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Mappings: The glue in an integrated system

Robert W.Amor & John Hosking

Department of Computer Science, University of Auckland, New Zealand

ABSTRACT: We describe a new high level mapping language which assists in solving the problems of schema
evolution, schema integration, multiple perspectives of models, and frameworks for integrated systems. In
contrast to both existing methods and the procedural mapping languages currently being developed, this
language uses a declarative style with graphical and textual notations to allow users to specify more easily the
equivalences between entities in various schemata. The mapping language implementation is capable of
propagating modifications from one view to all dependent views, ensuring consistency of information at all

times across all views.

1 INTRODUCTION

During the last five to ten years considerable research
effort has been directed to the development of
integrated environments for architectural and
engineering applications. In that time much emphasis
has been placed on the development of a
representation of buildings and the implementation
environment for such a representation to act as the
repository for all information in the integrated system.
This work has resulted in significant contributions to
the fields of schema modelling languages (ISO 1991b)
and collaborative development environments (Boyle &
Watson 1993). However, other components of the
integrated frameworks have received less research
effort.

The area that our work is concerned with is the
mapping of information back and forth between the
central store of building information and the stores for
the various design tools. This may appear to be a
straight-forward problem, as in many cases the central
schema has been partially derived from, or at least

checked for coverage by comparison with, a range of

existing design tools. However, even when design
tool schemata have been used to help derive the central
model, the correspondences between data in the
design tool model and the central schema are often not
retained or formally modelled during the integration
process. Also, when using a set of design tools to
check the coverage of a central model it is possible to
ascertain that the required information is modelled
without specifying all of the correspondences between
the design tool and the central model.

Thus developers find there is a gap between the
central model and the design tool models which must
be bridged in some manner. In working integrated
systems this is achieved by hand coding translators to
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transfer information from one model to another,
building in all the assumptions and constraints which
are implicit in the various models (Augenbroe 1992;
Bohms & Storer 1993; ISO 1991a). These translators
work well provided the semantics of the two models
are well understood by the developer of the translator.
Problems arise when new tools are to be integrated
into the system. The addition of a new design tool
may force the extension or restructuring of the central
model to accommodate the information and structures
modelled by the new design tool, possibly violating
assumptions used in constructing existing translators,
requiring their revision. Integrating a new design tool
which can modify its input data, such as an interactive
design tool, a design tool which allows parametric
simulations, or a knowledge-based system, requires
writing mappings which map the same set of data in
both directions, duplicating effort and allowing greater
opportunity for inadvertent programming errors.

For these reasons we believe it is imperative to
model the correspondences, constraints and implicit
semantics of various models using a high level
mapping language. Use of such a language allows the
integrated system to cope better with the addition of
new design tools as well as modifications to the
existing models and their mapping definitions. In the
remainder of this paper we examine the place of a
mapping system in an integrated environment and its
use both to integrate design tools and to support
system and schema evolution.

2 STRUCTURE OF AN INTEGRATED SYSTEM

ICAtect (Amor et al. 1993) provides a framework for
design tool integration. Its approach is very similar to
that of the majority of integration projects being
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Figure 1. The structure of ICAtect.

undertaken; its broad structure is shown in Figure 1.
In this framework, the common building model
(CBM) is the central schema, representing canonically
the union of the information requirements of each of
the attached design tools. Schemata representing
information needs of each individual tool are
represented in the same object-oriented language
(Grundy 1993) as the common building model and
allow the capture and evaluation of the Structure and
constraints imposed by the various design tools inside
the integrated environment. The user interface permits
the user to both control the invocation of various tools
and to peruse or modify the data in the system.

In ICAtect the mapping process is broken into two
stages. One is concerned with mapping data between
the different models in the system, the other with
mapping from the internal model of a tool’s data to the
actual form used by the tool. The second case is a
purely one-to-one mapping and is concerned mainly
with the straightforward tasks of parsing and
“unparsing”. The inter-model mapping System
handles a very difficult task and is the one we
concentrate on in this paper.

Major tasks that the inter-model mapping system
must be capable of performing include:

I. Building a new model from an existing store of
data. To achieve this the System must apply all the
mappings between the schema of the existing data and
the new schema to determine the objects and data
required in the second model.

2. Capturing any updates to a model and
propagating to all dependent models. Any change to
the data in a model, or any invocation of a method is
captured. Appropriate modifications to dependent
models can then be made by checking against the
mappings applicable to the model in which the change
was captured.

3. Ensuring that propagated data stil] maintains the
consistency of the model to which it is propagated. If
there is a contradiction between the data being
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propagated and the constraints in the model to which it
is being propagated, then it must be identified and
handled in an appropriate manner.

To support these requirements, we have developed
a view mapping language (VML, see Amor 1994) and
support environment which allows for the
specification of correspondences between schemata.
These specifications can then be used by the integrated
system to provide multiple views of the CBM.

3 INTEGRATING DESIGN TOOLS WITH VML

Integration of a new design tool to an existing system
commences with the definition of the design tool’s
schema. Then follows the definition of a mapping
specification between the design tool schema and that
of the central model.

The major task at this point is to provide support to
the developer in describing correspondences between
the design tool’s schema and the CBM. This has an
impact in two areas of the system development. First,
the language for describing mappings needs to be well
suited to describing correspondences between
structures, attributes and relationships between classes
in two different schemata. Second, to manage the
complexity of large schemata and large mapping
definitions it is necessary to have a language support
environment which manages and facilitates the
definition of mappings. These two points are further
discussed below.

To focus the discussion, we consider the
integration of a simple design tool, the EXPRESS-G
schema of which is shown in Figure 2, with a
demonstration CBM derived from the COMBINE-1
project (Augenbroe 1992), of which a portion of the
schema is shown in Figure 3.
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3.1 VML: a mapping language

The development of a new language is generally a task
to be avoided (given the broad range of existing
languages), unless there is a very good reason for the
development time required. In this case we based our
decision to create a new language on the lack of
languages well suited to the problem domain: the
description of correspondences between schemata.
Existing approaches (as in the use of C, C++,
EXPRESS-M (Bailey 1994), Transformr (Clark
1992), etc.) use a procedural approach which means
that programmers must concentrate on the low level
mechanics of how the conversion is to be done, rather
than describing what the equivalences are. Also, a
common requirement is the ability to map the same set
of data in both directions. To be able to achieve this in
a procedural language requires two mapping
specifications. A more declarative approach solves
both of these problems.

For these reasons we have developed VML, a
declarative language for specifying mappings. The
language has one main construct, the inter_class
definition, used to describe correspondences between

classes in two schemata. This description consists of
three parts, as illustrated in Figure 4. First is the
definition of the class (or classes) from each schema
which is to take part in the mapping. In the example
we show a mapping between the wall classes of the
two schemata. Second is the definition of invariants
which limit when this particular mapping may be
used. In the example we see that there are limits on the
cardinality of windows and segments in a wall. Third
is the definition of equivalences between attributes and
relationships in the various classes. In the example we
see simple ‘equivalences between attributes and
relationships from the two classes. Each of these parts
is described in more detail below.

3.1.1 Classes in a mapping

The class specification section of the inter_class
definition describes which entities in a data store will
take part in the described mapping. The example in
Figure 4 depicts that there is a mapping between all
wall objects in the first schema and all wall objects in
the second schema which match the specified
invariants, and the equivalences describe how to move
the data between them. The class specification can
name several classes for each schema. When more
than one class is defined for a schema then all
occurrences of combinations of the entities are
collected together (normally in association with an
invariants definition).

In some cases, it is necessary or convenient, (o
describe a mapping to temporary objects, e.g. where
two mappings can reuse a partial mapping in their
transformations. To be able to distinguish mappings
to temporary entities from those which create real
objects in a particular view a special notation is used
for temporary entities.

3.1.2 Invariants in a mapping

Invariants are an optional part of an inter_class
definition and describe the conditions under which it
is possible to use a particular inter_class definition.
The example in Figure 4 specifies that it is only
possible to use this inter_class definition for walls in
the CBM which have one segment and at most one
window. Presumably there would be other inter_class
definitions specifying how to map other types of wall.
The invariants thus provide criteria to decide which
inter_class definition to apply to any given object. The
invariants also create constraints on the objects
involved in the mapping which, in some cases, can be
used to fill in values in an object, or create constraints
on an object.

Invariants can be thought of as boolean
expressions which must be true to allow the mapping
to proceed. Invariants can be composed of functions
or programs which succeed or fail, as well as
expressions containing any of the standard relational
operators (e.g. =, >=, <, etc.), and boolean
operators.
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Figure 4. A mapping specification.

3.1.3 Equivalences in a mapping

The equivalence descriptions specify how a particular
piece of data in a class of one schema is related to a
piece of data in a class of another schema. These
equivalence descriptions can describe one-to-one
mappings, mappings which involve the arithmetic
manipulation of values, and mappings which may
involve many attributes in an entity or even whole
entities. The equivalences shown in Figure 4 illustrate
a few of the different forms of allowable
equivalences. The first equivalence describes a direct
equality between the name and id attributes of the two
wall classes. The second equivalence specifies a
relationship between a wall_window reference in the
tool model and an element of the wall_windows set of
the CBM. The remaining equivalences show
relationships between location attributes in the tool
model and corresponding values in the CBM obtained
via a chain of references. The chain of references

accesses derived location attributes of an object of

class rm_loop, found by following the segments[1],
global_design_rep and hasOuterLoop references is
shown in Figure 3.

There are three basic forms that equivalence
descriptions can take:

l. Expression_1 = Expression_
This covers one to one mappings between attributes
(eg girth circumference) and many to many
mappings between attributes (eg area = height *
width, or sqrt(x * x +y * y) = length). All normal

"

arithmetic expressions can be used in this form of

specification. Attributes described on the left hand
side of an equivalence statement are assumed to
belong to a class defined in the first schema and those
on the right hand side to the second schema, though
this is checked and the user may have to further
qualify attribute definitions to avoid ambiguity

2. Function(Attributes)
This allows the description of functions mapping
attributes between entities which can not be described
simply with arithmetic expressions. In the ICAtect
system the function is implemented as a Prolog
predicate. These predicates are expected to work bi-
directionally.

3. map_to_from(Function_1, Function_2)
In some cases it is not possible to describe the
mapping between attributes in a simple invertible
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fashion. To cope with this it is possible to define
mappings using a piece of code for each mapping
direction. The appropriate piece of code is called
whenever a mapping is required in a particular
direction.

3.2 A VML support environment

To facilitate specification of mappings we are
developing a modelling environment, VPE (VML
programming environment), which allows both
textual and graphical descriptions of a mapping to be
developed in the same context as the schema
definitions. This environment is based upon the
MViews programming environment framework
(Grundy & Hosking 1993). This framework eases the
task of developing software environments which
provide multiple overlapping graphical and textual
views with consistency maintained between the
views. MViews has been used to develop EPE, an
environment for EXPRESS and EXPRESS-G
modelling (Amor et al. 1994), which is used for
developing schema definitions in ICAtect. VPE acts as
a complementary tool to EPE to support mapping
specifications.

Using VPE the user is able to navigate through the
EPE schema views and select various classes to
participate in a single mapping definition. The
mapping definition can then be developed textually, as
in the example of Figure 4, or graphically, or through
a combination of both methods. In the graphical
approach, icons representing each of the selected
classes are placed into a new view window with a
mapping descriptor icon between them, as shown in
Figure 5. The user then specifies invariants and
equivalences which hold between the classes by
“wiring” between the class attributes and the mapping
icon. In some cases, e.g. the location attribute
mappings, supplementary textual descriptions must be
used. This is due to the fact that the graphical notation
provides a subset of what may be expressed in the
VML language. Users may shift between the textual
and graphical representations and changes to one will
be propagated to all others to maintain consistency.

Graphical views of a mapping can also be used to
display a simple subset of the total mapping. This is
especially useful where class definitions are large and
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Figure 5. Graphical mapping specification.

the user wishes to concentrate on a smaller portion of
the mapping problem in a single view. VPE maintains
the canonical definition of a mapping and propagates
all additions and modifications to any view of a
mapping to all other views which incorporate that
mapping. This ensures consistency between all views
of the mapping definition and provides instant
feedback to the user on changes which affect other
mappings in the system.

4 SCHEMA MANAGEMENT WITH VML

VML and VPE can, in addition to allowing the
specification of mappings, be used to manipulate the
schemata being mapped between. This can be useful
in three distinct cases as discussed below.

4.1 Schema updates with VML

Defining the mapping between a schema for a new
design tool and an existing CBM can, in some cases,
require modification of the CBM. This may be
because new attributes need to be stored in a class,
new relationships need to be modelled between
classes, or entire classes need to be created due to a
new area being handled by the design tool being
attached.

Rather than having to modify the relevant schema
before constructing the mapping, VPE provides
support for doing both simultaneously. When
constructing a schema mapping using VPE, it is
possible to refer to attributes and relationships which
do not currently exist in one or other of the schemata.
VPE is capable of detecting that modifications to the
corresponding schema are required and automatically
making those changes. The changes will then be
reflected in the canonical form of the schema, and all
views of that schema constructed using EPE. This
form of automatic update can also be used to specify
totally new classes for a particular schema. An audit
trail of modifications to the schema is also maintained,
permitting developers to keep track of which

previously integrated schema caused the addition or
restructuring of particular components of the current
schema.

4.2 Schema integration with VML

In a similar fashion to the schema update approach, it
is possible to perform schema integration using VPE.
If the user has several design tool schemata, but no
CBM, then a CBM can be constructed through the
definition of mappings from the design tool schemata
to an initially empty schema.The additions to the CBM
resulting from each mapping will be amalgamated into
the canonical form for the CBM. Where the addition
of a new design tool mapping modifies portions of the
CBM which are seen by other design tool mappings,
these modifications are propagated to the affected
mappings resulting in changes to their definitions.

4.3 Version management with VML

Another variation on schema updates is the ability to
define new versions of a schema using VML. To
perform this function the user can select a class (or
classes) and ask for a one-to-one mapping to the new
version’s schema. This mapping can then be altered to
produce the modifications required for the new
version. For example in Figure 6 we see three
variations of an initial CBM with a VML definition to
specify the difference between each version. These
VML mappings can then be used to move data stores
from older versions of a schema through to newer
versions and vice-versa if desired.

If new versions of the CBM are created, it is often
necessary to migrate all mappings between the old
CBM’s schema and integrated design tools to the new
schema definition. With VML mappings between
versions of the CBM this can be handled without the
need for the user to re-specify mappings for the new
schema version. The necessary modifications to the
existing mappings for design tools can be determined
by examination of the mappings between the versions
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of the CBM. This method will also work with new
versions of a design tool schema mapping to an
existing CBM schema.

Using this suite of updating mechanisms it is
possible to manage modifications to an integrated
system and existing data stores with little or no need
for user modifications to the previously specified
mappings.

CBM 1.0

CBM 1.1 CBM 1.2

CBM 2.0

Figure 6. A version tree.

5 IMPLEMENTATION OF VML

The implementation of the inter-model mapping
system has four major components, one of which is
only used when building up new views from an
existing store, while the other three manage data
modifications and the VML equivalences. While the
complete details of these components is beyond the
scope of this paper, we provide here a broad outline
of the tasks performed by each component.

The most active component of the system is the
monitor. This component tracks all modifications
made to data stores belonging to any design tool or the
CBM. It also traps all method calls made by objects in
an object store (if the data store is an object-oriented
system). Whenever a change is made, or a method
invoked, the monitor determines what currently
defined mappings are affected'by the modification and
passes through commands to force the mappings to be
re-evaluated. The monitor also determines if the
modification affects attributes referenced in the
invariant section of a mapping. If this is the case, it
forces the invariant to be re-evaluated, which
potentially could require the application of a different
mapping definition (if there is another mapping the
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invariant of which is satisfied by the new value).

An equation solver handles the evaluation of
equivalences. This component is capable of re-writing
simple equivalences to solve them for a particular
attribute, or of invoking a function with the correct
parameters to produce the desired result. When the
value for an attribute has been calculated from an
equivalence specification, it is propagated through to
its object. In some cases it is not possible to calculate
a value from an equivalence (e.g. area = width *
height, if area is changed there is insufficient
information to determine appropriate changes to width
and height). In these cases a constraint is set up
between values in both data stores and their
consistency is managed by the system.

When a modification is propagated to a new data
store through a mapping, its modification may trigger
other existing mappings to be re-evaluated. To
manage the possible flood of changes a change
propagator ensures that deadlock situations are not
created by the changes being requested.

The final component of the inter-model mapping
system is a query system for use when creating a new
view from an existing data store. When a new view is
established, the complete mapping definition for the
view is applied against the existing data store. This
requires many queries for objects which match the
invariants of particular mappings. Every set of objects
which match such a query can be passed through to
the equation solver to be mapped to the new data
store, using the equivalences of the mapping
definition.

6 CONCLUSIONS

In this paper we have presented a new language and
associated support environment for the specification
of mappings between two schemata. This declarative
language was designed to match closely the
requirements of mapping specifications and, in
contrast to other mapping languages, the definitions
can be used bi-directionally. We have detailed a
support environment for the mapping language which
allows the user to easily specify and manage the
associations between classes in schemata and then
further specify the equivalences between individual
class attributes. This environment is capable of
supporting schema updates, schema integration and
version management. Finally, the implementation of
VML in the ICAtect framework creates an integrated
system which is capable of managing multiple views
of a CBM. This system is also able to guarantee the
integrity of data in any of the views against changes
made to the CBM or any other design tool view.
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