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Abstract 

With the fruition of research into integrated design systems that allow communication between multiple 
actors and design tools, there is a growing need for control over the flow of execution of project tasks 
performed with the help of these systems. This calls for the specification of configurable control 
systems that are able to ‘design’ the organization and management of actual projects.  
 
The paper argues that an IT driven approach, leading to narrow software engineering solutions, is 
inadequate to solve the new type of project management problems that are inherent in the use of 
collaborative systems. It is argued that integrated systems will only find acceptance if, apart from 
providing 'generic integration facilities', adequate tools are provided to design, configure and execute 
the management control on a case by case basis. 
 
A three-tiered control approach is discussed and a prototype tool to aid the project manager to execute 
control is introduced. 

Introduction 

Integrated design systems are becoming more common place in many fields and especially in the 
engineering and building domain, where there is often a greater number of participants in a design 
project than in many other fields. R&D efforts dealing with integrated design and engineering systems 
recognize the need for the support of interoperability on different levels of granularity. Examples of 
such efforts are reported in Amor et al. (1997), Augenbroe (1995a, 1995b), Böhms and Storer (1993), 
CIMsteel (1995), and COMBI (1995). 
 
A layering taxonomy introduced in (Augenbroe, 1995b) has identified three distinct levels where 
support of interoperability poses challenges, each of a different nature and each requiring a different 
paradigm to deal with them (Figure 1.). 
 
The figure shows five layers that you are likely to find in any type of multi-actor integrated system. 
Different functionality is provided by each layer and each layer builds on the ones below it. Functions in 
one layer are enabled by the functions offered in the layers beneath it. It is helpful to group the three 
bottom layers into one ‘Data Sharing’ layer (L1+L2+L3). 
 
A closer look reveals which key functions should be supplied by each layer. 
 



 

Figure 1: Layers in integrated design systems. 

First Layer (L1/2/3): Data Sharing 
This bottom layer is essential to any type of meaningful exchange. It represents the knowledge in the 
universe of discourse in a formal manner; it comprises a superset of the semantic content of the 
information that actors want to exchange with the system and hence with each other. 
 
An aspect that has to be faced is the level of explicit actor view support, e.g. explicit representations of 
each view, keeping track of all relevant (i.e., within the scope definition) interrelations between views. 
Alternatively, one can choose not to support explicit representation of views. In the latter case, all actor 
views contribute to the definition of a common building model. The resulting common "model" is 
supposed to be complete in the sense that each particular view can be mapped to/from it. 
 
Communication takes place through a variety of physical connectivities (network, diskette, etc.), 
communication protocols (on/off-line, OLE, CORBA, native, etc.) and messaging paradigms 
(exchange of states, exchange of operation, atomic messages, etc.). 
 
Explicit and persistent storage of the state(s) of design is an essential requirement with rich features 
such as: versioning, audit trail, public/private versions, actor definable locking, explicit view storage. 

Second layer: Interoperability 
One is quick to realise that data exchange facilities for collaborative design become rather meaningless 
if there is no support for evolutionary design scenarios and incremental design refinements. Without 
any form of goal driven control the exchange events, e.g. related to design intent or predefined 
procedures, communication facilities become rather pointless. 
 
The interoperability layer must provide the basic functions for executing the actual information 
exchange and managing the storage and evolution of design states. It is in this layer that the "team 
performance" of the system is determined. It is good to note that the functions performed at this layer 
are constrained by the support functions offered by layer 1. For instance, in the absence of explicit 
knowledge about inter-actor activities in a given design task (L1), lack of on-line or interruptible 
communication (L2), or lack of flexible locking of private data in the data store (L3), severe restrictions 
will apply to the level of interoperability that can be offered in this layer. 



Third layer: Co-ordination 
Data exchange without a controlled purpose and interaction scenario will lead to chaos. One may be 
able to "understand" and "interpret" all messages but one has no control over "who should be doing 
what next and for what purpose". 
 
The co-ordination layer provides the means to "drive" the system towards defined design-objectives. It 
contains the ingredients to supervise actor activities and schedule events, and manage the work flow. It 
can employ different project management paradigms (reactive, monitoring, pro-active, autonomous, 
etc.). The co-ordination layer should add the project specific and design office specific context to the 
generic layers beneath it. 

The Challenges 

On the ‘data sharing’ level the emphasis is on a common understanding of the domain, to be formally 
expressed in an ontology (Gruber 1993). Judging from the ongoing debate, e.g. in the ISO-STEP 
community (ISFAA electronic conference 1997), the AEC industry is still far removed from an 
accepted common ontology and it is becoming increasingly clear that relevant practical solutions 
cannot wait and should not have to wait for such a ‘grand scheme’ solution. 
 
The second layer deals with process interoperability, i.e., the way in which actors collaboratively add 
and change data in a shared project information space. Much recent focus has gone towards IT solutions 
to provide support for this shared and simultaneous access to the building data. Much of that work 
concentrates on database support functions for concurrent transactions, ultimately with the aim to 
support design change updates made by different actors from different views (Amor et al. 1995), 
(Eastman et al. 1995). Merging and reconciling conflicting design versions is another, even more 
challenging option that future systems may offer. 
 
These efforts will provide essential solutions for the middle layer the integrated systems. It is important 
to realise that. As such they will result in part solutions, as humans, engaged in a collaborative design 
process have many requirements other than being able to exchange data through a system that caters to 
their particular views and domain applications. Rather, they are actors in a group decision process 
where the computer-based environment is instrumental as information provider and flawless transfer 
agent of data, but is not the solution by itself. Effective control should therefore be executed on all three 
levels introduced above. They represent different 'layers of authority' and each layer should show the 
right mix of responsibility delegation to both human decision taking and computer (based) control.  
 
It is also good to realize that each layer is in fact a hierarchical composition of many sub layers. E.g., in 
the common ontology layer, structuring applies to specialization and decomposition hierarchies; atomic 
transaction processes in the second layer can be grouped into complex processes, sessions and 
ultimately whole design tasks. In the project management layer, a hierarchical structure will usually 
reflect the different stages of decision taking and authority delegation. Detailed decisions will occur at 
short time intervals, involving only the team members who are directly involved. Major design changes 
occur less frequently and will require a top level decision, with the supervisors of different smaller 
design teams being the active partners. 
 
The integration challenge for the next decade lies clearly in the development of systems that show full 
integration over the three layers. This implies: (a) a process model that is tied in with the data items in 
the building model ‘below’ it and (b) also tied in with a decision taking and task allocation and role 
delegation model of the design team and the ‘virtual’ organization they form part of.  
  
It is important to recognize that a project starts with the design of the management structure on the top 
layer. This 'management layer' defines the actors, their roles and authorities in the design process at 
large. Then, the actual 'project layer' is 'designed' entailing the breakdown of tasks, their scheduling and 
inter-dependencies, as well as a control structure stating pre and post conditions related to their 



execution. The third layer is the operational layer of the collaborative system. It provides the generic 
functionality for exchange of data among the design actors, while they are performing their assigned 
roles in the project.  
 
Other industrial sectors, faced with the same needs, have come up with a partial but structured approach 
to the above. Most notably the electronic design community has come up with initiatives such as the 
CAD Framework Initiative (CFI 1995), and relevant applications, such as NELSIS (van Leuken 1995) 
and SIFRAME. 
 
Acceptable solutions for real life problems in building design do however not yet exist, as many of the 
complex relationships between items on different layers have not yet been explored in these systems. 
One of the projects that has tried to integrate the three layers is the EU funded COMBINE project 
(Augenbroe 1995a). The COMBINE project is seen as leading the way towards the practical 
development of IIBDS's (Intelligent Integrated Building Design Systems) through which energy, 
services, functional and other performance characteristics in planned buildings can be modeled and 
integrated. 
 
This project explored prototypes of the next generation of integrated building design systems with a 
configurable project control layer. It introduced a modeling technique, that allows design and 
configuration of the project control structure and provides a flexible way to tie the control in with the 
actual data being exchanged, at different levels of detail (‘deep’ and ‘shallow’). 
 
‘Project windows’ are defined to encompass the flow of control for a small part of the design process; a 
formalism for describing project windows was also developed in the COMBINE project.  

The COMBINE approach to the layered architecture 

Layer 1: Shared OO database with STEP interfaces  
Based on 12 actor views in the field of architectural design with energy and HVAC as the primary scope, 
an integration exercise led to a common building model. EXPRESS was used as knowledge 
representation language. 
 
The scope of the model caters for the tools that make up a small, but relevant, part of a building design 
process (encompassed by a so-called "Project-Window"), dealing with thermal/energy/comfort 
simulation, HVAC design with HVAC CAD support, lighting design, shape design and space layout 
with architectural CAD support, cost estimation, building regulation checking, component database 
access for HVAC and fabric components, and on-line document browsing. 
 
Actual data is transferred as STEP data files. They are parsed and mapped to local entities on input at 
the start of a design tool session and the reverse takes place when the session ends. These tools are 
called the off-line tools; they exchange static product descriptions with a central repository. 
 
The CAD systems are deployed as on-line tools; they interact with the central building model through a 
native API; they can both exchange STEP entity instances with the central repository and they may 
activate operations on the model in the repository. 
 
The central Data Exchange System keeps a coherent representation of the designed building in a central 
persistent storage location. This component acts as a central repository, keeping track of versions and is 
able to update a design according to the new information supplied by one of the actors. 

Second layer: Interoperability through (specialized) subschemas 
COMBINE has managed to develop a basic, but crude, interoperability support mechanism based on 
subschemas for design tools. The granularity of interoperability is chosen to be at design tool function 



(DTF-level). Each design tool (both on and off-line) has a range of specific DTF's that are pre-defined 
and used as the basic granular activities in a design scenario. Each DTF is associated with a subschema 
of the complete building model. 
 
A subschema may contain any (valid) subset of entities and subset of relationships of the complete 
building model. The validity of a subschema is ensured by sticking to certain rules when stripping the 
building model to subschema proportions.  
 
A subschema can be further "specialised" by adding tighter cardinality constraints, add or remove 
optional constraints and add clauses which act as a query and thus reduce the set of instances that fit the 
subschema. The latter serves to limit the building instances to those that make sense to a particular DTF. 

Third Layer: Project Supervision Module 
COMBINE has addressed the issue of project supervision and developed a so-called "Exchange 
Executive" module. It can be fed with sequences of actions (scenarios) that a certain project demands 
and along the way it is able to detect what results are affected by design modifications so that it requests 
the redoing of certain evaluations. The granularity of a scenario is again at the DTF level. 
 
All actors, DTF's, and constraints with respect to transitions between DTF's are formally modelled 
using an adapted form of Petri-Nets. Each DTF in the model has its input and output subschemas (L4) 
associated with it. This serves to detect overlaps between DTF's (disallowing concurrent use) and also 
enables us to maintain a list of DTF's that have to be reinvoked because a downstream DTF has changed 
its input. The following section will explain this in detail. 

A model of design task control  

This section explains the approach to a task scheduling model, i.e., a formal, computer interpretable 
representation of the tasks, the actors that perform them and the constraints that control their execution 
and sequencing. It is based on the metaphor of a Project Window, within which a Petri-net modeling 
technique serves to derive the formal Project Window reference model.  

Project Window 
The Project Window (PW) metaphor is introduced as a ‘window’ on any suitable, limited portion of the 
overall design process. Such a portion is usually limited to a small time period of the project (typically a 
project phase with a well defined start and end state) and only a limited numbers of actors (typically 
limited to a specific sub-system in the building or dedicated to the exchange that takes place among 
actors in a particular setting, i.e., to reach a predefined decision point). Each actor in a project is 
assumed to play some number of design roles in the project, and these design roles are comprised of 
some set of design functions. 
 
The PW approach has been proven to be an adequate instrument to implement integrated building 
design system prototypes directed at a particular industrial need. COMBINE has generated a number of 
PW models with input from industry, and IBDS prototypes were developed for them.  
 
A PW model describes actors, their roles and tasks, the input and output data for each task and pre and 
post conditions that regulate the execution of the tasks. It should be noted that a PW model is not an 
attempt at a generic process description. Rather, it is the result of a workflow approach to the project at 
hand. PW modeling tools should allow easy configuration at the start of the project and ‘on the fly’ 
reconfiguration. The execution of the PW model is done in interaction with the Project Manager, who is 
always in control over what task to execute next.  

The CombiNet technique 
To model an individual PW a formalism is required which allows the specification of all the 



information described above. The formalism that has been defined has two distinct parts. One part is for 
the definition of the actors, the design roles they play and design functions associated with each role. 
The other part is for the specification of flow of control utilising the design functions defined in the dual 
part of the formalism. The control flow formalism is based loosely around a Petri-net definition of flow 
of control (Jensen 1990), but as it is quite different in its mode of operation it has been renamed a 
CombiNet. 
 
PW models are expressed using a flavoured Petri-net technique. Petri-nets are well suited to model 
control over the sequence of tasks. Several types of controls apply: 
• conditions determining when a specific actor can perform a particular operation (temporal logic 

control). 
• conditions to ensure that the model remains in a consistent state while the design progresses (data 

integrity control). 
A PW model consists of two diagrams The first one captures all the “Actors”, their “Design_Roles”, 
and the “Design_Tools” they can execute. The second diagram describes all the communicating entities 
in the system and their inputs and outputs. 

Specification of actors, design roles and design functions 
Being able to specify the actors, their design roles and design functions requires only a very simple 
formalism. The relationship between these items is strictly hierarchical. An actor performs several 
design roles in a project, though two actors may be involved in the same design role. Each design role is 
realized by a set of design functions, though several design roles may utilise the same design function. 
The graphical formalism that was designed for this specification has three types of icons in it. One to 
denote an actor, another to denote a design role and a third to denote a design function. These icons are 
connected by lines to denote the association of design roles with an actor and design functions with a 
design role. 
 
Figure 2 shows a small example of this formalism in the CGE modelling environment. There are three 
types of objects in this view. The ellipse on the left of the diagram represents an actor. The rectangles in 
the center of the diagram represent design roles, and as such are referenced by actor objects. The right 
hand objects represent design functions and are referenced by design roles. A design function has some 
associated information, in the center of the circle is the name of the design function, at the point of the 
diamond is the name of the design tool which will perform this design function, and to the left and right 
of the design tool name are the names of the files which contain the IDM subset models describing the 
input and output requirements of the design function. The specification of input and output models for a 
design tool allows for the possibility that a design tool can perform several design functions, sometimes 
through the use of different data models. 
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Figure 2. Combine PW Diagram 
 
Figure 2 shows an example for one actor (the structural consultant), having design_roles to perform the 
structural system design and to ensure structural integrity, both of which utilise Design Tool Functions, 
associated with expert performance evaluation tools. The diagram also shows the explicit reference of 
each function to a predefined subset of the building model.  
 
The second diagram type, known as the "Combine_Petri" diagram, describes the order in which these 
DTF's are allowed to execute in the system. These diagrams use the basic structures of Petri_net 
diagrams, i.e., Places and Transitions, where Places represent (on the lowest granularity) design tool 
functions and Transitions represent all potentially allowed sequences from one Place to the other, 
subject to constraints.  

Specification of flow of control 
The flow of control between the various design functions associated with a design role and actor can be 
described through a permutation of the Petri-net formalism. By equating a design function with a place, 
a transition with a choice point, and a token with an actor, it is possible to connect the various design 
functions in a manner which can mimic the flows that will occur in a project. In the graphical formalism 
that was developed for COMBINE the basic Petri-net formalism has been extended to contain 
aggregation and short-cut descriptive facilities, all of which are shown in Figures 3 and 4. The views 
presented in these figures represent a distinct portion of the flow of control as evidenced by start and 
end transitions. The role of these portions of the flow of control is detailed later in this section. 



  
Figure 3: Combine_Petri Diagram 
 
These diagrams are hierarchical in nature. "Aggregate_places", such as the three on the right-hand side 
of Figure 3 refer to lower level "Combine_Petri" diagrams, such as the one shown in Figure 4. 
Eventually, the level of plain single Petri_Net places is reached. There is no theoretical limit to the level 

of diagram nesting which may be accomplished using “aggregate_places”. 

 
Figure 4: Lower Level COMBINE_Petri diagram 

Token 
Tokens are not shown in the flow of control model, but are used when simulating the flow of control 
represented in such a model. A token represents a single actor performing a particular design function. 
Unlike Petri-nets a token passing through a transition in the CombiNet only propagates a token to one of 
the reachable places. This equates to the actor starting a new design function. Where several design 
functions may operate concurrently the project manager must create new tokens to represent each of the 
actors and start them in the appropriate part of the flow of control simulation.  

Place 
A place in the CombiNet view, denoted by an oval, represents a single design function. A place can be 
reached from some set of transitions, and will exit to some other set of transitions. The movement of a 
symbol representing an actor in and out of a place represents three distinct actions. The movement of a 



token into a place denotes the invocation of the design tool associated with the design function along 
with the input data required for the design tool as modelled with the input DTF model. The existence of 
a token in the place denotes the execution of the design function by the attached actor. The movement of 
a token from a place through an exit transition denotes the termination of the design function and the 
passing of resultant data back to the IDM. Any of these actions may fail, either the correct input data can 
not be formulated, the actor may not succeed in the design function, or the output data may not match 
the specifications set in the output DTF model. In the case of a failure the token representing the actor is 
passed back to the transitions of the place it last exited to perform some other (or perhaps even the 
same) design function. 

Transition 
A transition in the CombiNet view, denoted by a single bar, works as the choice-point between one 
design function and the next. A place can exit to a number of transitions and a transition can branch out 
to any number of places. In this formalism there are two special kinds of transition that can be created. 
A transition which is not exited to by any place is called a start transition and denotes the entry point 
into a CombiNet view. A transition which exits to no places is called an end transition and denotes the 
exit from a CombiNet view. 

Aggregate place 
An aggregate place, denoted by an oval drawn inside another oval, stands in for a whole CombiNet 
view, allowing the modeller to group complex interactions into logical sub nets and reference them 
through a higher level mechanism. All transitions which invoke an aggregate place are connected to the 
start transition(s) of the CombiNet view represented by the aggregate place. In a similar manner, the 
exit transition(s) of an aggregate place are all tied to the set of end transitions in the CombiNet view 
represented by the aggregate place. 

Global place 
The global place, denoted by a rectangle, represents a single design function that can always be 
activated when in the current CombiNet view. The global place is also available to all places found in 
all aggregate places referenced from the current view. The global place is a short-hand notation to cut 
down on the transitions required to model a place that is always accessible. 

Global net 
The global net, denoted by a double-lined rectangle, stands in for a whole CombiNet view, similar to an 
aggregate place. However, this global place can always be activated when in the current CombiNet 
view, similar to a global place. 

Double transition 
The double transition, denoted by two parallel bars, is a short hand notation replacing the use of two 
transitions which provide a loop between two places. 
 
Figure 7 shows a snapshot of a part of a Petri_net, in the runtime support tool that we will briefly 
introduce below. The next section explains the inner workings of the control execution. 

Execution of control 

Underlying the specification of flow of control in the COMBINE system is a very simple observation 
on the connection between DTFs and the IDM. This is, that knowing the subset of the IDM represented 
by a particular DT (for both input and output), and also the subset of IDM instance objects used by a 
running DT, it is possible to determine the effect of a particular DTF’s invocation upon all other DTFs 
in the system. 
 
If the schema information about a DT is modelled, in terms of both the input to the DT and the output of 



the DT, then it is possible to statically determine whether it is possible for two DTFs to interfere with 
the running of each other. We can see that if the input schema of a DT intersects with the output schema 
of any running DT then it may not be possible to invoke the DT. Also, if the output schema of a DT 
which has completed has an intersection with the input schema of a DT which previously completed, 
then it may be necessary to re-invoke the previously run DT. 
 
As stated above, the schemas for the DTFs can only provide a static pre-computed indication of whether 
there are constraints on the running of a particular DT or not. If the pre-computed check indicates that 
there may be constraints then the actual objects which are used in the running of a particular DT must 
also be checked to provide the final confirmation, or otherwise, of whether two DTFs interfere with 
each other. 
 
The working of the comparison between DTs is illustrated in the figures below. These figures represent 
both the schemas of the DTs and the objects used as input and produced as output from the DTs. 
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Figure 5 Runnable DTFs 
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Figure 6 Constrained DTF1 and DTF2 

Figure 6

 
In  we see the situation where even though the two DTs share data in their input (DF1 In and 
DF2 In), neither of the DT inputs have an intersection with a DT output (DF1 Out and DF2 Out). In this case 
both DTs may run concurrently, and the result of either tool will not cause the re-invocation of the other 
DT. 
 
In  we see a case where the two DTs may not run concurrently, as the input of each DT (DF1 In 
and DF2 In) intersects with the output of the opposite DT output (DF1 Out and DF2 Out). This figure also 
illustrates a situation where the invocation of either of these DTs can cause the other DT to be a 
candidate for a rerun. This may also be seen as a cycle, as running one DT causes the other to be a 
candidate for a rerun, which in turn causes the initial DT to be a candidate for a rerun, etc. This is not 
considered a problem because each of these DTs are just candidates to be run, whether they actually do 



get re-run is based on the flow of control specification and the project manager for the PW. 

Run-time Control 

In COMBINE the exchange executive (ExEx) is the system which controls the flow of control defined 
in a project window. 
 

 
Figure 7 Sample ExEx screen 

Supervision and Exchange Executive 
In order to translate the CombiNet control model into an agent actively controlling the building design 
system, an application called the Exchange Executive (ExEx) was developed within the COMBINE 
project (Augenbroe 1995a) The project control based on the PW model was essentially developed to 
control scenarios in which DTFs were allowed to access the central database. The ExEx is capable of 
reading in the PW model, creating a binary image of the model in RAM and executing it. The ExEx tool 
determines data dependencies between all individual DTF’s and evaluates the state of the system based 
on the evaluation of the pre and post conditions. After the execution of a DTF the ExEx will show a list 
of all possible DTF’s that the project manager can choose from to execute next. It will also show the list 
of DTFs already executed which might have to be re-executed because part of their input data has 
changed.  
 
The ExEx is initially configured for a particular PW definition, but to perform the analysis described 
above it must receive status messages from the various design tool interfaces stating whether a 
particular DTF was invoked and is running, or whether it failed to get started due to data dependency 
requirements not being met (this is assumed to be checked at the design tool interface). The same sort of 
information is required from the design tool interface regarding the termination of a DTF, the ExEx 
needs to know if the DTF terminated correctly, whether it failed to complete its function, or whether the 
data it tried to pass through to the IDM model was rejected. From the DES the ExEx needs to know 
what IDM objects are requested by a particular DTF, and what IDM objects were modified by the 
running of the DTF. With this knowledge about the operation of the IBDS the ExEx can calculate the 
set of DTFs which may be invoked at any time, and passes that information through to the project 
manager, who decides which DTF(s) to invoke next. 
 



To calculate the CombiNet’s flow of control in the ExEx we use tokens as defined in the Petri-net 
formalism to denote our place in the CombiNet. A Token in a place denotes the running of a particular 
DTF, when the DTF has terminated the transitions are used to determine the candidate DTFs from the 
current place. When the next DTF is decided upon the token crosses the choice-point created by the 
transitions and invokes that DTF. If a DTF is unable to start, or terminates unexpectedly, then the token 
is sent back to the place it previously came from and must re-evaluate the transitions available from that 
place. Since a token represents a process, the propagation of a token through a transition is handled in a 
different manner to that normally used in Petri-Nets. When a token reaches a transition in the Petri-Net 
we are at a choice point, at which time the project manager is choosing which DTF should run next. 
When the project manager chooses a DTF the token is moved to the place which represents that DTF, 
hence only one token is ever sent out from the transition. 
 
It should be noted that there is an ordering in which the information describing the state of the PW is 
used. When the ExEx calculates the state of the PW it will work at two levels, these being: 
1) 

2) 

Determining whether any of the DTFs are candidates to run based on the two set constraints defined 
earlier (i.e., input doesn't intersect the output of a running DTF, or the DTF is a candidate to be rerun 
due to the input data it used to perform calculations having been modified by another DTF). 
Determining which of the candidate DTFs returned from the analysis in 1) can be invoked when 
compared with the state of the PW and the Petri-Net specification of control of flow of the DTFs. 

 
This calculation will lead to the identification of a set of DTFs which may be run at the current time. In 
practice this set of DTFs will be calculated every time a DTF is invoked by the system (giving the 
project manager a set of DTFs which may run concurrently with a running DTF), and every time a DTF 
terminates (giving the project manager a set of DTFs which follow from the DTF which terminated). In 
the best case where all DTFs run and terminate correctly this set of DTFs presented to the project 
manager will reflect a path through the Petri-Net following the arrows from places to transitions. 
However, when a DTF fails to start up, or terminates with an error condition, the Petri-Net definition of 
the flow of control will be used in reverse to determine the transition prior to the DTF which had 
problems, and to recalculate the set of DTFs which may run from that transition. It is also conceivable 
that after a problem with a DTF the ExEx could find itself in a position of not being able to find any 
DTFs capable of running, it is at this time that the project manager will be able to use discretionary 
powers to force the start of a DTF in the system, redirecting the flow of control of the PW. 

Conclusions and further work 

One could roughly define the following levels of control: 
 No control: one is merely able to ‘ship data around’ without any in-built process context and purpose of 

data exchange events. For such a system to be operational in a particular design project, one needs to 
establish work procedures, task scheduling, etc. among the team of users. The system is a "dumb" data 
router which provides no guidance on what needs to be, or should be, done next. 

 Shallow control: a limited level of control, that we informally denote as shallow. It was one of the 
challenges of COMBINE to define a meaningful yet limited level of control integration. It is assumed 
that a workable approach to shallow control is a "scheduler" where one deals only with the control over 
"who's next" and where one monitors the states resulting from exchange events. A project manager can 
thus enforce a lot of rigour in the use of the system. Although this might suit PWs for parametric 
(routine) design, it is to be expected that most PWs will require a more flexible approach, where the 
human users may interact with the control layer as well as with each other. In principle the control layer 
will give advice, but any user can always supersede the suggested action. 

 Deep control: an extended level of control. This type of control deals with much more than scheduling. 
It deals with the pre and post conditions themselves related to exchange-events. It can look "inside" 
exchange events and DT interfaces and propose remedial actions, and propose and control how the 
system can recuperate from deadlocks. It furthermore can deal with declarative knowledge on meaning 
and purpose of activities and thus can support goal-driven strategies. 
 



Although the mainstream developments in COMBINE were on the shallow control level, some 
experiments with deep control were done in a small Blackboard based prototype. Future work will 
address deep control issues by expanding the current approach to handle entity instances rather than just 
entity classes. 
 
It would also seem fruitful to extend the ExEx from the shallow level of control to use the schema 
definitions and constraints that we have defined in the reverse direction to that specified above. In this 
case one may state that they wish to see a particular result. Then given the current state of the project 
(i.e., the set of DTFs that are available to run) and the schemas of the DTFs it should be possible to 
decide which DTFs can give the required information. If the runnable DTFs can not calculate the 
information from the current data then this decision making process is applied recursively until you get 
what is basically a flow of control definition of which DTFs must be invoked in which order to reach the 
desired result. 
 
Other future work will address extensions to the PW reference model to allow multi structured 
management levels and links to a decision model, organizational issues like time allocation of the 
individual team members, and incorporation of Internet based work flow model (WFM) approaches. 
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