
Development of Robust Traceability Benchmarks

Xiaofan Chen
Department of Computer

Science,
University of Auckland,
Auckland, New Zealand,

xche044@aucklanduni.ac.nz

John Hosking
College of Engineering &

Computer Science
Australian National

University,
Canberra, Australia

john.hosking@anu.edu.au

John Grundy
Centre for Computing and

Engineering Software
Systems

Swinburne University of
Technology,

Hawthorn, Australia
jgrundy@swin.edu.au

Robert Amor
Department of Computer

Science,
University of Auckland,
Auckland, New Zealand,
trebor@cs.auckland.ac.nz

Abstract—Traceability benchmarks are essential for the
evaluation of traceability recovery techniques. This includes the
validation of an individual traceability technique itself and the
objective comparison of the technique with other traceability
techniques. However, it is generally acknowledged that it is a real
challenge for researchers to obtain or build meaningful and
robust benchmarks. This is because of the difficulty of obtaining
or creating suitable benchmarks. In this paper, we describe an
approach to enable researchers to establish affordable and robust
benchmarks. We have designed rigorous manual identification
and verification strategies to determine whether or not a link is
correct. We have developed a formula to calculate the probability
of errors in benchmarks. Analysis of error probability results
shows that our approach can produce high quality benchmarks,
and our strategies significantly reduce error probability in them.

Keywords—traceability benchmark; benchmark development

I. INTRODUCTION

It is well recognized that rigorous traceability technology
plays a critical role in the software development process [1, 2,
8, 19]. Such support helps developers to assess the
completeness of an implementation against all stated
requirements, to identify reusable software components, to
support impact analysis while changes occur, and to
comprehend and maintain systems [1, 2, 19]. In the last decade,
researchers have put great effort into inventing new traceability
recovery techniques [1, 11, 13, 14, 20, 23], either automatic or
semi-automatic, to retrieve traceability links in a software
system with as many correct links and as few incorrect links as
possible. An outstanding research question is how to examine
the performance of a recovery technique, validate the
technique, and compare its performance with other recovery
techniques. An essential element for the traceability recovery
technique evaluation process is the use of effective traceability
benchmarks [7, 9, 21]. A traceability benchmark serves as a
basis for evaluation of one technique and the comparison of
multiple techniques [7]. Without such a benchmark, whether a
link generated by the recovery technique is correct or not
remains uncertain, and whether any correct links are missed is
unclear. Without such data, the performance of a recovery
technique cannot be measured or compared with the
performance of others. In addition, improvements to the
recovery technique cannot be determined or quantified.
However, it is a major challenge for researchers to obtain or
establish meaningful and robust benchmarks to evaluate

recovery approaches, due to the difficulty of obtaining or
creating such benchmarks [8].

Traceability benchmarks can be acquired or developed in
three ways. First, a benchmark for a project can be built by
project developers during the software development process.
This type of benchmark is the most attractive due to its
apparent reliability and accuracy. Unfortunately, in practice
traceability within the software development process has
seldom been employed in most organizations. This is due to its
high cost, complexity, time-consuming nature, and error-
proneness [10, 16, 17]. This results in there being almost no
publicly available projects containing very robust benchmarks
[5]. Second, we can evaluate a new recovery technique with
benchmarks developed by other researchers and/or applied by
them to other software projects. However, a major problem
with this approach is that different recovery techniques often
address different issues and are applied to different artifacts.
This results in limited ability to adapt or use benchmarks from
the work of others [9]. For example, a benchmark that was built
to include links between requirements and design documents,
while very useful for testing recovery techniques between these
types of artifacts, is not at all suitable to evaluate a recovery
technique that captures links between source code and
documentation or between source code and unit tests. Third, we
can establish our own benchmarks to meet our specific
recovery technique evaluation needs. Due to the well-known
difficulty of obtaining or using the above two types of
benchmarks, researchers usually create their own benchmarks
to conduct evaluations of their new recovery techniques [5, 8,
9, 11]. Nevertheless, a major issue arises here: how do we
actually go about building affordable and robust traceability
benchmarks? Most research to date has focused on the theory,
basic principles, or the establishment of all-inclusive
traceability benchmarks [5, 9]. Unfortunately, there are no
generally agreed or applied approaches or guidelines that have
been proposed to assist researchers in manually building robust
benchmarks for identifying and verifying links in a system.

In this paper, we propose a new approach and guidelines to
help researchers who want to develop their own traceability
benchmarks and use these to facilitate evaluation and
comparison of their own and others traceability recovery
techniques. The main objective of a recovery technique is to
trace links between artifacts in a system. A new recovery
technique is normally evaluated by comparing the set of its
retrieved links with an “oracle” i.e. the known, true link set of

the system, in order to compute its precision, recall, or F-
measure. The oracle link set of a system consists of all of the
actual correct links for the system. Hence, the crucial part of
the development of traceability benchmarks is manually
finding and verifying correct links between artifacts. We have
designed and tested rigorous manual identification and
verification strategies to assist researchers to capture links and
verify them. In our approach, every link is analyzed by at least
two analysts before the determination of its status is made i.e.
whether it is a correct/true or incorrect link. We propose a
formula to calculate the probability of errors (e.g. 5% or 10%
erroneous links) in the created oracle link set. We have
employed this approach to create a very robust benchmark for
JDK1.5. We employed the formula to compute the probabilities
of 5% and 10% errors in our JDK1.5 oracle link set. The result
shows that the actual probability of there being ≥ 5% error
links in this oracle link set is very low, around 0.1%. Moreover,
our error probability calculation shows that our rigorous
manual identification and verification strategies can
significantly reduce the error probability in the oracle link set.

This paper is organized as follows. We firstly provide a
background to traceability benchmarks and the motivation for
this research. We introduce our approach to establishing a
traceability benchmark and a formula to calculate its error
probability. Next we describe a benchmark that we developed
using our new approach. We then compute the probability of
errors in our created JDK1.5 oracle link set. We also analyze
the cost-quality tradeoffs in establishing a robust traceability
benchmark. Finally, we discuss the limitations of our approach
and threats to validity.

II. BACKGROUND AND MOTIVATION

Sim et al. [21] define a benchmark in software engineering
as a standard test or set of tests employed to compare the
performance of alternative tools or techniques. They claim that
successful benchmarks must meet seven requirements:
accessibility, affordability, clarity, relevance, solvability,
portability, and scalability. Oppenheimer et al. [15] claim that
benchmarks provide researchers with an approach to quantify
design tradeoffs and a yardstick to measure and inspire
progress. Because of the importance of benchmarks in the
evaluation process, Cleland-Huang et al. [8] identify building
traceability benchmarks as one of the key challenge areas in
their Grand Challenges in Traceability.

Few papers have been published to tackle this challenge in
the software traceability area. In the Grand Challenges in
Traceability, a traceability benchmark is defined in terms of a
traceability task, a set of data sets on which the task is to be
performed, and finally a set of metrics that will be used to
evaluate the task [8]. Dekhtyar et al. [9] establish the basic
principle of organization of traceability benchmarks, which
comprises five components: dataset, tasks, measures, answer
sets, and data representation format (the latter is optional). To
be successful, traceability benchmarks need to satisfy five
requirements: support for traceability in multiple fields of
software engineering, independence of methodology, ground
truth, accuracy testing, and scalability testing [9]. According to
this principle, Charrada et al. [5] propose a traceability
benchmark that includes nine types of artifacts and with end-to-

end traceability links. This benchmark is developed based on
AquaLush, an irrigation system. A visual experimental
workbench, named TraceLab, was developed for designing and
executing traceability experiments to help new researchers to
establish research environments or help existing researchers to
perform more rigorous evaluations [7].

Although researchers have put some effort into building
meaningful traceability benchmarks, there are three barriers
impeding the realization of this challenge. The first barrier is
the lack of publicly available projects that include traceability
links. In general, open source projects exclude links between
artifacts or contain only partial traceability. The benchmarks of
commercial projects are confidential in most cases. Moreover,
it is difficult to accomplish traceability in practice because
tracing and maintaining links is arduous, time-consuming,
error-prone, and costly [10, 16, 17]. These issues make it
difficult to acquire publicly available benchmarks [5, 7].

The second challenge is the diversity of traceability issues
tackled by traceability recovery techniques. Most recovery
techniques address specific traceability problems because of
the researchers’ expertise or project funding [9]. For example,
Antoniol et al. [1] use Probabilistic Model and Vector Space
Model to recover links between code and documentation to
assist maintainers. Marcus and Maletic [14] introduce Latent
Semantic Indexing to improve the performance of Information
Retrieval models. Hayes et al. [11] aim to improve the
requirements tracing process for independent verification and
validation analysts. Besides targeting different traceability
issues, recovery techniques utilize different artifacts to examine
and evaluate their performance. For instance, Antoniol et al. [1]
and Marcus and Maletic [14] focus on tracing links between
code and documentation. Hayes et al. [11] recover links
between requirements and design specifications. Bacchelli et
al. [4] seek to find links between code and emails. Moreover,
researchers need to build tools implementing their recovery
techniques in order to perform the evaluation. These tools may
accept limited programming languages. For example, our own
traceability recovery tool only traces links in software projects
that are written in Java [6]. In addition, the language used to
write comments and documents generated during the software
development process affects the possibility of the adaptation or
employment by other traceability techniques. For example,
Documents in Albergate utilized by Antoniol et al. [1] and
Marcus and Maletic [14] are written in Italian. For researchers
who are not familiar with Italian, it is difficult to process these
documents. These issues lead to difficulty when adapting
benchmarks from others’ work.

The last barrier is the difficulty of manually establishing
robust traceability benchmarks [5, 11]. Recovery techniques
mainly involve tracing links between artifacts in a system [9].
Hence, the most important part of a benchmark during
evaluation and comparison of recovery techniques is the oracle,
or true traceability link set, which is a set of correct/true links
between artifacts. However, manually tracing links from one
artifact to another is arduous, time-consuming, and error-prone.
Due to the first two hindrances, researchers often have to
develop their own benchmarks to meet their specific needs. For
example, Hayes et al. [11] built a benchmark for the CM-1 data
set to evaluate the tracing between requirements and design

documents. They used a group of analysts to manually verify
links retrieved by RETRO [12], a special-purpose tool designed
exclusively for requirements tracing. Bacchelli et al. [3, 4]
establish five benchmarks (for ArgoUML, Freenet, JMeter,
Mina, and OpenJPA) to target links between code and emails.
They manually annotated classes mentioned in emails and
verified these annotations with a group of six participants.
There are three key issues that emerge while manually creating
traceability benchmarks: how to find an appropriate dataset,
how to manually identify correct links between artifacts, and
how to verify links to be correct or incorrect. The three issues
have rarely been touched on in the software traceability
community. Moreover, there are currently no guidelines or
approaches that have been proposed to assist researchers in
developing meaningful and robust traceability benchmarks.
These challenges motivated us to develop an approach to
establish affordable, meaningful, and robust traceability
benchmarks easily and effectively.

III. TRACEABILITY BENCHMARK DEVELOPMENT

As mentioned earlier, Dekhytar et al. [9] define a
traceability benchmark to consist of five main components:
dataset, tasks, answer sets, measures, and (optionally) data
representation format. We employ this definition to design our
traceability benchmarks. In our research, we are concerned
with the evaluation of traceability recovery techniques. These
generally deal with the issue of the recovery of links between
artifacts. Hence, we define a traceability benchmark to include
tasks, dataset, oracle/true traceability link sets, and measures.
We replace answer sets with oracle/true traceability link sets to
satisfy our concerns. We propose five steps to establish a
traceability benchmark: task identification, artifact selection,
project selection, oracle/true traceability link set development,
and evaluation metrics. The following sections describe these
five steps in detail.

A. Task Identification

The first step for building a traceability benchmark is to
address what tasks the benchmark is developed to accomplish.
This depends upon what issues the recovery technique under
evaluation is concentrating on. For example, some recovery
techniques focus on tracing links between requirements and
design documents, some aim to find links between source code
and documents, and so on. The tasks must reflect these issues.
For instance, if the evaluated recovery technique aims to trace
links between source code and documentation, then the task is
to recover links between code and documents.

B. Artifact Selection

Based on the tasks, the second step is to choose appropriate
artifacts. If one of the tasks is the recovery of links between
source code and documentation, then the dataset should be the
collection of code files and documents that are produced during
the software development process. To decide on what kinds of
documents to select relies on their availability in the selected
project. If the selected project only provides requirements and
design documents, then we can only trace links between code
and requirements and/or design documents. Furthermore, using
a particular document detail level e.g. the class or method level

for code, and the section or paragraph level for documents, is
decided by the particular recovery technique that needs to be
evaluated. If the traceability technique retrieves links between
classes and sections in documents, then the artifact dataset
includes classes and sections of documents.

C. Project Selection

The next step is to search for appropriate projects from
which to obtain artifacts to analyze. An appropriate project
possesses four properties. 1) The project must include artifacts
that are chosen in step two. For example, if the artifacts
selected in step two are requirements and design documents,
then the selected project must contain the two types of
documents. 2) The project should be of a reasonable size. The
larger the size of the project is, the more resources, time, and
cost are required to manually build links. If the benchmark
builder has limited resources, then one of the feasible ways is
to choose projects of small size or to use a part of large
projects. For instance, if a project contains a large number of
requirements and design documents, a feasible way is to
choose a part of the requirements and their corresponding
design documents. 3) The programming language used is
accepted by the tool that implements the traceability technique
under evaluation. Some such tools have no requirements on
programming languages. Hence, the chosen projects can be
written in any programming language. But others may only
accept certain programming languages, such as Java, C#, or
C++ etc. This requires that the chosen projects must be written
in a language that can be accepted by the tool. 4) Documents
and comments in the project must be written in a language that
can be understood by any participant involved in benchmark
development. For example, if documents and comments in a
project are written in French, it is impossible for participants
who cannot understand French to identify links in this project.

D. Oracle/True Link Set Development

After selecting the appropriate projects and artifacts, we can
start building the oracle link set. At the start, we need to decide
the source artifact and the target artifact. All links are
bidirectional, so defining the source and target artifacts is
principally to help users to more easily identify links. For the
sake of simplicity, the source artifact should be the less
complicated one, or the one that can be easily divided into sets
or groups. For example, when recovering links between code
and documents, source code is normally used as the source
artifact. However, in [4], emails are used as the source artifact
because their source code includes many versions of
ArgoUML. Next, traceability rules need to be set up to
facilitate the identification and verification of links. We apply
the rule defined by [5] as fundamental: an element A and an
element B are related if B is derived from A or if B provides
additional and useful information about A. This rule can be
extended to satisfy specific concerns. For example, for defining
links between code and documents, this rule can be changed to:
a class A and a section B in documents are related if B directly
mentions A’s name or identifier, or if B describes tasks that A
should fulfill. Then we can start manually identifying and
verifying links between selected artifacts in the selected
project.

Figure 1 illustrates our strategies for oracle link set
development. Our link identification and verification strategies
are inspired by the works of [3] and [11], who establish their
own benchmarks through manually verifying links by a group
of participants. Our strategies are designed to remedy any
potential bias that could add incorrect links to the oracle link
set. Our strategies include three stages. We take the traceability
between classes and sections as our example.

Figure 1. The strategy of oracle traceability link set development

At the first stage, the source artifact is divided into
overlapping sets. (1). Each element of the source artifact can be
assigned to two different sets. The number of sets depends on
how much workload is assigned to each participant. The less
the workload allocated to each participant, the smaller number
of elements each set contains, and the more participants that
need to be used. Next, according to the number of the sets, a
group of participants needs to be recruited. These participants
are required to have at least some knowledge about the selected
project, called junior participants. Then every participant is
allocated a set (2). They then manually identify links between

the artifact in the set and another selected artifact based on the
traceability rule mentioned above (3). In our example, we use
classes as the source artifact and split all collected classes into
6 groups. 6 junior participants are then employed, each having
a background of Java programming experience. Each is
assigned a set and is required to find links between classes in
the set and sections in the documentation based on the
traceability rule.

After these participants complete their tasks, another group
of participants with good understanding of the selected project,
called senior participants, is recruited to verify these retrieved
links based on the traceability rule (4). The link verification
aims to identify the status of each retrieved link, whether or not
it is correct, and to capture links that are missed by the previous
participants. The number of participants still depends on how
much workload is needed for each participant. If it is a
reasonable workload for an analyst to verify all retrieved links,
then using one senior analyst is enough. Otherwise, these
retrieved links are split into overlapping sets. Every participant
is responsible for one set. If participants all consider a link is
true, then this link is in the set of agreed links, otherwise it is in
the set of conflict links (5). For example, a class is assigned to
two participants in the first group and two participants in the
second group. If the four participants all identify the same link
related to the class, then this link is considered as an agreed
link. Otherwise, this link is considered as a conflict link as it is
not unanimously recovered by the four participants. After the
first stage, an agreed link set is generated. Each link in this set
is agreed to be true by all participants who are allocated the
source artifact of the link.

At the second stage, the set of conflict links generated at the
first stage is randomly divided into overlapping sets, the
number of which is based on how much workload each
participant needs to undertake. A new group of participants are
recruited based on the number of overlapping sets. Each of
them is assigned a set to verify the conflict links by carefully
studying the content in the selected artifacts (6). At this stage
every conflict link is analyzed by two participants. If a link is
considered to be a true link by the two participants, then this
link is added to the set of agreed links, otherwise, it is a conflict
link (7). In our example, every participant is required to
carefully study the text of sections and the source code before
making the decisions. After the second stage, an agreed link set
is produced. Each link in this set is agreed to be true by two
participants.

At the third stage, a senior analyst is employed to verify the
set of conflict links produced at the second stage (8). This
analyst carefully learns the content of the selected artifacts and
also consults with another senior analyst to determine whether
or not a conflict link is correct. In this example, the senior
analyst needs to carefully learn the content of sections and the
comments in classes. Each conflict link is analyzed by at least
three participants, who have either identified the link at the first
stage or have verified the link at the second or third stages.
When three or more participants agree that a conflict link is not
correct, this link is considered to be incorrect and is discarded;
otherwise it is considered to be a true link (9). The third stage
creates an agreed link set, in which every link is agreed to be
true by at least three participants.

Agreed
links

…

Manually
retrieved

links …

F
irst S

tage

…

Conflict
links

Agreed
links

Discarded
links

T
h

ird
 S

tage

Agreed
links

Conflict
links

…

S
econ

d
 S

tage

Artifacts
(Documents,

Source code, etc.)
Task

Oracle/true
Link Set

T
raceab

ility
B

en
ch

m
ark

2

1

5

4

3

9

8

7

6
10

Sets

Finally, the three agreed link sets produced at the three
stages are merged together to form the oracle traceability link
set for the selected artifacts in the selected project. At the first
stage, an agreed link is simultaneously captured by all
participants who are allocated the source artifact of the link. At
the second stage, an agreed link is unanimously considered to
be true by two participants who have verified this link. At the
third stage, an agreed link is agreed to be true by at least three
participants who have identified or verified it in the three
stages. They are stored in a file (e.g. a XML document, a table,
a matrix etc.) to facilitate researchers to use and interpret them.

1) Probability of errors
After the establishment of the oracle link set for a project,

an issue arises: what is the probability of errors (e.g. 1%, 5%,
or 10% errors) in this oracle link set? To analyze this
probability we build a formula to calculate the error probability
based on the following three assumptions:

First, we assume that the probability of an error being made
is dependent on the type of participant and stage. For example,
we might make the following assumptions: 1) Junior analysts
have an error probability of 20%, i.e. during link recovery, a
junior analyst produces 20% incorrect links. 2) Senior analysts
have an error probability of 10%. 3) If a senior analyst consults
with another senior analyst, this senior analyst has an error
probability of 5%; thus, he/she retrieves 5% incorrect links.

Second, we assume that links are independent. A link’s
recovery doesn’t affect the probability of any other link’s
recovery. Moreover, the status (i.e. correct or incorrect) of any
individual link doesn’t affect the probability of recovering any
other link and the probability of the status of any other
retrieved link. For the sake of simplicity, we assume that every
link has the same likelihood of being retrieved.

Third, we assume that errors made on links are
independent; so an error made on any individual link does not
affect the probabilities of errors on other links. Errors here
include the errors of judging an actual correct link to be an
incorrect link, judging an actual incorrect link to be a correct
link, or failing to recover an actual correct link. The probability
of making an error on a link does not influence the probability
of an error made on any other link.

The oracle link set comprises three agreed link sets
produced in the three stages. These link sets are independent.
The probability of errors in the oracle link set is defined as:

N

en
E

k

i
ii

 1

])Pr[(
]Pr[, where

N is the size of the oracle link set, i.e. the total number of
links in the oracle link set. k is the total number of stages, here
an oracle link set is established through three stages (k=3). ni is
the size of the agreed link set at the ith stage, i.e. the number of
agreed links at the ith stage. Pr[ei] is the probability of errors in
the agreed link set of the ith stage. It is defined as:

)Pr(

)Pr(

]Pr[1
i

i

m

j
j

i y
m

x

e

i

 , where

mi is the number of participants at the ith stage. Pr(xj) is the
probability of incorrect links captured by the jth participant at
the ith stage. Pr(yi) is the probability of participants
simultaneously making the same mistake. For example, at the
first stage, a class is assigned to three participants, all
participants generate the same link for this class, and then this
link goes to the agreed link set. We treat this link as a true link.
But if this link is actually an incorrect link, Pr(y1) represents
the probability of the three participants all making the same
mistake of capturing the incorrect link at the same time at the
first stage. Errors in Pr(xj) and Pr(yi) are distributed in the
binomial distribution. We use the following binomial
probability formula [22] to compute Pr(xj) and Pr(yi).

xnx qp
xxn

n
xP

!)!(

!
)(for x = 0, 1, 2, ... , n, where

n = number of trials. For Pr(xj), n = the number of agreed
links retrieved by jth participant at the ith stage; For Pr(yi), n =
the number of participants who identify a link in the agreed
link set at the ith stage.

x = number of successes among n trials. For Pr(xj), x = xj =
the number of errors (e.g. 5% or 10% errors) in the agreed link
set retrieved by jth participant at the ith stage; For Pr(yi), x = yi
refers to at least x participants who consider a link is true at the
ith stage. In other words, x = the number of participants who
identify or verify a link in the agreed link set at the ith stage.

p = probability of success in any one trial. For Pr(xj), p =
0.2 (20%) for junior analysts, p = 0.1 (10%) for senior analysts,
p = 0.05 (5%) for a senior analyst consulting another senior
analyst. For Pr(yi), p = the average/mean error probability of n
participants.

q = probability of failure in any one trial (q = 1 - p)

The error probability of links (Pr[E]) in the oracle link set
depends on the error probability (Pr[ei]) of links in each agreed
link set generated at each stage. The error probability (Pr[ei])
of links at each stage largely relies on each participant’s error
probability (Pr(xj)) and the probability of several participants (
≥ yi) making the same mistake (Pr(yi)).

E. Evaluation Metrics

After the development of the oracle link set, we can
perform an evaluation and comparison of the traceability
recovery technique under study to other techniques. The
common metrics used in the evaluation of recovery techniques
are precision, recall, and F-measure. These three metrics
depend on three figures: correct links retrieved, incorrect links
retrieved, and missing links. Correct links retrieved are those
that are correctly captured by the recovery technique. Incorrect
links are those that are wrongly detected by the recovery
technique. Total links retrieved combines these two kinds of
links. Links that are not found by the recovery technique are
called missing links. Total correct links are the sum of correct
links retrieved and missing links.

Precision can be defined as the ratio of the number of
correct retrieved links over the total number of retrieved links.
If precision equals 1, it means that all the recovered links are

correct, though there could be correct links that were not
recovered.

Precision = Correct links retrieved / Total links retrieved

Recall is the ratio of the number of correct retrieved links
over the total number of correct links. Recall = 1 indicates that
all correct links are recovered, but there may be incorrect
recovered links.

Recall = Correct links retrieved / Total correct links

The F-measure combines precision and recall based on their
weighted harmonic mean to measure the effectiveness of
retrieval. β is an adjustable weight to favor precision over
recall. β=1 weights precision and recall equally. β=2 weights
recall twice as much as precision. β=0.5 weights precision
twice as much as recall.

F-measure = ((β2+1)Precision×Recall) / (β2Precision)+Recall)

Two sets of traceability links between selected artifacts are
prepared in order to compute precision, recall, and F-measure.
One set is produced by a traceability recovery system under
evaluation. The other set is the oracle link set for the selected
artifacts. The latter is critical as it is a crucial factor in
determining the number of correct and missing links.
Comparison of the two sets is then conducted to determine
whether a link is correct, incorrect, or missing.

IV. CASE STUDY

To validate the effectiveness of our approach, we have set
up a case study to build a traceability benchmark for the
evaluation of our traceability recovery technique introduced in
[6]. This benchmark comprises four components: tasks, dataset,
oracle/true traceability link set, and measures.

Tasks. Our particular recovery technique aims to capture
traceability links between source code and documentation.
Hence, the task is to trace links between code and documents.

Dataset. According to the task, the dataset is the collection
of source code and documents. As our recovery technique [6]
goes down to the class level in code and section level in
documents, the dataset consists of classes and sections in
documents. The system we used is JDK 1.5, a free open source
software system for Java developers. We chose to use three
packages (java.awt, javax.naming, and javax.print) from the
JDK1.5 source code and their associated documentation. These
three packages were chosen because of the availability and
detail of corresponding natural language documents describing
these parts of the system. Three documents [18] explain in
detail the structure of packages. For example, JPS_PDF.pdf
describes how the Java printing support works and which
functions are implemented by which Java classes in the
javax.print package. Table 1 describes the packages in JDK 1.5
and their corresponding PDF documents used in this study, as
well as the number of Java classes and the number of sections
in them. We divided these PDF files into sections based on
their headings. For example, if a PDF document contains 10
headings, it is split into 10 sections; the contents of each are the
text between one heading and the following one. We obtained
249 Java classes and 182 sections (or small documents). The

traceability task becomes that of extracting relationships
between these 182 sections and the 249 Java classes in JDK1.5.

Oracle/true traceability link set. In order to build the oracle
traceability link set for JDK1.5, we recruited 11 analysts: 9
analysts had at least 6 years of Java programming experience,
and 2 participants had more than 9 years of Java programming
experience. We set the class artifact as the source artifact as
classes are easier to be grouped than sections. We also set up
two rules to assist participants in finding and verifying a link:
1) if a section directly mentions a class identifier or name, then
this section is related to this class; 2) if a section describes tasks
that a class should fulfill, then they are related.

TABLE I. JDK1.5 PACKAGES AND DOCUMENTS [18]

JDK 1.5 #classes/
sections

Java
packages

java.awt, javax.naming, and javax.print packages 249

PDF
files

JPS_PDF.pdf: Java™ Print Service API User Guide 68
dnd1.pdf: Drag and Drop subsystem for the Java
Foundation Classes

41

jndispi.pdf: Java Naming and Directory Interface™
Service Provider Interface(JNDI SPI)

73

Total sections: 182

At the first stage, the classes were divided into 6 sets. 6
participants then manually retrieved links between sections in
documents and classes by following the above two rules. After
they completed their task, we asked a senior participant to
conduct link verification that included verifying these retrieved
links and capturing links missed by them. Then at the end of
the first stage, 408 links were identified as conflict links, and
356 links were included in the agreed link set; each link was
agreed to be true by two participants. At the second stage, 408
conflict links produced at the first stage were randomly divided
into 3 overlapping sets. Three other participants verified these
conflict links by carefully studying the text of documents and
the comments inside code. Then at the end of the second stage,
75 conflict links were identified, and 333 links were included
in the agreed link set; each link was verified to be true by two
participants. At the third stage, we asked a senior participant to
verify those links still having conflicts. This participant
carefully studied the text of documents and the comments in
code. This participant also consulted with another senior
participant. Each conflict link was thus analyzed by at least 3
participants. When three or more reviewers agreed that the
conflict link was a fault, we considered it to be an incorrect link
and discarded it. Then at the end of the third stage, 4 links were
considered as conflict links, and 71 links were added into the
agreed link set; each link was identified to be true by at least
three participants. The final oracle link set comprised 760 true
links, which we then stored in a table. 110 out of 249 classes
had no sections related to them.

Figure 2 shows the time taken by the six participants to
manually capture links between 249 classes and 182 sections at
the first stage. Participant 3 spent less time than others; 20
minutes taken to retrieve links. Participant 5 took the longest
time (120 minutes) to capture links. Participant 6 used 90
minutes to perform the link recovery. Participants 1 and 2 each
took 50 minutes, and participant 4, 40 minutes. On average,
each participant spent around one hour to identify links

between 50 classes and 182 sections. Figure 3 shows the link
recovery performance of each participant; namely, the
percentage of links captured by each participant. Participant 3
retrieved the lowest number of links, 7%. Participant 5
recovered the highest number of links, 95%. Participant 2
recovered 80% of links. Participant 4 is 71%, 66% for
participant 6, and 31% for participant 1. In total, the six
participants retrieved 409 links and identified 136 classes with
no related sections. Figures 2 and 3 show that participant 3
used the least amount of time but retrieved the lowest number
of links, while participant 5 spent the longest time but captured
the highest number of links. Participants commented that it was
a tedious, boring, and time-consuming task. Moreover, one
participant commented that he/she would favour automatic
techniques to recover links.

Figure 2. Time taken by the first six participants at the first stage

Figure 3. Percentages of links captured by the first six participants at the first

stage (determining correct links vs. conflict links)

After the first six participants identified links, these
retrieved links needed to be verified. Figure 4 shows the time
taken by the remaining five participants to manually verify
these retrieved links. The seventh participant verified links
retrieved by the first six participants and captured links missed
by them. This participant took 220 minutes to verify these
retrieved links and to capture new links. This participant
identified 408 conflict links that included 355 new links. Figure
3 shows the percentage of retrieved links identified as conflict
by participant 7. Links retrieved by participant 5 contained
14% conflict links, 11% for participant 2, 10% for participant
4, 7% for participant 6, and 1% for participant 3.

The next three participants (from 8 to 10 in Figure 4) were
asked to verify 408 conflict links generated at the first stage.
Each participant at the second stage used around 87 minutes to
verify these conflict links on average. They reduced the conflict
links to 75. The last one (11 in Figure 4) verified these 75
conflict links. This participant took 180 minutes to undertake
the link verification. At the end of the process, 4 links remained
in conflict. On average, each participant took around two hours
to verify links. By comparison with Figure 2, participants spent
more time in the link verification than in the link recovery on
average. Participants again commented that it was a tedious and
very boring task. Four of them commented that it would be
helpful to use traceability tools to support the link verification.

Figure 4. Time taken by the rest of the participants in verifying links

Measures. We use precision, recall and F-measure to
evaluate the effectiveness of a traceability recovery technique.
We used our new JDK1.5 benchmark to assess the performance
of our combined retrieval traceability technique and toolset [6].

V. PROBABILITY OF ERRORS IN JDK1.5 BENCHMARK

The oracle link set for the JDK1.5 benchmark consists of
356 links retrieved at the first stage, 333 links verified at the
second stage, and 71 links verified at the third stage. In order to
compute the probability of errors in this link set, we need to
calculate the probability of link recovery errors made by each
participant (Pr(xj)), and the probability of participants
simultaneously making a same mistake of capturing an
incorrect link (Pr(yi)). Initially we used the example error rates
for different participants introduced in section 3.4 (20% for
juniors, 10% for seniors and 5% for seniors consulting one
another) to demonstrate this method. Table 2 lists the results of
Pr(xj) and Pr(yi) for having ≥ 10% link errors. We use
STATDISK calculators to produce these results of Pr(xj) and
Pr(yi). STATDISK can be free downloaded at
http://www.statdisk.org. Then the probability of ≥ 10% link
errors in the JDK1.5 oracle link set is calculated as follows:

N

nenene
E 332211]Pr[]Pr[]Pr[

]Pr[

 = 0.027

for E ≥ N*10%, where

 N = 760; ni is the number of links in the agreed link set
at the ith stage, here n1 = 356, n2 = 333, and n3 = 71;

)Pr())Pr((]Pr[
1

ii

m

j
ji ymxe

i

 Pr[e1] * n1 = 0.88122235 * 0.0225 * 356 = 7.05859

 Pr[e2] * n2 = 0.9998299 * 0.04 * 333 = 13.31773

 Pr[e3] * n3 = 0.0641971 * 0.0266119 * 71 = 0.121297

We can use the same method to calculate the probability of
≥ 5% link errors in the JDK1.5 oracle link set:

Pr[E] = 0.0292 for E ≥ N*5%, where

 Pr[e1] * n1 = 0.994423843 * 0.0225 * 356 = 7.965335

 Pr[e2] * n2 = 1.0 * 0.04 * 333 = 13.32

 Pr[e3] * n3 = 0.4771324 * 0.0266119 * 71 = 0.9015154

TABLE II. PROBABILITY DISTRIBUTION FOR THE JDK1.5 ORACLE LINK
SET BASED ON THE EXAMPLE ERROR RATES OF PARTICIPANTS

Stage

P
articip

an
t

R
etrieved

L

in
k

s (R
)

C
on

flict
L

in
k

s (C
)

Agreed
Links
(n=R-C)

Example Error
Probability for
Participant (p)

Pr(xj) for
xj ≥ n * 10%
(round to the
nearest
integer)

1
st stage

1 10 1 9 0.2 0.8657823
2 84 12 72 0.2 0.9940038
3 18 2 16 0.2 0.8592625
4 35 5 30 0.2 0.955821
5 145 21 124 0.2 0.9990852
6 117 12 105 0.2 0.9969877
7 764 408 356 0.1 0.497614

7)Pr()Pr(
7

1
1

1

1

j

j

m

j
j xmx = 0.881222357

Pr(y1) = 0.0225 for y1≥2, where n=2, p=(0.2+0.1)/2=0.15

2
n

d stage

8 272 53 219 0.2 0.9999765
9 272 123 149 0.2 0.9996381
10 272 87 185 0.2 0.9998751

3)Pr()Pr(
3

1
2

1

2

j

j

m

j
j xmx = 0.9998299

Pr(y2) = 0.04 for y2≥2, where n=2, p=(0.2+0.2)/2=0.2

3
rd stage

11 75 4 71 0.05 0.0641971

1)Pr()Pr(
1

1
3

1

3

j

j

m

j
j xmx = 0.0641971

Pr(y3) = 0.0266119 for y3≥3, where n=5,

p=(0.2+0.1+0.2+0.2+0.05)/5=0.15

Although Pr[E≥N*5%] is slightly larger than Pr[E≥
N*10%], the results are very close and small. Therefore, the
probability of the oracle link set having ≥ 5% or 10% is very
low, 0.0292 for ≥ 5% and 0.027 for ≥ 10% (all around 3%).
In other words, the probability of building at least 95% correct
links is very high (around 97%). The above calculation reveals
three features. 1) The more senior a participant is, the lower
probability of link errors the participant can make. For
example, at the first stage, the first six participants are junior
participants who have an error probability of 20%; their
probabilities of making ≥ 10% link errors are larger than
85.9% (see Table 2). But the 7th participant, who is a senior

analyst with an error probability of 10%, can achieve 49.8%
probability of making ≥ 10% link errors. 2) The probability of
participants simultaneously making the same mistake of
identifying an incorrect links is very low, Pr(y1) = 0.0225,
Pr(y2) = 0.04, and Pr(y3) = 0.0266. This indicates that the
chance of several participants (≥ 2 or 3) retrieving an incorrect
link at the same time is very rare. This reflects that our rigorous
manual identification and verification strategies can largely
reduce the probability of errors in the oracle link set. 3) The
more participants that are allocated to verify a link, the lower
the probability of link errors that can be achieved. For example,
at the first stage, each link in the agreed link set was agreed to
be true by two participants, Pr(y1) = 0.0225 (see Table 2). If we
add one more participant to verify a link and the third
participant is a junior participant, then Pr(y1) = 0.0046 for y1≥
3, where n=3, p=(0.2+0.2+0.1)/3=0.16667. But if the third
participant is a senior participant, then Pr(y1) = 0.0024 for y1≥
3, where n=3, p=(0.2+0.1+0.1)/3=0.1333.

Instead of using the assumed example error rates for
participants we can make use of the observations and results
obtained from the establishment of the JDK1.5 oracle link set
to calculate the actual average error rates for the three types of
participants. Table 3 shows the actual error rates for
participants in the establishment of the JDK1.5 oracle link set.
The actual error probability for a participant is computed as the
number of retrieved links / the number of incorrect links, where
retrieved links are links that are recovered or verified by the
participant, incorrect links are links that are recovered or
verified by the participant but are excluded from the final
oracle link set. The actual error rate for a participant is an
approximation as the number of incorrect links is obtained by
comparison between links retrieved or verified by the
participant and links in the final oracle link set hence may not
be completely accurate. However it is a good approximation.

TABLE III. ACTUAL ERROR RATES FOR PARTICIPANTS DURING THE
ESTABLISHMENT OF THE JDK1.5 ORACLE LINK SET

Stage Participant Retrieved
Links
(R)

Incorrect
Links
(W)

Actual Error
Probability
(p=W/R)

1st stage 1 10 1 0.1
2 84 5 0.05952
3 18 1 0.05556
4 35 3 0.08571
5 145 6 0.04138
6 117 6 0.05128
7 764 31 0.04058

2nd stage 8 272 3 0.01103
9 272 8 0.02941
10 272 6 0.02206

3rd stage 11 75 2 0.02667

We used nine junior participants: the first six participants at
the first stage and three participants at the second stage. The
average error probability for junior participants is 0.05066
(about 5%), which is much lower than the example error rate
(20%) used above. The senior participant (the 7th participant at
the first stage) has an error probability of 0.04058, which is
also lower than the corresponding example error rate (10% or
0.1). The senior participant (the 11th participant at the third
stage) who consulted another senior participant has an error

probability of 0.02667 (2.667%), which is lower than the
corresponding example error rate (5%). We then apply the
three actual error rates for participants to recalculate the
probability of errors (≥ 5% or 10% errors) in the JDK1.5
oracle link set.

We can use the same calculation method demonstrated
above to compute the results of Pr(xj) and Pr(yi) for having ≥
10% link errors based on the actual error rates for the three
types of participants. The probability of ≥ 10% link errors in
the JDK1.5 oracle link set is Pr[E] = 1.2689e-4 for E ≥
N*10%. This result shows that the probability of creating at
least 90% accuracy in the JDK1.5 oracle link set is extremely
close to 100%. The probability of ≥ 5% link errors in the
JDK1.5 oracle link set is Pr[E] = 0.0012 for E ≥ N*5%. This
result shows that the probability of making ≥ 5% link errors is
0.0012 (0.12%). In other words, the probability of building an
oracle link set with accuracy of at least 95% is very high,
around 99.9%. We thus conclude that our approach produces a
high quality oracle link set.

VI. COST-QUALITY TRADEOFFS

The most important part of establishing a benchmark is to
create a high quality oracle link set (e.g. the link set with ≤ 5%
errors). Building a high quality oracle link set depends on three
factors. 1) The workload allocated to each participant. 2) The
number of participants verifying a link. 3) The knowledge of
the traced project of each participant, i.e. junior or senior.

In general, each participant at the same stage is allocated a
similar workload. For the first stage, there are two groups of
participants. The first group is to retrieve links between
allocated artifacts. The second group is to verify links retrieved
by the first group. For example, when we built the JDK1.5
oracle link set, the first six participants at the first stage
captured links between allocated classes and documents. The
7th participant at the first stage verified these retrieved links.
Every participant in the same group was assigned a similar
workload at the first stage. The more workload that is assigned
to a participant, the more effort they are required to make.

From the error probability calculation discussed above, we
noticed that using a different number of participants to verify a
link can affect the results of the probability of errors in the
oracle link set. Using more participants to verify a link can
produce a more accurate oracle link set. Using at least three
senior participants to verify each link can achieve better results
than using at least three junior participants or the combination
of junior and senior participants, or at least two senior/junior
participants. The participants’ knowledge of the traced project
can significantly affect the probability of errors in the agreed
link set recovered by them. Based on the error probability
calculation discussed above, and our observations in practice,
we postulated then confirmed that the more senior a participant
is, the lower the probability of link errors the participant will
make and that these differences have a significant impact on
the overall error probability.

Overall, if the workload assigned to each participant is
certain, the best solution for building a high quality oracle link
set is to recruit all senior participants, and to use at least three

participants to verify a link. Unfortunately, it is very hard to
recruit senior participants in practice. Moreover, it is not easy
to decide how many times are appropriate to identify or verify
links, which depends on the assigned workload. In our case, we
assigned around 50 classes to each junior participant in the first
group at the first stage. On average, each of them took around
60 minutes to identify links between 50 classes and the
documents. Each link at the first and second stages was verified
by only two participants. We still achieved 99.9% probability
of producing at least 95% correct oracle link set based on the
actual error rates for participants. Therefore, the alternative
solution for building a high quality oracle link set is: 1) to use
junior participants for the first group at the first stage and the
group at the second stage; 2) to use senior participants for the
second group at the first stage, because they not only verify
links retrieved by the first group but also recover links missed
by them; 3) to use senior participants at the third stage because
they need to verify links that are still in the conflict link set
after going through the two stages; 4) to use at least two
participants to verify a link at each stage.

VII. DISCUSSION

The actual probability of making ≥ 5% link errors in the
JDK1.5 oracle link set is 0.12%. Our rigorous manual
identification and verification strategies significantly improve
the accuracy of the each stage’s agreed link set. This evaluation
illustrates that our approach can help researchers to develop a
robust and high quality traceability benchmark to perform an
evaluation and comparison of different recovery approaches.

However, our approach suffers from four problems that
occur during the development of a traceability benchmark. 1)
The difficulty of determining whether or not two elements in
artifacts are in fact related. Although we provide a traceability
rule to help in the identification of true links, we rely on
participants’ knowledge and understanding to capture links.
This may lead to the capture of incorrect links. 2) How much
workload is suitable for a participant to undertake? The more
workload that is allocated to a participant, the more time and
energy are required. Too much workload may make
participants lose interest in participation. When we built the
JDK1.5 benchmark, every participant took one hour to identify
the related sections for 50 classes on average. But it took a
longer time to do the link verification than the link recovery on
average. 3) The difficulty in the recruitment. It is not easy to
recruit a good number of participants who are required to have
some knowledge of the selected project, especially for
recruiting senior analysts. If a participant was new to the
selected project, he/she might be more likely to capture
incorrect links than someone who knows the project to some
extent. 4) The scalability of benchmarks. Our approach is
suitable to build benchmarks for projects of a reasonable size
because of its approach of manually identifying and verifying
links. But benchmarks produced by using our approach can be
extended to include more elements, artifacts, tasks, and/or
measures.

In future work, we will extend this benchmark to cover
more classes and documents. This benchmark will then able to
be used to evaluate tracing approaches and procedures for a
wide range of tasks from different areas of software

engineering. We also will look at other probability distributions
for the probability of incorrect links captured by each
participant (Pr(xj)) to cover the issue that links may have
different probabilities of being retrieved. Because a link’s
recovery is highly dependent on the textual descriptions some
links may be harder than others to find due to ambiguous
wording issues. This can translate through increased error rates
on particular links. The binominal distribution we have applied
then may invalid as clustering may occur. However, using
different probability distribution is unlikely to significantly
affect the very low error rates in the oracle link set we have
come up with. Because the probability of errors in the created
oracle link set heavily depends on the probability of
participants simultaneously making the same mistake (Pr(yi)),
which is very low.

VIII. THREATS TO VALIDITY

The first threat to the validity of our approach is that false
positive links may be included in the oracle link set. This is
because a link agreed to be true by participants at each stage is
put in the oracle link set even if it is actually incorrect. This can
affect the accuracy of the actual error rate for each participant.
Thus, it is important to expand our approach in the future by
exploring how correct links should be defined and how to assist
participants in identifying them. Second, some links may be
harder to identify than others in practice. In that case, the
binominal distribution used in our approach may not be
suitable. Other probability distributions therefore need to be
explored to cover this issue in the future. Third, the case we
used is a small project that contains a small fraction of the
source code and documents in the JDK1.5 system. It is not
representative of large software systems. Our approach also
may show different probability error results when applied to
recover links between artifacts in other software systems by
other groups of participants.

IX. SUMMARY

We described a new approach to help researchers to
establish affordable and robust traceability benchmarks. Our
approach comprises five steps: task identification, artifact
selection, project selection, oracle/true traceability link set
development, and evaluation metrics. We designed rigorous
identification and verification strategies to decide whether or
not a link is true; every link is verified by at least two analysts.
A benchmark for JDK1.5 was built by using our approach. We
built a formula to compute the probability of errors in the
created oracle link set. The probability of making ≥ 5% link
errors in the JDK1.5 oracle link set is 0.12%. The accuracy of
the agreed link set at each stage is significantly improved by
our rigorous manual identification and verification strategies.
The error probability results show that our approach can build a
high quality oracle link set for the selected project.

We have made our new JDK1.5 benchmark public and we
allow users to access or download it for free. Our benchmark is
represented in a spreadsheet format. Anyone can review the
data, apply it to evaluate their traceability approaches, and
probably extend it to better meet their own needs. Users can
download it from: http://tinyurl.com/7l3ohe4.

REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,

“Recovering traceability links between code and documentations,” TSE,
Vol. 28, No. 10, Oct. 2002, pp. 970-983

[2] G. Antoniol, G. Casazza, and A. Cimitile, “Traceability recovery by
modelling programmer behavior,” 7th WCRE, Nov. 2000, pp. 240-247

[3] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
lightweight techniques to link e-mails and source code,” WCRE 2009,
pp. 205-214

[4] A. Bacchelli, M. Lanza, and R. Robbes, “Linking E-mails and source
code artifacts,” ICSE’10, May 2010, pp.375-384

[5] E. B. Charrada, D. Caspar, C. Jeanneret, and M. Glinz, “Towards a
benchmark for traceability,” IWPSE-EVOL 11, Sep. 2011, pp. 21-30

[6] X. Chen and J. Grundy, “Improving automated documentation to code
traceability by combining retrieval techniques”, 26th ASE, 2011,
Lawrence, KS, pp. 223-232

[7] J. Cleland-Huang, A. Czauderna, A., Dekhtyar, O. Gotel, J. H. Hayes, E.
Keenan, G. Leach, J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman, G.
Antoniol, B. Berenbach, A. Egyed, and P. Maeder, “Grand challenges,
benchmarks, and TraceLab: developing infrastructure for the software
traceability research community,” TEFSE 2011, May, Waikiki, USA

[8] J. Cleland-Huang, A. Dekhtyar, J.H. Hayes, G. Antoniol, B. Berenbach,
A. Eyged, S. Ferguson, J. Maletic, and A. Zisman, “Grand challenges in
traceability,” Technical Report COET-GCT-06-01-0.9, Center of
Excellence for Traceability, 2006

[9] A. Dekhytar, J.H. Hayes, and G. Antoniol, “Benchmarks for
traceability?” TEFSE 2007, March, Lexington, KY

[10] O.C. Gotel, and A. C. W. Finkelstein, “An analysis of the requirements
traceability problem,” 1st RE, 1994, pp. 94-101

[11] J.H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: the study of methods,” TSE,
Vol. 32, No. 1, January 2006, pp. 4-19

[12] J.H. Hayes, A. Dekhtyar, S.K. Sundaram, E.A. Holbrook, S. Vadlamudi,
and A. April, “Requirements Tracing On target (RETRO): improving
software maintenance through traceability recovery,” Innovations Syst
Softw Eng (2007) 3, pp. 193-202

[13] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
traceability links in software artifact management systems using
information retrieval methods,” TOSEM, 2007, Vol. 16 (4), Article 13

[14] A. Marcus, and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” 25th ICSE’03, 2003,
pp. 125-135

[15] D. Oppenheimer, A. B. Brown, J. Traupman, P. Broadwell, and D. A.
Patterson,. “Practical issues in dependability benchmarking. In
Evaluating and Architecting System Dependability,” October, 2002

[16] B. Ramesh, and M. Jarke, “Toward reference models of requirements
traceability,” IEEE Trans. Software Eng., 27(1), pp. 58-93, 2001

[17] J. Rilling, P. Charland, and R. Witte, “Traceability in Software
Engineering—Past, Present and Future,” CASCON Workshop, IBM
Technical Report: TR-74-211, October 25, 2007

[18] PDF Version of JDK Documentation, 2010, Extracted on 10 Feb. 2010
from http://java.sun.com/j2se/1.5.0/download-pdf.html

[19] R., Seacord, D. Plakosh, and G. Lewis, Modernizing legacy systems:
software technologies, engineering processes, and business practices.
2003, Addison-Wesley

[20] R. Settimi, J. Cleland-Huang, O. Ben Khadra, J. Mody, W. Lukasik, and
C. DePalma, “Supporting software evolution through dynamically
retrieving traces to UML artifacts,” 7th IWPSE, 2004, Kyoto, pp. 49-54

[21] S. E. Sim, S. Easterbrook, and R.C. Holt, “Using benchmarking to
advance research: a challenge to software engineering,” ICSE 2003, pp.
74-83

[22] M. F. Triola, “Elementary statistics (7th ed.)”. 1997, Addison Wesley
Longman, Inc.

[23] X. Wang, G. Lai, and C. Liu, “Recovering relationships between
documentation and source code based on the characteristics of software
engineering,” Electronic Notes in Theoretical Computer Science 243
(2009), Elsevier B. V., pp. 121-137

