'MAPPINGS FOR INTEGRATING DESIGN TOOLS

Robert Amor and Dr John Hosking
Department of Computer Science
University of Auckland
Private Bag 92019
Auckland
New Zealand

ABSTRACT

The ability to integrate a range of disparate design
tools has been an area of intense research throughout
the world. One of the hardest tasks in this research has
been to define the correspondences between the model
of a building used by a design tool and the integrated
data model. This paper presents a method of defining
mappings between different models of a building. The
implementation of a mapping management system
which controls the flow of data between the various

models and guarantees the consistency of the modelsis
also described.

INTRODUCTION

An integrated simulation environment coordinates
interaction between multiple users and simulation
tools, permitting numerous types of simulation to be
performed on a single model of a building. In most
approaches to such environments a central model of a
building holds all information required by the set of
interacting design tools. Combined with this model
is a management system permitting users to enter
information on the building, run various simulations
and display the results of the simulations. One of the
functions of the management system is to transfer
relevant building data to simulation tools and then to
extract the data resulting from simulation runs for the
user to analyze. An environment to accomplish this
will be examined in this paper.

Transferring data back and forth between a central
model and a design tool can be a very complicated
procedure because of the disparate building models
used by the various participants in the exchange. The
central model will be very general, with data on a
building spread out through many levels of
abstraction and in many different classes. In contrast,
the model of a building used by a particular design
tool will be very specific, with most data on a
particular object aggregated into one place (see Figure
1). The two models may also have quite different
notions of the structure of a building depending upon
what is required for the analysis. Herein lies the crux
of the problem. In order for the integrated system to
function properly it must be able to transform the
data in one model through to the form required in

634

“another (and vice versa) without loss of information

content and assuring that the models are internally
consistent.

‘Most integrated simulation environments handle the

mapping of data between a simulation tool and their
central model through specialised internal programs
(written in a conventional procedural language) which
can extract the required information and manipulate it
into the form required by the other side (Augenbroe
1992; Bohms and Storer 1993; ISO/TC184 1993).
More recently there have been projects which have
looked at formalising the specification of the
mapping through the use of specialised mapping
languages (Bailey 1994; Hardwick 1994; Clark
1992). This makes the addition of a new simulation
tool a much easier task and makes explicit many of
the correspondences between the models which would
otherwise be lost in coded versions. However, these
new languages are still basically procedural in nature,
providing a very low level view of the correspondence
between two schemata. Also, where the mapping is
to be bi-directional, it is necessary to specify two
separate mapping definitions, one for each direction.

‘In the remainder of this paper we describe VML, a

new declarative language for the specification of
imappings between various models, and an
implementation of the language which is capable of
mapping data between various design tool models and
manages the consistency of the data in all models.

‘A VIEW MAPPING LANGUAGE (VML)

VML (Amor, 1994; Amor and Hosking, 1994), is a
declarative high level language for describing
correspondences between structures in schemata.
Unlike procedural mapping languages, VML
mapping specifications can be automatically applied
in either direction. The language has both graphical
and textual forms, and is supported by a specification
environment that permits rapid construction of
mapping definitions in both forms.

‘To specify the mapping between two schema using

VML requires the definition of a collection of inter-
class descriptions such as the one shown in Figure 2.

ANTAC ANTAC
634

ui_ghﬁng_performance] I room I

walls
L[4:4]

| wall_window

room_environment

environment

physical_object

I space_objectl l buildin _elementl

I internal_space I I enclosing_elementl

space_performance

[performance data] ~ [wall -~ windov]

performance \Svall_windows

I performance_characteristic l

I lighting_performancel
Figure 1. A specific and generalised model of a similar domain
inter_class({[trombe_wall], [trombe_wall, trombe_typel,
invariants (trombe_wall.trombe_type = name),

equivalences (area = height * width,

glazing glazing,
‘vent_area
trombe_type

perf_ratio

) .

sum{vents=>{(height * width)),
trombe_type,
perf_ratio)

Figure 2. A textual mapping specification

Each inter-class description defines classes in each of
the two schema which are involved in a particular
mapping. The schema involved will have previously
been defined in EXPRESS (ISO/TC184 1992) using
a tool such as EPE (Amor et al 1995), but the
mappings may require extension of these schema as
described below.

For example, in Figure 2, the trombe_wall class
of one schema and the trombe_wall and
trombe_type classes of a second schema are
involved. The mapping specifies the conditions under
which that mapping may take place through an
invariant definition, and specifies the equivalences
between attributes, relationships and objects in the
specified classes. Equivalences can take three different
forms: a specification as a mathematical expression; a
functional specification; and a procedural specification
for those mappings which are not able to be defined
in the previous forms. Mathematical expressions and
functions can be automatically utilised when
mapping in either direction, while procedural
specifications must be hand-coded for application in
each direction.

The specification environment will try to reconcile
all attribute references from a textual mapping
specification, but may need user intervention to
determine the exact class and attribute being specified.
For example, in Figure 2 the invariant definition is
not completely explicit as the attribute reference
trombe_wall. trombe_type is not a unique
reference, as the trombe_ type attribute occurs in
both trombe_wall classes.

Figure 3 shows the graphical version of the inter-
class definition of Figure 2. The graphical notation
has icons to denote classes which display the class
name and its attributes, both simple and aggregate
types. The inter_class definition is also represented
iconically. Direct equivalences between attributes are
very easy to denote and, unlike the textual definition,
the class or attribute referenced in a mapping is
totally explicit, as is illustrated by the graphical
representation of the invariant.

The mathematical equations supported in VML cover

a large range of mathematical functions as well as
specialised functions of use in schemata. Figure 2

635

S YVY———=——————————— Trombe Inter Class

——————
—invariants trombe _wall
= g B| (romemny) B i beight
' gl AT rombe_wa —equivalences width
* area L ————1E] eqn glazing
glazing | ————1F] = vents
vent_area] eqn , trombe_type
trombe_type |———1E] =
perf_ratio | ——F] =
t~indtialisers

Figure 3. A graphical mapping specification

shows some of the mapping specific functions
supported. In particular, chains of references can be
specified with the => operator to allow the mapping
to access values through relationships to . other
objects. There is also a full range of summary
functions (ie. sum, average, minimum, maximum,
count) which range over a list of values or references.
In Figure 2 the specification
sum(vents=>(height * width)) sums the
product of height and width for every vent object
referenced in the vents attribute of trombe_wall. In
VML the = operator is overloaded to provide a short-
hand method of specifying equivalence between
attributes which contain object references. For
example, in Figure 2 the equivalence between glazing
attributes refers to attributes whose type is a list of
glazing element. The equivalence denotes that for
each glazing element referenced in one glazing
attribute, the other glazing attribute should have the
object ID of the glazing element that was created in
the mapping specified by an inter_class for glazing
classes. '

The mapping specification environment can also be
used as an aid in defining and extending the central
model. This is achieved through the provision of
facilities for assisting with the task of schema
integration. For example, during the mapping
definition the user is able to specify classes and
attributes of classes which do not currently exist in
the schemata being manipulated. When such additions
are noted the schemata may be modified to
incorporate the newly referenced classes and
attributes. In a similar manner the environment can
also be used to describe mappings between different
versions of a schema and the datasets which are
associated with each version.

name

perf_ratio

Taken as a whole, the collection of inter-class
definitions relating two schemata define the overall
relationship between the two schemata, with the
inter-class invariants determining which particular
mappings are relevant for a given dataset.

A _MAPPING. MANAGEMENT
ENVIRONMENT ‘
A mapping manager provides an execution time
interpretation of VML mappings. This manager
(developed in a Prolog enhanced with object-oriented
extensions, Hosking et al 1994) takes the VML
descriptions of the correspondences between two
schemata of a building and ensures the correct data is
transferred between the two models whenever either is
modified. To achieve this the mapping manager needs
the ability to detect changes in either model and,
using the VML descriptions, determine which data to
move between the connected datasets. Rather than
transferring changes incrementally between models
(although this would be possible), a transaction based
modification system is used. A transaction denotes a
portion of work completed in one view (where a view
is one user’s model of a building defined using the
structures specified in a schema). For example, a
transaction could be the initial layout of a building,
or the results of a simulation, or the results of
actioning a change request.

A transaction handler helps maintain the consistency
of the integrated system by managing the sets of
outstanding transactions between connected views.
Transactions which have not been mapped to a
connected view are made available to the user to map
across to the other view. Figure 4 shows the
transaction handler for two views connected by a

636

InterUiew Manager for: idml1] - view1(1]

idm[1] transactions

L npplg to other view }

view1[1] transactions

Initial Design(2, Trebor:lapping:trials:idm_dat/{y
0ffice additions(3, Trebor:Mapping:trials:idm d[" |

<l

)

<l

Figure 4. Transaction management

mapping where there are two transaction to be
mapped to viewl.

When linking an integrated model (which may be
shared with many design tools and users) with an
individual user’s view, the transaction manager
prevents the user applying transactions to the
integrated model before all outstanding transactions
on the integrated model have been applied to the
user’s modet (though not vice-versa). This allows a
user to make modifications and experiment within
their view, but ensures that the user’s view is
consistent with the global model before the local
modifications can be passed to the global model.

When the user selects a set of transactions to be
applied to a view or integrated model, the set of
changes made to objects in the integrated model or
modified view are collated together and passed to the
mapping system to apply. What the mapping system
can do with each of these changes is determined by
the type of change that is being made to each object.

For example: ,

. ‘Where the change is the creation of an object
with values for attributes, the type of the
new object is used to identify inter-class
mappings which might be applied. The
mapping system will cycle through these
selected inter-class mappings and determine
whether new objects should be created in the
view being mapped to (by checking whether
the invariants are satisfied). If an inter-class
mapping can be applied, the mapping
manager will use the equivalences to
instantiate values for attributes of the newly
created objects (in the cases where this is
possible).

. Where the change is a modification to an
existing object’s attributes the affected data
is used to determine which of the existing
mappings is affected by the changed data.

These affected mappings are re-examined,
checking that the invariants still bold and re-
evaluating the equivalences involved with
the modified attributes.

. Where the change is a deletion of an object
the affected inter-class mappings are
examined to determine whether it is
necessary to delete objects in the view being
mapped to.

To ensure that the mapping system can efficiently
propagate changes between views it collects
information from every mapping that is applied
determining all objects in both views which take part -
in the mapping. By collating this information the
mapping system can immediately identify every inter-
class mapping and equation which must be re-
evaluated whenever an object is modified or deleted.

To determine the values for attributes of an object

involved in an equation, the mapping system has to

handle the three types of equivalence that can be
specified, as well as making use of invariants which
explicitly define a value for attributes. For example:

. Given a mathematical expression, the

’ mapping system will re-arrange the equation
to solve for an unknown attribute (or one
which should be updated). If the equation can
be re-arranged and there is only one
unknown attribute then the re-arranged
equation will be evaluated and the attribute
set to the calculated value.

. Given a function, the mapping system will
call the function with all known values and
instantiate attributes with any values
calculated by the function.

. Given a procedure, the mapping system will
just invoke it and allow the procedure to
determine all values for attributes it wants to
change.

637

When creating new objects through an inter-
class definition the mapping system can use
invariants which are defined on the objects
being created to define values for attributes
of the new objects.

The mapping system tracks who or what asserts
values for attributes to help determine what values
can be calculated from an equation. Data from
different sources has a worth ranking given to it. For
example a user specified value has much higher
precedence than a default value. This enables the
equation solver to re-evaluate equations which have
previously been calculated to solve for the attribute
with the lowest precedence (eg. default values) and
catches the overwriting of one user’s data by another
user. The latter is treated as a conflict in the model
and notified separately to the users involved to allow
them to negotiate a solution.

In some cases it is not possible to re-arrange an
equation to solve for particular attributes, for
example, in Figure 2 if area is specified in a newly
created trombe_wall it is not possible to determine
width and height for a trombe_wall in the other
schema. In this case the value of area is used to
constrain the values of height and width by asserting
a constraint against the product of these attributes to
equal the value of area. If at a later stage one of these
attributes gets set, then the other can be calculated, or
if both are specified then their product must equal the
value of area.

'As can be seen from the description above, the
mapping manager is a complex system that must
operate at many levels to ensure consistency between
views of a building connected by a mapping
specification. However, by handling this complexity
in the mapping manager it is possible to considerably
reduce the amount of effort required when describing
the mappings in VML in comparison to that required
when using procedural code.

CONCLUSIONS

We have presented a framework for modelling
correspondences between views of a similar domain
and have outlined a system that implements the
specified correspondences. The declarative language,
VML, was presented as a method of detailing the
correspondences between two schemata of a building.
The ability to specify correspondences between
schemata is enhanced through the use of a
specification environment which supports both the
textual and graphical notations of the language. The
actual mapping of data between views specified
through a mapping definition is handled by a
mapping support system. This system uses a

638

‘Bohms,

‘transaction based approach to view modifications to

determine which parts of the mapping specification to
apply to the modified data. The mapping system can
determine when to create or delete objects in the view
being mapped to and which equations to re-apply
when a particular attribute value is modified. The
final system guarantees that data from any one view
can be mapped through to all connected views to
maintain the global consistency of the integrated
system.

'REFERENCES

Amor, R., Augenbroe, G., Hosking, J., Rombouts,
W. and J. Grundy, “Directions in Modelling
Environments”, accepted for publication in
Automation in Construction, 1995

‘Amor, R. “A Mapping Language for Views”,

Department of Computer Science, University of
Auckland, Internal Report, 30p, 1994

"Amor, R. and J. Hosking, “Mappings: The Glue in

an Integrated System”, The First European
Conference on Product and Process Modelling in the
Building Industry, Dresden, Germany, 5-7 October,
1994.

‘Augenbroe, G., “COMBINE: A Joint European

Project Towards Integrated Building Design
Systems”, Symposium on Building Systems
Automation - Integration, A/E/C Systems 92,
Dallas, Texas, USA, 10-12 June, In Building
Systems Automation-Integration, August, 1993,
University of Wisconsin-Madison, pp 731-744,
1992.

7Bailey, 1., “EXPRESS-M Reference Manual”,

Product Data Representation and Exchange, ISO
TC184/SC4/WGS5 N51, 66p, 1994.

HM. and G. Storer, “Architecture,
methodology and Tools for computer integrated
LArge Scale engineering (ATLAS) - Methodology for
Open Systems Integration”, ESPRIT 7280, Technical
report, TNO, Delft, The Netherlands, 1993.

‘Clark, S.N., “Transformr: A Prototype STEP

Exchange File Migration Tool”, National PDES
Testbed Report Series, NISTIR 4944, US
Department of Commerce, National Institute of
Standards and Technology, 13p, 1992.

‘Hardwick, M., “Towards Integrated Product Databases

Using Views”, Technical Report 94003, Rensselaer
Polytechnic Institute, Troy, New York, USA, 18p,
1994.

ANTAC ANTAC
638

Hosking, J.G., Mugridge, W.B., and S. Blackmore,
“Objects and constraints: a constraint based approach
to plan drawing”, in Mingins, C. and B. Meyer,
Technology of object-oriented languages and systems
TOOLS 15, Prentice Hall, Sydney, pp 9-19, 1994,

ISO/TC184, “Part 1: Overview and fundamental
principles in Industrial automation systems and
integration - Product data representation and
exchange”, Draft International Standard, ISO DIS
10303-1, ISO-IEC, Geneva, 1993.

ISO/TC184, “Part 11: The EXPRESS Language
Reference Manual in Industrial automation systems
and integration - Product data representation and
exchange”, Draft Intermational Standard, ISO-IEC,
Geneva, Switzerland, ISO DIS 10303-11, August,
1993.

639

ANTAC ANTAC
639

	title: Mappings for integrating design tools
	subject: Integration of design and simulation methods
	author: Robert Amor, John Hosking
	keywords:

