, it is split into 10 sections; the contents of each are the 
text between one heading and the following one. We obtained 
249 Java classes and 182 sections (or small documents). The 

traceability task becomes that of extracting relationships 
between these 182 sections and the 249 Java classes in JDK1.5. 

Oracle/true traceability link set. In order to build the oracle 
traceability link set for JDK1.5, we recruited 11 analysts: 9 
analysts had at least 6 years of Java programming experience, 
and 2 participants had more than 9 years of Java programming 
experience. We set the class artifact as the source artifact as 
classes are easier to be grouped than sections. We also set up 
two rules to assist participants in finding and verifying a link: 
1) if a section directly mentions a class identifier or name, then 
this section is related to this class; 2) if a section describes tasks 
that a class should fulfill, then they are related. 

TABLE I. JDK1.5 PACKAGES AND DOCUMENTS [18] 

JDK 1.5 #classes/ 
sections 

Java 
packages 

java.awt, javax.naming, and javax.print packages 249 

PDF 
files 

JPS_PDF.pdf: Java™ Print Service API User Guide 68 
dnd1.pdf: Drag and Drop subsystem for the Java 
Foundation Classes 

41 

jndispi.pdf: Java Naming and Directory Interface™ 
Service Provider Interface(JNDI SPI) 

73 

Total sections: 182 

At the first stage, the classes were divided into 6 sets. 6 
participants then manually retrieved links between sections in 
documents and classes by following the above two rules. After 
they completed their task, we asked a senior participant to 
conduct link verification that included verifying these retrieved 
links and capturing links missed by them. Then at the end of 
the first stage, 408 links were identified as conflict links, and 
356 links were included in the agreed link set; each link was 
agreed to be true by two participants. At the second stage, 408 
conflict links produced at the first stage were randomly divided 
into 3 overlapping sets. Three other participants verified these 
conflict links by carefully studying the text of documents and 
the comments inside code. Then at the end of the second stage, 
75 conflict links were identified, and 333 links were included 
in the agreed link set; each link was verified to be true by two 
participants. At the third stage, we asked a senior participant to 
verify those links still having conflicts. This participant 
carefully studied the text of documents and the comments in 
code. This participant also consulted with another senior 
participant. Each conflict link was thus analyzed by at least 3 
participants. When three or more reviewers agreed that the 
conflict link was a fault, we considered it to be an incorrect link 
and discarded it. Then at the end of the third stage, 4 links were 
considered as conflict links, and 71 links were added into the 
agreed link set; each link was identified to be true by at least 
three participants. The final oracle link set comprised 760 true 
links, which we then stored in a table. 110 out of 249 classes 
had no sections related to them. 

Figure 2 shows the time taken by the six participants to 
manually capture links between 249 classes and 182 sections at 
the first stage. Participant 3 spent less time than others; 20 
minutes taken to retrieve links. Participant 5 took the longest 
time (120 minutes) to capture links. Participant 6 used 90 
minutes to perform the link recovery. Participants 1 and 2 each 
took 50 minutes, and participant 4, 40 minutes. On average, 
each participant spent around one hour to identify links 



between 50 classes and 182 sections. Figure 3 shows the link 
recovery performance of each participant; namely, the 
percentage of links captured by each participant. Participant 3 
retrieved the lowest number of links, 7%. Participant 5 
recovered the highest number of links, 95%. Participant 2 
recovered 80% of links. Participant 4 is 71%, 66% for 
participant 6, and 31% for participant 1. In total, the six 
participants retrieved 409 links and identified 136 classes with 
no related sections. Figures 2 and 3 show that participant 3 
used the least amount of time but retrieved the lowest number 
of links, while participant 5 spent the longest time but captured 
the highest number of links. Participants commented that it was 
a tedious, boring, and time-consuming task. Moreover, one 
participant commented that he/she would favour automatic 
techniques to recover links. 

 
Figure 2. Time taken by the first six participants at the first stage 

 
Figure 3. Percentages of links captured by the first six participants at the first 

stage (determining correct links vs. conflict links) 

After the first six participants identified links, these 
retrieved links needed to be verified. Figure 4 shows the time 
taken by the remaining five participants to manually verify 
these retrieved links. The seventh participant verified links 
retrieved by the first six participants and captured links missed 
by them. This participant took 220 minutes to verify these 
retrieved links and to capture new links. This participant 
identified 408 conflict links that included 355 new links. Figure 
3 shows the percentage of retrieved links identified as conflict 
by participant 7. Links retrieved by participant 5 contained 
14% conflict links, 11% for participant 2, 10% for participant 
4, 7% for participant 6, and 1% for participant 3. 

The next three participants (from 8 to 10 in Figure 4) were 
asked to verify 408 conflict links generated at the first stage. 
Each participant at the second stage used around 87 minutes to 
verify these conflict links on average. They reduced the conflict 
links to 75. The last one (11 in Figure 4) verified these 75 
conflict links. This participant took 180 minutes to undertake 
the link verification. At the end of the process, 4 links remained 
in conflict. On average, each participant took around two hours 
to verify links. By comparison with Figure 2, participants spent 
more time in the link verification than in the link recovery on 
average. Participants again commented that it was a tedious and 
very boring task. Four of them commented that it would be 
helpful to use traceability tools to support the link verification. 

 
Figure 4. Time taken by the rest of the participants in verifying links 

Measures. We use precision, recall and F-measure to 
evaluate the effectiveness of a traceability recovery technique. 
We used our new JDK1.5 benchmark to assess the performance 
of our combined retrieval traceability technique and toolset [6].  

V. PROBABILITY OF ERRORS IN JDK1.5 BENCHMARK 

The oracle link set for the JDK1.5 benchmark consists of 
356 links retrieved at the first stage, 333 links verified at the 
second stage, and 71 links verified at the third stage. In order to 
compute the probability of errors in this link set, we need to 
calculate the probability of link recovery errors made by each 
participant (Pr(xj)), and the probability of participants 
simultaneously making a same mistake of capturing an 
incorrect link (Pr(yi)). Initially we used the example error rates 
for different participants introduced in section 3.4 (20% for 
juniors, 10% for seniors and 5% for seniors consulting one 
another) to demonstrate this method. Table 2 lists the results of 
Pr(xj) and Pr(yi) for having ≥ 10% link errors. We use 
STATDISK calculators to produce these results of Pr(xj) and 
Pr(yi). STATDISK can be free downloaded at 
http://www.statdisk.org. Then the probability of ≥ 10% link 
errors in the JDK1.5 oracle link set is calculated as follows: 
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 N = 760; ni is the number of links in the agreed link set 
at the ith stage, here n1 = 356, n2 = 333, and n3 = 71; 
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 Pr[e1] * n1 = 0.88122235 * 0.0225 * 356 = 7.05859 

 Pr[e2] * n2 = 0.9998299 * 0.04 * 333 = 13.31773 

 Pr[e3] * n3 = 0.0641971 * 0.0266119 * 71 = 0.121297 

We can use the same method to calculate the probability of 
≥ 5% link errors in the JDK1.5 oracle link set: 

Pr[E] = 0.0292 for E ≥ N*5%, where 

 Pr[e1] * n1 = 0.994423843 * 0.0225 * 356 = 7.965335 

 Pr[e2] * n2 = 1.0 * 0.04 * 333 = 13.32 

 Pr[e3] * n3 = 0.4771324 * 0.0266119 * 71 = 0.9015154 

TABLE II. PROBABILITY DISTRIBUTION FOR THE JDK1.5 ORACLE LINK 
SET BASED ON THE EXAMPLE ERROR RATES OF PARTICIPANTS 

Stage 

P
articip

an
t 

R
etrieved

 
L

in
k

s (R
) 

C
on

flict 
L

in
k

s (C
) 

Agreed 
Links  
(n=R-C) 

Example Error 
Probability for  
Participant (p) 

Pr(xj) for  
xj ≥ n * 10% 
(round to the 
nearest 
integer) 

1
st stage 

1 10 1 9 0.2 0.8657823 
2 84 12 72 0.2 0.9940038 
3 18 2 16 0.2 0.8592625 
4 35 5 30 0.2 0.955821 
5 145 21 124 0.2 0.9990852 
6 117 12 105 0.2 0.9969877 
7 764 408 356 0.1 0.497614 
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j xmx  = 0.881222357 

Pr(y1) = 0.0225 for y1≥2, where n=2, p=(0.2+0.1)/2=0.15 

2
n

d stage 

8 272 53 219 0.2 0.9999765 
9 272 123 149 0.2 0.9996381 
10 272 87 185 0.2 0.9998751 

3)Pr()Pr(
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j
j xmx  = 0.9998299 

Pr(y2) = 0.04 for y2≥2, where n=2, p=(0.2+0.2)/2=0.2 

3
rd stage 

11 75 4 71 0.05 0.0641971 
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j
j xmx  = 0.0641971 

Pr(y3) = 0.0266119 for y3≥3, where n=5, 

p=(0.2+0.1+0.2+0.2+0.05)/5=0.15 

Although Pr[E≥N*5%] is slightly larger than Pr[E≥
N*10%], the results are very close and small. Therefore, the 
probability of the oracle link set having ≥ 5% or 10% is very 
low, 0.0292 for ≥ 5% and 0.027 for ≥ 10% (all around 3%). 
In other words, the probability of building at least 95% correct 
links is very high (around 97%). The above calculation reveals 
three features. 1) The more senior a participant is, the lower 
probability of link errors the participant can make. For 
example, at the first stage, the first six participants are junior 
participants who have an error probability of 20%; their 
probabilities of making ≥  10% link errors are larger than 
85.9% (see Table 2). But the 7th participant, who is a senior 

analyst with an error probability of 10%, can achieve 49.8% 
probability of making ≥ 10% link errors. 2) The probability of 
participants simultaneously making the same mistake of 
identifying an incorrect links is very low, Pr(y1) = 0.0225, 
Pr(y2) = 0.04, and Pr(y3) = 0.0266. This indicates that the 
chance of several participants (≥ 2 or 3) retrieving an incorrect 
link at the same time is very rare. This reflects that our rigorous 
manual identification and verification strategies can largely 
reduce the probability of errors in the oracle link set. 3) The 
more participants that are allocated to verify a link, the lower 
the probability of link errors that can be achieved. For example, 
at the first stage, each link in the agreed link set was agreed to 
be true by two participants, Pr(y1) = 0.0225 (see Table 2). If we 
add one more participant to verify a link and the third 
participant is a junior participant, then Pr(y1) = 0.0046 for y1≥
3, where n=3, p=(0.2+0.2+0.1)/3=0.16667. But if the third 
participant is a senior participant, then Pr(y1) = 0.0024 for y1≥
3, where n=3, p=(0.2+0.1+0.1)/3=0.1333. 

Instead of using the assumed example error rates for 
participants we can make use of the observations and results 
obtained from the establishment of the JDK1.5 oracle link set 
to calculate the actual average error rates for the three types of 
participants. Table 3 shows the actual error rates for 
participants in the establishment of the JDK1.5 oracle link set. 
The actual error probability for a participant is computed as the 
number of retrieved links / the number of incorrect links, where 
retrieved links are links that are recovered or verified by the 
participant, incorrect links are links that are recovered or 
verified by the participant but are excluded from the final 
oracle link set. The actual error rate for a participant is an 
approximation as the number of incorrect links is obtained by 
comparison between links retrieved or verified by the 
participant and links in the final oracle link set hence may not 
be completely accurate. However it is a good approximation. 

TABLE III. ACTUAL ERROR RATES FOR PARTICIPANTS DURING THE 
ESTABLISHMENT OF THE JDK1.5 ORACLE LINK SET 

Stage Participant Retrieved 
Links  
(R) 

Incorrect 
Links  
(W) 

Actual Error 
Probability 
(p=W/R) 

1st stage 1 10 1 0.1 
2 84 5 0.05952 
3 18 1 0.05556 
4 35 3 0.08571 
5 145 6 0.04138 
6 117 6 0.05128 
7 764 31 0.04058 

2nd stage 8 272 3 0.01103 
9 272 8 0.02941 
10 272 6 0.02206 

3rd stage 11 75 2 0.02667 

We used nine junior participants: the first six participants at 
the first stage and three participants at the second stage. The 
average error probability for junior participants is 0.05066 
(about 5%), which is much lower than the example error rate 
(20%) used above. The senior participant (the 7th participant at 
the first stage) has an error probability of 0.04058, which is 
also lower than the corresponding example error rate (10% or 
0.1). The senior participant (the 11th participant at the third 
stage) who consulted another senior participant has an error 



probability of 0.02667 (2.667%), which is lower than the 
corresponding example error rate (5%). We then apply the 
three actual error rates for participants to recalculate the 
probability of errors (≥ 5% or 10% errors) in the JDK1.5 
oracle link set. 

We can use the same calculation method demonstrated 
above to compute the results of Pr(xj) and Pr(yi) for having ≥ 
10% link errors based on the actual error rates for the three 
types of participants. The probability of ≥ 10% link errors in 
the JDK1.5 oracle link set is Pr[E] = 1.2689e-4 for E ≥ 
N*10%. This result shows that the probability of creating at 
least 90% accuracy in the JDK1.5 oracle link set is extremely 
close to 100%. The probability of ≥ 5% link errors in the 
JDK1.5 oracle link set is Pr[E] = 0.0012 for E ≥ N*5%. This 
result shows that the probability of making ≥ 5% link errors is 
0.0012 (0.12%). In other words, the probability of building an 
oracle link set with accuracy of at least 95% is very high, 
around 99.9%. We thus conclude that our approach produces a 
high quality oracle link set. 

VI. COST-QUALITY TRADEOFFS 

The most important part of establishing a benchmark is to 
create a high quality oracle link set (e.g. the link set with ≤ 5% 
errors). Building a high quality oracle link set depends on three 
factors. 1) The workload allocated to each participant. 2) The 
number of participants verifying a link. 3) The knowledge of 
the traced project of each participant, i.e. junior or senior.  

In general, each participant at the same stage is allocated a 
similar workload. For the first stage, there are two groups of 
participants. The first group is to retrieve links between 
allocated artifacts. The second group is to verify links retrieved 
by the first group. For example, when we built the JDK1.5 
oracle link set, the first six participants at the first stage 
captured links between allocated classes and documents. The 
7th participant at the first stage verified these retrieved links. 
Every participant in the same group was assigned a similar 
workload at the first stage. The more workload that is assigned 
to a participant, the more effort they are required to make.  

From the error probability calculation discussed above, we 
noticed that using a different number of participants to verify a 
link can affect the results of the probability of errors in the 
oracle link set. Using more participants to verify a link can 
produce a more accurate oracle link set. Using at least three 
senior participants to verify each link can achieve better results 
than using at least three junior participants or the combination 
of junior and senior participants, or at least two senior/junior 
participants. The participants’ knowledge of the traced project 
can significantly affect the probability of errors in the agreed 
link set recovered by them. Based on the error probability 
calculation discussed above, and our observations in practice, 
we postulated then confirmed that the more senior a participant 
is, the lower the probability of link errors the participant will 
make and that these differences have a significant impact on 
the overall error probability.  

Overall, if the workload assigned to each participant is 
certain, the best solution for building a high quality oracle link 
set is to recruit all senior participants, and to use at least three 

participants to verify a link. Unfortunately, it is very hard to 
recruit senior participants in practice. Moreover, it is not easy 
to decide how many times are appropriate to identify or verify 
links, which depends on the assigned workload. In our case, we 
assigned around 50 classes to each junior participant in the first 
group at the first stage. On average, each of them took around 
60 minutes to identify links between 50 classes and the 
documents. Each link at the first and second stages was verified 
by only two participants. We still achieved 99.9% probability 
of producing at least 95% correct oracle link set based on the 
actual error rates for participants. Therefore, the alternative 
solution for building a high quality oracle link set is: 1) to use 
junior participants for the first group at the first stage and the 
group at the second stage; 2) to use senior participants for the 
second group at the first stage, because they not only verify 
links retrieved by the first group but also recover links missed 
by them; 3) to use senior participants at the third stage because 
they need to verify links that are still in the conflict link set 
after going through the two stages; 4) to use at least two 
participants to verify a link at each stage. 

VII. DISCUSSION 

The actual probability of making ≥ 5% link errors in the 
JDK1.5 oracle link set is 0.12%. Our rigorous manual 
identification and verification strategies significantly improve 
the accuracy of the each stage’s agreed link set. This evaluation 
illustrates that our approach can help researchers to develop a 
robust and high quality traceability benchmark to perform an 
evaluation and comparison of different recovery approaches. 

However, our approach suffers from four problems that 
occur during the development of a traceability benchmark. 1) 
The difficulty of determining whether or not two elements in 
artifacts are in fact related. Although we provide a traceability 
rule to help in the identification of true links, we rely on 
participants’ knowledge and understanding to capture links. 
This may lead to the capture of incorrect links. 2) How much 
workload is suitable for a participant to undertake? The more 
workload that is allocated to a participant, the more time and 
energy are required. Too much workload may make 
participants lose interest in participation. When we built the 
JDK1.5 benchmark, every participant took one hour to identify 
the related sections for 50 classes on average. But it took a 
longer time to do the link verification than the link recovery on 
average. 3) The difficulty in the recruitment. It is not easy to 
recruit a good number of participants who are required to have 
some knowledge of the selected project, especially for 
recruiting senior analysts. If a participant was new to the 
selected project, he/she might be more likely to capture 
incorrect links than someone who knows the project to some 
extent. 4) The scalability of benchmarks. Our approach is 
suitable to build benchmarks for projects of a reasonable size 
because of its approach of manually identifying and verifying 
links. But benchmarks produced by using our approach can be 
extended to include more elements, artifacts, tasks, and/or 
measures. 

In future work, we will extend this benchmark to cover 
more classes and documents. This benchmark will then able to 
be used to evaluate tracing approaches and procedures for a 
wide range of tasks from different areas of software 



engineering. We also will look at other probability distributions 
for the probability of incorrect links captured by each 
participant (Pr(xj)) to cover the issue that links may have 
different probabilities of being retrieved. Because a link’s 
recovery is highly dependent on the textual descriptions some 
links may be harder than others to find due to ambiguous 
wording issues. This can translate through increased error rates 
on particular links. The binominal distribution we have applied 
then may invalid as clustering may occur. However, using 
different probability distribution is unlikely to significantly 
affect the very low error rates in the oracle link set we have 
come up with. Because the probability of errors in the created 
oracle link set heavily depends on the probability of 
participants simultaneously making the same mistake (Pr(yi)), 
which is very low. 

VIII. THREATS TO VALIDITY 

The first threat to the validity of our approach is that false 
positive links may be included in the oracle link set. This is 
because a link agreed to be true by participants at each stage is 
put in the oracle link set even if it is actually incorrect. This can 
affect the accuracy of the actual error rate for each participant. 
Thus, it is important to expand our approach in the future by 
exploring how correct links should be defined and how to assist 
participants in identifying them. Second, some links may be 
harder to identify than others in practice. In that case, the 
binominal distribution used in our approach may not be 
suitable. Other probability distributions therefore need to be 
explored to cover this issue in the future. Third, the case we 
used is a small project that contains a small fraction of the 
source code and documents in the JDK1.5 system. It is not 
representative of large software systems. Our approach also 
may show different probability error results when applied to 
recover links between artifacts in other software systems by 
other groups of participants.  

IX. SUMMARY 

We described a new approach to help researchers to 
establish affordable and robust traceability benchmarks. Our 
approach comprises five steps: task identification, artifact 
selection, project selection, oracle/true traceability link set 
development, and evaluation metrics. We designed rigorous 
identification and verification strategies to decide whether or 
not a link is true; every link is verified by at least two analysts. 
A benchmark for JDK1.5 was built by using our approach. We 
built a formula to compute the probability of errors in the 
created oracle link set. The probability of making ≥ 5% link 
errors in the JDK1.5 oracle link set is 0.12%. The accuracy of 
the agreed link set at each stage is significantly improved by 
our rigorous manual identification and verification strategies. 
The error probability results show that our approach can build a 
high quality oracle link set for the selected project. 

We have made our new JDK1.5 benchmark public and we 
allow users to access or download it for free. Our benchmark is 
represented in a spreadsheet format. Anyone can review the 
data, apply it to evaluate their traceability approaches, and 
probably extend it to better meet their own needs. Users can 
download it from: http://tinyurl.com/7l3ohe4. 
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