A Generalised Framework
for the Design and Construction
of Integrated Design Systems

Robert Wilton Amor

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy in Computer Science

University of Auckland May 1997

Abstract

The building industry employs a significant percentage of the workforce of any country, and
encompasses a considerable proportion of a country’s GDP. Despite that, IT tools used in the
design and management of a building project are still fairly crude. Many projects have been
undertaken to develop 1T-based solutions to support the architecture, engineering, and
construction domains (A/E/C), but little effort has gone into the tools required to support these

development activities. Thisisthe areain which this thesis concentrates.

To develop a schema representing some subsystem of a building it is necessary to have support
tools which enhance the modeller’ s environment. The current state of the art, a replicated paper
based approach, isineffective at guaranteeing the consistency and validity of large schemas. In this
thesis, a more appropriate environment is developed and demonstrated. This provides multiple
overlapping views of the devel oping schema, with guaranteed consistency between all views, the

ability for many modellersto work on the schema, and linksto related aspects.

The array of schemas being developed for the A/E/C domains contain overlaps of information,
though often in different representations. To enable the full use and correct transfer of information
between schemas, mappings between their representations need to be defined. This thesis
develops a comprehensive mapping language which describes bidirectional mappings between
schemas. An automated system has been constructed which can take a mapping specification and

manage the updates and consistency of datain models corresponding to the mapped schemas.

To manage the development of environments described above, as well as the finished integrated
environments proposed, it is necessary to manage and control the supported processes. A notation
is developed to allow this control to be defined, and an implementation is provided to demonstrate

how a project can be managed.

The end result of the thesisis a set of notations and associated tools which support all aspects of
the development and implementation of integrated design environments. The resultant development
environment greatly raises the level of support for developers over that offered by current tools,
for all aspects of specification, consistency, testing, validation, implementation, and coordination

between developers.

Acknowledgments

I would like to thank my supervisor, Dr John Hosking, for his efforts in keeping me on track, his
enthusiasm for the ideals that are encompassed in this research, his support in funding rounds, and

for helping with yet another paper.

Thanks to my wife Kath for her love and support and making sure it all happened. Now it is her
turn and | can get my own back! Some thanks go to our two lovely kids, the arrival of Sylvia
(2/2/96) almost got me finished but then made it harder, then the arrival of Roman (21/4/97)
amost got me finished again, thankfully Kath’s parents have been here for the last month and
enabled me to finish this thesis without abandoning Kath to all the child-minding. A word of
warning, never leave university with two weeks work left on athesis. A year and a half later, two
children later, and another country later | am just thankful to get this thesis out the door. Also
thanks to parents and siblings for their support and encouragement over the years, yes, | know, it

isfinaly timeto get ajob.

Financial support was provided by a University of Auckland PhD scholarship, a Department of
Computer Science scholarship, and a working spouse, many thanks to all of them. | would aso
like to thank the department for their unfailing support with travel funds for conferencetrips. The
COMBINE group partially sponsored my stay at TU Delft for 6 months and travel costs were
partially covered by a grant from the University of Auckland Graduate Research Fund. | found

this stay of immense value to my work and thank the groups involved for making it possible.

Thanks also to the PhD students and staff in the department for lively conversations and ears
willing to have ideas bounced off. Special thanks to John Grundy, Paul Qualtrough and Achim
Schneider, | will get you guys juggling yet! | found the environment at TU Déelft very stimulating,
you guys have a great group there. Special thanks to Marcel Verhoef, Wouter Rombouts,
Godfried Augenbroe, Roel Schipper, and all the others in the group, for making us feel so
welcome during our stay and introducing us to the Dutch way. We are still hooked on

stroopwafels and wickedly strong coffee!

Thanks to the EU funded COMBINE group for taking the time to listen to this outsider’ s views. |
found the project very stimulating and the flow of ideas exhilarating. This thesis started with atwo
month conference and university tour of the USA. Thanks to the following groups for making me
feel so welcome and sparing the time to explain your projects. LBL (Greg Ward, Steve Selkowitz,
Bill Carroll, Fred Winkelmann, and K ostas Papamichael), UCB (Alice Agogino), Stanford (Mark
Clayton and Paul Teicholz), Cal Poly (Jens Pohl), UCLA (Chuck Eastman, Hisham Assal, and
Scott Chase), MIT (Duvvru Sriram and Albert Wong), CMU (James Garrett and Skip Van Wyk),

University of Michigan (James Turner), University of Wisconsin.

Incorrect Mappings as Artwork

vi

Contents

ADSIraCt . [
Acknowledgments I
Listof FIQUreS Xiii
Listof Tables XVii
1 INntroduCtion ... 1
1.1TheProblemDomain 1
12 Related Research 3
1L.3COMBINEPrOjectot 4
14Underlying Framework 6
1.5 Research Objectives 9
1.5.1 Formalismto specify mappings« ... 10
1.5.2 Formalism to specify project and flow of control 10
1.5.3 Comprehensive tool set to support model specification 10
1.5.4 Inter-model mapping utilising mapping specifications 10
1.5.5 Control system utilising project and flow of control specification 11
1.6 Descriptionof Example 11
161TheSnartlanguaget 12
16.2PlanENtry e 13
1.6.3FaceEditor 15
L16.AVISION-3BD ..ttt 16
1.6.5ThermalDesignert 16
16.61DM 17
1.6.7 Correspondences between models 17
1.70utlineof Thesis 19
2 The Project Development Environment oo, 21
21 Structureand ReqUIrEMeNtSot 22
2.2SchemaModelingand Development 23
2.2.1 Requirements of aschemamodelling environment 24
222IDM sChema 25
223DTschemas 25
224ACtOrsChemMaso 26
2.2.5 Related schemamodelling environmentresearch 26
2.2.6 Approach to aschemamodelling environment 27
2.3 Inter-schema RelationshipModdlling 28

2.3.1 Requirements of an inter-schema relationship definition language
and modellingenvironment 29
2.3.2 Related inter-schemarelationship modelling languages 30
2.3.3 Related inter-schema relationship modelling environments 31

Vil

2.3.4 Approach to an inter-schemarelationship modelling language 32
2.3.5 Approach to an inter-schemarelationship modelling environment 32

24 Design Tool Environment Modelling 33

2.4.1 Requirements for design tool environment modelling 33

2.4.2 Related design tool environment modellingwork 35

2.4.3 Approach to adesign tool environment modelling system 35

25Project Definition 36
2.5.1 Requirements for a project definition notation and development

EBNVIFONMENT . . . o e 36

2.5.2 Related project definition notationwork 37

2.5.3 Related project definition environmentwork 37

2.5.4 Approach to aproject definitionnotation 38

2.5.5 Approach to a project definition environment 38

2.6 Project Development Environment Summary 39

3 Schema Modelling and Development 40

32INtroduCtion 40

3.1.1 Requirements for schemadevelopment 41

3.1.2 Schemaspecificationlanguages 42

3.1.3The EXPRESSand EXPRESS-G languages 43

3.2 Schema Development inthe EPE Environment 44

3.2.1 Functionality offered by the EPE environment 45

3.22Usingthe EPE environment, 52

3.2.3 Implementation of EPE inthe MViewsframework 53

3.2.4 Internal schemarepresentationinEPE 57

3.2.5 Summary of EPE functionality 58

3.3 Generic Schema Database Definition 58

34 Appraisal of SchemaModelling 59

4 Inter-Schema Relationship Modelling 63

4.1 Mapping TYPES . oottt 64

4.1.1 Structural mappingtypest 64

4.1.2 Semantic mappingtypes 66

4.1.3 Mapping languagerequirements 67

4.2 Mapping DefinitionLanguagest 69

421 EXPRESSM ... 70

422 EXPRESSY ... 72

423 EXPRESS-C ... 74

424 Transformr 75

425 EDM-2 . 76

426 KIF 78

A.2.7 SUPEIVIBWS . o ottt e e e e 78

428RDBMSVIBWS 79

4.3 Summary of Inter-Schema Relationship Modelling 80

5 The View Mapping Language (VML) 82

5.1MappingbetweenSchemas 84

52 Mapping between Classesttt e 86

521 Entity namesandkeys 86

5.2.2 Inheritance of inter_classdefinitions 88

5.23 Invariant specification e 89

5.24 Initialiser specification 90

5.2.5 Equivalence specification o ... 91

526 Mapping equationst 91

5.3 A Graphical Notationfor VML 98

5.3.1 Graphical iconsof VML-G 99

54Appraisal of VML 101

viii

6 Mapping Modelling and Development 106

B.1INtroduCtion 106
6.1.1 Requirements for mapping development 107

6.2 Mapping Development inVPE 108
6.2.1 Functionality offered by the VPE environment 108

6.2.2 Using the VPE environment 116

6.2.3 Implementation of VPE in the MViewsframework 118

6.2.4 Future connectionsbetween VPEandEPE 120

6.3 Management of Mapping Definitions 120
6.3.1Nameresolutiont 121

6.3.2 Schemamodification 122

6.4 Generic Mapping Database Definition 122
6.5 Appraisal of Mapping Modelling and Development 123
7 Project Modelling 126
7.10INtroduCtiono 126
7L1IReqUIreMeENtS 129
TL2SUCIUrE . . 131
7.2User and FunctionModelling 132
7.3 Flowof Control Moddlling 133
7.3.1 Set theoretic background for flow of control 133
732Flowdefinition 137

7.4 Appraisal of Project Specification 141
8 The Project Testing and Implementation Environment 145
8.1Structureand RequIrementsttt 146
8.2 Schema Instance Development 147
8.2.1 Requirements of a schemainstance maintenancesystem 147

8.2.2 Related schemainstance maintenancesystems 148

8.2.3 Approach to a schemainstance maintenancesystem 149

8.3 MappingHandler and Controller 149
8.3.1 Requirements of amapping handler and controller 149

8.3.2 Related mapping handler and controllerwork 150

8.3.3 Approach to amapping handler and controller 151

8.4 Design Tool CoNNECLioN e 152
8.4.1 Requirements for adesign tool connectionsystem 152

8.4.2 Related design tool connectionsystems 152
BS5FlowHandling 152
8.5.1 Requirements of aflow of control manager 153

8.5.2 Related flow of control managerwork 153

8.5.3 Approachto aflow of control manager 154

8.6 Project Testing and Implementation Environment Summary 155
9 Schema Instance Management 156
9.1 Requirementsfor Instance Management 156
9.2 Instance Management Systems 157
9.2.1 EPE: an instance construction and browsing system 157
9.2.2InSTEP: agraphical instancebrowser 159

9.2.3 SnartQuery and the ObjectViewer 160

9.2.4 Reflex: an object-oriented CAD system 162

9.3 Appraisa of SchemalnstanceManagement 163
10 Mapping Controller 164
10.1 Data-Store ModificationRecords 165
10.2 TheMapping Controller 169
10.2.1 Transaction-based mappingmanager 171

10.2.2 Automatic mapping Managero v i e it 172

10.3 Performing aMappingo vt 172
1031 Inpreparationtomapot 173

10.3.2 Thefirst mapping betweentwo stores 173

10.3.3 Consideration of modificationtypes 174
10.3.4 Determining combinations of objectsfromaninter_classheader 175

10.3.5 Four pass mapping ProCESS . . . v vt it e et e e e 179

10.3.6 Mapping a new combination to the other data-store 180

10.3.7 Procedures followed when anew object iscreated 181

10.3.8 Tracking objects created and referenced in mappings 182

10.3.9 Mapping thedeletionof anobject 182
10.3.10 Mapping the modificationof anobject 183
10.3.11 Evaluating, or re-evaluating affected equations 184

10.4 Appraisal of Mapping Controller 186
11 Flow Handling e e e 189
11.1 Requirementsfor FlowHandling 189
11.1.1 Project manager requirements 190

11.1.2 ACtOr reqUIreMENtSot it e e e e e 190

11.2 TheExchange EXecutive 191
11.2.1 Simulation of flow of control 191

11.2.2 Representation of design tool invocation 197
11.23Project managerinterface, 198

1124 Actorinterfacet 201
11.3Appraisal of Flow Handling 203
12 CONCIUSIONS ..o 205
12.1 The Project Development Environment 206
122 TheMapping Systemo 208
12.2.1 Additional applications of themapping language 209
12.3TheFlow of Control System 210
124 Future WOrK . ..o 212
12.4.1 Tighter systemintegration, 212

12.4.2 Digtributed environment 213

12.4.3 Wider incorporation of projectaspects 213

12.4.4 Formal definitions of the mappingdomain 214

12.4.5 Alternate mapping language implementations 214

12.4.6 Incorporation of measuretools 215

12.4.7 Dissemination and exploitation 215
Appendix A. TheView MappingLanguagec. .. 217
ALVML SYNtax .. oot 217
A2VML Graphical Notation i 219
A.3VML Comparisonto other Notations 220
A.3.1 Comparisonto databaseoperators 220

A.3.2 Comparison to Motro virtual integration operators 222
Appendix B. Project SpecificationLanguage i 227
B.1 Project Model Transfer Syntax 227
B.2 Project Modelling Graphical Notation 229
B.2.1 User and function specification 229

B.2.2 Flow of control specification 230
AppendiX C. Snart 232
C Ll RaCEtS . .ot 232
C2QUery LangUagdeot vttt 233
C2lintroduction 233
C22Exampleschemas 234
C.230ldstylequeriesinSnart 235

C.24 New stylequeriesinSnart 235

C.2.5 Implementation of the query languageinSnart 239
C30bhJECt SPACES . . . ot 239
C3lintroduction 240
C.3.2D€fininganobject spaceinSnart 240

C.3.3 Working with an object spacemodel inSnart 242

A PSS ENCY . . oo 243

CALlIntroduction 243
C4.2PersistencyintheoldSnart 244

C.4.3 Manipulating persistent objectsintheoldSnart 245
C44Pesistency inthenew Snart 246
CohObjectViawer . . . 248
Appendix D. Small Examples Schemasand Mappingsccoiuiueo... 252
Appendix E. Large Example Schemasand Mappings 275
E.1 Descriptionof LargeExample 275

E.2 Schemasforthe Large Example 278
E21IDMschema 278
E22PlanEntryschema 282
E.23FaceEditorschema 286
E24VISION-3Dschema i 287
E25ThemaDesignerschema 289
E.3MappingsfortheLargeExample 294
E3.1IDM <->PlanEntry mapping, 295

E.3.2IDM <->FaceEditormapping 299

E3.3IDM <->VISION-3D Mappingot i e et e e e ee e 302

E.3.41DM <->ThermaDesigner mappingc.uuuue.... 306

E.4 Project Window for the Large Example 309

E.4.1 User and function specification 309

E.4.2 Flow of control specification 313

AppendiX F. The Parsers o e e e 320
F.11SO-10303:11 EXPRESS Parsert 320

F.1.1 EXPRESSto Snart trandlator uuu.. 322

F.1.2 Snart to EXPRESS trandator 323
F.1.3SnarttoReflextrandator 323
F.21S0-10303:21 STEP data-fileParser 326

F.2.1 STEP data-fileto Snart trandlator 328

F.2.2 Snart to STEP data-filetrandator 329

FB3CGE Parser 329
FAVML Parser . ..o 331
Appendix G. Generalised Schema Representation Notation 332
G AVESION T .ottt e 332

G2 SChema .. 333
Appendix H. Generalised Mapping Representation Notation 335
HlSchema 335
H2Mappingot e e e 336
H3lnverted Index 337
GlOSSarY . . o 338
REfErENCES 342

Xi

Xii

List of Figures

Figure 1.1 COMBINE SIrUCTUrE oo e e e e
Figure 1.2 Structure of an integrated designsystem
Figure 1.3 An example of the Snart graphical notation
Figure 1.4 A building described in PlanEntry
Figure 1.5 The PlanEntry schemamainclasses
Figure 1.6 Wall and window materials being defined in the FaceEditor
Figure 1.7 The FaceEditor schemamainclasses
Figure 1.8 A wire-frame representation of Figure 1.3inVISION-3D
Figure 1.9 The VISION-3D schemaclasses,
Figure 1.10 Control windowsin ThermalDesigner
Figure1.11 ThelDM schemaclasses i

Figure 2.1 EXPRESS and EXPRESS-G views in the EPE modelling environment
Figure 2.2 Example VML textua specification
Figure 2.3 Graphical mapping specificationinVPE
Figure 2.4 Project flow of control definition

Figure 3.1 An example of the EXPRESS-G notationovvuo....
Figure 3.2 Use of technical_systeminthe COMBINEIDM
Figure 3.3 Two high-level inheritance specifications for technical_system
Figure 3.4 Design stage specification of attributesof anentity
Figure 3.5 Textual view derived from graphical viewsof anentity
Figure 3.6 Constraining the cardinality of an attribute at latedesignstage
Figure 3.7 The propagation of an update_record to adependant textual view
Figure 3.8 The automatic application of an updatein atextual view
Figure 3.9 The persistent update _record viewer with documentation facility
Figure 3.10 A textual documentation VIiew
Figure 3.11 The view navigator invoked for thetechnical_systementity
Figure 3.12 MViews three-layer multiple view architectureasusedinSPE
Figure 3.13 Change propagation inan MViewsenvironment
Figure 3.14 Classinheritance for EPEfromMViews

Figure 5.1 A treeof inter_ Viewmappings« oo v ottt
Figure 5.2 Graphical mapping specificationinVPE
Figure 5.3 Complex VML-G specification with textual equivalent

Figure 6.1 Initial connections between classesintwoschemas
Figure 6.2 Specifying multiple mappingsfor asingleclassset
Figure 6.3 Defining links between all features associated with an inter_class definition
Figure 6.4 A full textual specification of an inter_class definition
Figure 6.5 Modification of agraphical view

Figure 6.6 Receipt of an update recordinatextual view 113

Figure 6.7 A textua view after manual application of an update specification 114
Figure 6.8 Browsing the change log for aninter_class specification 115
Figure 6.9 An associated documentation view for an inter_classdefinition 115
Figure 6.10 View navigation for inter_class specifications 116
Figure 6.11 Classinheritance for VPEfromMViews 119
Figure 7.1 Multiple project windowsinaprojectv ..., 127
Figure 7.2 Example of user and function specification 131
Figure 7.3 Invocabledesignfunctions 135
Figure 7.4 Constrained designfunction 135
Figure 7.5 Constraints between two design functions 136
Figure 7.6 Design function constraints leading to apparent inconsistencies 136
Figure 7.7 Top level flow of control specification 137
Figure 7.8 Flow of control with global elements 138
Figure 8.1 Sample mapping controllers 151
Figure 8.2 An operating flow of control manager 154
Figure 9.1 Instanceviewingand navigation 158
Figure 9.2 INSTEP'sgraphical andtextual views 159
Figure 9.3 A SnartQuery didlogueandresult 161
Figure 9.4 A default ObjectViewer objectlayout 161
Figure 9.5 Reflex’s multiple graphical views, along with an object’ s attribute dialogue 162
Figure 10.1 Structure of the traced persistent spaceinSnart 166
Figure 10.2 An actor’smapping controller interface 169
Figure 10.3 A transaction-based mapping manager, 170
Figure 10.4 An automatic mapping Manager v vttt it et 171
Figure 11.1 Calculating potential design functionsfromaCombiNet 192
Figure 11.2 Multiple actors causing select design functionsto become stalled 193
Figure 11.3 Initial CombiNet inaprojectwindow 194
Figure 11.4 Multiple levels of aggregatefunctions 195
Figure 11.5 Exiting from a CombiNet representing an aggregateplace 196
Figure 11.6 Designtool start updialogue 197
Figure 11.7 Design tool terminationdialogue 198
Figure 11.8 Project manager user interface 199
Figure 11.9 Project manager navigation through CombiNets 200
Figure11.10 Actor'suserinterface i 201
Figure A.1VML graphica notation 219
Figure B.1 Icons used for user and function specification 229
Figure B.2 Icons used for flow of control specification 230
Figure C.1 Snart query languageinterface 234
FigureC.2 ObjectViewerinterface 248
Figure E.1 Integration of toolsinexample 275
Figure E.2 Building design in PlanEntry with mapping controllers 276
Figure E.3 Result of mapping to VISION-3D and FaceEditor 276
Figure E.4 Building design after mappingtothreetools 277
Figure E.5 Layout changeto buildingin FigureE4 277
Figure E.6 Result of propagating changesshowninFigureE5 278
FigureE.7IDM schema 279
Figure EB PlanENtry iNUSE o it e e 283
Figure E.9 Planescalculated for abuilding 283
Figure E.1IO PlanEntry schema 284
FigureE.11 FaceEditorinuse 285

XV

Figure E.12 FaceEditorschema 286

FiguUre EZI3VISION-3D iNUSE . . . oottt e e e e e e e e 287
Figure E.14 VISION-3D schema o e 287
Figure E.15 ThermalDesigner iNUSE oottt e e et 290
FigureE.16 Clientand designroles 310
Figure E.17 Architect and designroles 311
Figure E.18 Structural consultant and designroles 311
Figure E.19 Daylighting consultant and designroles 312
Figure E.20 Thermal consultant and designroles 312
Figure E.21 Top-level CombiNet 313
Figure E.22 Design and update CombiNet 314
Figure E.23 Buildingdesign CombiNet 315
Figure E.24 Structural work CombiNet 316
Figure E.25 Daylight work CombiNet 317
Figure E.26 Thermal work CombiNet 318
Figure E.27 Acceptance CombiNet 319

XV

XVi

List of Tables

Table4.1 Mapping typesfromvan Horsseneta. 1994 65
Table 4.2 Full set of structural mappingtypest 65
Table 4.3 Schemaintegration conflict typesfrom Batinieta. 1986 66
Table 4.4 Schemaintegration conflict typesfromKimand Seo 1991 67
Table 4.5 Schema fragments for the two schemasinthe mappingexample 70
Table 4.6 EXPRESS-M mapping for exampleproblem 71
Table 4.7 EXPRESS-V mapping for exampleproblem 73
Table 4.8 EXPRESS-C mapping for exampleproblem 75
Table 4.9 Transformr mapping for exampleproblem 76
Table 4.10 EDM-2 mapping for exampleproblem 77
Table4.11 KIF mapping for exampleproblem 78
Table4.12 Comparison of mappinglanguages 80
Table 5.1 VML mapping for exampleproblem 83
Table5.2 Topleve definitionof aVML mapping 83
Table 5.3 Definition of aninter_view specification 84
Table 5.4 Definition of aninter_classspecification 86
Table5.5 Definitionof aclass name 88
Table 5.6 Definition of inheritance 89
Table 5.7 Definition of invariants 89
Table 5.8 Definition of initialisers 90
Table 5.9 Definition of equivalences i 91
Table 7.1 Capabilities of project specification languages (after Curtisetal. 1992) 128
Table 10.1 Pseudo-code for performingamappingo oo v it i i i e 173
Table 10.2 Pseudo-code for establishingamapping 173
Table 10.3 Pseudo-code for performing mappingso oot i i 174
Table 10.4 Examples of inter_class headers and resultant object lists 176
Table 10.5 Pseudo-code for determining initial objectgroups 176
Table 10.6 Pseudo-code for generating object combinationsfor aninter class 177
Table 10.7 Pseudo-code for the four-passinter_classresolution 180
Table 10.8 Pseudo-code for mapping anew combination 181
Table 10.9 Pseudo-code for creatinganew objectc.c.nnnnn. 181
Table 10.10 Pseudo-code for mapping anobject deletion 182
Table 10.11 Pseudo-code for mapping an object modification 183
Table 10.12 Pseudo-code for identifying valuesfor anequation 185
Table 10.13 Update authorities for attributes derived from different sources 186
Table G.1 Specification of aschemaverson 332
Table G.2 Specification of versoncreationreasons it i, 333
Table G.3 Specification of schemainformation 333
Table G.4 Specification of modificationtypes 334

Table H.1 Specification of schema entities
Table H.2 Specification of atomic mapping components
Table H.3 Specification of inverted indices into mappings

Xviii

Chapter 1

| ntroduction

1.1 The Problem Domain

In the fields of architecture and building engineering there is continued dissatisfaction with the
state that computerised design has reached. The mgjority of the claims made for computerisation in
these fields have never been achieved. For architects there are few, if any, tools which are useful
for initial or sketch design and in many architectural firms the only use of computers during the
design processis for detailing the building plans with a draughting tool (CAD). In the engineering
domain there are similar problems. Even with a computerised plan of the building it isunlikely that
building information can be extracted from this plan for use in other design tools. Many
practitioners re-enter building information into their design tools by hand, taking measurements off
the printed plans. Despite the existence of a wide range of excellent design tools, such tools are
seldom used because of the difficulty and time required to enter building information in order to
invoke the tool.

Examining the state of computing in these domainsit is clear that the mgjority of the problemslie
with the conceptual models of a building. In awide range of CAD tools there is no underlying
model of abuilding. That a plan defines a building can only be ascertained by human perception.
To the computer a plan is a set of 3D graphical entities. Until computers can mimic the human
ability to perceive building structure from a plan, it is impossible to extract useful building
information from atraditional CAD system. Thereis aso a problem with the wide range of design
tools that model buildings. Each of these design tools has a schema of a building most suited to the
type of computation it performs on the building, and in most cases thisisaminimal schemato ease

the burden of data entry for the user. As can be imagined, this means that schemas of buildings for
tools such as thermal simulation, structural simulation, lighting analysis, fire-code compliance,
quantity surveying, etc. have very different structures. As a result, detailing a building for use
with two different design tools is like trying to explain exactly the same thing in two totally
different languages.

Another important problem is that of consistency and coordination. In abuilding project there are
often several design professionals responsible for different parts of the design. A project manager
has the task of coordinating the various designers, and in a manual design practice a range of
procedures are used to ensure that the design is kept consistent between all designers. In a
computerised design environment it has become no easier to perform this task, and in many cases
much more difficult, as the number of plan portions which can be generated with computerised
toolsis much greater than with manual design.

One obvious solution to the problems outlined above is to find some way to integrate the design
tools with a comprehensive conceptual building schema used to transfer building data between the
different design tools. There have been several approaches to integrated systems which offer
various benefits to the designers working with them. One approach is an integrated design
assistant in which it is envisaged that the integrated system would offer asingle designer the ability
to design utilising any of the various design tools as assistants to check various portions or stages
of the design. The integrated assistant would manage the transfer of data to and from the design
tools and maintain the consistency of the global model of the designed artifact. Another approach
is an integrated design system in which it is envisaged that the system would connect multiple
designers working on the same artifact, maintaining the global consistency of the design as it
evolves over time. This system would still allow designers to experiment with design solutions
independently from other designers (as in the integrated design assistant), but maintain the global
model with respect to solutions exported by the various designers. This system would also
manage process control to ensure that al design functions were completed during the design and to
control the time line of the design process.

The increasing demand for intelligent integrated computerised working environments in
architectural and building engineering domains has spawned a multitude of research projects
tackling portions of the problem. The main benefits these systems claim to offer their users are:

. Access to all the pertinent information for their portion of the design task

. Access to arange of appropriate design tools which can be utilised in the design process

. Project control management to direct the project development and ensure timely completion
. Automated maintenance of the consistency of the design amongst all designersin a project
. Ability to experiment with design modifications independently before submitting a suitable

modification to the global model

. Notification of changes to the global model which affect the design tasks of a particular
user
. Management and notification of conflicts between the work of various users

While the benefits noted above exist in current managed projects there are several other flow on

benefits possible from an integrated system:

. Final design is likely to be more correct as all designers have been working on the same
global model of the artefact

. Final design may be more innovative as designers have the ability to examine and test
multiple design solutions to a particular problem through connected design tools

. Possibilities for better performance of the completed artefact as designers have many
design tools available to check the properties of the artefact being designed and to evaluate
design options quantitatively

There is much prior research in this area of integrated design systems, as will become clear in the
next section. The next section will also detail the many other areas of computer science research
which are applicable to an integrated design system. To help illustrate the place of the research
encompassed in this thesis the author has chosen one of the EU funded projects (COMBINE) as
an example of an evolving integrated design system. The framework of the COMBINE system is
similar to most other integration projects and is used due to the author’ s familiarity with the project
from a six month period of work in Europe.

1.2 Related Research

Whilst this thesis examines an overall framework to allow the development and testing of an
integrated design system, the majority of research to date has concentrated on problems associated
with the individual components of this framework. These components include developing data
models, defining mapping languages, managing model development, etc., and the work in these
areas is considered in Chapters 2 and 8 of this thesis. What little work that has looked at over-
arching development frameworks is considered below.

In the architecture, engineering and construction (A/E/C) domains there has been intense European
Union work on the development of integrated design systems since the late 1980s. This has
culminated in a range of projects for various subdomains of A/E/C, for example, COMBINE
(Augenbroe 1995a; Augenbroe 1995b), ATLAS (1993; Greening and Edwards 1995), COMBI
(1995; Scherer 1995), CIMsteel (1995; Watson and Crowley 1995) and more recently ToCEE
(Katranuschkov et al. 1996), STAR (Huovilaand Seren 1995) and VEGA (1996). These projects
started out examining frameworks purely for data integration, but over the years recognised the
need for other project aspects, and broadened their scope to process, documents, legality, etc.

Despite their current wide scope very little work has been done in these projects to consider the
framework required to ease the development of integrated design systems. Very simple tools to
specify data models, or process models, al quite independent of each other are as far as any
project has gone. The COMBINE project has developed the greatest number of support tools, and
some of these are described in Section 1.3 below and highlighted throughout this thesis as
examples of current state of the art.

Research projects undertaken by individual academic institutions have often taken a wider view
than the more result-oriented European Union research, with the result that they have developed a
more comprehensive framework than many European projects (Papamichael and Selkowitz 1991;
Lamb 1987; Subrahmanian 1989; Pena-Mora et al. 1993). Once again the mgjority of these
projects develop small prototype integrated systems with models crafted by hand in text-editing
tools, rather than developing their own support tools. The projects which do develop support tools
for framework development provide very useful and tightly coupled tools, but for very narrow
domains (Poyet et al. 1995; Grundy 1993). In the magjority of cases these domains are restricted to
the data aspects of the integrated design system, ignoring requirements of support for mapping
between data aspects, or incorporating process and project aspectsinto the framework.

1.3 COMBINE Project

Throughout this thesis | will draw upon several examples and use nomenclature which have
originated in the COMBINE project. | will also use COMBINE to help illustrate the place of the
various systems that are developed and to highlight their utility in such a project.

COMBINE (COmputer Models for the Building INdustry in Europe) is an EU-funded project
which started in 1990 (Augenbroe and Laret 1989). The first phase ended in late 1992 with a
seminar and workshop at which the first phase deliverables were demonstrated (Augenbroe 1993).
The project, which has now completed its second phase (1992-1995), spans a total effort of 70
man-years spread over 12 partners from 7 European countries.

COMBINE worked towards the practical development of 11BDS's (Intelligent Integrated Building
Design Systems) through which energy, services, functional and other performance characteristics
in planned buildings can be modelled and integrated. The modelling of information has been one
of the greatest concerns in this project, with the first phase of the project concentrating on the
integration of datato provide the necessary information for agroup of actors. COMBINE's efforts
have been concentrated on establishing a data infrastructure and tools for managing the information
exchange amongst design actors, i.e., members of a collaborative design team. The project thus
represents a good example of international research in product data technology and of the
development of an integrated design system.

COMBINE is one of many international projects with asimilar aim of integrating the information
requirements of a given domain to provide an enhanced working environment to users of that
domain. A number of parallel projects in the European ESPRIT-CIME (afull list of acronyms
used here can be found in the glossary) program are engaged in similar research and development
to that of COMBINE. In time all of these projects may have input into the |SO-STEP standard
which has the stated aim of covering the information requirements for al architecture, engineering
and construction domains (1SO/TC184 1993). In recognition of the importance of STEP, and the
practicalities of interchange of results, most projects have chosen the modelling formalisms
specified for the STEP standard as the formalisms for their efforts. These include the EXPRESS
language, with EXPRESS-G, NIAM, IDEF1X and IDEFO diagramming techniques, the STEP
neutral file format, for exchange of data, and SDAI, the data access specification. Thisisthe case
in COMBINE where all modelling is done with these formalisms (Augenbroe 1994).

COMBINE'sfirst phase was concerned primarily with data integration based upon the concept of
a set of actors connected to a central common data repository (Figure 1.1). Its deliverables
comprised the first large conceptual integrated data model (IDM) for buildings and a number of
interfaced design tools (DT). These results formed the base line technology on which the present
second phase builds. The second phase was concerned with developing an operational 11BDS
according to functional specifications of particular building projectsin practice. In doing this, the
number of interacting design tools was expanded to cover existing design applications in the area
of costing, HVYAC-CAD (Heating, Ventilating and Air Conditioning), architectural CAD,
component databases, daylighting and building regulations.

BDS Conceptual Architecture BDS = Integrated Building Design System|

\ onceptual Building Model
DM = Integrated Data Model

esign Tool

nterface| IDM <--> Aspect Model mapping

: : \Q/ spect Model iew Model specific to
ctor 1 ctor 2 ctor 3 design tool

Figure 1.1 COMBINE structure

In the first phase of COMBINE the types of actors considered were limited to those in the fields of
energy and HVAC performance in the early design stages of building design. However, even
limiting the domain to this small set of actor types, the IDM developed for this project consisted of
some 400 entities and 600 rel ationships between them. The devel opment of this conceptua schema

was a complicated task. The final schema had to incorporate the data requirements of the seven
design tools which were used in this first phase, which had very different data requirements to
model a building for their simulation needs. The IDM was developed by first modelling the
schemas of the various design tools, and then, through schema analysis and use of integration
techniques, various portions of the schemas were brought together to help form the final IDM.
This was a very time consuming and difficult task. In particular, the developers in the project
found it impossible to verify the consistency of the IDM without the aid of computer tools (Dubois
1993).

The second phase of COMBINE involved integration of several more design tools, widening the
scope of the IDM. This required a redesign of the IDM to extend the domains supported. Again,
the process of development involved comparison of the IDM with the schemas of the various
design tools being supported, and incorporation of portions of the design tool schemas into the
IDM. The resulting iterative process of schema analysis, integration, and prototyping continued
until the various design tool support teams were satisfied that the data requirements necessary for
their tools could be met by the IDM.

The modelling support presently offered to partnersin COMBINE comes through the use of the
Configurable Graphical Editor (CGE, see Vogel 1991). CGE can be configured to support a
number of diagramming techniques, among which are those mentioned at the start of this section.
It also supports a customised version of NIAM called ATLIAM (Vogd 1991) which is capable of
exporting an EXPRESS schema of a NIAM diagram and of exporting and importing NIAM
diagrams by way of STEP files.

1.4 Underlying Framework

The creation of an integrated design system requires an enormous amount of work constructing
specialised modules in a framework of great complexity. The development of a complete
framework by one person is obviously unobtainable in alifetime. However, the general structure
of integrated design systems appears fairly stable and it is particular portions of the framework
which require research and development to find optimal solutions. In virtually all integrated
systems there are a set of common fundamenta systems asillustrated in Figure 1.2.

When an integrated design system isin use its schemas and design tools are likely to vary from
project to project. This is because a building design project is usually involved with a one-off
design and: the group of designers involved; the aspects of the design each designer works on; the
design tools required; and the flow of control for the project, are likely to change between each
project. This produces a requirement that the integrated system is easily configured for avarying
set of designers and design tools. Of more significance is the recognition that to properly cope

with this situation it will be necessary to modify and add schemas to the system. The designer’s
schemas will have to be changed to reflect the designer’ sroles in the current project, anew flow of
control (project) model will be required for each project, and perhaps new design tool schemas
will have to be introduced to cover checking of unusual aspects of the current design (which could
in turn affect the scope of the IDM). This|eads to the requirement that the final integrated system
must contain the modelling tools used in the design of the initial system to enable the system to be
configured for individua projects.

Integrated Design System)
| Project manager
Control | —

System —
Project
model

DT model /CDT files)— DT

)

Inter Design LA
IDM Model DT model Tool DT | Users
Mapping Interface N

i

DT model \<DT files)— DT

Figure 1.2 Structure of an integrated design system

The integrated design system can be implemented in a variety of ways from a monolithic system

with all modules tightly coupled through to a completely modular system with linksto relational or

object-oriented databases and where many of the modules operate as independent systems utilising

a brokering architecture to communicate data between modules. However the system is

implemented the same conceptual major subsystems exist in the integrated design system. These

are detailed further to give someidea of the scope of the task each must handle.

IDM: this is the very general schema of the domain which must cover the information
requirements of the designers and design tools which interact with the system. The schema
required for buildings is probably the largest and most complex information model
developed in the world to date. The SO 10303 standards committee (STEP) has laboured
for over 10 yearsto define the underlying schemas for graphical, draughting and material
representations. Only recently have they moved to create definitions of higher level entities
for buildings, ships, etc. Numerous projects have used schemas based around those
required for design tools, but expanded to cover requirements of other design tools.
Recently several collaborative projects have worked on general schemas of buildings based
on the STEP fundamentals for restricted aspects of buildings. Each of these projects has
invested in the order of 10 person years of effort in their restricted schemas. The
development of the IDM requires the input of domain experts for al the sub-domains being
modelled as well as the help of modelling experts to structure the schema. The IDM
remains as a fairly static schema, although the introduction of new design tools,
construction technigues and building constructs may require modifications to the schema.

\l

The development of an environment to specify the IDM draws upon work in data
modelling languages, modelling environments, collaborative work systems and schema
integration techniques.

Project model: thisis a project specific model defining the designers who will be working on a
project, the design functions they will need to perform and the design tools that will be
utilised during the design process. The project model can aso be used to define the flow of
control in a project, specifying hand-over points between various designers and sequences
of specification that must be followed to help guarantee an optimal design at the termination
of the design process. As the design process is not a fully understood process it can not
always be completely described at the start of a project. Therefore, it islikely that during
the course of the design, new designers may need to be involved in the design or new
design tools used for difficult aspects of the design. To enable this flexibility the project
model must be modifiable during the project to be able to take into account changes in
personnel and new flows of control. The development of an environment to specify the
project model draws upon work in process modelling languages, modelling environments
and collaborative work systems.

DT schemas: each of these schemas defines the structures and data requirements of a design
tool. The type of design tool and its capabilities will determine the number of schemas that
are required for each tool. In most cases two schemas are used, one to specify the data
input to the design tool, the second to specify the data output from the design tool. The
creation of these schemasis atask undertaken by modellers who have great familiarity with
the particular design tool being modelled. This is because the schema must capture not only
the data structures explicitly defined by the tool and the data constraints specified by the
design tool (e.g., ranges on attribute values, cardinality constraints on lists, etc.), it must
also contain the constraints defined implicitly by the design tool (e.g., that all walls are
vertical). A fully specified DT schema allows the system to determine whether there is
enough data to create the input file for the DT to execute and to determine whether a
semantically correct description of the building can be created from the data available. The
DT schema remains static throughout the use of the same version of the DT. The
development of an environment to specify the DT schemas draws upon work in data
modelling languages, modelling environments and collaborative work systems.

Control system: thisdirects both the inter-model mapping and design tool interface modules to
perform their tasks as required by the designers or directed by the project manager. This
module simulates the flow of control defined in the project model determining what design
functions are able to be performed at any particular time. It also interfaces with designersto
let them specify the tasks that they wish to perform next and interfaces with the project
manager for decisions upon which designers should be involved in new phases of the
project. This system directs the inter-model mapping module to map data between different
models, or to ascertain whether it is possible to perform the mapping. It also directs the
design tool interface to invoke a design tool with appropriate data and to collect results

upon termination.

Inter-model mapping: this module performs the translation of data between the IDM and the
DT models. It must determine whether it is possible to create a consistent model from the
IDM for any one of the DT models based upon the constraints in that DT schema, and it
must ensure that the IDM remains consistent upon update from a design tool’ s output. It
must detect conflicts between various sets of data and must be able to invoke processes to
enable negotiation over conflicting data from different design tools and users. Traditionally
this module is implemented by hand coding the mappings required between the IDM and
each new DT schema. In future integrated design systemsiit is expected that this module
will be realised by modelling the mappings required between the IDM and each new design
tool schema. The development of the inter-model mapping module draws upon work in
mapping modelling languages and modelling environments.

Design tool interface: this module provides the connection between the design tools utilised in
the system and their data models. For an off-line DT this module must be able to create the
input filesrequired for the DT (from the DT schemain the system), it must then be able to
invoke the DT to perform its work and finally retrieve the output from the DT into the DT
model in the system. For interactive DT’ sit must perform the same task but driven by the
demands of the design tool. Traditionally this module is implemented by hand-coding the
parsing and pretty-printing for each new design tool. In future integrated design systems,
and for some classes of design tools, it is expected that this module will be realised by
modelling the interaction required by each design tool (for example the data-file structures)
and using this model to drive the interaction with the DT. The development of the design
tool interface draws upon work in parsing, pretty-printing, interaction and structure
modelling languages and modelling environments.

DTs: these tools exist outside of the integrated design system. The types of design tools that can
be found here include the interface a designer has to the system, off-line and interactive
simulation tools, interactive knowledge-based systems, CAD systems, etc.

1.5 Research Objectives

Although the basic framework of an integrated design system as described above is fairly
universally applied in integrated projects and although many hundreds of man years have been put
into these projects there are many aspects of the framework which are poorly understood and not
well modelled. To date the mgjority of the structured effort in integrated projects has been put into
the development of the IDM by the domain experts in the project. Systematic modelling of other
facets of the integrated system has been bypassed in favour of hand-coded modules which work
for particular design tools under particular situations. | believe that it is crucia to model al aspects
of the components in an integrated system to guarantee the correct behaviour of the finished
system. To enable these models to be developed it is also necessary to have powerful modelling

tools which enable the modellers to describe and manage the enormous models that are being
created. The exploration of these objectives forms amajor component of the work described in this
thesis along with an implemented framework which demonstrates how all the modelled systems
can be drawn together into an implemented system. An overview of the major objectives which are
examined in thisthesisfollows:

1.5.1 Formalism to specify mappings

To define the correspondence between two schemas it is necessary to use a formalism which
allows the specification of mappingsin an easy and intuitive manner. This formalism must closely
match the problem domain and have a clear syntax and semantics. In current projects this module
has received little attention and only recently has any effort been put into the examination of
possible formalisms for this task.

1.5.2 Formalism to specify project and flow of control

As anew project specification is required for every project undertaken with an integrated design
system it is essential to have aformalism that will alow the easy description of the participants and
their roles in the project. In current projects this module has received little attention and only
recently has any effort been put into the examination of possible formalisms for this task. This
formalism must offer easy specification of the designers and their rolesin the project. It must also
be able to specify the flow of control during the project and the hand-over points for the various
participants.

1.5.3 Comprehensive tool set to support schema specification

With the enormous schemas which are being specified in these projects more sophisticated
modelling environments are required to manage the complexity of the schemas. New environments
must be able to support schema specification at many levels of abstraction and with many different
formalisms. Multiple views of the schema must be available in any of the formalisms with
consistency between the views maintained under modification. There must also be the ability to
provide annotation of the schema with documentation. Collaborative modelling must be supported
to encompass the range of input from modellers who have input to the schema. Version
management for the evolving schema must be supported along with version merging and conflict
resolution for the versions of various modellers.

1.5.4 Inter-model mapping utilising mapping specifications

With definitions of the mapping required between two schemas it is necessary to show how they
can be used to map whole models back and forth, ensuring the consistency of the models as they
are worked upon. The inter-model mapping must be able to create new models from an existing
model and it must be able to propagate changes between linked models. When both models have

10

changed it must be able to arbitrate the merging of changes between the models and when there are
conflicts in the modifications being propagated it must be able to manage the resolution of those
conflicts between the affected parties.

1.5.5 Control system utilising project and flow of control
specification

The control system needs to maintain contact with the project manager and the designers involved
with the project. The control system must be able to determine what the allowable tasks are a any
time and inform the designers of the options that they have available. When a designer chooses to
perform atask the control system determines whether it is possible at the given time, if it isthe
control system invokes the inter-model mapping to get data into the design tool’ s model and then
invokes the design tool interface to run the design tool and extract results which will be fed back
into the IDM.

1.6 Description of Example

Throughout this thesis a single example set will be referenced, as required to illustrate points
pertaining to the workings of an integrated system. This is distinct from, and in contrast to, the
COMBINE example which illustrates the requirements for the framework. This example set is
drawn from a contract completed between the Building Research Association of New Zealand
(BRANZ) and the computer science department at the University of Auckland (Hosking et al.
1995). The problem domain of the example is the development of an integrated design
environment where several disparate design tools are required to work together to provide enough
information for knowledge-based systems. The knowledge-based system demonstrated is
ThermalDesigner (Amor et a. 1992) which checks a building using the Annual Loss Factor (ALF)
method (Bassett et al. 1990, an empirical estimator of the thermal design code (SANZ 1977)). The
building layout and materials information required for this knowledge-based system to operate can
be supplied from two stand-alone tools which allow for basic layout design and materials
definition. A third program is used to visualise afull 3D model of the building with fly-throughs
and shaded images.

The use of this integrated system in a working design situation would involve several design
professionals each charged with different aspects of the design. In this thesis we will envisage a
design team consisting of four professionals, an architect, a thermal engineer, a daylighting
engineer, and a structural engineer along with a client. The architect would be involved with the
initial design of a building after liaison with the client and coordination of the three engineers
leading to final design approved by the client. The thermal engineer would select and test various
materials for elements of the building to ensure compliance with the thermal code. The structural

11

engineer would design and approve the structural elements of the design and ensure compliance
with the structural code. The daylighting engineer would choose appropriate glazing materials and
layout to ensure adequate daylighting whilst checking for potentia overheating problems.

The three tools from the example are introduced in the following sections, along with the
integrated data model (IDM) through which they will communicate. Following the tool
descriptions there is a small analysis of the correspondences between the various design tool
schemas and the IDM to give the reader an understanding of the type of information that needs to
be mapped between the tools. The full schemas of the tools, the full mappings and the design team
interaction specification can be found in Appendix E.

1.6.1 The Snart language

All of the development work presented in this thesis has been written in the Snart language
(Grundy 1993) and LPA Prolog (LPA 1995). Snart is an object-oriented language, built on top of
LPA Prolog, providing notions of abstract and instantiable classes, along with typed attributes and
relationships, and class methods. Multiple inheritance is supported, as well as dynamic object
classification. The Snart language has a graphical notation in addition to its textual form, and
diagrams in this notation are used to illustrate work in this thesis both in this chapter and
throughout the rest of the thesis. To allow those unfamiliar with Snart to understand these
diagrams, a brief introduction to the Snart graphical notation is provided here using the diagram of
Figure 1.3.

ingtraot parenti

related olazs

nttl
nttd
nttd

Figure 1.3 An example of the Snart graphical notation

12

Figure 1.3 shows four classes. A class is represented by a rounded-rectangle. The class hame
appears at the top of the rounded-rectangle, separated from attribute and method names by asingle
horizontal line. Figure 1.3 shows an abstract class (a class not able to be instantiated), through the
use of a grey edged rounded-rectangle, here named abstract_parent. All other classes can be
instantiated and are shown with a solid edged rounded-rectangle. Attribute and method names of a
class are shown in the lower portion of the rounded-rectangle. No distinction is made between the
representation of attributes and methods in the graphical notation. Inheritance between classes is
shown through the use of athick line with an arrow pointing to the parent class. Figure 1.3 shows
childl and child2 both inheriting from abstract_parent. Relationships between classes are shown
through athin line connecting two classes. The line islabelled with the relationship name closest to
the class which is being referred to. In Figure 1.3, child2 has a relationship named rel_name with
the classrelated_class.

1.6.2 PlanEntry

PlanEntry (Hosking and Mugridge 1994) is a CAD-like tool to define building layouts. PlanEntry
allows multiple 2D views of a base 3D model of a building (see Figure 1.4 for a snapshot of
PlanEntry in use). Buildings which can be described in PlanEntry comprise: spaces; internal walls;
openings; and roofs. View lines, as shown in Figure 1.4, can cut through any section of the
building being described to provide a cross-section of the building. PlanEntry is a constraint-based
system, allowing correspondences to be described between spaces, spaces and roofs as well as
roof lines (e.g., the connection of the roof sectionsto form an L shaped rooflinein Figure 1.4).

View 1 Plan View 2 Rear

@ 4[]:@] View 4 Left Wiew 4 Lefr

View 2 Rear

View 3 Plan

View 1 Plan

View 4 Left

View 3 Plan E=—————=|ivView 2 Rear

@ <i[tﬂﬂ View 4 Left

""""""""" i e T Giew 2 Rewr | B
% £HE E il View 3 Plan
g o

E : g L o View 1 Plan

Figure 1.4 A building described in PlanEntry

13

The internal model utilised in PlanEntry is simple. A building is described as a set of spaces and
roofs. Spaces can have openings and internal walls. PlanEntry includes a face generating
mechanism which takes a building design and identifies all planes along which awall lies. Using
these planes all homogeneous faces for the spaces and roofs of the building are generated. A
homogeneous face is a rectangular face which either wholly belongs to one space, or is the
interface between two spaces (e.g., an internal wall). The main classes in PlanEntry are shown in
Figure 1.5 (note that in this diagram the thin lines with an arrow represent components, e.g., a
pf_set containing pe_roof elements, rather than inheritance asin Figure 1.3 with the thick lines).

pe proto pl an

bui | di ng

spaces

faces pl anes
Pl ~
5 pe face (pe pl ane)
" -
y
pe_r oof x1
X yl
y Pe_spacel lorientation
2 X of f set
x1 y i nt ernal
y1 ‘ —
21 x1
p1x yi
ply z
p2x
p2y
openi ngs val |'s
—___/ —
pe_openi ng pe wal |
X X
y y
z z
x1 x1
yl yl
z1 z1
- J ;‘_z
openi ngs
—_
. J

Figure 1.5 The PlanEntry schema main classes

14

1.6.3 FaceEditor
The FaceEditor enables material properties to be assigned to portions of walls and windows which

lie along a single plane (see Figure 1.6). A plane in the FaceEditor equates exactly with a 2D
plane-line which can be described in PlanEntry. The FaceEditor also allows the specification of
bracing materials and bracing properties of walls in a plane. FaceEditor is a constraint-based
system, allowing correspondences to be described between sections of material as well as

windows and bracing lines.

=———————— Plane 3
A\ ;
1 B2
a4
=

Figure 1.6 Wall and window materials being defined in the FaceEditor

The internal model utilised in FaceEditor isvery simple. A plane being manipulated in a window
consists of wall and window objects which are parallel to the plane (although they need not be on
the plane) and rectangular sections of materials and bracing. The main classes in PlanEntry are

shown in Figure 1.7.

(fe application)

faces

(fe face wi ndoﬂ

wval | s openi ngs braci ng materials
T . ~ — ~
fe face fe _openi ng (fe braci ng) fe face material
x0 x0 X0 x0
yo yo y0 y0
x1 x1 x1 x1
yl yl yl yl
ki nd nmat eri al mat eri al
ki nd ki nd
N— . J

Figure 1.7 The FaceEditor schema main classes

15

1.6.4 VISION-3D

VISION-3D (Bourke 1989) enables a 3D representation of a model to be visualised in a wide
range of formats. Models may be navigated through static camera placement, or by describing a
path for a fly-through of a model. Models may be rendered in formats ranging from wire-frame
through to fully shaded. Figure 1.8 shows a wire-frame representation of a model asin Figure
1.4. This tool is used in an off-line manner by importing a data-file containing a geometric
description of a building to be rendered.

T |
L]

Untitled aceceaeammm—m—me— o——-- 1=

]
-
o
2
@»
[

=+

Figure 1.8 A wire-frame representation of Figure 1.3 in VISION-3D

The external model utilised by VISION-3D (see Figure 1.9) has avery simple format consisting
only of polygons with some visual properties. Polygons may be grouped together to form more
complex objects by specifying the same object_id for each polygon. This feature is used when
describing roofsto VISION-3D.

(v3d pol ygon)

v3d nodel object_id

model nane diffuse reflection
- specul ar_reflection

gl oss_factor

T

poi nt's col our

X r
y g
z b

Figure 1.9 The VISION-3D schema classes

1.6.5 ThermalDesigner

ThermalDesigner (Amor et a, 1992) helps a designer to check that a building design meets the
requirements of the New Zealand thermal insulation standard for residential buildings, NZS4218P
(SANZ, 1977). It is based on an approach developed by the Building Research Association of

16

New Zeadland (BRANZ) as a paper design guide (Bassett et al, 1990). The Figure 1.10 shows the
forms based interface to the application. The tool has been designed to be used interactively with
PlanEntry and FaceEditor providing basic information required to perform the Thermal Designer
analysis.

ThermalDesigner has avery simple model of a building being concerned primarily with the total
building area, and the area of walls and windows facing in various directions. To this extent
building information from external sources is usually aggregated together to provide the
information required by Thermal Designer.

A I P,

Figure 1.10 Control windows in ThermalDesi gher

1.6.6 IDM

The IDM (see Figure 1.11 for a graphical schema) is adapted from a previous integration project
(Mugridge and Hosking 1995). The adaptation required the expansion of the old IDM to handle
the data requirements of the PlanEntry and FaceEditor packages. The model of a building in the
IDM isbased on avery generalised and partially redundant notion of a building. A building can be
viewed as a set of spaces or as a set of faces. The space view of a building provides for
hexahedrons which are placed orthogonally to the mgjor axis. These spaces can be either interior
spaces or roof spaces. The main information provided through the space view of the building is
the easy determination of space abutment, though thisinformation can be calculated from the face
views. The face views break a building into rectangular faces of arbitrary size which have certain
properties. In the current IDM the properties which are modelled are geometric, material and
bracing properties. An IDM face can transcend space boundaries, and in many cases it is
imperative that is does so (e.g., amulti-storey bracing element).

1.6.7 Correspondences between schemas

There are many obvious similarities between the schemas of the tools described in this section,
along with many differences. The correspondence between each of the design tools and the IDM is
further detailed in this section.

17

i dm bui | di ng

]

addr ess

mass_t ype

narme

num of _occupant s

~

envi r onnent face_vi ews
\

spaces

(i dm envi r onnent i dm face (Tdmabstract_spacd)
degr ee_days face_property = =P
exposure_cl ass max rmx
infiltration_zone nin mn

| ocati on nor nal name

seisnmic_area pl ane nor nal

wi nd_ar ea type_of face

w nd_speed

L abutting

(i dm abst ract _space

1N

i dm space face

ﬁ dm braci ng_f ace\ A
C 7 | ocati on

ﬁdm nat eri al face\ orientation
Q)

J/

J/
i dm space
—

nat eri al

(i dmroof naterial)
L)

| |

i dm hip roof) (i dmdut ch_roof) (i dm mansard roof)

mat eri al openi ngs apex1 ri dgel hi p
(idm materi al | % apex2 ri dge2 ri dgel
ype_of _materi al ri dge2

.

(idmfloor _naterial)

(idmwal | _material) (i dm wi ndow nateri al |

| oor _covering_type !
Eype_of _floor J Q dminter floor materi al,' tc;’:ogi:)f Ll type_of Wi ndow J
\
(i dmroof material |
(i dm suspended_f1 oor) (idmwal |1 A

| oor _i nsul ation

oundat i on_hei ght
subf | oor _protection

[idm sl ab_fl oor)idm ot her floor)
[sl ab_dept h t_val ue_ot her J

Figure 1.11 The IDM schema classes

cavity_ventil ated
cl addi ng_t ype

sof t board_12mm
wal | _i nsul ation

W ndow_subt ypel

(i dm ot her _wi ndow t ype)
r_val ue J

.

A ¥
(i dm ot her wval | _type)
t_val ue

PlanEntry’ s model of a building maps almost directly into the IDM. Their notions of a building are
similar and a PlanEntry space is identical to an IDM space. The roofs that may be created in
PlanEntry are hip roofs in the IDM schema. The faces around spaces which are generated in
PlanEntry correspond to the geometric facesin the IDM (idm_space face) and PlanEntry openings
become openings of anidm_space facein the IDM.

18

The FaceEditor’s model of a plane also maps amost directly into the IDM. The notion of faces
openings, bracing and material in a plane map directly to geometric faces, openings, bracing faces
and material facesin the IDM.

VISION-3D has no model of a building, but geometric elements in the IDM such as geometric
faces, openings and roofs are easily trandatable into the polygons required in VISION-3D.

ThermalDesigner has a very simplified model of a building, being concerned with areas of
elements facing certain directions. Therefore, the building structure in the IDM is not found in
ThermalDesigner, however, a plane structure is present in ThermalDesigner to represent walls,
windows, floors and roofs which maps closely to the IDM.

1.7 Outline of Thesis

Chapter 2 examines the devel opment environment required for an integrated design system. The
requirements for such an environment are specified and a possible structure put forward. The
requirements of each individual component of this development environment is detailed, along
with related research in the area. The individual components are discussed in Chapters 3to 7.

Chapter 3 looks at what is necessary for a schemma modelling and devel opment environment along
with the various model ling languages. An implementation of a schema modelling and development
environment is presented with demonstrations of how it meets the previously specified
requirements.

Chapter 4 introduces the problems of mapping between schemas as defined in environments such
asthat implemented in Chapter 3. The mapping problem is analysed to provide some measures of
what is required and a range of mapping languages are examined to determine their strengths and
weaknesses. The chapter summary shows the various language trade-offs and shows a need for a
higher-level bidirectional mapping language. Such alanguage is described in Chapter 5.

Chapter 5 introduces the view mapping language (VML). This language provides a high-level
declarative approach to modelling correspondences between schemas. The main constructs of the
language are described along with a graphical notation for describing mappings. VML is shown to
have a greater expressive power than previous mapping languages.

Chapter 6 details the requirements for a modelling and development environment for mapping

languages. The system requirements are very similar to those detailed in Chapter 3 for schema
modelling, and asimilar approach is followed in demonstrating the utility of such an environment.

19

Chapter 7 detail s the requirements for a project specification notation. A developed notation, called
CombiNet, is then presented. This notation allows users and their design functions to be
modelled, along with flow of control for a project.

Chapter 8 examines the testing and implementation environment required for an integrated design
system. The requirements for such an environment are specified and a possible structure put
forward. The requirements of each individual component of this development environment is
detailed, along with related research in the area. The individual components are detailed in
Chapters 9to 11.

Chapter 9 puts forward the requirements for schema instance management in a design system,
looking especially at the requirements imposed by changing schema definitions. A suite of tools
developed and used in this thesis are presented to highlight the benefits offered by tools meeting
these requirements.

Chapter 10 describes an implementation of an interpreter able to map information between data
stores and applications, through specifications in the view mapping language notation described in
Chapter 5. Difficultiesin implementing the high-level, declarative, and bidirectional, VML notation
areidentified and addressed throughout the chapter.

Chapter 11 describes an implementation of a control system able to handle a running project
through the CombiNet project specification notation described in Chapter 7. This system provides
functionality to a project manager as well asto the individual actorsin aproject by simulating the
state of the running project.

Chapter 12 presents the conclusions of the work undertaken, highlighting the advances made in

the understanding of the requirements of integrated design system development. A discussion of
required future work and research concludes the work.

20

Chapter 2

The Project Development Environment

Chapter 1 provided an introduction to an area in which integrated design environments are
required. In Figure 1.2 and Section 1.4, one framework for an integrated design system was
discussed, with internal components and connections which are generally agreed upon. However,
even with the framework in place, alarge gap till exists between what must be created and how to
create it. The integrated design system shown in Figure 1.2 can be implemented in a variety of
system with links to relational and object-oriented databases, where many of the modules operate
as independent systems utilising a brokering architecture to communicate data between modules.
However the system is implemented, the same major conceptual sub-systems exist in the
integrated design system. In this chapter, the environment required to develop, implement, and test
the sub-systems of an integrated design environment is specified. These environment requirements
form the basis for the work presented in thisthesis.

The development of an integrated design system involves a number of actors playing various
roles. These actors may belong to different organisations. For example, the developers of DT
schemas and mappings are usually from the organisation which developed the design tool. The
developer(s) of the IDM may be from the organisation implementing the integrated design system,
or, asin the ISO-STEP development, from many companies and research institutes throughout the
world. The project coordinator is usually from the organisation utilising the integrated design
system. It is clear that whatever environment is chosen for the modelling of aspects of the
integrated design system, there needs to be open communication links between all actorsinvolved
in the specification.

Considering only the modelling and specification components of the integrated design system
outlined Section 1.4, the models which need to be developed are: the IDM schema; the schemas

21

for the DTs; the mapping specification between IDM and each DT; the interface between aDT
schema and its data-files; and the project model. Though there needs to be very close links
between each of the environments used for the development of each of these models, each
modelling aspect and its requirements can be considered independently, as detailed in the
following sub-sections. The structure and requirements section below presents informal
requirements for a project development environment, as do al the sections considering the various
components of such an environment. This approach is taken as the proposed system is very large,
and complex, which makes the use of formal approachesinfeasiblein their current state.

2.1 Structure and Requirements

The development of an integrated design system is not alinear process. Thereis alarge amount of
interaction between developers of every sub-system of the environment. Examples of the types of
cycles and interactions which occur are detailed below:

. The schemafor aDT is developed either by the developers of the DT or by the creators of
the integrated design system, in consultation with the developers of the DT. The DT
schema describes the external interface of the DT as seen by the integrated design system,
along with constraints imposed by the DT which must be taken into account by the
integrated design system. During this process, the modeller must detail the DT schemain
collaboration with those devel opers responsible for the implementation of different aspects
of the DT. These developers are aware of the implicit constraints imposed by their
implementation methods for these aspects of the DT. During this process the schema must
be reviewed by the DT developers, reasons for constraints imposed on the schema
documented, and fixes to the schema actioned by the modelling coordinator.

. During the IDM development, the requirements of all DTs which are going to be used in
the integrated design system must be taken into account. This requires an iterative process
of development by the IDM modeller(s), and checking by all the DT schema modellers, to
ensure requirements are met. IDM modification requests by the DT modellers must be
actioned and coordinated with possibly conflicting requirements from other DT modellers.

. At the point where the IDM has reached a fairly stable state (few major restructurings
taking place), the specification of what needs to be mapped between the IDM and a
particular DT may be undertaken. This specification lays the groundwork for the
implementation of the mapping between the implemented IDM repository and the DT
interface. This mapping specification is likely to be developed by the DT modeller in
conjunction with one of the IDM modellers. The workers from these two teams need to
coordinate their work and may devel op the mappings at the same time asthe IDM is being
developed and checked against DT models. The mapping specification needs minor
updates as the IDM changes. This entails coordination and communication between IDM
developers and the affected DT mapping specifiers.

22

. The specification of the use of an integrated design system for a particular project can be
undertaken at this stage. Generally, the project manager specifies the actors who will work
on aproject and the design roles they will play in the project. Individual actors are likely to
specify the DTs they will use to complete their various design roles, and in collaboration
with the project manager develop a flow of control specification for the project. This
reguires negotiation and collaboration between various actors and the project coordinator to
identify exact roles and responsibilities, and to ensure that the resources requested by
actors are available for the design roles they need to compl ete.

. Though the processes described above appear to flow in a continuous manner from
modelling through to project implementation, this is a major simplification of the actual
process. It is likely that there will be changes at all levels described above, requiring
continuous restructuring of the integrated design system as new DTs appear on the market
which particular actors may wish to utilise. New DTs may force changesin the IDM as
well as new mapping specifications, mapping testing and changes to the project
specification. It is also likely that the needs of the project require adjustment during the
lifetime of the project, adding new actors as unusual problems are encountered, removing
actors who may not be performing as required or becomeill, adding new flows of control
to force some aspect of checking that was previously not deemed important, or adding new
paths to speed completion of the project. Thus changes are likely at every point of
development and use of the integrated design system. This requires a close coupling
between the implementation of the integrated design system and the environment used to
specify the structure and requirements of the conceptual integrated design system.

The types of interaction detailed above indicate that the development environment for an integrated
design system requires a diverse mix of modelling tools and implementation tools. However, to
analyse the requirements of the development environment, and in the presentation of solutions to
these requirements, the problems are specified in two categories. the modelling and specification
tools required; and the implementation and testing tools required (see Chapter 8). Though thisisan
unnatural split, given the interactions specified above, it does enable the issues for each of these
sections of the environment to be considered independent of competing and distracting issues from
the other category of requirement.

2.2 Schema Modelling and Development

In al integrated design systems to date, the development of schemas has consumed a large
proportion of the development time of the system. The amount of time expended in this phaseis
likely to change over the next decade as the schemas of the most commonly used design tools
become available for general use. It is envisioned that these schemas will be offered, though
perhaps not devel oped, in acommon schema language (e.g., EXPRESS in the A/E/C community)

23

as part of the distribution of the design tool. Hopefully also in the next decade, a standard IDM
will be developed for use in individual design areas (e.g., mgjor APs from SO 10303 for the
A/E/C community). However, until this development occurs, and probably for some time after
that, there will be a significant requirement for the specification of schemas.

2.2.1 Requirements of a schema modelling environment

A very general and widely applicable schema development environment must satisfy many diverse

requirements. Some of the most important follow:

Modelling languages: awide range of languages is used by schema specifiers. For example, in the
A/E/C modelling domain, data specification languages such as ER (Chen 1976), EER
(Gogolla1994), NIAM (Nijssen and Mapin 1989), IDEF1X (Genera Electric 1985), and
EXPRESSEXPRESS-G (1SO/TC184 1992) are commonly used. As these languages take
a considerable time to learn and to become proficient with, many specifiers would resist
moving to a new standardised language. These languages have various strengths and
weaknesses (e.g., ER has adirect mapping to relational database specifications making ER
models very useful when a relational database is required to implement the system).
Hence, using one language to the exclusion of al others can limit the comprehensiveness
of the developed system. Schemas are not usually initially developed as pure data models.
Most are developed in association with activity and process models which detail related
aspects of the domain being modelled. In some A/E/C projects, models are devel oped
detailing aspects of the domain such as activities, data definitions, process, and ontologies
using interlinked modelling methods (see Mayer 1994 for the IDEF family). For example,
AP 228 (the HVAC model in STEP; 1SO/TC184 1995) is being written in EXPRESS in
association with an IDEFO activity model (Mayer 1990). Therefore, some link between the
data specification environment and other associated specification environments needs to be
supported. The schemas currently being developed consist of hundreds of object types
requiring a structured approach to their development. This often means that the modelling
environment needs to offer graphical and textual notations of the languages to allow views
of varying levels of complexity and generality to be specified (Meyers 1991).

Consistency and negotiation: the development of alarge schema can involve experts from many
Institutions, and, especially with 1SO standards, from several countries. To enable schema
development with multiple developers, a strategy needs to be adopted to ensure the
consistency of the final schema. This strategy must be capable of ensuring that all
modellers are aware of recent changes to the schema and can be certain that they are
working on the most up-to-date version. In situations where modellers are geographically
dispersed, or where the modellers are not working in close collaboration, large numbers of
changes to the schema may need to be notified to modellers when they come to co-
ordinate. With several experts involved, conflicts between the modellers are certain to
arise. The modelling environment needs to facilitate negotiated settlements to conflicts, and
to document the settlement process.

24

Documentation and navigation: decisions affecting the development of a schema are made
throughout its specification, by individuals, institutions, and by consensus at meetings.
The reason for, and reasoning behind, these decisions is important when resolving
conflicts, aswell as allowing for later validation of the schema. This creates a requirement
to collate documentation regarding these decisions during the schema development.
Though documentation at this level can be unpopular, especialy where there is very little
justification for a decision (e.g., the committee wanted to go home early), its collation is
vital to ensure a schema which can be further developed as well as being trusted. During
the development of alarge schemathe specifiers will need to navigate and evaluate current
versions of the schema at various levels of generaity. With documentation associated with
the schema there are many new ways of indexing, and therefore accessing, schema
information which need to be made available through the modelling environment (e.g.,
viewing all modifications by a particular specifier).

The different types of schemas which need to be developed in an integrated design system are
described in the sub-sections below. Chapter 3 provides a more detailed description of the
regquirements of a modelling environment and presents a new modelling environment (EPE) which
supports many of the requirements specified both here and elaborated in Chapter 3.

2.2.2 IDM schema

Asdescribed in Section 1.4 the IDM schemaiis the central schemathrough which al informationis
communicated. It provides structures to satisfy the requirements of all DTs and actors who will
use the integrated design system. The development of the IDM is an arduous process requiring
collaboration and communication between the various domain experts as well as between the
integrators of the design tools. Computerised modelling systems currently in use provide little
high-level modelling support to the developers of the schema. Often these systems can provide
only one view of the entities being modelled using only one modelling paradigm, or very limited
consistency maintenance between multiple views of the same entity.

2.2.3 DT schemas

Asdescribed in Section 1.4 the DT schemas reflect the information requirements of design tools,
both their input and their output. The DT schemas contain many constraints upon their data
structures to reflect the capabilities of the design tool which utilises the data from the schema. In
most cases this equates to a very restricted subset of what can be described in the IDM. However,
with al DT constraints described these schemas allow an integrated system to perform checks to
ensure that valid models are passed through to the DT to manipulate.

25

2.2.4 Actor schemas

In many integrated design systemsit is necessary to model the allowable roles of the actors. This
task, usually undertaken by the project manager for each new project, alows the specification of
an actor’s frame of reference in a project. Actor schemas are defined inside the integrated design
system and are defined in terms of the IDM in use. There are two schemas associated with every
actor. One schema specifies the subset of the IDM which is viewable by the actor, the other
specifies the subset of the IDM that the actor has the authority to create or update. The actor
schemas provide alimiting boundary for an actor. Their implementation ensures that no actor can
modify a portion of a design outside their area of responsibility or expertise. Actor schemas can
also be used in conjunction with DT schemas to regulate the updating of a central model with
results from the DT to those that are within the scope of the actor. Actor schemas are likely to
change from project to project to reflect the actors' responsibilitiesin each project. They are also
likely to be modified within a project to cope with changed responsibilities due to changing
requirements during the project.

2.2.5 Related schema modelling environment research

There are anumber of commercial tools used for schema development in the A/E/C world. Some
of the most widely used include Design/IDEF (IDEFine 1995) and FirstSTEP (PDIT 1993). Boyle
and Watson (1993) review a wider selection. There are also many tools developed at research
institutes, many of which are available commercially. Some of the most common are CGE (V ogel
1991), PM Shell (Luijten 1992), XP-IDEF and XP-EXPRESS-G (Poyet et al. 1990). Boyle and
Watson (1993) also cover arange of the research environment tools. Almost without exception
these tools provide very simple environments for defining schemas, mostly supporting only the
graphical notation of a language (e.g., EXPRESS-G rather than EXPRESS). This often means
only simple schemas can be developed in the tool (e.g., EXPRESS-G does not allow for
constraints, functions, and procedures to be defined though they exist in EXPRESS). None of the
tools allow overlapping views of a schemato be defined, and the mgjority only allow asingle view
to be used to define all attributes of an entity.

In the main, these drawbacks are due to the perceived market of the tools, which is the
development of a published schema. With a paper copy of a schema, navigation amongst multiple
views of asingle entity is much more difficult to achieve. Though all the tools allow EXPRESS to
be generated from the graphical notation (e.g., EXPRESS-G or NIAM), no connection is
maintained between the graphical schema definition and the textual equivalent. This hinders a
cyclic design process, as any additional specification in the textual form islost when anew version
is generated from the graphical representation. The XP-IDEF and XP-XPRESS tools from CSTB
in France are the only tools in this area which maintain correspondences between textual and
graphical definitions. This is achieved by generating the graphical views from the textual
definition. However, this limits all graphical views to hierarchical decompositions of the textual

26

schema, rather than allowing predefined views of portions of the schema.

In the integrated software development research community, more sophisticated modelling
environments are being developed. Integrated software devel opment environments (ISDES) which
allow multiple overlapping graphical and textual views of a program have been available for many
years (PECAN, Reiss 1985; Dora, Ratcliff et al. 1992; MViews, Grundy 1993; Meyers 1991).
However, these tools are usually tied very closely to a particular programming language (e.g.,
Pascal for PECAN or Snart with SPE in MViews). This eases the compilation and testing
requirements of such environments in comparison to abstract modelling languages (e.g.,
EXPRESS which has no direct mapping to any implementation language, and has constructs
which can not be directly implemented in many popular languages, like C++). Recent advancesin
these environments (Grundy and Venable 1995) enable multiple modelling notations (e.g., EER
and OOA/D) to be utilised in the same | SDE, and maintains consistency between overlapping areas
modelled by the two different notations as well as between the multiple overlapping views within
each notation.

technical_system-entity attributes

o
e)
id_name iz_used_by building 8 [1:7]
bhaz_parts_technical_conpohent spnce_technical_conponent|
spaceb

E[I=————= technical_system-Entity Definition E—EEI‘”“‘
Jtupdates_start(60).

updates_end. */ I

INTITY technical_system
SUPERTYPE OF (OHEOF (lighting_system, district_heating_system, hw_hs_storage,
hw_bs_generator, hw_hs_emission, hw_hs_distribution, hw_hs_control, dhw_storage_system,
dbw_generation_system, dhw_emiszsion_system, dhw_distribution_system, dhw_control_system,
ac_control_system, ac_distribution_system, ac_emission_system, ac_generation_system,
ventilation_control_system, ventilation_distribution_system, ventilation_emission_system,
ventilation_generation_system));

satisfies : SIT OF technical_function ;

bhas_parts_technical_conponent : technical_component

bhaz_parts_space_technical_component : space_technical_component ;

iz_used_for : 3ET OF space_function ;

«]

iz_used_by_space : 3ET OF space ;
bhas_efficiency : efficiency ;
iz_used_by _building : 3ET [1:7] OF building ;
system_type : STRING ;
maximum_power : REAL ;
id_name : STRING ;
UNIQUE
id_name ;
IND_ENTITY ;

Figure 2.1 EXPRESS and EXPRESS-G views in the EPE modelling environment

2.2.6 Approach to a schema modelling environment

To be useable in the domain chosen for this thesis (i.e., A/E/C), the proposed schema modelling
environment needs to support the EXPRESS and EXPRESS-G notations which are used in the
development of the majority of schemas, but must provide much greater functionality than current
commercial and research tools in the area, equalling that of ISDEs. This includes support for
multiple overlapping graphical and textual views of the schema along with global consistency
management, documentation procedures and powerful navigation features. The developed

27

environment (EPE) achieves all these goals, utilising the MViews system (Grundy 1993) and
specialising it for EXPRESS and EXPRESS-G notations (see Figure 2.1).

Though only the EXPRESS and EXPRESS-G notations were implemented in EPE it is capabl e of
extension to further modelling languages (e.g., Snart, NIAM, ER, OOA/D) due to the open
architecture of the MViews system (EPE is currently capable of manipulating Snart models, but
not modelling with the Snart formalisms). The full requirements and capabilities of the EPE
system are discussed in Chapter 3.

2.3 Inter-schema Relationship Modelling

Specifying the relationships between entitiesin aDT schemaand the IDM is currently performed
either by actors from the DT development teams who wish to see their DT used in a particular
integrated design system, or by integrated design system devel opers who want to show the utility
of their system with links to as many design tools as possible. Currently, there is no formal
modelling of this stage of the integrated design system development, and mappings are hand-
coded for particular implementations. There are also no tools available to support the devel opment
of mappings between schemas. Thisis slowly changing as the benefits of modelling this stage of
the development become more obvious. There are three possible scenarios envisaged for the
specification of relationships between schemas.

. During the development of the IDM, the schema modellers for the IDM work in
collaboration with the schema modellers of individual DT's. In this scenario the DT
modellers specify a mapping from their DT schemato the IDM to help define the structures
and attributes that are required in the IDM. This also guarantees that the IDM provides for
all the data needs of their particular DT.

. After the development of the initial integrated design system anew DT isadded, in which
case the DT schema modeller specifies a mapping between the current IDM and their DT
schema. If the IDM schema is comprehensive then no changes should be necessary to the
IDM. If changes are required they can be passed through to the IDM modellers to handle.

. When the integrated design system is being used for a project, a new view of the datain
the IDM may be requested by an actor. In this scenario either the actor, or specialised
support personnel, will define a mapping from the IDM schema to the schema of the view
required by the actor. Thistype of mapping has no possible effect on the IDM and does not
involve modellers of either the IDM or DT.

28

2.3.1 Requirements of an inter-schema relationship definition

language and modelling environment

To be useful in the development of an integrated design system, the language and modelling

environment for the specification of relationships between schemas must offer the following

fecilities:

Mapping specification language: no mapping languages exist which allow a general high-level
specification of correspondences between two schemas to be specified. However, in the
same way that schema modelling notations are required which are independent of afinal
implementation, mapping modelling notations are required which are independent of their
final implementation. To be easily understood and used by actorsinvolved with IDM and
DT schema development the mapping notation needs to be ahigh-level declarative language
(i.e., leading to small definitions) rather than alow-level procedural language (i.e., leading
to verbose definitions). Given the range of schema modelling languages used by actors the
mapping notation should not be aimed at complementing a single schema modelling
language. It should instead aim to encompass the generic facilities required in mapping in
general.

Links to schema development environments: there is a close dependency between schemas and the
definition of mappings between them. A mapping modeller needs to be informed of all
changes a schema modeller makes to the schemas referenced in their mapping
specification. Conversely, the schema modeller needs to be informed of all modifications
needed in their schema to meet the requirements of the mapping specification from
individual DT’s which have information requirements not met in the current IDM
structures.

Consistency and negotiation: though the definition of a mapping is only likely to involve one or
two actors conversant with the schemas being mapped between, there is a strong
requirement for them to remain consistent with each other aswell as with the schemas the
mappings reference. As new mapping notations are developed, it is likely that mapping
portions will be specified in different languages and in views of varying levels of
generality. These will need to be kept consistent with each other. For similar reasons to
schema modelling (Section 2.2.1) it isimperative to ensure that al modellers are aware of
recent changes to the mapping specification and that they can be certain that they are
working on the most up-to-date version, and that conflict resolution strategies are
provided.

Documentation and navigation: the mapping specification details the transformation through which
data is moved between models. The reasons for using particular transformations and the
perceived constraints being addressed by each mapping need to be readily accessible by
those debugging or validating the mappings at a later stage. The modelling environment
should help to document all reasons for the mapping being specified, as well as points
where modifications are made to the schemas being mapped between. Thisincludestracing
the modeller responsible for particular mappings, the reasons for individual or mass

29

changes, and offering documentation views to complement the mapping views. The
modelling environment al so needs to facilitate navigation through the mapping views, both
to al variants which perform mappings on the same types of objects (e.g., to check for
total coverage of the specified mappings) as well as to schema views for the various
entitiesin the mapping (e.g., to check the types of attributes being mapped between).

2.3.2 Related inter-schema relationship modelling languages

Until very recently no general purpose mapping notations were available. However, with the
development of the 1SO-STEP schemas, the need for mapping specifications has been recognised
and new notations developed. Prior to this, relevant formal work has concentrated on relational
database views and schema integration (which are analogous to the mapping problem). To fit with
the formal grounding of relational databases, these languages have provided very restricted
capabilities, but ones which guarantee various properties of the final system (e.g., that al data can
be mapped in both directions under all conditions). Relational database views (Ullman 1982; van
der Lans 1988) can define arbitrarily complicated mappings as long as they are unidirectional.
Bidirectional views, however, can only be described with a severely restricted set of relational
operators (Banchilhon and Spyratos 1981; Dayal and Bernstein 1982; van der Lans 1988;
Harrison and Dietrich 1994). Schema integration and heterogeneous database systems (Batini and
Lenzerini 1984, Batini et al. 1986; Navathe et al. 1986; Motro 1987; Bright et al. 1990; Kim and
Seo 1991; Qutaishat et al. 1992) implicitly allow bidirectional views between schemas or
databases. However, to achieve this result, they restrict the range of operators allowed to merge
the schemas. This greatly reduces the number of schemas that can be integrated, and entails that
semantic mismatches in schemas have to be resolved (by modifying the origina schema) before a
mapping can be attempted. Thisis not a viable approach where existing tools with fixed schema
structures exist.

Research outside of the database area comes from various sources, mapping being a general
problem in al computer science domains. Garlan (1986) describes a system for integrated
programming environments based on the ability to define a type conversion. Lee and Malone
(1990) describe a scheme for communication among groups with different type hierarchies with
specific reference to a mail/message system. These are similar to the approach taken by Eastman et
al. (1995) in EDM-2, where mappings are assumed to traverse a hierarchy in a type lattice.
However, many mappings can not be achieved by traversing a type lattice, yet may still be
described through functional or procedural code. The following research systems allow
sophisticated views to be defined in their respective domains. However, they only allow
unidirectional mappings from a single specification, and provide no high-level language for the
final specification of the mappings. Views for objects in OO-environments are discussed in
Hailpern and Ossher (1990). The KIF (Knowledge Interchange Format) allows agents to map
between different knowledge representations (Genesereth and Fikes 1992; Khedro et al. 1994).
Views can aso be specified in visual programming environments (Ambler and Burnett 1989, and

30

see MViews, Grundy and Hosking 1993b). Constraint-based systems are one of the only domains
which provide a notation for bidirectional views of information with automated consistency
(Bowen and Bahler 1991, 1992; Mugridge et al. 1995; Eastman et al. 1995). While these
languages provide most of the structures required to map between different schemas, they were
developed mindful of control structures which are not suitable for a general integrated design
system. Hence they tend to be weak in some specification areas required by integrated design
systems, namely the definition of conditions upon which sets of constraints can be used, and
default values prior to application of constraints. Constraint systems also tend to assume al data
and tools are present at all times, as well as being constructed in the same devel opment language,
in contrast to an IBDS where whole tools are connected and disconnected over time and exist and
operate independently. Constraint systems therefore tend to model correspondences as though a
single system isin existence.

In the A/E/C domains several integrated design systems have provided for mappings between their
schemas (Gielingh 1988; Willems 1988; ESP, Clarke et a. 1989; L uiten and Tolman 1992; Wong
et a. 1992; ATLAS, Greening and Edwards 1995 and ATLAS 1993; COMBINE, Augenbroe
1995a and 1995b; COMBI, Scherer 1995 and COMBI 1995; CliMsteel, Watson and Crowley
1995 and CIMsteel 1995). However, al of these systems have opted for mappings defined in their
implementation languages without any forma modelling of what is required to be mapped. Only a
single development in STEP has formally examined the unification of models. SUMM (Semantic
Unification of Meta-Models, Fulton et al. 1992) provides a notation for describing the semantics
of schemas so they can be integrated. It does not, however, lead to a methodology to map between
the integrated schemas. As noted previoudly, the work in ISO-STEP has highlighted a requirement
for mappings between schemas, and a plethora of languages have been proposed to meet this
challenge (Transformr, Clark 1992; EXPRESS-M, Bailey 1994; EXPRESS-V, Hardwick et al.
1994, Hardwick 1994; EXPRESS-C, Staub et al. 1994; Operation Mapping, Bijnen 1994; XP-
RULE, Zarli 1995). The | SO-STEP committees have now decided to create a standard mapping
language for STEP development (EXPRESS-X, Wen et a. 1996) which pulls together the best
(and worst) of the EXPRESS-V and EXPRESS-M languages. These languages range from very
low-level specification (almost at the C++ level) through to partially declarative in style. They are
all unidirectional in their mapping specification (though EXPRESS-V allows both mappings to be
specified in the same definition), which misses the main benefit that these languages could provide
in defining bidirectional mappings between overlapping schemas.

2.3.3 Related inter-schema relationship modelling environments

Incredibly, given the size and complexity of mappings defined with the range of mapping
languages and environments described in Sections 2.3.2 and 2.3.3, there are almost no
environments available to specify mappings. It is assumed that mapping developers will utilise
standard text editors to define the mapping, managing all aspects of consistency by themselves.
The only tools provided are post-processors which check the mapping specification against

31

schema definitions when the mapping is compiled into an internal form for the mapping
implementation. The only exception is Operation Mapping (Bijnen 1994) which provides a
hierarchical navigation system to select classes and attributes which are to be utilised in atextually
specified mapping. This is a minimalist environment providing almost no benefit to mappers
except aguarantee that correct names and paths are used in the mapping specification.

2.3.4 Approach to an inter-schema relationship modelling language

A new high-level declarative mapping language, VML (View Mapping Language), was devel oped
for this project and is described in Chapter 5. A sample mapping can be seen in Figure 2.2. VML
has the full expressive ability found in constraint languages with equational, functional and
procedural specifications of mapping between attributes. However, VML also incorporates
specific notions of the conditions under which a mapping can be applied and initial values for
newly created objects along with the mapping specification. VML isimplicitly bidirectional with
explicit definitions of the schemas being mapped between to support independent tool-based
mappings. A unique feature of the language is its ability to specify method-triggered mappings.
This allows mappings between object-oriented systems that can lead to a more interactive
integrated design system, for example, invoking functionality in a second tool based upon a user
specified action in aprimary tool.

dHupdates start(g). 4
updates end. */

inter_clas=([trombe_wall], [trombe_wall , trombe type],
invariants(trombe_wall ftrombe_type = trombe_type name],
equivalences{height = height

width = width,

Jlazing area = glazing area,

vent _area = vent_area,

type = trombe_type,

perf ratio = perf ratiao)

=
2l

Figure 2.2_Example VML textual specification

2.3.5 Approach to an inter-schema relationship modelling

environment

With asimilar reasoning as for the modelling environment developed in Section 2.2.6 for schema
models, the mapping modelling environment had to provide at least the same functionality as that
found in ISDEs in computer science. It also needed to provide a tight coupling between schemas
and the developing mapping. The VPE (VML Programming Environment), as described in
Chapter 5, provides multiple graphical and textual views of mappings, similar to those described
for EPE. VPE aso manages the two schema definitions and verifies mappings being described

32

between the two schemas as they are developed. In agraphical view (see Figure 2.3) it provides a
wiring mechanism to specify mapping relationships, whilst in the textual view (Figure 2.2) the full
VML specification is available. Navigation facilities allow similar mappings and partia viewsto be
identified. Visualisation functions allow the full class and mapping icons to be viewed, to identify
features which have, or have not, been mapped. The developed V PE system utilised the MViews
product (Grundy 1993) specialising it for the requirements of VML.

E[I==————— Planes Inter Class
- —invariants — ~ -
| idm_plane | equivaTences— pf_plans_object]
name = = = planename
axis =3 = &= axis
offset =3 = = offset
@view_plane £ = = | @select

—initialisers —

=1l
Figure 2.3 Graphical mapping specification in VPE

2.4 Design Tool Environment Modelling

Though the schemas of Section 2.2.3 define the data structures used by particular design tools and
provide a definition of the constraints on data models which can be used by the design tools, they
do not specify in what form the data is used by the design tool. The inter-schema relationships of
Section 2.3 describe how data from models of differing semantics can be mapped, but not the
syntax utilised by the design tools. It also does not describe how to invoke the design tool with the
required data, or how to recognise when the design tool has completed its tasks. All that can be
assumed about the data derived from the information modelling described in the previous sections
is that correct datais held for the design tool, but this datais still held in some internal format
foreign to the design tool (e.g., an object-oriented database).

To make the final step from internal data models to the form required by the design tools, the
design tool input and output formats must be modelled as well as its invocation requirements and
methods. Thistask has not been tackled in thisthesis. However, it is clear that an ISDE of similar
capacity to those referenced in Sections 2.2 and 2.3 could be developed from a general purpose
devel opment environment (e.g., MViews).

2.4.1 Requirements for design tool environment modelling
To capture the information required to manage individual design tools, the design tool environment
model must be capable of specifying the following aspects of the design tool:

33

Input data format: the input of design tools is structured in very specific formats. This has to be
accurately recreated to invoke a design tool with selected data from an IDM. The formats
will include fixed format object per line data-files (from the FORTRAN punch-card era),
data-files with headers before each section of objects, and data-files which allow free
format data specification. The specification of the input data format must also specify the
correspondence between the design tool model, as seen in the schema development
environment, and the location of datain the input data-file. For design tools which require
interactive input, the format must define the format of the data to be passed through, and
also define how to select the requested data from the design tool model (e.g., a query
based on the question being asked by the design tool). Where the design tool input data
schema can change (e.g., a new version of the design tool), changes in the input data
format must be passed through to the schemain the schema devel opment environment and
reflected directly in the model seen in that tool.

Invocation parameters. the majority of design tools need to be invoked with parameters detailing
names of files with input data and often what type of simulation to run. This invocation
data may specify input data-file names, the desired level of accuracy of the final result,
standard library files used when searching for material properties, etc. The source of this
data must be specified, e.g., user specified before invocation of the design tool, or default
values based on the type of design function the tool is being used for.

Invocation method: in most operating systems it is possible to schedule a design tool to start
operating, though the manner of starting tools is very different in various operating
systems. With this specification an integrated design system can automatically operate tools
which require no operator intervention. A model of invocation specifies the environment
the design tool residesin (e.g., unix, VAX, Macintosh, MS-DOS, Windows) and how the
parameters and design tools must be arranged to start the design tool. It must also define
the commands to start the design tool, e.g., the name of the design tool and flags used.

Termination detection: for an integrated design system to schedule and operate a range of design
tools it must be able to determine when they are working and when they have completed
their operations. A model of termination specifies how the integrated design system detects
the termination of adesign tool, or the completion of its design function. This specification
must cover cases from those design tools which start to perform a design function and end
when it is done, through to those which are continually running and whose design function
is completed without exiting the design tool.

Output data format: to be able to retrieve results from a design tool the integrated design system
must be able to process the output of design tools. The range of textual output data-filesis
the same as those of input data-files (I assume that all graphical outputs will have a
corresponding textual output). This specification must define how the output dataistied to
the data supplied as input to the design tool, and it must define the correspondences to the
output design tool model, as seen in the schema development environment. For design
tools which are interactive the format must identify where the resultant data resides

34

amongst the prompts and queries of the interaction. Where the design tool output data
schema can change (e.g., a new version of the design tool), changes in the output data
format must be passed through to the schema in the schema devel opment environment and
reflected directly in the model seenin that tool.

2.4.2 Related design tool environment modelling work

The author has previously defined simple notations for interfacing design tools with very rigidly
structured input and output data-files (Amor 1991). These methods were further augmented to
provide a more flexible data format description based on DCGs (Williams 1990). In Pascoe (1994)
amethodology is presented for representing GI S design tool data states including physical forms
and location along with transformations to move between states. However, while this gives a
method of representing the transformations that must take place to interface between various tools,
it does not address representations necessary for automatic implementation of each transformation.
Thisimplementation is currently performed by hand-coded tools.

The above methods go some of the way towards what is required in the modelling of the design
tool environment, but only for a limited set of design tools. Interactive design tools (e.g.,
knowledge-based systems) can not be handled by any of the methods described above. In Amor
(1991) it was argued that defining an interface to these design tools could require as much effort as
defining the design tool itself. These methods also only define the data requirements, they do not
attempt to define the invocation parameters and methods required to start a design tool or to
determine when the design tool terminates. Definition of these environmental parameters will be
operating-system dependant and may prove to be impossible to define generically. However, the
‘Tool Encapsulation Specification’” project (TES 1995) does provide a standardised notation to
describe tool invocation parameters and methods so that a TES system on any platform would be
capable of determining how to run a particular tool. TES aso provides for descriptions of methods
to suspend tool execution or determine atool’ s completion status.

2.4.3 Approach to a design tool environment modelling system

The modelling of the design tool environment is not attempted in this thesis as there is an emerging
standard (TES) which looks as though it will provide what is required. TES has currently not been
developed enough to provide a modelling system to support it. However, when a design tool
environment modelling system is created as part of the project development environment, it will
have to provide at least the same functionality as that found in ISDEsin computer science. It will
also need to provide atight coupling between design function specification (which defines the
design tool used to perform the function) in the process model and a design tool’s data
requirements. As with the previous modelling systems, an environment built on top of a system
such as MViews (Grundy 1993) would be able to provide the functionality and integration
required to bring these models into the whol e project specification.

35

2.5 Project Definition

As described in Section 1.4 the project model defines how an integrated design system will be
used for a project. It provides a method to describe the users of the system, the roles they play,
and the tools they will utilise to fulfil those roles. It also allows the definition of flow of control for
project management purposes, allowing necessary process flows be defined, and enabling the
determination of points at which concurrent design can take place. It also provides a tool to the
actors to manage their design roles to ensure timely completion and hand-over of their work.

2.5.1 Requirements for a project definition notation and development

environment

To be of utility in the development of an integrated design system the modelling environment for

the project definition must offer the following facilities:

Project definition language: project managers need to specify the designers working on a project
and the activities they need to carry out in their contribution to a project. Project managers
also need to keep a constant overview of the activities completed in a project and those
which are next scheduled for completion. To achieve thisin a computerised environment
project managers will require a notation to define the actors undertaking a particular
project. The notation will also need to define the roles actors play in a project and the
possible, or necessary, paths between the design functions that need to be completed to
fulfil the design roles.

Links to schema development environments and design tool environment: flow of control
specifications are tied to particular design tools which must be controlled by the
implemented integrated design system. To achieve this it must know about the input and
output schemas for all design tools, and actors, to be able to tie down the responsibilities
of actors in a project. To be able to control the design tools associated with particular
design functions it must also be able to link with the design tool environment which details
the invocation procedure and termination detection for the design tool.

Documentation and navigation: the project control system is the most visible aspect of the
integrated design system. To justify flows of control in the IBDS the project definition
environment should help to document all reasons for the paths between design functions
being specified. This includes tracing the modeller responsible for particular paths or
design function specifications. The modelling environment also needs to facilitate
navigation through the project definition views, to show all places that a particular design
function could be performed, and by whom, and to provide some simulation of the flows
to ensure that particular configurations are useable, or possible to negotiate.

36

2.5.2 Related project definition notation work

The majority of the project definition notations used to date have been activity modelling
formalisms which are used in a specific restricted manner. For example, IDEFO (Mayer 1990)
activity models are used to model process flows by treating the relative horizontal positioning of
activity icons as presupposing atemporal relationship. While this view of activity diagrams allows
some forms of process flow to be defined it is very poor when attempting to handle many types of
flows, e.g., recursive flows, concurrent flows, and those which are conditional on previous flow
states. Thisis similar to the modelling capability of data flow, state diagrams, and Gantt charts
which are generally linear in nature. Pert charts provide the majority of modelling behaviour
required except that recursive flows are difficult to model and flows are very deterministic, which
isfine for highly structured projects, but not all projects fall into this category. Many notations
have been derived from the Petri Net formalism (Petri 1976, Jensen 1990). These notations range
from IDEF3 (Mayer et al. 1992), which allows process flows to be described with AND and OR
connections between states, through to VPL (Swenson 1993) which additionally allows specified
conditions or constraints to help define paths in the work-flow. IDEF3 allows looping and
recursive behaviour, but the semantics of looping with AND and OR conditions is not specified.
The formalism is aso developed independently of the actors involved in the flows which removes
the possibility of defining the links to organisational requirements. In contrast, VPL incorporates
notions of actors associated with process flows. A previous review of process modelling notations
(Curtis et al. 1992) determined that a complete notation needs to specify functional, behavioral,
organizational and informational requirements. This full range of requirements had not, at that
stage, been incorporated into a single notation. However, during the COMBINEZ2 project
(Augenbroe 1995a and 1995b) a two part modelling notation was developed (CombiNets, TU
Delft and Amor 1993), based around Petri Nets, which models the four requirements of Curtis et
al. (1992) to some extent.

2.5.3 Related project definition environment work

The specification of processes in a project has been part of the project management aspect of
projects well before computers appeared on the scene. Following the paper-based process
management many commercial computer tools have been developed to support the specification of
flows, and in some of these tools to help analyse the practicality of the prescribed flows
(PowerProject, ASTA 1996; Process Charter, Scitor 1995). These tools offer a very simple
interface to define and refine what are basically linear process flows. Associated with the more
sophisticated process modelling formalisms are tools of correspondingly greater sophistication. In
COMBINE a CombiNet tool is offered through the CGE environment (Configurable Graphical
Editor, Vogel 1991), this provides a simple hierarchical view specification of process flows and
utilising design functions and actors. IDEF3 tools (ProSim, KBSl 1995; System Architect,
Popkin 1996) provide simple single view specifications of process flows, but with linksto IDEFO
activity and IDEF1X data models. VPL tools (Swenson 1993; Serendipity, Grundy 1996) provide

37

more sophisticated multiple view specification environments, but without the links to associated
models.

2.5.4 Approach to a project definition notation

An extension of the CombiNet formalism is used to define process flows in this thesis (CombiNet
was devel oped by the author whilst aguest at TU Delft for six months). This formalism takes two
parts. Thefirst part allows the specification of actors, their design rolesin a project, and the design
functions necessary to complete the various design roles. The second part is based around the Petri
Net formalism (though the semantics are markedly different) and defines the possible flows
between the design functions as specified in the first part of the formalism. The formalism
Incorporates aggregate process icons to represent complete sub-flows and incorporates actor
overlaysto alow different actors to be responsible for the same design functionsin different parts
of the process (see Figure 2.4 for an example of a portion of a process flow specification).

7

design_and_update

l—— specify_requirements ,i design_building_layout
2 3

client architect

{_ building_design

{

Figure 2.4 Project flow of control definition

2.5.5 Approach to a project definition environment

The CGE tool (Vogel 1991) was utilised in this thesis to implement the environment for defining
process flows in a project. The choice of thistool was initially determined by the requirement in
the COMBINE project for all modelling tools to be developed in CGE, which was available to all
partners. Given the author’s effort in defining the initial formalism in this tool, it was not felt
necessary to re-implement the extended formalism in another environment. The CGE
implementation of the formalism provides links between the actor and role specification, and the
process flow specification. Though only single views of a process flow are supported during the
specification, the tool provides hyper-linking between aggregate flows and their complete
definition, allowing easy navigation around large process flow specifications.

38

2.6 Project Development Environment Summary

This chapter has described arange of individual modelling environments and modelling paradigms
required to implement a project devel opment environment. The individual environments have to
model schemas, mappings between schemas, design tool parameters and project definitions. It is
shown that these different models are all inter-related, so the total project development
environment must provide for relevant communication between the different modelling
environments. It is also shown that the individual modelling environments have many
reguirements in common. These include the ability to provide multiple views of information both
textually and graphically and being able to maintain the consistency of the global model under
changes in any view. The MViews development environment (Grundy 1993) is introduced and,
through environment implementations, shown to provide the features required to implement the
individual modelling environments as well as providing some of the interaction required between
environments.

Two modelling environments, developed in this thesis for schemas and mappings between
schemas, are described in detail in Chapters 3 and 6. The requirements for a schema mapping
language are developed in Chapter 4, followed by the view mapping language definition in
Chapter 5. The requirements for a project specification notation and an actual notation are
described in Chapter 7. Taken as a whole these environments and modelling paradigms allow a
full project development environment to be constructed.

39

Chapter 3

Schema Modelling and Developmentl

The definition of the schemafor a particular domain isvital to the success of computerised projects
in the A/E/C arena, whether it be the smallest application or the largest SO standard. In all except
the smallest of projects, schema development is carried out by a group of domain experts, each
contributing to the part of the schema representing their areas of expertise. Development of the
schema needs to be coordinated by one or more individuals who must ensure that the current
schema version is passed through to all developers and that all input to the final schema is
considered and acted upon in some systematic manner. This introduces a requirement for
coordinated management and documentation of the schema development.

3.1 Introduction

The whole schema devel opment process, unless closely managed, is open to sources of error and
conflict. The current version of a schema must be propagated to all devel opers so that they are all
considering the same schema. Maodifications that are made from one version of a schemato the
next need to be documented so that differences between versions are easy to identify (especially
for very large schemas). Change requests and additions to schemas sent by developers all need to
be documented and the action taken on them recorded so that developers know that their
suggestions have been heard, and, if rejected, they know the reasoning behind the rejection.
Multiple conflicting requirements between devel opers need to be negotiated to afinal settlement
which satisfies the majority of developers. Electronic management and design tools have the
potential to solve all of these problems.

1 Work presented in this chapter has been published in Amor et al. 1995.
40

However, existing software tools to help users through this process are limited in the scope of the
problem that they can tackle (for example, see Vogel 1991; Luijten 1992; Poyet et al. 1990; Boyle
and Watson 1993). Some tools assist in the development of a schema, while others check it for
consistency, trandate it to an implementation language, or allow an instance of a model to be
perused. These tools do not tackle the problems introduced by multiple developers, and, where
there are multiple tools to handle the process, they do not allow the use al of the tools together in
an interactive and non-deterministic manner. To solve these problems, the author has designed an
integrated modelling and development environment which provides many functionsto usersin a
homogenous environment.

In this chapter the requirements for a modelling environment in a large modelling project are
introduced. The EXPRESS Programming Environment (EPE), which tackles these requirements,
is detailed, and its ability to meet the design requirements of a modelling environment is
demonstrated.

3.1.1 Requirements for schema development

While the introduction above concentrates on requirements for the development of an IDM, many
other schemas also need to be modelled in the development of an integrated design system, as
discussed in Section 2.2 of thisthesis. The development of DT and user schemas are tasks which
can be of asimilar size and complexity to the development of the IDM. They can require asimilar
number of domain experts to implement, and produce the same set of problems as discussed for
the IDM schema development. Developing schemas for DTs and users introduces an added
dimension to the management problems specified for the IDM as there is an association between
these schemas and the IDM. Therefore, changes in these schemas (particularly in the user
schemas) must be matched to the portions of the IDM that were influenced by the original schema
specification.

In any large scale multi-partner schema development project there are a number of modelling
support issues which need to be dealt with. For example, COMBINE included the following:

Communication and integration of DT schemas: the development of the building schema in
COMBINE is based on a cyclic devel opment process where DT teams supply the data view
of their DT in the form of an EXPRESS schema (referred to as an aspect model). These
DT schemas are taken as input by the central IDM development team for constructing a
common integrated schema. This process employs a combination of top-down structuring
and bottom-up expansion of the growing IDM. Resulting drafts of the IDM are
subsequently distributed to the DT teams to inspect and refine. This process of iterative
refinement may continue for many months and during this time all partners concerned in
this process must be kept up to date with the changing schemas.

41

Documentation: during the schema generation process, the communication of schemas and schema
constraints involves an intensive interaction between various teams in the project. All
decisions and justifications for decisions must be permanently documented as they are
made.

Mapping definitions: it is through the definition of the IDM to DT schema mappings that the
consistency and adequacy of the IDM istotally checked by its clients (those who will use
the datain the IDM). The mappings determined by the DT schema teams need to be defined
formally, as these mappings describe the required interface between the DT and the IDM.

Support for multiple modelling paradigms: the modelling paradigms EXPRESS, EXPRESS-G,
NIAM, IDEF1X and IDEFO are well suited to different types of modelling. An ideal
environment for COMBINE would support the specification of a schema using multiple
paradigms.

Support for multiple views:. the integration process is very hard to accomplish systematically, let
alone automate (the required "meta modelling knowledge" is lacking), so it remains a
tedious and non-deterministic process to combine multiple views into one coherent whole.
To support this integration process the modelling environment should provide methods to
enable views to be integrated into a central schema and to document the source of entities
and structures in the integrated schema.

To support these requirements an ideal modelling support environment (M SE) needs mechanisms
for: easy communication of schemas; generation and manipulation of multiple views of a schema
in a variety of formalisms; annotation of the schema with documentation; and flexible update
management to support iterative updates of the schema. Other important features would be support
for the definition of inter-schema mappings and for integration of schemas, although it is
recognised that, owing to the strong creative element in these tasks, automated tools are not, as
yet, achievable. Another important issue is the ability to rapidly prototype aresulting operational
system. M SEs should provide facilities to allow instantiation of schemas to be tested in arun time
environment, e.g., to test mapping specifications and enhance the understanding of the underlying
schema.

3.1.2 Schema specification languages

There is a plethora of languages available for modelling schemas. While there are overlaps
between the expressive ability of these languages, there are also many differences in what can be
expressed, in some cases due to the domain the language was developed for and in others due to
the structure of the language. In the development of schemas the most commonly used languages
fall into one of the following three categories: relational database schema definition, such as ER
(Chen 1976), NIAM (Nijssen and Halpin 1989), IDEF1X (General Electric 1985); object-oriented
schema definition, such as EER (Gogolla 1994), EXPRESS (ISO/TC184 1992); and data flow
definition, such as DFD (Stevens et al. 1974), IDEFO (Mayer 1990). All common modelling
languages have graphical notations for defining schemas, and some languages also have a textual

42

notation.

In the ISO-STEP development there has been great pressure to use a single language in the
development of schemas for the standard. Existing languages were felt not to be powerful or
complete enough for the requirements of the STEP standard, leading to a decision to develop a
custom modelling language. The resultant language, EXPRESS, and its graphical notation,
EXPRESS-G, provide a similar coverage to that offered by other object-oriented specification
languages, athough without all of the standard object-oriented notions, such as class method
definition. Thislack is being rectified in the latest version, EXPRESS-V 2.

Due to the adoption of EXPRESS as the standard language in the development of STEP many
developers and integrated design system researchers have taken on EXPRESS as their modelling
language to maintain easy compatibility with the results of the STEP standard. The problems they
feel that they avoid through the use of EXPRESS are mainly the difficulties of moving schema
information from one modelling language to another without loss of information in the transfer. In
some cases these problems arise due to a mismatch between the modelling capabilities of the
different languages, but in others the problem is due solely to poorly written translators. Due to
this, EXPRESS is being used in alarge number of projects and standardisation efforts faced with
large modelling tasks in domains covered by the STEP standard (for example, 1SO/TC184 1993;
Gielingh and Suhm 1992; ATLAS 1993). Environments for modelling schemas, both commercial
and research developments, are discussed in Section 2.2.1.5.

3.1.3 The EXPRESS and EXPRESS-G languages

A brief introduction to the EXPRESS and EXPRESS-G languages is provided here, to allow
readers unfamiliar with the notation to understand the figures presented in this chapter. Many
aspects of the EXPRESS-G notation are not covered in the following example as they do not
appear in any of the diagramsin this chapter. A full specification of EXPRESS and EXPRESS-G
can be found in the 1SO standard (1SO/TC184 1992). For those interested in comparisons between
graphical notations, the diagram in Figure 3.1 provides the EXPRESS-G view of the same
example in Snart graphical notation presented in Figure 1.3.

Figure 3.1 shows four classes (abstract_parent, childl, child2, and related class). A class (called
an ENTITY in EXPRESS) is represented by a solid-lined rectangle with no other graphical
embellishments. The name of the class appears inside the rectangle, and can be preceded by the
keyword (ABS) to denote an abstract class (see the class abstract_parent). Attributes and
relationships of a class are shown by single thickness lines drawn between a class and the type of
the attribute or relationship. These lines are |abelled with the attribute or relationship name and a
small circle attaches the line to the type definition. For example, the class child2 has attributes att1,
att2, and att3 of type string, real, and integer respectively. The class child2 also has arelationship
to the class related class through the named relationship rel_name. EXPRESS-G also allows

43

aggregating types to be denoted in the diagram, as can be seen for the class child1. The attributes
attl, att2, and att3 are of aggregating types set, bag, and list respectively (denoted by aS B, or L
after the attribute name). As can be seen in Figure 3.1, these aggregated types can also show their
bounds, if they are specified. The attribute att1 has no specified bounds on the set, att2 has alower
bound of 1 for the bag but no upper bound and the list for att3 is constrained to be between 1 and
10 values. Inheritance between classes is shown with athick line connecting two classes. Thisline
terminates with a circle at the connection with the child class. In Figure 3.1 child1 and child2 both
inherit from abstract_parent. Complex inheritance relationships can be defined in EXPRESS
though these are not shown in any of the diagrams in this chapter. However, due to this potential
complexity, the EXPRESS class descriptions always show both supertypes and subtypes for each
class.

[AEZ] =mbstrmot_pnrent i

childl

ntt2 B [1:7]

ated L [1:10]

related_class

Figure 3.1 An example of the EXPRESS-G notation

3.2 Schema Development in the EPE Environment

The EXPRESS Programming Environment (EPE) has been engineered to support the modelling
requirements detailed above for schema evolution and management. In EPE this equates to
multiple graphical and textual views of varying degrees of complexity at different stages of the
project. During analysis, simple graphical views, which embody high level concepts and
relationships between them, are mapped out and manipulated. During early design, these simple
graphical representations are fleshed out: constraints specified; attributes of entities added; and
inheritance hierarchies fully specified. During late design, more detailed information becomes

44

available which is often best manipulated in free form textual representations of portions of the
schema. During implementation, the developed schema is compiled, checked for syntax errors,
and detailed models are loaded and checked for consistency. Throughout the iteration of these
stages and during maintenance, modifications can be made at any of the levels described above and
must be propagated to all dependent stages. EPE provides integrated support for each of these
activities, using the MViews consistency mechanism to provide the required inter-view
consistency.

3.2.1 Functionality offered by the EPE environment

In this section a description is provided of the EPE tools and view types available at each stage of
development, and the methods of keeping views consistent with one another is described. These
are illustrated using an example from the initial IDM of COMBINE. The COMBINE IDM
comprises around 400 entities and 600 relationships; only a small portion, associated with
technical systems, is shown here. The placement of technical systems in relationship to the
building classin the IDM is shown in Figure 3.2.

building_fabric_system|n l-l
building_geonetriy |-y -|-I
e s ot o |

building_locnl_site fmy

Bmz_buSlding_geometry bui lding uge
ns_Byilding_loonl_site Fuile_in
buildi tial t
uilding_spatinl_system "'I
N .-_.‘_ ; SO BT ET
- 2 hit
construction_prajeat | 1z _p . -
- o |
&_fungtional_riew of -
rane
: iz_chaoyacterized by 3
functionnl_sstem parisd .I

uses 5
storel nunber

et]
technical_system |y -I
ofinteger ||

Figure 3.2 Use of technical_system in the COMBINE IDM

3.2.1.1 Analysis

Figure 3.3 shows the types of graphical views commonly used at the analysis stage. Two analysis
views show portions of the inheritance tree for the technical _system entity (those entities dealing
with ventilation and air conditioning) specified using EXPRESS-G (thick lines represent

45

inheritance links in EXPRESS-G). Each view is constructed by direct manipulation using tools
selected from atool palette, to the left of the view.

The user is free to create as many views as is desired, and may freely lay out and populate each
view, either with new information or with information entered into other views. The information
in each view is mapped through to the canonical representation of the schema as the view dataiis
entered, and any similarities or conflicts with the existing data are resolved as it is created. This
ability to construct multiple views permits both general purpose and specialised views to be
constructed. The former may be used to obtain an overview of the system under construction, the
latter to focus on more detailed parts of the system. The proliferation of views means that
navigation tools are needed to quickly access desired information. EPE provides inter-view
navigation using both menu-based search facilities and automatically constructed hypertext links.

technical_system-ac specialisations

AN B
- technical_system
LD

ac_control_system ac_generation_system

ac_distribution_system

nC_emiss ion_sy‘steml

=[=——= technical_system-ventilation specialisations

|vent ilation_generation_system

QO O
ventilation_emission_system | ventilation_distribution_system

Figure 3.3 Two high-level inheritance specifications for technical _system

3.2.1.2 Design

Attributes are often specified at the design stage, as shown for the technical _system example in
Figure 3.4. This can be done, as shown in this figure, with all entitiesin one graphical view, or by
using two or more views. For example, the attributes of basic types may be presented in a separate
view to those which define relationships to other entities, thus adding clarity. Again, there is no
limit to the number of design views that can be constructed, and the hypertext navigation facilities
are available to navigate both between design views, and between analysis and design views. As
in the analysis views, all information in the design view of Figure 3.4 is mapped back to the
canonical representation of the schema and all dependent views made consistent with its contents.

46

= technical_system-entity attributes ="""———————

satisfies 3

Figure 3.4 Design stage specification of attributes of an entity

3.2.1.3 Late design

At the late design stage more detailed information may need to be entered. This necessitates a
textual representation of the entity in the EXPRESS language, as EXPRESS-G represents only a
subset of what can be modelled in EXPRESS. For example, UNIQUE clauses, WHERE clauses,
rules, and type information have no EXPRESS-G representation. Figure 3.5 shows an EXPRESS
textual view which has been generated from the canonical information on the entity. This view
encompasses al information found in all the graphical views which define the technical _system
entity, such as the information in Figures 3.2 and 3.3. This textual view is editable, with the user
free to make changesto any parts of the textual description in the view. Modified textual views are
parsed and compiled to ensure they represent valid EXPRESS descriptions, and their information
passed back to the canonical representation.

technical_system-entity attributes

X e
S(J=—— technical_system-Entity Definition =——=—p15|

TE" /tupdates_start(60) . {}
| Updates_end. ¢/ 1

t

| ENTITY technical_system]
SUPERTYPE OF (OHEOY (lighting_system, district_heating_system, hw_hs_storage,
hw_bhs_generator, hw_hs_emission, hw_bks_distribution, hw_ks_contrel, dhw_storage_system,
dbw_generation_system, dhw_emission_system, dhw_distribution_system, dhw_control_system,
ac_control_system, ac_distribution_system, ac_emission_system, ac_generation_system,
ventilation_control_system, ventilation_distribution_system, ventilation_emission_system,
ventilation_generation_system)); Fystem)

satisfies : SET O technical_function ;

haz_parts_technical_component : technical_component ;

has_parts_space_technical_component : space_technical_component ;

iz_used_for : SIT O space_function ;

iz_used_by_space : 3ET OF space ;

haz_efficiency : efficiency ;

iz_used_by _building : SET OF building ;

system_type : STRING ;

maximam_power : REAL ;

id_name : STRING
END_ENTITY ;

’

L@

Figure 3.5 Textual view derived from graphical views of an entity

47

3.2.1.4 Consistency between views

When changes are made to an EPE view, other views that share information with the updated view
may become inconsistent and must be updated to keep the schema consistent across all views. All
views affected by a change are notified and, in many cases, are automatically modified to reflect
the change. This consistency mechanism works both between views of one phase of development
and between views of different development phases.

As an example, Figure 3.6 shows a modification being made to a graphical design view. The
modification tightens a constraint on an entity's value; the lower bound on the number of valuesin
the SET definition is now known to be 1 and is entered in the definition. The information entered
in this manner is checked as to whether it is valid EXPRESS syntax before being accepted and
allowed to modify the schema being developed. The change is propagated through to the canonical

form of the schema which is updated, then all dependent views are identified and notified of the
change which has been made.

EPE propagates the change to the other affected views in the form of an update record (described
in Section 3.2.2). This record provides a compl ete description of any single change. How views
react upon receipt of an update_record depends on both the view type and the nature of the change.
In the design view the modification updates the graphical representation of the design view
according to the definition of EXPRESS-G syntax, as can be observed in the graphical design
view at the rear of Figure 3.7. The modification is not propagated through to the analysis views,
as the modified attribute is not seen in these high level views. However, the attribute does appear
in the textual late design view and it must be updated to be kept consistent.

technical_system-entity attributes

[] Constrained

X o]
o | [
e id_name /15 used by building $
i bhaz_parts_technical_compohent space_technical_component
=
space_technical_component
Feature name:
|is_used_bg_building |
Feature type: Ln_power
i
ISET [1:?] OF building |
- cfrEAL]
Feature kind: (4 Show Feature
ING
e [haa_)) (CHide] |
) Defined Remap Remoue]
O setect
Cancel
() Enumeration
[J Derived
[Inverse

Figure 3.6 Constraining the cardinality of an attribute at late design stage

technical_system-entity attributes

i e

1z_used_by building 3 [1:7]
m—_ bhaz_parts_technical_conpohent /459nce_technica1_cowponentI
space

S(J=———— technical_system-Entity Definition ===
/*updates_start(60).

update(4). ¥ change attribute is_used by _building type to SET [1:7] OF building
updates_end. */

= %

E INTITY technical_system I
SUPERTYPE OF (ONEOF (lighting_system, district_heating_system, hw_hs_storage,
bw_bs_generator, hw_bs_emiszion, hw_bhs_distribution, hw_hs_control, dhw_storage_system,
dbw_generation_system, dhw_emission_system, dhw_distribution_system, dhw_control_system,
ac_control_system, ac_distribution_system, ac_emission_system, ac_generation_system,
ventilation_control_system, ventilation_distribution_system, ventilation_emission_system,
ventilation_generation_system) J;

satisfies : SET OF technical_function ;

hazs_parts_technical_conmponent : technical_component ;

bhaz_parts_space_technical_component : space_technical_comgonent ;

iz_used_for : 3EIT OF space_function ;

iz_used_by_space : SET OF space ;

bhazs_efficiency : efficiency ;

iz_used_by_building : 3ET OF building ;

system_type : STRING ;

maxirum_power : REAL ;

id_name : STRING ;
UNIQUE

id_name ;
END_ENHTITY ;

Figure 3.7 The propagation of an update record to a dependant textual view

In the EPE system update_records propagated to textual views are not applied automatically,
although many of them could be. Instead the update records are displayed in the view and the user
has control over which updates are applied at which time. As can be seen in Figure 3.7, the
graphical update to the technical _system entity generates an update _record in the entity's textua
view. If the user instructs EPE to apply the update, the resulting view of Figure 3.8 is generated,

where the notification of outstanding updates on this view has been removed, and the attribute
definition has been automatically rewritten.

technical_system-entity attributes

\C

technical_component fny
Ispace b

/tupdates_start(60) .
updates_end. ¢/

iz_used by building 8 [1:7]

space_technical_component |

baz_parts_technical_compohent

technical_system-Entity Definition

ENTITY technical_system
E SUPERTYPE OF (OHEOF (lighting_system, district_heating_system, hw_hs_storage,

hw_bhs_generator, hw_hs_emiszzion, hw_hs_distribution, hw_ks_control, dhw_storage_system,
dbw_generation_system, dhw_emission_system, dhw_distribution_system, dhw_control_system,
ac_control_system, ac_distribution_system, ac_emission_system, ac_generation_system,
wventilation_control_system, ventilation_distribution_system, ventilation_emission_system,
ventilation_generation_system));

satisfies : SET OF technical_function ;

bhaz_parts_technical_component : technical_component ;

bhas_parts_space_technical_component : space_technical_component ;

iz_used_for : 3ET O space_function ;

iz_used_by_space : SET Of space ;

bhaz_efficiency : efficiency ;

iz_used_by_building : SET [1:7] OF building ;

system_type : STRING ;

maxinum_power : REAL ;

id_name : 3TRING
UNIQUE

id_name ;
END_ENTITY ;

grnent

’

Figure 3.8 The automatic application of an update in atextual view

49

This strategy of alowing the user to apply updates to textual views exists to handle the problems
caused by the specification of aconstraint on an attribute or entity in EXPRESS-G. For example,
when the user specifiesthat an attribute is constrained (see the attribute dialogue box in Figure 3.6)
the user is denoting that the attribute takes part in either a unique clause or in a where rule.
However, there is no way in EXPRESS-G to specify which one the attribute takes part in, or in
what form. Therefore, an update of thisform can not be automatically applied to atextual view and
must be manually implemented by the user. The change description thus serves to specify an
inconsistency that requires manual resolution.

3.2.1.5 Documentation

In addition to providing a consistency mechanism between views, update records areretained in a
persistent form in the EPE system. An update _record browser and editor gives the user the ability
to browse the changes that have occurred to an entity in the evolution of the schema and add
further documentation to each update record. In this manner a portion of the documentation of the
history of development of the system is automatically built up as work progresses. Having this
update history on-line also allows system developers to trace back through previous design
decisions while entities are further refined.

technical_system-entity attributes

o]

1. rename entity to technical_system 4
2 . change entity to normal eonent
13 . User Update: change attribute is_used_by_building type to SET nent

technical_system Count: 13
change attribute is_used_by_building type to SET[1 :?] OF building

further constrained allowable cardinality of attribute after discussion
with RWA 22/11/93 x

7]

(Rdd Update] (Delete Update] [History Update | [Cancel |

END_ENTITY ;

el

Figure 3.9 The persistent update _record viewer with documentation facility

Figure 3.9 shows the update record browser displaying alist of changes that have been made to
the technical _system entity based on the update records generated by the changes in various
views. They include arenaming of the entity, changing the entity from an abstract supertype to a
normal entity and the cardinaity constraint imposed on the SET declaration of an attribute. The full
details of the modification to the attribute are displayed in the top window, highlighting the

50

comment field that can be filled in by the system developer.

Other documentation support in EPE includes the ability to create textual documentation views
(accessible via the hypertext navigation facilities) for entities. In such views, the various experts
working on a schema can document the reasoning behind decisions made and other information
relevant to a particular entity and its attributes in a central and managed fashion. A useful feature of
documentation views isthat update records relating to the entity are automatically added as textual
comments to the view as the entity changes (see Figure 3.10 for a documentation view taken at an
early stage of the schema specification).

=[I=———— technical_system-documentation EE
SHupdates _start(bh). 5
updates_end. #*/]
documentationftechnical_svstem).
IE:
The technical svstem entitv provides the top lewvel access point to all
svstems that are likely to be present in a building. This includes all
lighting., electrical, plumbing. HVYAC, etc. in a building.
*/
]
=

Figure 3.10 A textual documentation view

technical_system-entity attributes

\ | cpuiiains|
e
technical_component P

= ilati ialisations

\ Select view to display:

technical_system-Entity Definition ity
technical_system-misc specialisation
technical_system-hw_hs specialisati @I
technical_system-dhw specialisation
technical_system-ac specialisations
technical_system-ventilation speciali
technical_system-entity attributes @

— -

N
G,

Figure 3.11 The view navigator invoked for the technical _system entity

3.2.1.6 View navigation

As can be seen from the preceding example, the EPE modelling environment captures a large
amount of information about a schema. This includes many graphical and textual views specifying
various properties of the schema, entities, and documentation of changes made to the schema. In
large systems this can lead to problems in finding a particular view or detailed information that has

51

been entered. In the EPE environment the views and entities themselves act as a navigation and
search facility for the project. Mouse clicks on graphical view components allow rapid access to
other views containing that component. Figure 3.11 shows an example of this process for the
technical_system entity. After clicking on the technical_systemicon in the graphical view alist of
all the graphical and textual views that index the technical_systemis displayed and the user can
navigate to these views in a hypertext-like fashion.

3.2.2 Using the EPE environment

The EPE system offers two types of display viewsto its users. The initial type of display view isa
graphic view which can contain any EXPRESS-G specification of a schema (see Figure 3.2 for an
example of agraphical view). In the graphical view the user has a palette of tools available, as seen
on the left hand side of the view. These tools offer the following functionality.

@ Thistool is used to specify an entity in agraphical view. Clicking in an empty portion of
the drawing window after selecting this tool will bring up an entity dialogue requesting the
name of the entity and its type (abstract or normal). If anew entity name is specified it will
be added to the canonical representation of the schema. If the name of an existing entity is
specified then the icon will be connected through to the canonical form of that entity. If an
existing entity icon is selected while this tool is current then the name dialogue is retrieved,
allowing the entity information to be modified (any modification will be seenin al views
which reference the entity).

TGE” Thistool is used to specify inheritance between entitiesin agraphical view. To specify an
inheritance link the user clicks on an entity icon which is the super-class and drags to the
entity icon of the entity which inheritsfrom it.

At

This tool allows the specification of attributes for an entity. To describe an attribute the
user clicks in the entity to which the attribute should be attached, and drags out to the
position the attribute icon should occupy. This invokes an attribute dialogue to specify the
name and type information for the attribute (an example of this dialogue is shown in Figure
3.6). If a new attribute name is specified for the entity then it is added to the canonical
representation of the entity. If the name of an existing attribute is specified then theicon is
connected through to the canonical form of the attribute. If an existing attribute is selected
while this tool is current then the attribute dialogue is retrieved, allowing the attribute
information to be modified (any modification is seen in all views which reference the
attribute).

Thistool is used to create a new graphical view of the specified entity. When an entity is
~ selected the user is asked for the name of the view to create and a new graphical window
with the entity will be created. If several entities and attributes are selected when thistool is
used then the user has the option of copying all selected icons to the new window.

52

] Thistool hides an attribute icon, or an inheritance link, or an entity and all its attachments
(i.e., attributes and inheritance connections). The hidden item is not removed from the
canonical representation of the schema, merely hidden in the current graphical view.

ﬁ This tool deletes an attribute, or an inheritance link, or an entity and all its attachments
(i.e., attributes and inheritance connections). The items are removed from the canonical
representation of the schemaaswell asfrom all views which contain the item.

\ Thistool allowsiconsin the graphical view to be selected and repositioned in the current
view. Double clicking on an attribute icon brings up the dialogue for that item. Double
clicking on an entity icon has two functions depending upon where in the icon the double
click occurs. Double clicking on the left hand side of the icon brings up a dialogue listing
al views that this entity is specified in to alow navigation to other views (see Figure
3.11). Double clicking on the right hand side of the icon makes the textual view of the
entity visible (see Figure 3.8).

The second type of view offered is atextual view. Textual views allow free-form textual editing
and manipulation of the canonical definition of entities using EXPRESS notation. Textual views
arere-parsed at the termination of atextual editing stage and all modifications propagated through
to the canonical form of the edited entity.

3.2.3 Implementation of EPE in the MViews framework

EPE is constructed by further specialising SPE, a specialisation of the MViews object-oriented
framework (Grundy 1993; Grundy and Hosking 1993a). This framework provides a set of
abstractions for constructing software development environments that support multiple graphical
and textual views with in-built consistency between views (Grundy and Hosking 1993b). SPE
integrates, in a single environment, toolsto assist in systems analysis, design, implementation and
maintenance of programsin Snart, an object-oriented logic language (Grundy et al. 1994). Other
environments developed using MViews include an ER (Entity-Relationship) modeller for the
database domain, and a graphical forms builder for specifying form layout and semantics for GUI
applications (Grundy and Hosking 1994).

MViews utilises a three-layered architecture to present and maintain multiple views of an
underlying entity (see Figure 3.12). The base layer contains the canonical representation of the
schemabeing developed in the MViews environment. This canonical representation takes the form
of adirected graph of components, representing entities and attributes, connected by some set of
relationships, representing generalisation and containment (in an entity). Viewsin the view layer
provide a subset of the canonical representation in the base layer. A view represents the
information required for a displayed view. Elements in a view need not have a one-to-one
correspondence to elements in the base layer, rather a view relationship provides the connection

53

between view elements and base layer elements. These view relationships handle the mapping of
data from the base layer through to the view layers and vice-versa. View relationships may
aggregate base layer elements to form new elements in a view providing mappings between
elements of any combination of arities. The display layer contains tools which visualise the
elements provided by a single view. The types of tools that can be used in the display layer are:
graphical and textual editing tools which display and allow direct manipulation of elementsin a
view; or external tools which utilise a batch mode access to elements provided through a view.

window-root class =0 drawing_window-Class Definition EEl
K it (7] I
.

wwwwwwww

External
Tool
Display/
External
Layers
I External Interface
e (Data/Event interchange)
class_icon
i \ View
drawing, window Layars
/ ,%(Window
class icon
A \ \ ¥ 4 >
] 7 e N
draNlng_wmdow\ P —
Eloms
Base

window

Layer
a r{,.*@g\
eaiure

Figure 3.12 MViews three-layer multiple view architecture as used in SPE (from Grundy 1994)

In an MViews based system additions, modifications and deletions are initiated from the toolsin
the display layer. The actions initiated by these tools result in the creation of an update record
describing the particular action that was performed. The update record created for an action is
propagated from the display layer to its view in the view layer and down to the base layer
following the links between the layers. From the base layer the update record is propagated to all
connected views to handle, as well asto all connected components in the base view and so onto
their connected views, etc. At each stage in the propagation elements in the system can react to the
update _record to modify their status or ignore the update record. Individual elements can also
propagate the update_record to al connected elements, or stop the propagation.

Figure 3.13 shows an example of the effect of an update in an MViews based application like
EPE. In this example an action is performed by atool in the display layer (1), an update recordis

54

propagated to all dependents of the class icon (2), the view relationship translates the
update record into operations on the class component (3), which in turn generate update records
(4). These update_records are propagated through to all of the dependents of the class (5), the
view relationships trand ate the update _records into operations on componentsin the view layers
(6), and modified view components re-render themselves in the tools in the display layer (7).

7. 7. View
Layers
[less e |
s
\ 3/,
4
~
\5 =
features Base
/ / Ny Layer

Figure 3.13 Change propagation in an MViews environment (from Grundy 1994)

As EXPRESS is a partially object-oriented language it requires almost the same graphical
modelling capabilities as the object-oriented language Snart requires in its integrated software
development environment SPE. It was therefore a natural step to specialise the SPE environment
(Grundy 1993, Grundy and Hosking 1993a) for use with EXPRESS. This specialisation was able
to use most of the same class and feature representations, along with relationships between
modelled objects. Figure 3.14 shows the inheritance hierarchy for the EPE environment, with all
EPE classes prefixed with an ‘exp _’. This structure is very similar to that of SPE, and in fact the
magjority of the SPE code was able to be utilised for the EPE environment. The modifications to the
SPE environment fell into the following categories.

. Rendering modifications: the visual appearance of EXPRESS-G information is quite
different from that of Snart, even though their concepts are closely related. Therefore, all
class and attribute representation code needed to be modified to allow the correct
EXPRESS-G representation. A magjor part of this change was a set of additions to the SPE
system to allow the EXPRESS-G attributes to be correctly handled. In Snart all attributes,
except relationships, are shown inside the class icon. In EXPRESS-G all attributes are
independent icons and therefore must be modelled through a relationship with the class
representation.

ar_vis S ALag I i

i A B T

=
risen s=er] kst

pasen_ kel sdurt

& B LabTucs TaST W

. ——
S g it Lt
- -

[u wantisnshi S— —_—
r] n-_'.-:h_f.-u-llj

A———— 1
g |

[p-_-.l:l:._.:nnnll

LRI LT T IR b

II-IJM‘-Q-I'\-"\. L

A s -

Figure 3.14 Class inheritance for EPE from MViews

. Environment modifications: though the set of operations which can be performed on an
EXPRESS-G diagram are similar to those in Snart, the language used to describe them,
and the information requested from the user, had to be tailored to EXPRESS terminology.
This required changes to toolbox icons in the graphical views, and rewriting of all class
and attribute dialogues.

. EXPRESS language parsing and generation: the underlying representation of information
in the EPE system was in Snart form, as this allowed for compiling and testing of the
defined schemas. Thisrequired all graphical and textual views to be trandated into Snart,
and the underlying canonical form to be trandated from Snart to EXPRESS for textual and
graphical view updates.

. update _record labelling: the range of update records used in SPE was examined and
modified to suit the structure and terminology of EXPRESS.

56

. Class hierarchy management: since EXPRESS maintains both subclass and superclass
links, as distinct from Snart which only specifies subtype relationships, class hierarchy
management was extended to enable bidirectional tracking of updates to class hierarchies

. Removal of method handling: EXPRESS has no notion of methods associated with classes
so all code for handling methods was stripped from the translated SPE system. Though
EXPRESS allows function and procedure specification these are not handled in EPE.

3.2.4 Internal schema representation in EPE

In the EPE environment, an EXPRESS schema has an internal representation of its canonical
form. EPE is based upon SPE, which utilises Snart as its base representation, so all EXPRESS
constructs are translated into Snart definitions in the canonical form. As Snart is an implemented
language this provides the ability to compile EXPRESS schemas and populate the resultant
compiled schemawith datato create models of the domain of the schema.

The amount of the EXPRESS language which is supported in this translation process is limited.
Snart is a full object-oriented language based around Prolog, while EXPRESS is a more
imperative language with a style smilar to C. All entities, inheritance structures, attributes, unique
attribute specifications and some forms of WHERE clauses can be translated to Snart. All
procedures and functions, including WHERE clauses which use procedures and functions, are not
translated to Snart. In effect, this restriction means that a translation to Snart reduces the
EXPRESS definitions in EPE to basic class interfaces with uniqueness and range checking on
attribute values. While thisisamajor reduction in the expressiveness of the original language, this
type of definition formsthe major part of the principal IDMs that have been devel oped to date, and
even covers the mgority of schemasthat have evolved from the STEP standard.

As EXPRESS is trandated into Snart syntax in the canonical form, so must it be translated back
into EXPRESS for use in textual views (see Figure 3.5) or for type definition in the attribute
dialogues (see Figure 3.6). To achieve this the EPE environment contains two translators, one to
translate from Snart to EXPRESS, and the other from EXPRESS to Snart. The EXPRESS to
Snart tranglator isimplemented through the use of the DCG system available in LPA Prolog (LPA
1995) and further described in Appendix F.1. The Snart to EXPRESS translator is totally hand-
coded.

The development of the EXPRESS parser was based on the EXPRESS grammar in the 1SO
standard. However, when the completed parser was being tested, many of the existing 1SO and
EU project schemas failed to parse correctly. This is due to the many changes made to the
EXPRESS language before it became a standard. As there were many changes to the syntax, the
parsers devel oped alongside the EXPRESS language development have allowed for all previous
forms of syntax to be treated as correct. This leads to a situation where, though there is now an
ISO standard for EXPRESS, many modellers write incorrect models due to their recollection of

57

past specifications, and these syntax errors are not picked up by current parsers. Though the EPE
parser may fail to read existing schemas, it does guarantee that all schemas developed in its
environment are correct to the 1 SO standard.

As Snart isthe internal language representing EXPRESS schemas, it is clear that any specification
environment which representsits model in Snart form will be able to be incorporated fully into this
framework. To this extent the SPE environment which allows the specification of Snart schemas
can be used to model schemas which can be used interchangeably with the EXPRESS schemas
from EPE described in this section. Modelling environments which do not produce EXPRESS or
Snart schemas are not precluded from usein this framework, but they will not be able to be tested
interactively during development with the schema devel opment and browsing tools highlighted in
Chapter 9.

3.2.5 Summary of EPE functionality

EPE offers a wide range of functionality for a schema designer. In a single environment the
schema designer has the ability to model at many levels of detail, in both graphical and textual
notations and with automated consistency management between all the views. The main
functionality offered by EPE is:

. provision of multiple overlapping views of portions of a schema

. views ranging from high-level design views through to low level implementation views

. support for both graphical and textual notations

. changes to a schemain one view are seen in all other views containing the structures that
were modified

. automatic maintenance of change documentation which can be augmented by the users

. support for schema navigation with hypertext-like links

3.3 Generic Schema Database Definition

Although a modelling environment must produce EXPRESS or Snart schemas to work fully inside
this development framework, the mapping system (described in Chapters 5 and 10) makes no
assumptions about the nature of the modelling environment or language that a schema was
developed in. The only assumption made by the mapping system is that a schematypeis of either
relational or object-oriented form. To support schemas of either of these forms a generalised
schema specification language (defined in Appendix G) is used to describe schemas developed at
the modelling stage to the mapping system.

The schema specification language works at the atomic level of a schema description. Single
modifications to a schema are recorded in the order they occur, to be able to reconstruct a schema

58

in the same progression as it was developed. The atomic definitions record the previous state of
the schema as well as the change so that individual modifications may be undone to reverse the
effect of amodification. Atomic changes are keyed to aversion number for the schema and schema
version information is defined as part of the database. Versions are represented as a directed
acyclic graph with a single root node. Through the in-order application of all modifications that
represent the chain of versions leading to the required version number, the corresponding schema
can be created.

A schema defined in any notation which can be translated into the format used in the schema
database definition can be used with a View Mapping Language (VML) mapping specification.
Schema databases are used during the VML parsing stage to create a checked schema mapping
with all references validated and ready to be used by a mapping system. Schema databases can
also be modified at the VML parsing stage to incorporate modifications (new entities and
attributes) required by the mapping specification (see Chapter 5).

3.4 Appraisal of Schema Modelling

The EPE system and schema database format create an environment which supports the
development, communication and integration of DT and IDM schemas as well as the
documentation requirements of an integrated modelling environment, as detailed in Section 3.1.1
for COMBINE. EPE supports these requirements in the following manner:

Communication and integration of DT schemas: EPE allows the development of a schema of a
particular domain with total consistency from the earliest stages of the project right through
to the implementation. This consistency is maintained by communicating all changes
through to al views which can possibly see the affected entities. Multiple DT schemas are
supported in this environment, allowing the modeller to develop multiple graphical and
textual representations of a domain during analysis and allowing these to be expanded at
the detailed design stage with new or updated views. These developing schemas, and their
views, are available to all who use the EPE system, allowing DT schemas to be easily
shared between the integration team. Many of these developing DT schemas have
overlapping information and need to be merged with the IDM schema. By developing
multiple associated DT views and one canonical, consistent, representation of the IDM
schema the consistency between the DT schemas and IDM can be maintained (by hand).
The schemas are also utilised to provide hypertext-like navigation facilities around the
various views of related information.

Documentation: EPE meets many documentation needs by tracking all updates made to the schema
and recording them against the entities that were modified. These update records can be
annotated by the user to record justifications and decisions, and provide on-line
documentation for the developing schema. One documentation feature which would be

59

useful, but is not provided, is the ability to group multiple disperse update records to
represent a single update or documentation record. For example, this would record a
session of changes as a single documented change to the schema.

Mapping definitions: these definitions are not considered in the EPE environment, but an
environment to support mapping definitions has been developed and is described in
Chapter 6.

Support for multiple modelling paradigms. EPE provides multiple paradigms as it supports both
the EXPRESS and EXPRESS-G paradigms. Although one is the subset of the other, they
render their information in different styles. The modelling environments devel oped and
used in this project also show that through the use of a generic model of a schema (in this
case in Snart format) multiple modelling tools, in this case EPE and SPE can be used to
work on a single schema. Although Snart is not particularly generic as an underlying
model for schemas, a schema representation language such as that used for the database
representation of schemas would provide such a model on which most schema notations
could be based. Other environments developed from the MViews platform have shown
support for more disparate modelling paradigms through the use of an underlying
representation which subsumes the paradigms used in the different display views (Grundy
and Venable 1995 for OOA/D and EER; Venable and Grundy 1995 for ER and NIAM).

Support for multiple views: although the EPE environment can manipulate multiple independent
schemas, there is no direct support for the specification of correspondences between
schemas as an aid to the devel opment of an integrated schema (i.e., schema integration for
IDM development). Schema integration has previously been performed to a small extent
(see Mugridge and Hosking 1995 for an example of DT schema model integration using
SPE), but this does not illustrate the support that could potentially be offered in such an
environment to perform integration. The difficult problem in supporting schemaintegration
isthe ability to define, track and support the specification of mapping definitions between
various DT schemas in a tool like EPE. Chapter 5 details a first step towards an
environment for defining mappings that relate two schemas together. However, this latter
environment is not yet integrated with the environment that manages the schema, leaving a
semantic gap between the maintenance of information in the various environments. This
problem and the ability to manage concurrent schema development in the MViews, SPE
and EPE environment will be an area of continued research (Amor and Hosking 1993;
Amor and Hosking 1995; Grundy and Venable 1995). A similar, though simpler, problem
to that of supporting multiple views is supporting multiple versions of a schema. The
schema database representation allows for the definition of versions of modelled schemas.
Any version defined in the schema can be recongtituted for use by any application utilising
the schema database, which is of particular use when defining a mapping between versions
of aschema. However, the versioning ability of the schema representation is not supported
in the EPE environment which is the point at which this would be best specified and
managed. Extensions to MViews to support versions would be relatively simple, especially

60

if the underlying representation was modified to utilise a schema database representation as
described above.

Though EPE meets the mgjority of the requirements for a schema modelling and devel opment

environment, there are some areas which would benefit from further work. These include:

Collaborative design support: although large modelling projects may have a single coordinator in
charge of schema development, there are likely to be several modellers working on
different aspects of the schema. Coordinating the work of several modellers, and
maintaining the consistency of the underlying schema under change from several sources
concurrently, has to be a goal of any real schema development environment. This is
currently an area of intense research work in the computer-supported collaborative working
(CSCW) area. Recent research results in this area indicates that when these CSCW
environments mature they will be easy to incorporate into existing modelling tools. The
Serendipity system (Grundy et al. 1996) has already been shown with links to MViews-
based environments and commercial Microsoft products, providing collaborative design
between several modellers working through defined process models. Though the mapping
implementation of Chapter 10 provides a transaction-based approach to coordinating
between multiple modellers, this is not supported by version merging and conflict
resolution systems, as can now be found in systems such as Serendipity.

Comprehensive multi-paradigm modelling support: in exactly the same manner that an integrated
building design system requires an IDM to integrate design tools, a multi-paradigm
modelling environment requires an IDM covering schema, mapping and project definitions
in order to manage multiple paradigms in one environment. Though some work has been
doneinthis area (Venable 1993) there are no IDMs which cover the wide range of schema
modelling paradigms currently in use (e.g., ER, DFD, EER, NIAM, EXPRESS,
EXPRESS-G, OOA/D, IDEFO, IDEF1X), let alone the underlying requirements of
mapping and project definition languages.

Expanded modelling support concepts: the range of support concepts required by modellers when
developing large schemas is not clearly understood, and hence, not well supported.
Currently documentation of schema modification and construction is made at the atomic
level. Methods allowing for grouping of higher level concepts are imperative (including
multiple viewpoints of change sets). The manner of notification of modifications in a
collaborative environment needs attention to provide efficient methods of expressing these
changes to other designers (rather than at the atomic change level), an example of
developments in this area can be seen in Grundy et al. 1995. Navigation and summary
features tend to be primitive. In large schemas with hundreds of entities and thousands of
views, the set of views which reference a particular entity could be very large.
Classification of view types, or the relationship particular entities play in a view, could
well help navigation around the schema and guide novice users through the various
conceptual levels of schema specification. Notions of schema versions and private

61

workspaces need to be considered in a collaborative environment. This allows the
management of multiple design paths, and for incomplete work to be hidden until fit to be
used by other participants.

In summary, this chapter introduces the requirements for a schema modelling and devel opment
environment, and through the development of EPE and a schema database format, demonstrates
that an environment meeting these requirements is possible. The development of individual
schemasis, however, asmall part in the development of an integrated design system. Schemas for
design tools need to be integrated to form an IDM, or checked that they map into an existing IDM.
This process of schema integration, or checking, through the definition of mappings between
schemas is described in Chapter 5. Schemas which represent design tools and actors are also
required to define flows of control in areal project. The use of these schemasin project definition
is described in Chapter 7.

62

Chapter 4

|nter-Schema Relationship Modelling

The mapping of data between modelsisavital processin an integrated design system. To enable
the correct specification of a mapping between schemas, a mapping language and specification
support environment is required. In a similar manner to the schema specification languages, a
mapping language provides an abstract specification of a portion of the problem domain. The
definition of a mapping between two schemas is likely to be a very large piece of work, often
involving several domain experts for both models. These experts must maintain the consistency of
the mapping specification. Because of this necessary involvement of domain experts, it is clear that
a high-level specification language is needed to provide a specification close in semantics to the
problem domain and well removed from the implementation. The mapping language should also
support multiple levels of specification in asimilar manner to schema modelling languages.

Aswell as providing the basis for mapping of data between them, a specification of the mapping
between two schemas provides modelling benefits over those that are usually obtained just from
the schema definition. For example, the specification of an inter-schema mapping makes explicit
those constraints that are implicit in adesign tool (e.g., a design tool which assumes vertical walls
needs to explicitly model this requirement when specifying a mapping with a schemathat does not
have this assumption).

If a formal mapping language is used to specify the mappings, mapping specification
environments offering consistency management between various modellers are possible. Tools can
then be created to: check statically whether the mapping references valid schema properties; check
types in the conversion; check units in the conversion; identify affected mappings when
components in the schema are modified; and ensure that all attributes of entities are mapped
between the two schemas.

63

However, until recently, the mapping between the IDM and a design tool schema has not been
modelled in any way in integration projects. All mappings for design tool schemas have typically
been hand-coded in the programming language of the project. This approach is now changing as
several projects have reached the stage of development where they recognise the utility of having
mapping languages to formally model mappings between schemas (ATLAS 1993; Staub et al.
1994). To satisfy the demand for mapping languages a number of new languages have been
devel oped.

In this chapter the types of mappings which are required to describe correspondences between
schemas are examined. Languages for specifying mappings are surveyed, including formalisms
recently developed for mapping in the ISO-STEP standard. An informal set of requirements for a
mapping language is collated from previous work and from an analysis of mapping requirements
for a range of actual schema. These requirements are then used to measure the power of the
surveyed languages, and enable comparisons between the languages to be performed.

4.1 Mapping Types

Analyses of the problems posed by mappings and integration have previously been conducted in
the database area. To gain an understanding of what is required to map between two schemas, the
analyses performed in the field of database integration are examined and presented here in two
categories. One category investigates the types of structural mapping that can be expected between
two schemas, the other presents a more semantic description of the types of conflict found when
integrating schemas.

4.1.1 Structural mapping types

Structural mapping types provide a key to the complexity of mappings that can be expected in a
particular domain. Two evaluations of these type of mapping are those of van Horssen et al.
(1994), which details a table of mapping types (see Table 4.1), and Bijnen (1994), which provides
a more general specification of mapping types. Both of these evaluations are drawn from
considerations of requirements of a mapping language: in van Horssen's case as a precursor to
evaluating several mapping languages; and in Bijnen’s case to show what his mapping language
should provide. In Table 4.1 the asterisks denote the requirement for mappings of the specified
type, blank cells indicate no mappings of the specified type are required. The labels on the table
below are dightly misleading, as where they specify entity they actually mean object. For example
an N:1 mapping for Entity->Entity denotes the mapping of N objects of one entity type to asingle
object of another entity type.

Entity->Entity

Attr->Attr

Entity->Attr

Attr->Entity

1.0

*

*

*

*

0:1

*

*

*

*

1:1

*

*

*

*

1.C

(O

1I:N

N:1

N:M

Table 4.1

In Table 4.1 the cardinalities of the various types of mapping are considered with a distinction
being made between zero (0), singular (1), constant (C) and variable numbers (N, M) in the
mapping. The lack of an asterisk for the many to many mapping for entities in this table is
surprising as some are known to exist (for example some design tools use a set of objects to
represent a schedule, with each object specifying a fixed number of hour-value pairs. Where a
mapping is required between two such tools which have different numbers of hour-value pairsin
each object there can be different numbers of objects in each model, hence an N:M mapping). Itis
also surprising that all combinations of constant values (C in Table 4.1) are not included. If the
breakdown includes 1:C, etc. then arigorous evaluation should also evaluate N:C, etc., though
0:Cisnot required asit can be constructed through multiple 0:1 mappings.

Mapping types from van Horssen et al. 1994, the |eft axis specifies the cardinality
of mappings which may be required

Object->Object

Attr->Attr

Object->Attr

Attr->Object

1.0

*

*

*

*

0:1

*

*

*

*

11

*

*

*

*

1.C

C1

CB

1I:N

N:1

C:N

N:C

N:M

Table 4.2 Full set of structural mapping types

65

Following the examination of structural mapping types above, the table in Table 4.1 has been
extended to provide a more rigorous definition of the possible combinations of mapping
cardinalities that can occur. Thisis shown in Table 4.2, where all combinations of constant to
multiple, and constant to constant (C:B) are provided.

4.1.2 Semantic mapping types

The semantics of individual mappings have also been examined. Tables 4.3 (Batini et al. 1986)
and 4.4 (Kim and Seo 1991) are examples from their analysis of the schema integration process
which examines various categorisations for integration. While these tables display conflict types
found when integrating schemas, most of them hold equally well for mappings. This is because
the definition of a mapping between two schemas can be seen as aimost the same task as
specifying the integration of one schema into another. The main differenceis that in amapping the
schemas being mapped between do not have to be completely unified. The mapping need only be
sufficient to create valid instances of abuilding in either schema.

Naming conflicts
homonyms same name for different concepts
synonyms same concept described by different names

Structural conflicts

type conflicts same concept represented by different modelling constructs

dependency conflicts group of concepts are related with different dependenciesin different
schemas, e.g., 1-1 versus n-m

key conflicts different keys assigned to the same concept in different schemas

behaviora conflicts different insertion or deletion policies associated with the same class of
object in different schemas

Conflict categories

identical everything isthe same.

equivalent where different but equivalent modelling constructs have been applied
but the perceptions are still the same and are coherent. These are
further subdivided into:

behaviord if the same set of answersto any given query
can be obtained from all representations.

mapping instances can be put on a one-to-one
correspondence.

transformational if arepresentation can be obtained by applying a

set of atomic transformations that by definition
preserve equivalence.

compatible not identical or equivaent, but modelling constructs, designer
perception and integrity constraints are not contradictory.
incompatible contradictory because of the incoherence of the specification.

Table 4.3 Schema integration conflict types from Batini et al. 1986

Tables 4.3 and 4.4 provide a checklist of problems that could be encountered and a means of
categorising the difficulty of a particular problem. They do not, however, provide many clues asto
what would be required in a mapping language to handle these types of problems. Some of the
interesting points which come out of these two categorisations are: the need to update schemas for
missing attributes and entities; the handling of unit conversion; and the handling of type
conversion.

66

Schema conflicts
Table versus table conflicts
one-to-one table conflicts
table name conflicts
different names for equivalent tables
same name for different tables
table structure conflicts
missing attributes
missing but implicit attributes
table constraint conflicts (keys and check conditions)
many-to-many table conflicts (asin one-to-one)
Attribute versus attribute conflicts
one-to-one attribute conflicts
attribute name conflicts
different names for equivaent attributes
same name for different attributes
default value conflicts
attribute constraint conflicts
data type conflicts
attribute integrity-constraint conflicts
many-to-many attribute conflicts (asin one-to-one)
Table versus attribute conflicts

Data conflicts
Wrong data
incorrect-entry data
obsolete data
Different representations for the same data or same representation for different data
different expressions
different units
different precisions
Table 4.4 Schema integration conflict types from Kim and Seo 1991

4.1.3 Mapping language requirements

An examination of the mappings required between the design tool schemas used in this thesis,

based on the classifications in Sections 4.1.1 and 4.1.2, leads to a range of pragmatic

requirements for an ideal mapping language:

Language level: To enable rapid and concise specification, a language’ s notation should closely
mirror the domain in which it is being used. A language to describe a mapping needsto be
able to represent relationships between entities, attributes, references, and, in an object-
oriented environment, methods, using a high-level notation. Using low-level notations will
require the mapping specifier to concentrate on the practicalities of how to implement the
mapping rather than on the specification of the actual mapping.

L anguage notation and modelling environment: The bulk of a mapping specification is concerned
with relationships between attributes. Experience shows that many of these relationships
need to be described in an equational form which is basically textual in nature.This tendsto
indicate that mapping languages will be based around a textual notation. However, given
the potentially large size of the schemas involved in a mapping, a graphical notation
allowing high-level views of the mapping will prove of benefit in the early definition of the
mapping. A graphical notation for high-level viewsislikely to provide faster cognition of

67

relationships between entities in the schemas, in contrast to reading a purely textual
specification, as relationships will be explicitly depicted rather than having to be
determined by the user parsing atextual expression. A graphical notation supported by a
modelling environment is also likely to prove a useful checking tool in ensuring that
mappings are completely specified for particular entities. This is because a graphical
notation will show the entities and their attributes in the same view as the mapping,
allowing easy determination of what has or has not been mapped. As some of the class
definitions are large and contain various types of data (attributes, relationships and
methods), it will be useful to allow severa views of a mapping specification, with different
views concentrating on different aspects of the mapping. The specification of amapping is
also likely to require a modelling tool of a similar magnitude to that used for managing
schema definition to maintain consistency between various mapping specifiers as well as
between various views of the mappings.

Language style: A mapping language needs to support many levels of correspondence
specification, from simple equivalences between attributes through to complicated
programs to extract and manipulate data into the required form. The language should not
presuppose a single style of implementation (e.g., batch mode; full model trandation; or
automatic incremental mapping). Rather, any implementation style should be able to be
implemented from the specified mapping. This requirement would tend to favour a
declarative style of mapping specification over a procedural style, as a procedura styleis
less amenable to many implementation styles (e.g., to an incremental update model). A
declarative notation is likely to provide the highest level of specification and most closely
satisfy the modelling level requirement defined above. This is because declarative
languages do not specify a particular method for performing a certain function, but specify
more what is required. Although a declarative approach may provide the highest level of
definition, it is recognised that not all mappings will be able to be specified in adeclarative
manner. A procedural form may also need to be supported.

Bidirectionality: Many connections between tools require the same structures to be mapped in both
directions. Where bidirectional mappings are required, the mapping language should
support their specification without the need to duplicate information on the
correspondences. Where only unidirectional mappings are required this should aso be able
to be specified.

Conditional mapping: Dependent upon the state of a model, or portions of amodel, the datain the
model may need to be mapped in different ways. To enable thisin a mapping, it must be
possible to specify conditions which must be satisfied prior to the application of a
particular type of mapping. Such conditions provide one way of making explicit
assumptions that are only implicitly specified in a schema.

Aggregation: The level of detail used to represent entitiesin a schemawill vary enormously. When
mapping between schemas with very different levels of detail it is necessary to aggregate
information in very detailed schemas to fill higher level (more abstract or less detailed)

68

schemas. The reverse process will also be required, but it is often impossible to do this
unambiguously (e.g., given atotal glazing areait may be impossible to work out the area
of each individual window). In this case it may be possible to constrain the constituentsin
the detailed model to match the values of the aggregated model.

Relationship handling: Similar to the problem of various aggregation levels is the problem of
relationship structures. Different schemas of a domain are likely to choose different
structures to represent the relationship between entities in their schemas. A mapping
language needs to be able to restructure relationships in a schema, compressing long
pointer chains, telescoping down into deep structures, and moving relationships between
entitiesin different schemas.

Initialisers: During the mapping process hew objects must be created and, in some cases, initial
values set for attributes. Having a method to specify initial values independent of
mappings, which may calculate values for these attributes as data becomes available, is
important. This provides another way of making explicit assumptions that are only
implicitly specified in aschema. It also provides a mechanism to ensure that a minimum set
of datais created in a mapping, for example, to ensure that a design tool could run after
any amount of datais transferred through in a mapping.

Unit handling: Attributesin different schemas often use different units to represent their quantities.
Whether due to the country in which the schema was developed (i.e., imperial or metric
units), the equations used, or just the magnitude of the result presented to the user, the
ability to convert attributes between different unitsis required of a mapping language.

Type handling: Different schemas may use different precisions of types to represent their values,
depending upon the accuracy required or the time and space limitations in the cal culations.
Different schemas may also use different structures to represent the same information
(e.0., tree versus list) and a mapping language needs to map between the various types to
ensure the model isin avalid state after a mapping has occurred.

4.2 Mapping Definition Languages

A wide range of languages are being developed (or have been developed over the last few years) to
specify the mapping between schemas, or to enable the integration of schemas, or to provide a
view of aschema. In this section, arepresentative set of these languages is examined to highlight
the styles available and their expressive power.

To help illustrate the style and form of these languages, an example from a survey of mapping
languages (Verhoef, Liebich and Amor 1995) will be used. Thisis one of five example mappings
used in the paper. The mapping is between two schemas drawn from existing applications
requiring data transfer in an integrated environment. The schema fragments for this example are
shown in Table 4.5.

69

The schema fragment shown on the left-hand side describes building components which are either
structural (i.e., columns or beams) or a connector between structural components. The relationship
component has two forms, defined by the quality attribute, which are either support or element
connections. The right-hand side schema fragment describes structural components, one
specialisation of which isastructural connector. This structural connector has two specialisations
of either a support or element connector. The mapping problem isto map between the component
relationship in the left-hand side schema and either the support or element connector in the right-
hand side schema. Performing the mapping in this example illustrates. a conditional mapping
between entities; a type conversion (rather contrived) between two attributes; and attribute
mappings which require the results of other mappings between entities.

TYPE connection_type = TYPE support_connection = ENJVERATI ON CF
ENUVERATI ON CF (free_support, restrainted_support,
(support_connection, un_known) ;
el enent _connection) ; END TYPE ;
END TYPE ;
TYPE el enent _connecti on = ENUMERATI CN OF
ENTI TY bui | di ng_conponent (joint_connection, rigid_connection,
ABSTRACT SUPERTYPE CF (ONECF un_known) ;
(structural _conponent, END TYPE ;
conponent _rel ationship)) ;
id . REAL ; ENTI TY structural _conponent
UN QUE ul cid ABSTRACT SUPERTYPE CF (ONECF
END ENTI TY ; (structural _assenbly,
structural el errent,
ENTI TY structural _conponent structural _connector)) ;
ABSTRACT SUPERTYPE COF (ONECF i dentified by : I NTEGER ;
(colum, beam)) UN QUE ul : identified_ by ;
SUBTYPE CF (bui | di ng_conponent) ; END ENTI TY ;
specified by: SET [1:?7] OF
product _characteristic ; ENTI TY structural connector
represented_by : ABSTRACT SUPERTYPE CF (ONECF
geonetric_representation_item; (support_connector,
END ENTI TY ; el enent _connector))
SUBTYPE OF (structural _conponent) ;
ENTI TY conponent _rel ati onship related, relating : structural _el enent ;
SUBTYPE CF (buil di ng_component) ; END ENTI TY ;
rel at ed : structural _conponent ;
rel ating : structural _conponent ; ENTI TY support_connect or
quality : connection_type ; SUBTYPE OF (structural _connector) ;
END ENTI TY ; t ype_of . support_connection ;
END _ENTI TY;

ENTI TY el enent _connect or
SUBTYPE OF (structural _connector) ;
t ype_of . el enent _connection ;
END_ENTI TY
Table 4.5 Schema fragments for the two schemas in the mapping example

4.2.1 EXPRESS-M

EXPRESS-M (Bailey 1994) is an evolving language being developed to solve the problem of
application protocol inter-operability in the STEP standard. Asthe language isintended for usein
STEP it has been designed to look very similar to the EXPRESS language. EXPRESS-M
mappings are unidirectional and map awhole model at atime (no partial updates of models). The

70

EXPRESS-M language has the following major components:

SCHEMA_MAP: specifies the EXPRESS schemas which are the source for the mapping and the
schemas which are targets for the mapping. In most cases there is a one-to-one mapping
from asingle source schemato a single target schema.

MAP: specifies the mapping between entities in the source schema(s) and entities in the target
schema(s). There can be only one MAP for a particular target entity so all conditional
clauses for a mapping must be handled inside one MAP. The actual mapping of data
between attributes is done through assignment statements with a large range of functions
available to calculate the value to assign. Iteration constructs may be used to specify values
for aggregate attributes, and user defined functions are accessible in the mapping. Type
conversion is specified in the mapping by means of casting from the type of the source
value to that required in the target. All conditional mapping, including determination of
which type of entity to create as well as what equations to apply to calculate avalue for an
attribute, must be handled in the single MAP definition.

TYPE_MAP: specifies the mapping required to instantiate an attribute of one type from an attribute
of asecond type. Thisisfor non-simple types (simple types have a default casting regime)
and can handle enumerations, lists, sets, bags, and other structures. The TYPE_MAP is
also used to map between attributes of differing units. In EXPRESS there is an overlap
between the unit and type specification of an attribute which can lead to the case of two
attributes in two schemas being of type ‘litre’ with one being areal number while the other
isan integer. TYPE_MAP alows these problems to be tackled, as well as handling more
usual type mapping.

MAP ONECH(support _connector, el enent_connector) <- conponent_rel ationshi p;
IF quality = support_connection THEN
MAP support_connector <- conponent _rel ati onshi p;
identified_by := {INTEGER} d;
related : = {structural _el enent}rel ated;
relating := {structural _el enent}rel ati ng;

type_of := un_known;
END_NAP,
ELSE
MAP el erent _connect or <- conponent _rel ati onshi p;
identified by := {INTEGERi d;
related : = {structural _el enent}rel ated;
relating := {structural _el ement}rel ating;
type_of := un_known;
END_NAP,
END | F;
END_NAP,

Table 4.6 EXPRESS-M mapping for example problem

PRUNE: specifies entities which might be created twice in a SCHEMA_MAP and which should
be culled to one instance. Multiple instances of an entity occur when thereisaMAP for an
entity and areference to the entity attributes from an associated entity (i.e., the entity isalso
created by reference). EXPRESS-M is able to determine what to prune by monitoring
separately those instances created in aMAP and those created by reference.

71

Manual entity instantiation: instances of entities can be created without a mapping from source
entities through a simple manual instantiation specification which follows that used in
STEP exchangefiles.

Table 4.6 shows the EXPRESS-M mapping for the example in Table 4.5, but only from the left-
hand side schema to the right-hand side schema as EXPRESS-M is a unidirectional mapping
language. The top level mapping specification specifies that a component_relationship is mapped
to either a support_connector or an element_connector. The conditions which decide which type of
mapping is performed are specified in the if-then-else statement. Type conversion must be
specified explicitly when required as seen with the casting of id, which isareal, to an integer, as
well astherelated and relating object references.

Some of the drawbacks of EXPRESS-M are:

. mapping specifications are unidirectional, therefore it requires two mapping specifications
to map data in both directions between models. For schemas where a bidirectional mapping
isrequired, having two separate mappings which are inverses of each other is problematic.
Apart from the extratime required to create the two mappings, it provides more chance for
inconsi stencies between the mapping specifications as schemas change and mappings are
refined.

. only one MAP can exist for a particular entity combination. This can make the conditional
mapping specification very convoluted and difficult to decipher. Table 4.6, where there are
two mapping types to choose between, shows thisin asmall way.

. although parts of the language are declarative there are many procedural components (all
handling of aggregate components) which interfere with the readability of mapping
specifications.

. no graphical formalism is offered with the textual notation, allowing only the very low

level implementation view of any mapping to be manipulated.
. the ordering imposed on evaluation (i.e., as it appears in the mapping) means very careful
consideration of ordering is required when specifying mappings.

4.2.2 EXPRESS-V

EXPRESS-V (Hardwick et al. 1994, Hardwick 1994) is similar to EXPRESS-M in approach but

with alimited ability to support bidirectional mapping between models. EXPRESS-V isintended

to be an extension to EXPRESS to support database views in an 1SO-STEP environment.

EXPRESS-V definitions are specified along with EXPRESS definitions for a schema. The major

components of EXPRESS-V are:

VIEW: specifies that an entity or entities are to be viewed as another entity. This can be a
conditional specification using a WHEN clause to specify the conditions under which this
VIEW may hold true. The actual mapping of data between attributes is done either in a
VIEW_ASSIGN section, to map from source to target, or in an UPDATE section, to map

72

from target to source. Mappings are performed through an assignment statement with a
large range of functions available to calculate the value to assign.

VIEW_ASSIGN: isdefined in the VIEW clause and specifies what attributes in the target schema
need to be updated when source entities are modified. The VIEW_ASSIGN section uses
equations to perform the mapping of attributes in the source entities as described in the
VIEW section. The VIEW_ASSIGN can be conditional through the use of a WHEN
clause. There can be multiple VIEW_ASSIGN clausesin aVIEW specification.

UPDATE: isdefined in the VIEW clause and specifies what attributes in the source schemaneed to
be updated when target entities are modified. The UPDATE section uses equations to
perform the mapping of attributes in the target entities as described in the VIEW section.
The UPDATE can be conditional through the use of a WHEN clause. There can be
multiple UPDATE clausesin aVIEW specification.

CREATE: isdefined in the VIEW clause and specifies attribute values for source entities which
have to be created by the creation of target entities. The CREATE can be conditional
through the use of a WHEN clause. There can be multiple CREATE clauses in a VIEW
specification.

DELETE: is defined in the VIEW clause and specifies which attributes and objects need to be
deleted in the source entities upon the deletion of a target object. The DELETE can be
conditional through the use of a WHEN clause. There can be multiple DELETE clausesin
aVIEW specification.

VI EW suppor t _connect or
FRCM (conponent _r el ati onshi p)

WHEN (conponent _rel ati onshi p.quality = 'support_connection');
VI EWASSI GN

identified by := conmponent _rel ationship.id;

type_of :="'un_known';

rel ated : = conponent _rel ati onshi p. rel at ed,;

relating : = conponent _rel ati onship.rel ating;
UPDATE

id:= support_connector.identified_by;
rel ated : = support_connector.rel at ed,;
relating : = support_connector.rel ating;
quality := "support_connection';

END VI EW

VI EW el enent _connect or
FRCM (conponent _r el ati onshi p)
WHEN (conponent _rel ati onshi p.quality = "'el ement_connection');

VI EWASSI GN
identified_by := conponent _rel ationship.id;
type_of :="'un_known';

rel ated : = conmponent rel ati onshi p. rel at ed;
relating : = conponent _rel ati onship.rel ating;

UPDATE
id:= element_connector.identified_by;
related : = el ement _connector. rel at ed;
relating := el ement _connector.rel ati ng;
quality := "el ement_connector';

END VI EW

Table 4.7 EXPRESS-V mapping for example problem

73

Table 4.7 shows the EXPRESS-V mapping for the example in Table 4.5. This example highlights
the relational database approach underlying the language definition. New views must be defined
for each class to be mapped, in this case views of a component_relationship as either a
support_connector or an element_connector. The WHEN statement provides the conditions under
which the view can be supported. The VIEW_ASSIGN statements describe the mappings
required, and include implicit type conversion. The UPDATE section describes what can be
modified in the original model when aview element is modified, this highlights alimitation of the
language as it assumes one of the schemas to be a master schema from which views are created. In
effect this limits views to what can be derived from one schema and does not alow creation of
new objects from the view schema.

Some of the drawbacks of EXPRESS-V are:

. the mapping specification is associated with a particular schema (asin standard RDBM S
views) and does not directly specify the other schema being accessed (although it is
specified in a USES clause). This could make a schema specification for an IDM very
convoluted as it could contain all mappings to design tools along with the schema
definition. This approach also requires a flat name-space, as all entity definitions in all
views are visible at the same time. This is an unreal expectation in a situation where
existing applications (with predefined entity definitions) are to be integrated with an IDM.

. although the language allows for bidirectional mappings (though this is through separate
VIEW_ASSIGN and UPDATE sections in the VIEW definition), the mapping in each
direction needs to be specified independently, due to the procedural specification of a
mapping. Although this allows the mapping specifications to be described at one point,
having a section for each direction leads to the duplication of information in the mapping
specification.

. the language assumes the source schema is always much more sophisticated than the target
schemaas CREATE and DELETE blocks are only available for mappingsin one direction.
Although in a generalised integrated design system it is likely that some target schemas
would require CREATE and DELETE blocks as well.

. no graphical formalism is offered with the textual notation, allowing only the very low
level implementation view of any mapping to be manipulated.

4.2.3 EXPRESS-C

EXPRESS-C (Staub et al. 1994) was developed to extend and enhance the capabilities of

EXPRESS by enabling the modelling of both static and dynamic properties of a domain. It is

considered as afirst step towards a fully object-oriented version of EXPRESS as was suggested

within the EXPRESS v2.0 development targets. The major mapping component of EXPRESS-C

IS

TRANSACTION: a named transaction can be used to specify a unidirectional mapping between
sets of objects accessed from the current model. As transactions describe a procedural

74

mapping between their referenced objects, two transactions would be required to describe a
bidirectional mapping.

TRANSACTI ON t _nap_conponent _rel ati onshi p;

LOCAL
socr : SET OF conponent _rel ati onshi p;
sosc : SET OF structural _connector :=[];
END LOCAL;
socr = PCPULATI O\(' BSSC. COMPONENT_RELATICONSH P) ;
REPEAT i := 1 TO H | NDEX(socr);
sosc : = sosc + map_conponent _rel ati onshi p(socr[i]);
END_REPEAT;

END_TRANSACTI ON

FUNCTI ON nmap_conponent _rel ati onshi p
(cr : conponent _rel ationship) : structural _connector;

LQCAL
sc : structural _connector;
END LOCAL;
IF (cr.quality = support_connection) THEN
sc : = conpare (support_connect or (support_connection. un_known) ||
structural _connector (map_structural _conponent(cr.related),
map_structural _conponent(cr.relating)) || structural _conponent(cr.id));
ELSE
sc : = conpare (el ement_connect or (el ement _connecti on. un_known) ||
structural _connector (map_structural _conponent(cr.related),
map_structural _conponent(cr.relating)) || structural _conponent(cr.id));
END | F;
make_i nst ances_persi stent ([sc]);
RETURN(sc) ;
END_FUNCTI ON

Table 4.8 EXPRESS-C mapping for example problem

Table 4.8 shows the EXPRESS-C mapping for the example in Table 4.5, but only from the left-
hand side schema to the right-hand side schema as EXPRESS-C is a unidirectional mapping
language. The transaction specification shows the very low level implementational approach taken
with this language. The transaction definition identifies all component_relationship objectsin a
model and creates the corresponding set of mapped objects using the function
map_component_relationship(). This function utilises standard EXPRESS statements to describe a
conditional creation of objects and calls other functions to map the two object references.

EXPRESS-C has the same set of drawbacks as described in EXPRESS-V aong with the lack of
explicit support for bidirectional mappings.

4.2.4 Transformr

Transformr (Clark 1992) was designed to be able to propagate instances between different
versions of amodel. Aswith EXPRESS-M and EXPRESS-V, Transformr was developed for use
in the ISO-STEP environment. The mgjor components of Transformr are:

COPY : specifies the copying of an entity to another entity. In its simplest form it Simply names an
entity and al attributes of thisentity are copied across. COPY can move al objects between
entities with different names, or, through the use of derived attributes, add, or drop
attributes from the new entity.

75

BUILD: specifies the creation of a new entity from a set of entities in the source. Thisis a
conditional creation, where all attributes that need to appear in the target entities must be
described, unlike COPY which maps everything unless the user specifies otherwise.

BU LD support _connect or FRCM conponent _rel ati onshi p
WHERE
conponent _rel ati onshi p.quality = support_connecti on;
DER VE
identified by := REAL_TO | NT(conponent _rel ati onship.id);
rel ated : = component _rel ati onshi p. rel at ed;
relating := conponent _rel ationship.relating;
type_of := un_known;

BU LD el enent _connect or FRCM conponent _r el ati onshi p
WHERE
conponent _rel ationship.quality = el ement_connecti on;
DER VE
identified_by := REAL_TO_ | NT(conponent _rel ati onship.id);
rel ated : = conmponent _rel ati onshi p. rel at ed;
relating : = conponent _rel ationship.rel ating;
type_of := un_known;

Table 4.9 Transformr mapping for example problem

Table 4.9 shows the Transformr mapping for the example in Table 4.5, but only from the |eft-
hand side schema to the right-hand side schema as Transformr is a unidirectional mapping
language. Separate BUILD statements are used for each type of object to be created with the
WHERE statement defining the condition under which the BUILD can be used. Mappings in the
DERIVE section are simple statements, though explicit type conversion through user defined
functionsis required for simple types, as shown with the mapping of id.

Transformr is a ssimple language which has an elegant style and appears well suited to the process
of propagating data between versions of the same schema. It is, however, very much a
unidirectional mapping language, with limited functionality in terms of the combinations of entities
which can be clustered and created. Transformr is also limited in the types of equivalencesthat can
be specified between attributes.

4.2.5 EDM-2

EDM-2 isanovel language, database system and environment developed at UCLA for usein the
A/E/C domains (Eastman et al. 1995). EDM-2 incorporates three major features not found in
traditional database systems, but which are of key importance in the development of an integrated
design environment. These are:

Dynamic schema specification and evolution: a central schemain an integrated environment can be
modified at any time to take account of new applicationsto be utilised in the system, or to
incorporate new views of the existing schema for specific user needs.

In-built integrity management: through the use of constraints specified in the schema, or defined
“on the fly” as amodel is developed, the integrity of a model can be determined at any
stage. Constraints with parameters which have been modified can be rechecked at any

76

time, and in this manner the global consistency of a model can be monitored as a design
progresses.

Explicit translation definition: high-level support for translation between applications
(bidirectionaly) isincorporated into EDM-2.

CREATE DE bssc_conponent _rel ati on KEYNAME
DESC "BSSC conponent _rel ation cl ass";

CREATE DE pss_structural _connect or KEYNAME
DESC "PSS structural _connector class";

CREATE DE gen_part KEYNAVE
ATTR(bssc: bssc_conponent rel ation, pss: pss_structural _connector)
DESC " Ceneral i zed beam cl ass";

CREATE NMAP conponent s
(bssc_conponent _rel ati on)
RETURN (pss_structural _connector)
I MPL $MAP_METHCDS/ conponent s. SO
DESC "Mappi ng from BSSC nodel to PSS nodel *;

CREATE NAPCALL conponent _nappi ng
MAP conponent s
(bssc)
RETURN (pss)
REF gen_part
DESC "Map call with reference to generalized object”;

Table 4.10 EDM-2 mapping for example problem

The definition of mapping is supported by two constructs in the EDM-2 language:

MAP: defines a process through which entities of a particular type can be trandated from one type
to the other.

MAPCALL: describesthe use of aMAP for particular instances in the model.

Table 4.10 shows the EDM-2 mapping for the example in Table 4.5, but only from the left-hand
side schemato the right-hand side schema. The MAP definition describes the inputs and outputs of
the mapping whose implementation is hidden in the file referenced by the IMPL statement (the C
code of this function is not shown here for brevity). The MAPCALL definition lists the MAP
statements which are to be used when mapping from one schema model to another, in this case
from bssc to pss.

Mapping constructs have only recently been added into EDM-2, so details of their incorporation
are still under review. Currently the maps provide unidirectional mapping between entities, with
the maps associated with the central schema (though separate schemas tend to be merged in the
EDM-2 implementation). Mapping definitions are not seen explicitly in the mapping definition, as
currently the implementation is as C programs which are invisible to the user browsing the
schema.

77

4.2.6 KIF

KIF (The Knowledge Interchange Format: Genesereth and Fikes 1992; Khedro et al. 1994) was
originaly developed in the ARPA knowledge sharing initiative as a means to exchange information
between applications. KIF provides a mechanism for agents to communicate messages to inter-
operating applications. In KIF each agent has the responsibility of translating messages received
from other agents from their native format to the format required locally. To achieve this, each
agent must define a tranglation for messages they wish to handle. To use KIF in astandard IDM-
type system would require an IDM where tranglations for every attached schema are written into
the IDM. Each application would require translations from the IDM structures into their own
internal format. This places the onus of translation on every application working in the integrated
system. However, it also allows for a system where individual modifications can be propagated to
all interested applications as they occur and where incremental consistency of the whole integrated
system can be maintained. The main drawback of KIF isthe requirement that each application be
aware of the IDM and be able to translate information from the IDM whilst performing its own
application tasks.

(<= (pss!support_connector ?ent)

(bssc! conponent _rel ati onshi p ?ent)

(= (bssc! conponent _rel ationship.quality ?ent) support_connection))
(<= (pss! el enent _connector ?ent)

(bssc! component _rel ati onship ?ent)

(= (bssc! conponent _rel ationship.quality ?ent) el ement_connection))
(<= (= (pss! support_connector.identified_by ?ent) ?id)

(= (bssc! conponent _rel ationshi p.id ?ent) ?id)

(= (bssc! conponent _rel ationship.quality ?ent) support_connection))
(<= (= (pss! el ement _connector.identified_by ?ent) ?id)

(= (bssc! conponent _rel ationship.id ?ent) ?id)

(= (bssc! conponent _rel ationship.quality ?ent) el ement_connection))
(<= (= (pss!support_connector.type_of ?ent) ?type)

(= (bssc! conponent _rel ationship.quality ?ent) ?type)

(= ?type support_connection))
(<= (= (pss! el ement _connector.type_of ?ent) ?type)

(= (bssc! conponent _rel ationship.quality ?ent) ?type)

(= ?type el enent _connection))

Table 4.11 KIF mapping for example problem

Table 4.11 shows the KIF mapping for the example in Table 4.5, but only from the left-hand side
schemato the right-hand side schema as KIF is a unidirectional mapping language. The mapping
reflects the blackboard architecture that KIF is implemented upon, with every item mapped
individually. The first two definitions create either a support_connector or an element_connector
depending upon the value of the quality attribute. The second two definitions create the
identified_by attribute for the objects and the last two create the type_of attribute for the objects.
The mapping of object references (i.e., related and relating) are not attempted in this mapping.

4.2.7 Superviews

Superviews (Motro 1987) describes amethod for the virtual integration of multiple databases. The
method is founded on a set of ten operators with which the integrator defines the requisite
transformations to the base schemas to produce the superview. The product of this method is a

78

superview of the base schemas and the set of mappings (reversible) required to move information

back and forth between the superview and base schemas. The ten operations available are:

Meet: produces a common generalisation of two entities. Thisis only possible when two entities
have a common key. A meet also introduces a consistency constraint, that values in both
entities with the same key must agree on shared attributes.

Join: the resultant type is the union of the types of two entities.

Fold: allows a generalisation to absorb a more specific entity. The system must use anull value for
attribute values of the specific entity that were not in the original generalised entity.

Rename: renames a entity.

Combine: joins two entities which have identical types, and creates a new entity with a new entity
name.

Connect: joins two entities which have identical types, and the new entity has the name of one of
the original entities.

Aggregate: creates an intermediate entity between an existing entity and a subset of its attributes.
Aggregate can be used to normalise the schemato aform where non-key attributes of each
entity are fully dependant on the key. Aggregate alows the relocation of an attribute on the
schema.

Telescope: removes an entity by assigning its attributes directly to its ancestor entity. Telescope
alows the relocation of an attribute on the schema.

Add: allowsthe addition of implicit attributes to an entity, along with a constant function to assert
the value.

Delete: removes a portion of the database not relevant to the application.

Superviews appears well suited to a specific class of problems, those that can be described with
these ten operators. For this class of mapping, data can be moved between any schema and the
superview with guaranteed consistency. For any schemas which fall outside that which can be
described with these operators it provides no help. Such schemas include those which do not have
simple one-to-one correspondences between attributes in a schema and those in the superview.
Therefore, if attributes are derived from an equation, or aggregated values, Superviews can not be
used. This limits the utility of Superviews in large model mapping systems, as most schemas in
this domain require sophisticated manipulation of attributes as well as manipulation of object
references, which are aso not handled in this RDBM S-based integration scheme.

4.2.8 RDBMS views

In relational database systems, views of the conceptual database are awell established concept. A
view provides an abstract schema of a portion of the conceptual database. This notion differs from
the notion of mappings between schemas, in that the mapping may not be to a schemawhich isa
portion of a conceptual database, the mapping may be to a schema which is a superset of the
conceptua schema. RDBM S views may, under certain conditions, be updateable, thus providing
the effect of a bidirectional mapping as discussed in this thesis. However, views that are

79

updateable have severe restrictions on their definition, which limit them to what amounts to a one-
to-one mapping between tables with direct equival ences between attributes (i.e., no equations or
functionsin the view definition).

Language

Z'OOMITOTXM
WOMITXM
WOMITXM

N ZOomMm
—
WZWOD

<I
OI

Requirement

Language leve

av) Z ﬂgﬂo—hwjmﬂq
0| - U)E('D_'<*('D'C5C(f)

Declarative/ Procedural specification

—l ol
—l ol
—l o=
<0 LZ

Object-oriented language support

Object-oriented method support

Bidirectional mapping support

Conditiona mapping invocation

Initial valuesfor attributes and object creation

Aggregate detail over objects and attributes

Relationship handling (expanding and truncating pointer chains)

Class graph-based model (Yes/ No)

Class and attribute graph-based model (Yes/ No)

Unit handling is Implicit / Explicit

Type handling is Implicit / Explicit

< 7|7 I¥XI KL< Z| |02

<mm< < Z|/ITZ/ -

Temporary structures (objects and attributes) available (Yes/ No)

Z/Zz2mMmmzZ <225
Z/Zz2mMmmzZ <225
Z/ZzmmzZ <\ |\
2/ <mMmMm< <z Z/ M-\~
Z/<mm< </ Z2/xT M2

Y | N
Low, -=None)

Graphical notation available (Yes/ No)
Table 4.12 Comparison of mapping languages (H=High, M=Medium,

L

M
M
M
M
Y
N
E
E
N
N
L=

4.3 Summary of Inter-Schema Relationship Modelling

Table 4.12 provides a summary relating the surveyed mapping languages to the requirements
detailed in Section 4.1.3. As shown in the table, none of the surveyed languages provides for the
full range of requirements necessary. Of particular concern is the low level of support for
bidirectional mapping, given that this type of mapping is the norm in the domains of these
languages. There is also aneed for object-oriented support, especially as the modelling notations
that many of the mapping languages support are themsel ves object-oriented. Missing from many
of the EXPRESS-based languages (which are promoted for this domain) are notions of classes
and attributes forming the graph representing a mapping, as well as the ability to define temporary
structures for partial mappings or reusable states. Almost all of the languages have no graphical

80

notation, and even EDM-2’ s notation does not provide a good overview of what takes place in an
individual mapping.

To address the deficiencies in the existing languages, a new view mapping language (VML) is

proposed in Chapter 5. It has both a textual and graphical notation, and a modelling environment
for VML is described in Chapter 6.

81

Chapter 5

The View Mapping Language (VML)

All the work described in the previous section tackles the problem of mapping between schemasto
some extent, but none of the approaches described provide the full range of abilities described in
Section 4.1.3 as being required for a general inter-schema mapping language. In this section the
View Mapping Language (VML) is presented. VML overcomes many of the problemsidentified in
the languages canvassed in Chapter 4. VML isahigh-level, declarative, and bidirectional language
suitable for the description of correspondences between two arbitrary schemas of adomain. VML
dispenses with all notions of target and source schemas in the mapping definition. As far as
practicable, a VML definition treats both schemas as equal partners in a mapping. VML also
removes many distinctions between entities and attributes, to allow mappings between entities and
attributes to be specified in the same way that attribute to attribute mappings are specified.

Throughout this section examples are used to illustrate each construct in the VML language. These
examples are drawn from the large mapping example described in Section 1.6 and are fully
specified in Appendix E. However, to complement the examples in Section 4.2, the VML
specification for the example shown in Table 4.5 can be seenin Table 5.1. All of the components
of thisformalism are fully described later in this section, but, a brief description of the mapping in
Table 5.1 is as follows. The example shows separate inter_class definitions for each type of class
to be mapped between, along with invariants specifying the conditions under which the mapping
holds. This combination of classes and invariants must be unique for every inter_class definition,
and will be checked by any mapping implementation. Equivalences specify the mappings to be
undertaken, all with implicit type conversion and implicit object type mapping (i.e., for related and
relating). All inter_class definitions can be used in both directions depending upon where data
resides that requires mapping. Initialisers specify initial values of attributes when they are created
by the application of a mapping.

82

i nter_cl ass([conponent _rel ati onshi p], [support_connector],
i nvari ant s(
qual ity = 'support_connection'
)
equi val ences(
id = identified_by,
related = rel ated,
relating = relating
),
initialisers(
type_of = 'un_known'
)
).

i nter_cl ass([conponent _rel ati onshi p], [el ement_connector],
i nvari ant s(
quality = 'el enent _connection'
)
equi val ences(
id = identified_by,
related = rel at ed,
relating = relating
),
initialisers(
type_of = 'un_known'
)
).
Table 5.1 VML mapping for example problem

In a VML environment it is assumed that all mappings are between two schemas. When it is
necessary to map information between several schemas and a single schema each mapping is
specified independently so that the mapping implementation can manage updates to and from each
model independently.

At the top level, considering the complete mapping between schemas, the work from database
views gives two possibilities for the types of mappings which can exist. These are read-only views
and read-write views. This carries over to schema mappings as well: a mapping can operate in one
direction, giving aread-only view; or in both directions giving read-write views.

A VML mapping consists of an introductory specification of the schemas to be mapped between,
and then a set of correspondences between entities and attributes to describe how the mapping isto
be achieved (see Table 5.2). The syntax of VML issimilar in style to that of Prolog and Snart, the
implementation languages of thisthesis, but it could easily be rewritten to resemble the syntactic
style of EXPRESS or other modelling languages without affecting the semantics of the language.

mapping = inter_view def { inter_class_def } .

Table5.2 Top level definition of aVML mapping

83

5.1 Mapping between schemas

A VML mapping definition commences with an inter_view definition, which specifies the two
schemas between which a mapping is to be described, the type of view represented by the schemas
in this mapping, and the completeness of mapping that is required (see Table 5.3).

inter_viewdef ="'inter_view' model id "'," nodel _type ',' nodel _id ',' nodel _type ',"
map_type ') ..
nodel _id = sinple_id ['"{" version'}"'] .
nodel _type = 'integrated ' |
'read_only ' |
'read_wite '
version = integer _literal |
real literal |
atomliteral |
string_literal .
map_type = 'conplete' |
"partial’ .

For exanpl e:
inter_view(idn{0.09}, integrated, planentry, read_wite, conplete).
Table 5.3 Definition of an inter_view specification

The model_ids specify the names and optional version numbers of the schemas which are being
mapped between in this mapping. The first model _id specified is treated as the left-hand side
schema and the second as the right-hand side schema. The side of the schema s used to determine
which entities and attributes are being referenced in a mapping. If an entity appears on the left-hand
side of a specification then, by default, it belongs to the first schema specified in the inter_view
(though this can be explicitly over-written, as described | ater).

The optional version number (e.g., idm{0.09} in Table 5.3) associated with a schema enables a
mapping to be specified to a specific version of a schema. The use of version numbers also allows
a mapping to be specified between different versions of the same schema, supporting schema
evolution.

The model_type indicates the role that a schema instance plays in this mapping. As the reason for a

mapping between models varies depending upon the model being connected, the model _type

allows the specification of different roles for amodel dependent upon the connection being made.

There are three allowable values for model_type:

read_only: specifies that data can be mapped from that model to the other model, but not vice-
versa. Specifying a read_only role does not restrict the data in either model from being
modified, it just affects amodel’s ability to pass changes through to its connected model.
The model_type for both models can not be set to read _only.

read write: specifiesthat data can be mapped to this model aswell as mapped out of it. Where both
models are depicted as read _write there is no synchronisation when propagating changes
between the models.

integrated: has almost the same meaning as a read_write model. The exception isthat all changes
waiting to be passed on from the integrated model must be accepted before a change is
mapped to thismodel. The need for thislevel of synchronisation is discussed in Chapter 2.
Only one of the two model types can be integrated to avoid deadlock situations.

The three model _types cover all the connections that may be required between models. A
read_only model isfor the situation where it is necessary to provide information to a participant but
not necessary for them to modify the model it is being passed from. The read write and integrated
model types are for mappings where changes from the connected model can be accepted. With the
integrated model type it is possible to ensure the consistency of data in a connected model before
allowing modifications to be made by it. Individual models can play different roles in different
mapping specifications which can lead to interesting chains of connections. For example, a model
which hasaread_only connection to one model could have an integrated connection to another set
of models. Thistype of connection could be used to provide a barrier between a central model and
a set of users who wish to experiment with aspects of the data as well as share their modifications
with each other (see Figure 5.1).

DT Model [User

DT Model |—— User

Intermediate

- B
IDM read_only | Model .
; DT Model pP—— User

read write] DT Model |———— User

other models
Figure 5.1 A treeof inter_view mappings

The map_type indicates how complete the movement of data needs to be between the two models.

The two alowable values for map_type are:

complete: all objects of the entities described in the mapping must be mapped to the datastore for
the other model. This is used for models representing the same type of objects (e.g., a
whole building) and where a mapping only makes sense if everything can be moved
across. That is, the derived model isinconsistent if it is not possible to map all objects of
types mentioned in the mapping specification.

partial: is used where one schema describes a much smaller domain than the other (e.g., aroom
schema versus a building schema) and where it is not necessary to map all the information
across to the other model (e.g., only asingle room is required to be mapped rather than all
the roomsin the building).

85

5.2 Mapping between classes

Following the inter_view definition is a set of inter_class definitions which describe the
relationships between entities in the two schemas. An inter_class definition details: the entities
from both schemas that take part in the mapping; an optional set of conditions which must hold to
use the mapping; the actual relationship between data in the two entities; and, optionally, initial
values for attributes when an object is created (see Table 5.4). Table 5.4 also shows an example
inter_class specification. This example describes the mapping between idm_space face objectsin
one schema and v3d_polygon objects in another schema under the condition that the type of face
of the idm_space face is equivalent to the value opening. Where this is the case there are two
functional mappings specified in the equivalences section to map the object identifier and shape
between representations. There are also initial values specified for attributes of the v3d_polygon
object which provide default reflection and colour information.

inter_class_def = "'inter_class(' class_list '," class_list ['," inherits]
['," invariants_def] ['," equivalences_def] ['," initialisers_def] ')."
class_list ='['" [class_key name { ',' class_key name }] ']' .
class_key_nanme = 'group(' class_name ')' | class_nane .
inherits = "inherits(' inherit_list ")’
invariants_def = 'invariants(' invariant_expr { or_op invariant_expr } ')' .
equi val ences_def = 'equival ences(' equivalent { ',' equivalent } ")' .
initialisers_def = 'initialisers(' initialiser { '," initialiser } ")' .

For exanpl e:
i nter_class([idmspace_face],[v3d_pol ygon],
i nvari ant s(
type_of _face = 'opening'
)
equi val ences(
map_i d_t o_nun{i dm space_face, object _id),
map_pol ar_rect _to_pol ygon(m n=>x, mn=>y, nax=>X, max=>y, pl ane=>axis,
pl ane=>of fset, points[1], points[2], points[3], points[4])
)
initialisers(
diffuse reflection = 0.1,

colour=>r = 0,
colour=>g = 0,
colour=>b = 0

)

).
Table5.4 Definition of an inter_class specification

5.2.1 Entity names and keys

The two class lists in an inter_class definition specify the entities which are involved in the
mapping being specified. As detailed in the inter_view definition, the first class list refers, by
default, to entities from the first schema and the second to the second schema. The union of the
two lists of entity names provides the key for this mapping. There can be any number of mappings
with the same key. However, each specification must be distinguishable from the others by the
conditions specified in the invariants specification. In the example shown in Table 5.4 the key is
[idm_space face, v3d polygon] and though there are several inter_class definitions between these

86

two classes (see Appendix E) they are all uniquely identified by their invariants, in this case
type of face = 'opening '.

In some mappings it is necessary, and in many other mappings very convenient, to be able to
describe a mapping to temporary entities, e.g., where two mappings can reuse a partial mapping in
their transformations. To be able to distinguish mappings to temporary entities from those which
create real objectsin a particular view we denote temporary entities by names prefixed either with
an underscore symbol, e.g., _templ, temp2, or with a capital letter, e.g., Templ, Temp2 (see
Table 5.5 for the syntax of allowable class names). Temporary entities provide a mechanism to
specify entities which do not exist in the schemas of the two systems that are being mapped
between.

In Table 5.4 the class list is defined as consisting of one or more class_key names. Having more
than one class specified in a class list allows the mapper to associate objects from a model when
the objects previoudy had no association. A class list with multiple class key names denotes that
when constructing an instance of this mapping, an object from each class in the class listis
required. This provides a way of associating objects of classes which may not be directly
accessible from objects of thefirst class defined in the list, creating an effect similar toajoinina
relational database system. The manner in which objects are associated is dependent upon the
invariants specified in the mapping. Where no invariants are specified, the number of mappings
that would be performed is equal to the cross-product of all objects for each of the named classes.
Where invariants are specified, the number of mappings is restricted by application of the
invariants to the cross-product of all objects of all named classes. The following small example
helpsillustrate how this works. The example shows five objects, two of class a and three of class
b. Both classes have an attribute called type, and the value of type is shown for all five objects.
Two inter_class definitions are shown. The first has no invariants specified, and as can be seen
from the set of object pairs, displayed after the inter_class, this forces a complete cross-product of
objects from both classes. The second inter_class has an invariant requiring the type attribute of
objects of class a and b to be equivalent. This reduces the object grouping down to three sets of
object pairs, rather than the six for the full cross-product.

Object ID Class Object.type
ol a 1
02 a 2
03 b 1
o4 b 1
05 b 2

inter_class([a, b], [C],).
[[01, 03], [01, 04], [01, 05], [02, 03], [02, 04], [02, 05]]

inter_class([a, b], [c], invariants(a.type = b.type),).
[[01, 03], [01, 04], [02, 05]]

87

The group() specifier al'so suppresses creation of the full cross-product. It allows a collection of
objects of the named class to be grouped together for the purposes of the mapping. This is
commonly used to group multiple objects of a single class into a collection that is not explicitly
supported in the original schema, and then to map the collection to a schema which requires this
grouping. Without invariants, group() selects al objects of the named class; with invariants, the
objects of the class are restricted by application of the invariants to each individual object being
grouped. To illustrate how group() works consider the small example above with modified
inter_class definitions as below. Thefirst inter_class shows that all objects of class b are grouped
with objects of class a in a set rather than a cross-product. The second inter_class shows that the
objects in the grouped set can be restricted through the use of invariants.
inter_class([a, group(b)], [c],).
[[01, [03, 04, 05]], [02, [03, 04, 05]]]
inter_class([a, group(b)], [c], invariants(a.type = b.type),).
[[01, [03, 04]], [02, [05]]]

In an inter_class specification, one of the class_lists can be left empty. This allows the
specification of initial conditions that must be established when a mapping between modelsis
initiated. In most systems this would be to allow the creation of an object with initial valueswhen a
model is created (e.g., the controller of a design tool, or entities which have no representation in
the schema being mapped from).

Table 5.5 shows the definition of a class name. While the default reading of a mapping is that the
order of schemasintheinter_view definition isthe order of classesin an inter_class definition the
ordering can be overridden through the specification of the model _id in the class name. This
allows classes from a schema to be specified in either side of an inter_class, and also allows for
mappings between classes of a schema and temporary entities to be defined (or between temporary
entities and temporary entities) in any order the mapping specifier desires.

class_nane = [nmodel _id ':"] class_id |
variable id .
nodel _id = sinple_id ['"{" version'}"'] .
class_id = sinple_id .
variable_id = upper_case { sinple_id _char } |
' (letter | digit) { sinple_id_char } .

For exanpl e:

i dm space_f ace

i dn{ 0. 09} : bui | di ng

_tenp

Table 5.5 Definition of aclass name

5.2.2 Inheritance of inter_class definitions

The specification of inherited inter_class definitions allows inter_class specifications to closely
model the structures that are found in object-oriented schemas. Where there are correspondences
between the parent classes of a set of child classes it is more efficient and more maintainable to

88

specify inherited correspondences between the parent classes than to re-specify the mappings for
each child class. The type of mapping where this feature will be most commonly utilised isin
version mapping for object-oriented schemas. The specification of an inherited mapping, as shown
in Table 5.6, utilises the key of a mapping to determine which mappings to inherit. Where the
mapping specified has multiple definitions for that key (i.e., with different invariant
specifications), then the combined mapping will be expanded into a set of mappings encompassing
all combinations of invariants from the inherited inter _class definitions.

inherits = "inherits(" inherit_list ")’
inherit_list = inherit_map { ',"' inherit_map } .
inherit_map = "inter_class(' class_list '," class_list ")’

For exanpl e:
i nherits(inter_class([person],[person]))
Table 5.6 Definition of inheritance

5.2.3 Invariant specification

Invariants are an optional part of an inter_class definition, and describe the conditions under which
it is possible to use a particular inter_class definition. For example, defining an invariant
invariants(building.type = ‘commercial’) in an inter_class definition would denote that it was only
possible to use this inter_class definition for buildings which are commercia buildings, and
presumably there would be other inter_class definitions which would specify what to do with other
types of buildings. Thus, invariants are selection criteria to use when deciding which inter_class
definition to apply to any given object. Each individual invariant expression can only reference
objects and attributes from a single schema in the mapping. Invariants are therefore broken into
two sets, those which apply to classesin one schema and those which apply to classesin the other.
When deciding if an inter_class definition isto be used, al invariants which apply to the schema
being mapped from must evaluate to true on the objects being tested.

invariants_def = 'invariants(' invariant_expr { or_op invariant_expr } ')' .
i nvariant _expr = invariant_sinple_expr { and_op invariant_sinple_expr } .
invariant_sinple_expr ="' (' invariant_expr { or_op invariant_expr } ")' |

expression rel _op expression |

predicate |

function |

net hod |

"group(' attribute_nanme { ',' attribute_nane } ')' .

For exanpl e:
i nvari ant s(
type_of _face \= 'opening',
pe_face. of fset = pf_pl ane_obj ect . of f set,
map_orientati on_axi s(pe_face. orientation, pf_plane_object.axis),
cont ai ned_i n_f ace(pe_face, pe_openi ng)

)
Table 5.7 Déefinition of invariants

The invariants also create constraints on the objects that are mapped, which in some cases can be
used to fill in values in an object, or in others to create constraints on an object. In the example
above it can be seen that when an object is mapped back onto the building with invariant

89

building.type = 'commercial’ then the value of type can be automatically set to ‘commercial’
without having to use an equivalence definition to specify this.

Invariants can be thought of as boolean expressions which must equate to true to allow the
mapping to proceed. Invariants (the syntax of which is shown in Table 5.7) can be composed of
functions, predicates or object method calls which succeed or fail, or expressions containing
relational operators (e.g., =, >=, <). Sets of invariant conditions can be joined together through
the use of and operators ', or or operators';". VML offers one special function to be used with
grouped classesin an inter_class definition. The group() function can only be used with a grouped
class (see Section 5.2.1). It can only be used on an attribute of a grouped class which has afinite
domain (usually an enumerated type) and is used to collate all objects of the named class whose
value for the named attribute is identical. For example, specifying inter_class([group(building)],
[aggregation_of type], invariants(group(building.type)), ...) would ensure that a separate
mapping would be performed for each type of building in the first model, pooling values into a
single object in the model of the second schema for every different value of type found in the
model of the first schema.

The examplein Table 5.7 provides a complex set of invariants which must be satisfied to allow a
particular inter_class specification to be used. In this specification the type_of face attribute must
contain the value 'opening’, and the offset object referenced by pe face and pf_plane_object must
be the same, also the functions map_orientation_axis() and contained_in_face() must evaluate to
true with the supplied parameters.

initialisers_def = "'initialisers(' initialiser { '," initialiser } ')' .
initialiser = expression '=" expression |

predicate |

net hod .

For exanpl e:
initialisers(
i dm space_face.face_property = 'idmspace_face',
idmmaterial _face.face_property = 'idmnaterial _face',
idmmaterial _face. material =>type_of _material = 'idmw ndow naterial',
idnmaterial _face. material =>type_of _wi ndow = 'idmsingle',
idmmaterial_face. material =>w ndow subtype = 'clear',
f e_openi ng@r eat e(i dm space_f ace. pl ane, idm space_face. pl ane, 'space', 0, O,
i dm space_face.mn=>x, 0 - idmspace_face. nin=>y,
i dm space_face. max=>x, 0 - idmspace_face. nax=>y,
idm material _face. materi al =>w ndow_subt ype)

)
Table 5.8 Definition of initialisers

5.2.4 Initialiser specification

The optional initialiser section allows the definition of initial values for attributes of objects created
in an inter_class specification. For models that are object-oriented, the initialiser section also
provides alocation to specify the create method parameters for objects that may be created during

90

the mapping. The initialiser section (the syntax of which is defined in Table 5.8) usually comprises
mainly assignment statements specifying values for attributes, though predicates and procedures
can aso be specified.

Any entity attribute, or referenced attribute, of any class specified in the class lists of the
inter_class specification can beinitialised in theinitialiser section. Initialisers will only be applied
to newly created objects (i.e., not to an existing object which is associated through an invariant
specification) and may cause the creation of other objects (e.g., attribute assignment through
pointer chains).

5.2.5 Equivalence specification

The equivalence section comprises the bulk of most inter_class definitions as it specifies the
correspondences between the attributes of entities defined in the class lists of the inter_class. It is
this section which contains all the equations, functions, and procedures which will need to be
solved or executed to map between models of the schemas in the mapping. The declarative nature
of VML is most evident in this section as equivalences are used to define mappings between
attributes. The ordering of expressions is unimportant as their solution is dependent only on the
state of the model being mapped from. The syntax of the equivalence section is shown in Table
5.9.

equi val ences_def = 'equival ences(' equivalent { ',' equivalent } ")' .
equi val ent = expression '=" expression |

"map_to_fron(' predicate ',' predicate ')' |

"bijection(' bijection_expr ',' bijection_expr ')' |

predicate .

For exanpl e:
equi val ences(
bij ection(idmspace face[].type_of _face \= "opening', walls[]),
bi j ection(idmspace_face[].type_of _face = 'opening , openings[]),
idmnaterial _face = naterial s,
i dm braci ng_face = bracing,
i dm pl ane. nane = nane,
i dm pl ane@i ew pl ane = fe_applicati on@reate_view _, idmplane. nane)

)
Table 5.9 Definition of equivalences

5.2.6 Mapping eguations

The style of equations that can be used to define the mapping between classes was devel oped to
meet the mapping types identified in Section 4.1.3. The major abilities of the VML language are
described below. For the full syntax of the language refer to Appendix A.

5.2.6.1 Attribute initialisation or constant value specification
A constant value can be assigned to an attribute by equating the value with the named attribute as
shown in the examples below.

type _of face = 'opening'

91

diffuse reflection=0.1

gloss factor = 90.0
This type of equation can appear in invariants, equivalences and initialisers and has slightly
different semanticsin each. When specified in an initialiser these equations provide the initia value
for an attribute which may be modified by other equations in the equivalences section. When
specified in an invariant or equivalence they specify a constant vaue. If the value is specified in the
invariant it is used either to determine which mapping to apply to the class the attribute bel ongs to,
or to initialise an attribute for a newly created object. If the value is specified in an equivalence, it
specifies a value for the attribute which may not be modified (i.e., it will always be reset to the
specified value). This specification corresponds to the Attr->Attr mapping of cardinality O:1.

5.2.6.2 Equality
Direct equality between two attributes of asimpletype (e.g., REAL, INTEGER, BOOLEAN), or
named types, can be specified by equating one attribute with the other attribute as shown in the
examples below.

name = planename

axis=axis

offset = offset
This type of equation can appear in invariants, equivalences and initialisers and has slightly
different semanticsin each. When specified in an initialiser these equations provide the initia value
for an attribute which may be modified by other equations in the equivalences section. If the
equality is specified in the invariant it specifies attributes of entities on the same side of a schema,
the values of which must match for the inter_class to be used to perform the mapping. If the
equality is specified in an equivalence then it denotes that the attributes of the respective entities
must hold the same value. This specification corresponds to the Attr->Attr mapping of cardinality
1:1.

5.2.6.3 Pointer equality
Equality between pointers to objects of entitiesin the schemasis specified in the same manner as
for equality between attributes of simple types, e.q.:

plane = fe_face window
This type of equation can appear in invariants, equivalences and initialisers and has slightly
different semantics in each. When specified in an initialiser these equations provide the initia
object reference for an attribute which may be modified by other equations in the equivalences
section. If the equality is specified in the invariant, then it will be specifying reference attributes of
entities on the same side of a schema whose object references must match for the inter_classto be
used to perform the mapping. If the equality is specified in an equivalence, then it denotes that each
attribute has the object identifier of the object that was created from the inter_class definition
between the entities of the two objects. This specification corresponds to the Attr->Attr mapping of
cardinality 1:1.

92

5.2.6.4 Simple equations
Equations can also be used to define relationships between various attributes, as shown in the
examples below. The range of algebraic and transcendental functions available is the set of
functions supported by LPA Prolog.

min=>y =0 - y0

r* sin(theta) =y_coord

r = sgrt(x_coord * x_coord +y_coord * y_coord)
This type of equation can appear in invariants, equivalences and initialisers and has dlightly
different semantics in each. When specified in an initialiser, these equations provide the initial
calculated value for an attribute, which may be modified by other equations in the equivalences
section. If the equation is specified in the invariant, then it specifies attributes of entities on the
same side of a schema, the calculated value of which must match for the inter_class to be used to
perform the mapping. If the equality is specified in an equivalence, then it denotes that the
attributes of the respective entities must hold the value determined by the re-arrangement of the
equation to solve for each particular attribute. This specification corresponds to the Attr->Attr
mapping of cardinalities 0:1, 1:1, 1:C, C:1, C:B. Where there are more than two attributes in an
equation (i.e., cardinalities 1.C, C:1, C:B) it is assumed the implemented mapping system will re-
arrange equations to solve for unknown values, or arrange sets of equations to ensure that values
calculable in other equations can be used to solve more complex equations, the method for
achieving thisin an implementation of VML is described in Chapter 9.

5.2.6.5 Pointer references
Following pointer chains to reference attributes of the referenced object is possible with the =>
operator in VML, as shown below. Pointer chains can be followed to any depth and provide a
method for collapsing, or expanding, reference structures in a schema.

apex1=>x = apex2=>x
Pointer references have the same semantics wherever they are used. When solving equations
which contain pointer references, it is sometimes necessary to create objects of the referenced type
to have afull reference for solving the equation. For example, in the equation above, if apex1 had
no value it would be necessary to create an object of type point, the reference to which would
become the value of apex1, so the attribute x could be set to the value of apex2=>x.

5.2.6.6 Functions
Functionsin VML are the built-in functions of LPA Prolog, which are predicates which either fail
or succeed along with the specia functions exists/1 and var/1 which are used to determine whether
an attribute has a value specified or if it has not been assigned to (see the examples below).
member(fe_face material, fe_face window.materials)
exists(end_point=>z)
var(end_point=>2)

93

Functions are used in the invariants section of an inter_class definition to determine whether to use
the particular inter_class with the objects currently under consideration.

5.2.6.7 Aggregation functions
In contrast to the functions described above, aggregation functions are not invocable in both
directions, or re-writable as most equations are. The set of aggregation functions (sum, maximum,
minimum, average, count) provide summary details of lists of values or objects, as shown in the
examples below.

sum(wall.windows=>(height * width)) = glazing_area

maximum(panes=>(offset=>y + height)) - minimum(panes=>offset=>y) = height
Aggregation functions can not be solved in both directions (e.g., for the first example, knowing
the glazing_area does not allow the calculation of height and width of all the windows in awall).
Instead, when performing a mapping to an equation with an aggregation function, the calculated
value from one side of the equation is used to specify a constraint on the values of the schemathe
mapping is being applied to. For instance, in the first example above, if the glazing_areais known,
then the sum of height * width for all windows in the wall will be constrained to the value of
glazing_area. Aggregation functions can be used in any part of an inter_class definition. The
implementation of these constraints is assumed to be handled by the implemented mapping system,
Chapter 10 details how this was achieved for one VML implementation.

5.2.6.8 List and array references
Individual elements of alist or an array may be referenced through the indexing operator. The
examples below show equations which reference elements of a list and an element of a 3-
dimensional array.

axeq2] =v_ref

exists(axeq 2]=>direction_ratiog 3])

vector[2, 2, 3] =iz
List and array references can be used in any part of aninter_class definition.

5.2.6.9 List and array iteration

A mapping between lists or arrays of the same dimensions and bounds can be specified through
the iterator operator. This operator provides a short-cut notation for the specification of for-loops
over the contents of lists and arrays, as long as the relationship can be specified in an equation.
Mappings between lists and arrays which do not meet these conditions must be specified with
predicates, procedures or methods. The example below shows a mapping between alist of strings
(classified_by) and alist of object references (material) which has an attribute, name, of type
string. The result of a mapping between these two attributes will be that the first item in the
classified by listisidentical to the value of name of the first object reference in material, and so on
for the number of items in classified by, or in material, depending upon which direction the
mapping is being run.

94

classified_by[] = material[].name

Iterators can appear in invariants, equivalences and initialisers and have dightly different semantics
in each. When specified in an initialiser, an iterator provides the initial calculated values for an
attribute of list, set, bag, or array type (within the specified bounds of the aggregate type), which
may be modified by other equations in the equivalences section. If the equation is specified in the
invariant then it specifies a condition which must hold for every value in the aggregate attribute
referenced for the inter_class to be used to perform the mapping. If the equality is specified in an
equivalence, it denotes that each element of the iterated attributes of the respective entities must
hold the value determined by the re-arrangement of the equation to solve for each particular
attribute. This specification corresponds to Attr->Attr mapping of cardinalities 1:1, 1:C, C:1, C:B.
It can also denote Attr->Entity mapping of cardinalities 1:C, C:B, 1:N, or Entity-Attr mapping of
cardinalities C:1, C:B, N:1, or Entity->Entity mapping of cardinality 1:1.

5.2.6.10 Conditional list and array iteration
VML provides bijections to extend the flexibility of the iterator operator. Bijections allow the
specification of conditions to be checked on each element of an aggregate attribute, or grouped set
of objects (formed by a group() specification in aclasslist), before a mapping can take place. The
examples below show the bijection between lists of object references where the mapping is
conditional on the classtype of each object in the list. In the example below the right hand schema
entity has attributes: spaces, which is a collection object containing a list of references to space
objects; roofs, which is a collection object containing alist of references to roof objects; and faces,
which is alist of references to face objects, which specify face geometry. Entity idm_building
from the left hand schema has attributes. spaces, which is alist of references to abstract spaces
including roofs and spaces; and face_views, which is a list of references to different views
associated with faces and which can include geometry-oriented views, materials-oriented views,
and bracing-oriented views. There is thus a partial overlap between the sets of objects referenced
by the attributes involved in each of the two classes. The first bijection specifies that only
idm_building spaces which are really living spaces (i.e., their type is idm_space) should be
mapped to the spaces=>Ili<t, though all spacesin spaces=>list can be mapped to the idm_building
spaces aggregate attribute. The second bijection specifies the same conditions, except thistime for
roof objects, and the third bijection performs a similar mapping for geometric faces. The @
operator specifies amethod call in the example bijections, in this case to the meta-method class()
which returns the class of the referenced object. The first bijection therefore iterates through all
objects in the spaces list, extracting those whose classis of typeidm_space.
bijection(idm_building.spaces[] @class('idm_space'), spaces=>list[]),
bijection(idm_building.spaces] @class(‘idm_roof*), roofs=>list[]),
bijection(idm_building.face viewdg]@class('idm_space face'), faceq])
Bijections may only appear in the equivalences section of an inter_class definition. Bijections can
be run in both directions and are taken to mean: iterate over all elementsin the specified attribute or
group of objects, but perform a mapping only for those elements which match the conditions

95

which are specified. Conditions can be in the form of method calls (as in the example above),
predicate calls, or conditional equations. As multiple bijections can be specified over a single
attribute (e.g., idm_building.spaces[] in the examples above), the result of the conditional
evaluation and the equation solving are unioned with values from the other bijections on thelist or
array being mapped to. In the example above this means that in mapping from the right-hand side
to the left-hand side the idm_building.spaceq[] will contain the union of spaces and roofs from the
right-hand side schema list attributes being mapped from. This specification corresponds to Attr-
>Attr mapping of cardinalities 1:1, 1.C, C:1, C:B. It can also denote Attr->Entity mapping of
cardinalities 1.C, C:B, 1:N, or Entity-Attr mapping of cardinalities C:1, C:B, N:1, or Entity-
>Entity mapping of cardindlities1:1, 1.C, C:1, C:B, N:M.

5.2.6.11 Functions
User defined functions extend the set of built-in functions of VML. User defined functions are
broken into two categories: those which reference attributes from a single schema; and those which
reference attributes from both schemas (examples of the latter are shown below, as detailed in
Appendix E).

list_splitter(vals, temp_schedule.splitvals)

map_polar_rect_to_polygon(min=>x, min=>y, max=>x, max=>y, plane=>axis,

plane=>offset, pointg[1], pointg 2], points3], points[4])

User defined functions which reference attributes from one schema are used in the invariants and
initialisers sections of the inter_class definition. User defined functions which reference attributes
from both schemas must be invocable with the attributes from either side instantiated (i.e., able to
run in either direction). When used, these functions are called with the values from the schemathe
mapping is coming from, and the results are used to instantiate the attributes of the schema the
mapping is being applied to. A function is not invoked unless al function attributes of the schema
the mapping is coming from have values. In general, functions may not manipulate objects (e.g.,
create new objects, delete objects, reference object attributes, call object methods), but allow
structures to be manipulated and values to be computed. Functions correspond to the Attr->Attr
mapping of cardindlity 0:1, 1:1, 1.C, C:1, C:B.

5.2.6.12 Procedures

Where a mapping can not be specified bidirectionally using equations or functions, it is necessary
to describe the mapping procedurally. In VML the map_to_from predicate is used to denote two
procedures which perform a mapping. In a map_to_from definition there is a procedure for
mapping in each direction (if the mapping is one-way, i.e., read_only, then one of the procedures
is not necessary and may be replaced with the function true). Dependent upon the direction in
which a mapping is applied, the appropriate procedure will be invoked to perform its mapping.
Procedures assume full control over how to perform a mapping, and as such may create objects,
reference attributes, delete objects, etc. An example of the use of procedures is shown below.

96

map_to_from(map_3D _rect_to_polar(x, y, z, x1, y1, z1, min, max, plane),
map_polar_to 3D_rect(min, max, plane, pe_wall))

Where map_3D _rect_to_polar() and map_polar_to 3D_rect() are Prolog predicates that map from
a 3D rectangular representation (given by two pointsin 3D space) to a polar representation, or vice
versa. As procedures may need to manipulate objects in the stores they may require information
about the current status of the mappingsin the system and the store managers handling the objects
in the system. To alow thisinformation to be accessed in a procedure, a special parameter may be
passed to the procedure. This parameter $mapping_system$ is replaced with the object ID of the
mapping system controller when a procedure is invoked. The three most utilised services offered
by the mapping system are: return of the type of mapping being handled (currently just transaction-
based or interactive); return of which pass through the mappings is being executed (for
implemented systems where multiple passes are made during the mapping); and return of the object
ID of an object that was created in a mapping based on another object 1D (see describing pointer
equality above). As procedures have full control over what they do in the system, they can perform
mappings between any combination of Attr and Entity in the system, and can describe mappings
between any cardinality of these Attr and Entity maps.

5.2.6.13 Method invocation

As VML isdesigned to work with OO environments as well as in interactive environments, it is
necessary to handle OO method invocation. Methods are specified as an optional class or attribute
definition, followed by the @ symbol and the name of the method, with parametersiif they exist.
Method handling in VML covers two cases. for classes which have creation methods with
parameters, theinitial parameters of the create call can be specified in the initialisers section of an
inter_class; in amapping where method invocation in one model can trigger amethod invocation in
the model being mapped to, the parameters of the methods to call can be specified. The examples
below illustrate both these cases. The first example shows a case where whenever the view_plane
method of an idm_plane object is called then the create_view method of the corresponding
fe_application object in the mapped model should be called, or vice versa. The second example
defines the parameters required in a create call for objects of type fe face window.

idm_plane@view_plane = fe_application@create view(_, idm_plane.name)
fe face window@create(idm_building, idm_plane.name, idm_plane.axis, 0, '+, [])

Method parameters which return values not required for the mapping can be specified witha_ to
indicate that the parameter should be ignored (asin create view above). Methods are called if all
parameters from the side being mapped from are known. This needs to be kept in mind when
create methods are specified, as all the parameters from the side being mapped from must be
guaranteed to be bound at the time that the object creation takes place. This also means that object
references in a create method must be resolvable through pointer equality at the time of the object
creation. For example, in the create method above idm_building will be replaced with the object 1D
created from the inter_class mapping for idm_building. The level of support for mapping of
methods will be dependant upon the approach taken for the implementation, as methods can have

97

side-effects which are only valid if methods and data are mapped in a strict sequence.

5.2.6.14 Type conversion

Simple type conversions are implicit in amapping definition. Casting of results of equationsis not
required in VML, asthisisimplicitly defined by the type of the attributes specified in the equation.
Pointer equivalence handles the type conversion of object references, aswell as lists and arrays of
object references. Procedures are expected to correctly cast results calculated in the procedure
when setting the value of an attribute. Mappings of attributes which have complex types are
expected to explicitly define the type conversion as part of the mapping specification.

5.2.6.15 Unit conversion

Unit conversion is not supported implicitly in the VML language. Any unit conversion which must
be performed between attributes must be modelled explicitly. While it would have been possible to
assume an implicit unit conversion in a mapping there would have been some practical difficulties
in the implementation. One difficulty is that implementing a system to determine the final unit of a
complex equation is no simple task. Another problem is that predicate, procedure and method
definitions provide no meta-information on the units of their outputs, so it would be impossible to
check that the result of a predicate, procedure or method was in the correct units.

5.2.6.16 Temporary attributes
Temporary, or local, attributes can be defined in aVML mapping. These attributes have the same
syntactic definition as a temporary entity, i.e., names prefixed either with an underscore symbol,
e.g., templ, temp2, or with a capital letter, e.g., Templ, Temp2. Temporary attributes allow
the specification of partial computations which may be used in further equations. To this extent
temporary attributes can reduce the complexity of an equation definition and can be used to
improve calculation performance in an implemented mapping system (as demonstrated in the
example below).

WallTheta=tan_1(y_offset / x_offset),

WallDist = sgrt(x_offset * x_offset +y_offset * y_offset),

wall_x =WallDist * cog(WallTheta + azimuth),

wall_y =WallDist * sin(WallTheta + azimuth)

5.3 A Graphical Notation for VML

To satisfy the modelling notation requirements of Section 4.1.3, and to complement the textual
notation of VML described in Sections 5.1 and 5.2, a graphical notation (VML-G) was devel oped.
The graphical notation describes a subset of the full VML language and is aimed at high-level
views of the mapping specification.

98

As agraphical language provides fast reading and comprehension of the textual equivalent, VML-
Gislikely to be of usein large integration projects where the schemas of the IDM and the design
tools can be very large requiring hundreds of inter_class specifications to detail afull mapping. To
manage a mapping specification of this size, the developers of integrated design systems will
require many diagrams showing parts of a mapping, from high-level design views during the
initial specification phase (which can identify entities which must be mapped between), through to
more detailed descriptions of the mapping between attributes heading towards the implementation
stage. Graphical specifications will also provide some benefit where single entities have a large
number of attributes. In these cases the modeller may wish to consider subsets of the entities
attributes when specifying a mapping, requiring multiple views of the mapping between entities.

5.3.1 Graphical icons of VML-G

In VML-G thereis asingle graphical icon type representing an inter_class definition (see middle
icon in Figure 5.2). This icon has three sections corresponding to the three sections in an
inter_class definition. These three sections allow invariants, equivalences and initialisers to be
grouped into localised areas in the icon and provide avisua separation of these distinct functions.
The other icon type defined in VML-G denotes an entity taking part in the mapping with the
inter_class (see the left and right hand iconsin Figure 5.2).

S Planes Interllass ===
- —invariants — ~ -
| idm_plane I —— pf_plane_object]
name =3 = &= planename
axis = = = axis
offset =3 = = offset
@view_plane =3 = = L [@select
—inditialisers —

I
Figure 5.2 Graphical mapping specification in VPE

A graphical view of a mapping between entities from two schemas is specified by drawing an
inter_classicon with icons for the entities on either side of it. By convention we put entity icons
from the left hand schema on the left of the inter_classicon and the others on the right. Thisis not
strictly necessary as the schema an entity belongs to can usually be ascertained quite ssimply. Entity
icons specify the name of the entity represented (with optional schema and version information)
and can list any attribute and method (prefixed with a‘* @’) names defined in the entity (see Figure
5.2 for an example of direct attribute and method mappings). When there are multiple entities from
a single schema participating in a mapping, the vertical order of the icons defines the ordering in
the classlist of theinter_class definition (Figure 5.3 shows the VML-G for such a mapping along
with the textual equivalent). An entity which is to be grouped in the class list of the mapping

99

specification is drawn with a double line around the outside (like a stack of entities), al'so shown in
Figure 5.3.

In Figure 5.2 we see that the icon for an inter_class definition consists of three parts. At thetopis
the invariants section which specifies conditions which must hold for this mapping to take place.
Below that is the equival ences section which contains all mappings between attributes and entities.
At the bottom is the initialisers section which holds the definition of initial valuesfor attributes.

roof-1 Inter Class
\ invariunks —
@- . = 1dm_kagp_rosf = o
i = m|
Tarwal squiTs lEncss —
[M
:@ = fure = A ol
E I [T fue [__‘—-__h_q_h v _palygea
— T e E_‘" absct_id
5 shebbung func =18 diffee_reflestion
Eratarial [— C § Epecnlar_reflactiom
trpe e = | glods_factar
[
E apaid f— = Fpaints
npE e 7 colow
forents indtislisers = o Boremte
o = @l Rlump_bo_file
— = m -l"--. '-.-.-. =
=[m rieof-1 Textual 3 |
Fhpedncad_peees|od] . 1
wpdatae_gred. *F

dreey_pleeal [480 1) - id8m Bdp resi], [geeupiwdedenddi1l:-v3d palwgenl]|,
irwedieneai
idmd 17 : ide_kip roef spesiwbodesd L} -dds T pedre o = Lded 17: tds_hip _recd spesZwhidet | bodde T pedrk 3,
Lded 17 : bdmy_hip_roed speslwbodesl Lh: sds_ T pednt ow = pded 1) pdes_hip_reed . apexIwbodei] LF-ddes T geink v
1,
aparTelarcesi
e A8 %o _mewl pded, Ll _hop_reed | mimionidl LEow3d_polvgen| 8] ebgest_adl
wmp_brisngle_to_pelygenlide] 10 ide bdp_rosf minsididem 1 ide Jd_powk v, pdet] L odde hap_poeod swire g pdest L
il d_poing v, el 15 wde_hip_reod mons el | pde Sl _padnd on, dde] 10 ide bdp_rasf mineided 1)
il il it o, bl 5 e bip_eedl meast bdbed]} bl S padina w, dole] §0) b kip_waall minaided 1)
R T U Tl S S R R T T R e AT CU T R T TR PR T A]
il Nl e bevn o, bl 15 bl ok sl e Loy gl Ly il 2 gedin 5, vEedenddi 1) w0l jelpges] L] paima] 1],
skl b Bl Ly cvlll_pots Tppona [1] . psbvma{ 2], vl o dolld L) o wdll_poss Toppoain [1] . prabma 3] 0 L
il wa acie] bdeat 1% ke bilp cecd | wdaboaddel L} owbedl_pea Dygen | 3] ok wan L]
g coleieg e wo s Dy el 17 b bip sesd wlomsdded 1) b0 Jd poban .o, Gl L)oo ddis Ry oeend secdren - Gl L}
dife 3 pobie .y, L1l i Rilp ceof sdessbded 1} bhe 28 pedne.n, ddied 17 0dm Bip oost . e sdded 17
dide 3 polne.x, b1l Sde Rip cood sdee el 15 bde 08 pednr.w, dded 1708w Rip_sead wlrmsdded 17
ddm 3 _point .z, bielll: fds hip cood upaclesddssl L) cdde 3 peinet.x, sl 1} bdm hip cesd . agasle b el L}
ddm 3 _point .y, Wil 1l Sds hip ceod upacleiddssl L) cdde 3 peint .z, vieden®3 1773 _pelpgasl] gadrme]1],
vipban i Ly w34 _palwgon| 2] .potnte{ 2], vielemdd L) -v3d_palygon| 2] .potncef 3]0,
e A8 e _mowl] bdell 10 sds Rip peed, wirlon T Lk owld psdvgen]3] ebjest_id0
wp_triengle_te_pelpgeni ided 17 idm Bdp_roof empwiided 15 idm Jd pomnt . x, ddee LDodde Fiog pecf ssirembodel L
dde B poirk e, tdel 1) ods hip recd edesipdesd 1 cds 3 padrt oz, dded 10 ide Rip ool emmeiided 15
dde 3 _peurt .=, el L) sdes_hip_pecd oemowioeded L vde_ T pedne.w, dded 10 00de Rap_roof e iides] 13
A _peark .z, wdel L wdes_hip_peed ospaclwbodesl LD cade d peurk oo, wded L edes_hilp_peed spe sl odes LE
Aol _poark o, wedesl L e hip_peed apecleioodel L5 cade Cld peand g, vardensidl) ovd pelpges] peards] 1]
i3l Ly v3d_palygen| 3] pomtefl). viriendd L v3d_polygen|3] prmkafd)i.
g _id_to s bl 15wl _hip _reed . vimbenddil Ly o+3d e lygen| 4] sbjest_idl,
g _4a hang le_%e_pe e ide] 50 dde bip_vaal woeaiideed 31 ide dd_paiat oo, pildet L) odde higp sl s wiled |y
il il e bevn o, el 1 e Bobp el i bt 17 bl 2l e w, doled B0 e i LR 4]
il il kw1 bl ok sl s bl 1 bl 3 i g, deked 10 e i mdaE e 11
il Ml it 6, bl 1 bl il il e Lo diles L) ciilis 3 g din o, el 1 bl bobp ot g o lm s Gkt 1)
i S poine .y, bdel 1} ble hip cecd mpeocloyddeed Ly dde 3 pelne.a, weadenddd 1) vl pelpges]d] padrma] 1],
ko L Dol L el pens Dipgeaenn [4] peoBaima (2] vl Lo 3ol L) v _pes Tipgeon [4] . peBnma{ 3]0

i,
inbcinlisacer

i dend3 17 - vl _pelpgen diffues_rafleczien = 0.8,
indend=3 17 vl _pelygsn optesuler_raflactiss = 0.5,
riadendd 1] - v _pelpgen . gloss_fooitar = I,
riedendd! 1] - v _pelpgen oo loaresviaden?d 11 v b7
riedertd] 17 v _pelpgen oo leareerinden 4l 17 w34 k.4
risderd] 15 - 724 _pelpgen oo loareiripden®d] 17 (v _rghk-.b =

I _ B
Figure 5.3 Complex VML-G specification with textual equivalent

0.,
6.3,
6.3

Each individual equation, function, or procedure is given asingle row in the inter_classicon. At
each end of the row is abox to which the attributes and entities involved in the particular equation,

100

function, or procedure are connected. In the middle of the row there can be one of four symbols

which are used to define the type of mapping being defined between attributes and entities. The

four symbols are:

= denotes that thereis a direct equivalence between the attribute (or entity) in one schema and
the attribute (or entity) in the other. These one-to-one mappings are distinguished as a
special case as they occur frequently in mapping specifications.

egn denotes that the attributes or entities in one schema are related to attributes or entitiesin the
other schema through an equation that is not a one-to-one equivalence.

func denotesthat the attributes or entities wired together in this row are mapped through the use
of afunctiona mapping specification.

proc denotesthat procedura codeis required to map between the specified attributes or entities.
In the textual notation this has to be specified with different procedures to map in each
direction.

5.4 Appraisal of VML

VML and VML-G define notations which are capable of modelling al known types of mappings
between two schemas. They provide the ability to describe high-level views between entities in
schemas, through to low level detailed views of mapping equations. They are supported by an
environment (described in Chapter 6) which provides for multi-view graphical and textual
specification, along with a global consistency mechanism. Mapping checkers and a generic
mapping definition (also described in Chapter 6) provide a means to describe the required
mappings between schemas for any implementation paradigm. In the remainder of this section, we
review how these new notations meet the requirements laid out in Section 4.1, and what further
work remains.

VML satisfies the requirements of Sections4.1.1 and 4.1.2 in the following manner:

Structural mapping types. the class lists of an inter_class definition, along with invariant
specifications, provide the means of describing any of the cardinalities of object to object
mappings that can occur. Equivalence specifications provide a means of describing attribute
to attribute mappings. In most cases, relationships between attributes and objects can aso
be defined in the equivalences section. The creation of objects during mapping initialisation
(corresponding to 0:1 mappings) can be handled through an inter_class with one class
defined in one class list and none in the other. Other types of new object or attribute
creations are able to be specified through the initialisers section of the inter_class definition.
VML has no explicit notion of object deletion or attribute value removal, therefore 1.0
mappings are not possible to encode explicitly. However, instead of explicit deletion, a
notion of constrained creation is utilised. For example, if there is a condition under which
an attribute should have no value then this would be specified in an invariant condition and

101

the following mapping would not map a value across.

Semantic mapping types: the majority of these conflicts can be resolved through explicit definition
of mappings between attributes in schemas. For example, homonym and synonym
conflicts from Table 4.3 can be resolved by specifying a mapping between the correct
attributes. However, the recognition of these conflicts is the responsibility of the mapper
and is not detected in the VPE support environment. The same is true for most of the
schema and data conflicts of Table 4.4. Equivalences and initialisers provide the
mechanism for resolving the conflicts; their recognition is the responsibility of the mapper.
Structural conflicts of Table 4.3 are resolved through specification of classes in the class
lists and the invariants which tie together objects of these classes only under specified
conditions.

An appraisal of VML with regard to the more mapping-specific requirements of Section 4.1.3,

yields the following:

Language level: the use of VML-G allows rapid and concise specification of which entities and
attributes are related, without having to provide exact details of the connections. The
declarative style of the VML notation allows for simple specification of exact relationships
between entities and attributes, without having to detail specific methods to implement the
relationships, and without having to rewrite the relationships to solve for all referenced
attributes. In VML there is an underlying assumption that the mapping system will
determine how to perform the mapping, and rearrange equations as required. However, it
is recognised that a declarative approach can only be used for a certain set of
correspondences, and in some cases a procedural specification will be necessary. VML
provides for this as well. Some of the surveyed languages provide a more concise notation
than VML for specia cases (e.g., a Transformr ‘ COPY’ to copy between identical objects
during aversion update). VML, however, provides a consistent level of specification for
any type of mapping.

L anguage notation and modelling environment: VML is supported by a graphical notation (VML-
G) to allow high-level views of mappings, aswell as VML’ s lower level implementation
views. The VPE environment demonstrates some of the power that can be gained from a
multi-view graphical and textual specification environment with consistency maintained
between all views. For example, select portions of a mapping can be described in different
views, and entity icons can be expanded and contracted to show as much or aslittle of the
entity interface as required.

Language style: the declarative style of VML ensuresthat it is easily trandated into implementation
environments of many paradigms. For example, translating VML into a procedural, batch
operated mapping system would be possible by transforming VML mappings (re-arranged
to solve for the required attributes) to procedural statements. This approach has been
explored at BRANZ (Price 1995) to tie together several in-house design and analysis tools.
As an example of the other implementation paradigm extreme, an interpreted on-line

102

implementation of VML mappingsisillustrated in Chapter 10.

Bidirectional: all VML mappings are implicitly bidirectional, though this can be overridden in the
inter_view definition. Any VML mapping is specified with the understanding that the
implementation system will use the mapping specification, re-arranged as necessary to
solve mappings, dependent on the direction in which data is mapped.

Conditional mapping: the invariants section of a VML mapping makes explicit the conditions under
which a particular mapping can be utilised. These conditions are specified independently of
the mapping definition.

Aggregation: functions to perform aggregation are included in the VML language. It is assumed
that the implemented mapping system will determine which aggregate equations can be
solved in both directions, and handle the consistency problems of those that can not.

Relationship handling: VML provides an operator to navigate the various structures found in
different schemas. Through this operator, the compression of complex structures and the
telescoping of simple structures can be defined.

Initialisers: the initialisers section of a VML mapping allows for the specification of initial values
for entities and attributes, as well as specifying parameters for the creation of objectsin an
object-oriented environment. VML also allows the specification of an inter_class mapping
with only one entity in one of the class lists as a way of defining objects which must be
created at the start of a mapping process.

Unit handling: VML provides no implicit mapping for attributes of different units. Any unit
conversions required between attributes must be identified by the mapper, and the
conversion detailed as part of the mapping. This decision was made as a result of the
difficulty of determining the resultant unit of the re-arrangement of any arbitrary equation,
and the lack of unit information in the specification of functions, procedures and methods
which can have serious flow-on effects (e.g., if a method returns a result used in a later
calculation).

Type handling: ssimple type conversionisimplicit in VML, so an implementation mapping system
is required to implement type conversion for all simple types (e.g., float to integer). For
simple types, the required conversion can be ascertained from the schema definition.
Conversion of complex types must be detailed as part of the mapping.

VML provides the fundamental mapping representational requirement for schemas that need to
shareinformation with an IDM in an integrated design system. However, there are some aspects of
the VML language which require further work:

Mapping language requirements: the list of mapping types around which the mapping language
analysis is based is not known to be complete. The semantic mapping types are drawn
from a dightly different domain and the mapping language requirements are drawn mainly
from experience with mappings over the course of this project. For example, the
requirement for bijections did not become clear until the large mapping problem illustrated
in Appendix E was attempted. Early work on this thesis attempted to determine mapping

103

types from analysis and classification of known mapping problems based around the types
specified in Section 4.1. However, further analysis of combinations of these types to
determine high-level mapping types foundered in the combinatorial explosion of low-level

combinations to be analysed. There appears to be no definitive classification of

requirements in a mapping and further work looking at requirements would provide a
sounder basis to compare mapping languages and evaluate their descriptive ability.

Greater control specification in mappings. the level of control specification in VML istoo general.
Theinter_view specification is the only place where the level of mapping between schemas
is defined. In the case where there is a partial mapping between the schemas thereis no
methodology available to determine how to calculate which part of which schema should be
mapped. The underlying assumption is that a selection tool will be invoked at the start of
the mapping, in order to select the subset of the model which will be mapped. It should be
possible to specify the constraints on partial mappings in amore forma manner. Thereis
also no control on individual inter_class specifications, so one-way mappings can not be
explicitly defined on an inter_class by inter_class basis. However, thisis not a problem for
design tools (e.g., an IDM mapping to the output values of a design tool), as the project
specification of Chapter 7 defines the input and output subschemas for all design toolsin
terms of the IDM’s schema

Greater micro-level control in an inter_class definition: Though the invariants section provides the
conditions under which a mapping may take place, there are mappings which are amost
identical, but which require separate inter _class definitions because a single equation or
method call needs to be different. The main example of this problem iswith create methods
for objects, in these calls, where all parameters must be instantiated, it is necessary to
supply a default value if an attribute is uninstantiated. However, with VML this requires
two separate inter _class definitions, one which checks that the attribute is instantiated, and
the other which checks that it isn’t. Simple conditional wrappers around equations would
provide a solution to most of these problems.

Generic function and procedure definition: though the majority of aVML specification is generic,
and able to be mapped to almost any language paradigm, function and procedure
definitions are not. Currently, functions and procedures are defined in Prolog and Snart, as
these are the underlying languages in which the existing mapping implementation is
written. Itisunlikely that atotally generic procedure and function definition language could
be defined, but work on the Neutral Model Format (Sahlin et al. 1995) and the Java
language (Gosling and McGilton 1995) would suggest that some degree of generality could
be supported.

Unit converter: VML makes the assumption that there is no equation re-arranger available that can
calculate the fina unit of any arbitrarily re-arranged equation. Thisis mainly due to the lack
of unit information available from function, method and procedure definitions, which may
calculate values for attributes used in later equations. Providing a notation for the
specification of unitson all parameters of functions, methods and procedures, and hence to

104

the design of aunit calculator for arbitrary equations, would prove an interesting challenge.

Explicit specification of type conversion: it would be useful to be able to define a mapping between
complex types. This type mapping could be assumed to be used automatically, in the same
way that simple types are assumed to be automatically converted. This functionality is
available in mapping languages such as EXPRESS-M, and syntactic changes to VML to
support the definition of type mappings would be trivial.

Method mapping: the VML specification of method invocation is limited to one-to-one
correspondences. There is currently no way of specifying combinations of method
invocations due to their temporal nature. For example, the set of method calls required to
invoke a method call in the mapped to schema could be spread over several transactions.
While data values are constant over multiple transactions, methods are only seen at the time
that they occur. A more sophisticated conditional language specification would be required
to fully model methods allowing combinations of several method calls to be required to
invoke a mapping and also to enable mappings based on the parameters used when
invoking the method. This would also impact on the type of system required to handle
mappings between schemas as the whole history of the use of the particular schemawould
have to be available to be scrutinised.

In summary, this chapter introduces VML, a language that can be used to describe bidirectional
mappings between two schemas. The language is shown to provide the functionality to meet the
requirements for a mapping language. An environment which supports the specification of VML
mappings is described in Chapter 6. The specification of mappings is the penultimate step in the
specification of an integrated design system for a particular project. The final step isto model the
project specification, which utilises the schemas for design functions from Chapter 3, and assumes
that there is a mapping between the schemas for each design function and the IDM for the
integrated design system. Chapter 7 introduces aformalism for project specification which details
the flow of control between design functions to build upon the mappings to the IDM specified in
this chapter.

105

Chapter 6

Mapping Modelling and Development

Chapter 5 specifies a mapping language and the type of mapping problems in which it will be
used. It is clear that these problems will involve large schemas (each with several hundred class
definitions), which are not static, and where several modellers will be working on the problem at
any one time. To minimise the amount of work required to develop and maintain these mappings it
IS clear that coordinated creation, management and documentation of mapping specifications needs
to be supported. A mapping specification environment supporting the textual and graphical
notations of VML is described in this chapter. This environment provides the user with multiple,
consistently maintained, graphical and textual views of a mapping.

6.1 Introduction

The problems associated with the development of mapping definitions are of a similar nature to
those of schema development, as described in Section 3.1. The current version of a mapping must
be propagated to all developers so that they are all considering the same mapping. Modifications
that are made from one version of a mapping to the next need to be documented so that differences
between versions are easy to identify (especially for very large mappings). Changes required to a
mapping, resulting from modifications to a referenced schema, need to be notified to the
developers and tracked to ensure that their effect on the mapping is properly taken into account.
Although VML-G provides a notation to describe mappings at a high-level, a paper-based
definition of amapping using VML-G will prove difficult to maintain. Although a mapping may be
easily drawn, a paper-based system cannot detect errors in a mapping specification, nor can it
guarantee that entities and attributes drawn on the paper exist in the schemas they are meant to be
from, and when alarge number of mappings are described, navigating through the mapping views

106

(especially if there are multiple, partial, and overlapping views) will become cumbersome.
Maintaining the consistency of the drawn views under changes to the schemas will also prove a
difficult task. A computerised mapping modelling and development environment, similar to the
environment described in Chapter 3, can provide many of the solutions to these problems.

Currently, almost no tools exist to help in the definition of mappings using the languages surveyed
in Chapter 4. Developers use a text editor to develop the specification and it is then parsed and
checked against the referenced schemas. Errors in the mapping specification terminate the parsing
process and require modifications to the textual representation and a reparsing. No tool allows a
consistently maintained mapping to be specified by multiple developers, or to be notified of
modifications to referenced schemas. To solve these problems, the author has designed an
integrated modelling and devel opment environment for VML which provides many functions to
users in a homogenous environment.

In this chapter the requirements for a modelling environment in a large modelling project are
introduced. The VML Programming Environment (VPE), which tackles these requirements, is
detailed, and its ability to meet the design requirements of a modelling environment is
demonstrated.

6.1.1 Requirements for mapping development

In any large scale multi-partner mapping development a number of modelling support issues need
to be dealt with, including the following:

Connection with the schema development process: as the mapping is defined wholly between two
schemas it isimperative that any changes to referenced schemas be notified to the mapping
developers. If schema development environments, such as EPE in Chapter 3, are utilised
then the tracked updates to the schema must also be accessible from the mapping
environment. In many cases changes made to a schema can be automatically applied to a
defined mapping (e.g., renaming of an attribute in a schema) and the mapping environment
should offer this time saving serviceto its users.

Documentation: during the mapping specification process many decisions are made about the
meaning of schema constructs and implied constraints existing in a schema. These
decisions will determine the mappings which are specified as well as compromises which
may be made in the mapping specification. All such decisions, and their justifications, must
be permanently documented as they are made.

Support for multiple views: the mapping specifiers may well be experts on particular aspects of the
schemas being mapped between, and hence will only want to define mappings for these
aspects. When dealing with large schemas with large inheritance hierarchies the lower level
class definitions can hold a wide range of attributes and references spanning many aspects
of the object being defined. Mapping specifiers may well wish to consider specific aspects

107

of a class definition when specifying mappings, requiring several partial mapping
specifications for a single class mapping. These multiple partial views must be
synchronised and coordinated by the mapping development environment.

To support these requirements an ideal modelling support environment (M SE) needs mechanisms
for: easy communication of mapping definitions; generation and manipulation of multiple views of
a mapping; annotation of the mapping with documentation; links to external schema MSEs for
change notification; and flexible update management to support iterative updates of the mapping
definition. An important issue is the ability to rapidly prototype a resulting operational system.
M SEs should provide facilities to allow instantiation of mapping definitions to be tested in arun
time environment, e.g., to test against models developed for the schemas being mapped between.

6.2 Mapping Development in VPE

The VML Programming Environment (VPE) has been engineered to support the modelling
requirements detailed above for mapping specification and management. VPE provides multiple
graphical and textual views of varying degrees of complexity useful at different stages of the
mapping definition. In the initial phases of defining a mapping users typically specify just the
classes which must be mapped between in a graphical manner. Further specification identifies
conditional characteristics of mappings for these classes, which are expressed graphically as
multiple inter-class mappings with invariants. Specifying the full mapping requires all equivalences
and initialisers to be entered in textual form, though likely utilising multiple views of the single
mapping specification. Throughout this development modifications may be made to the referenced
schemas which will need to be propagated to the devel oping mappings and actioned appropriately.
VPE provides integrated support for each of these activities, using the MViews consistency
mechanism (Grundy 1993) to provide the required inter-view consistency. Because of the
common implementation framework VPE (deliberately) has much of the “look and feel” of EPE.

6.2.1 Functionality offered by the VPE environment

In the following, a description is provided of VPE's functionality, illustrated by the VML
specification of part of the large mapping example described in Section 1.6, and fully specified in
Appendix E.

6.2.1.1 Initial connection

Figure 6.1 shows the type of graphical view commonly used when first connecting together two
schema definitions. Here the different sets of classes which have relationships to each other are
identified and clustered together. Though it is not shown in this example it is aso likely that
inheritance between mappings would be specified in this level of view. This view shows all the
different sets of classes considered in mapping between the IDM schema and the VISION-3D

108

design tool. Thisview is constructed by direct manipulation, as are all the graphical views, using
tools selected from atool palette, shown to the left of the view.

root Inter Class

invariants
| idm_building Equivaleru:es v3d_model

initialisers

initialiser=s

invariants
(idm_space_face } E'IUi‘-'ﬁlE'ME'S v3d_polyrgon

inrariant=s
[idm hip roof] equivalences v3d_polygon
initialisers

<al g
Figure 6.1 Initial connections between classes in two schemas

Though only asingle view is shown here the user is free to create as many views asis desired, and
may freely lay out and populate each view, either with new information or with information
entered into other views. The information in each view is mapped through to the canonical
representation of the mapping as the view datais entered, and any similarities or conflicts with the
existing data are resolved as it is created. This ability to construct multiple views permits both
genera purpose and specialised views to be constructed. The former may be used to obtain an
overview of the mapping under construction, the latter to focus on more detailed parts of the
mapping specification. The proliferation of views means that navigation tools are needed to quickly
access desired information. VPE provides inter-view navigation using both menu-based search
facilities and automatically constructed hypertext links.

6.2.1.2 Multiple mappings for class sets

A second type of view, shown in Figure 6.2, is typically used to commence the specification of
individual mappings between the same set of classes. The individual mappings are distinguished
by the different invariants required. In Figure 6.2 we see three inter_class definitions between the
idm_hip_roof class and the v3d_polygon class, with the distinguishing feature being the line of the
roof (represented by two apex points for each roof segment). Either the roof segment isa pyramid,
or theroof line runsin the x direction or the y direction, with different mappings required for each
case. As in the initial connection view, all information is kept consistent with the canonical
representation of the mapping and hence with other dependent views.

109

s I=——————————— roof Inter Class

ERiE] invariants —
= idm_bip_roof | = O
e apexl = u
[rasia . = equivalences —
E o apexl ST
H initiali=ers —
., T invariants —
: GEN | idm_bhip_roocf 2qn O
apexl = O
equival ences —
apexd
inditialisers —

invariant=s

idm_hip roof |

= O

apexl eqn O
apexd equivalences
initialisers

e

<pf i
Figure 6.2 Specifying multiple mappings for a single class set

SO0=—————————— roof-1 Inter Class
—invariants —
S 5 E| (o g - o
H = |
— E:Lmal E‘equ:l.valemes —
TGEN max (Bl fune & v3d_polygon A
#F] func [
= Tiame] func = object_id
: abutting 5] func [diffuse_reflection
material 13l func =H specular_reflection
trpe M func - gloss_factor
apexl % |1 fone [points
apex2 | func H colour
boreate | irdtialisers - Boreate
0 = = I Adump_to_£file J
o - o
o - o
o = o
o - o
o = o
ik
=] =]

Figure6.3 Defiﬁlng INks

6.2.1.3 Linking of features in a class set

Based on the views of Section 6.2.1.2 the mapping specifier may proceed to define the features
involved in a single mapping. Figure 6.3 shows how features of classes involved in a single
inter_class are “wired together”. Thistype of graphical view permits arapid check that everything
is connected and a simple overview of the features involved in each mapping without a full

110

specification of the equations and functions involved. Thisview typeis aso useful for providing
partial representations of an inter_class definition, focussing on a particular aspect of the mapping
(e.g., al simple attribute mappings, or the initialisers). As in the previous two views, all the
information in thistype of view is kept consistent with the canonical representation of the mapping
and hence with other dependent views.

rooil-1 Inter Llass
\ invarients —
@' . :iﬁ adm_bop rocd & (]
- O
Tereal Ul Ts LETesE —]
mis
__@ = o = 44 Tl
II_ I L E] e = _—H—.__ T
— Tra e P e] = abject_id
3 alutiing fruge =1 di e _reflastian
Fraterial frire E"-;_;_" gpecmlar_reflactiom
trpe Feees = wloss_fuctar
= —
E wpaid fure = Foints
e : fue 7 ol
[. A &
e indtdalisers = " A Borsste
O = &l Allump_bo_file
— = m -'-.-.. ,..-- =
=3 roaf -1 Tentual 3|
Fhapeducad_reees| ol . 1
wpdutag_gred. *5
dreer_pleaeni[48w 10 08w Bdp rost], [geeupiwdedenddr 1w polygend| .
irurdenni
Lded 17 : idm_kip _voef. spaslekoded 1 boode ™ peirt 3 = ided 15 : tds_hip_recd spaslwbode Lh-dde_ T pedrk 3,
Led 17 : ide_hip_roed . spexlebodsl Li:ods T pedrtow = Lded 11 tdes_hip _reed . wpesdebodesl] Lh -l pedink v
1,
aepauTnlarezea i
w24t _mem| peded L el _hip_reed | vamionildl L o3l _poivgen| 0] cebgest_adl
wnp_brinegla_to_pe lygeldde] 11 dde bdp_rosf miredidel 00 idm 3d_powvk v, wlded L cdde_hap_rood ssire i opdest i
il S _poinek v, e L5 wibe_hip_peod moea el 1 pde S _padnd on, dde] 10 dde bdp_rasll | mir i ded 1

il Dl _penirti 0, bl 15 bk bip_ped maitbddad 1) bl Sl paira p, diled 100 dde kip_vaall | miv s ided 10
il il penbrvn 8, bl 13 il Bobg gl e Lo il L i Dl pebevn o, Dl 13 bl bl _peed smpeo Lo gl L)
il kvt bl 13 bl Kb gl Ll Ll e bivn 8, whEieadd T8 e e bpgas] 1] paima| 1],
skt b Bl L ool s Topptora [1] . pre b &) . o b3l L5 o wdoll_poss Dot [1] . prn im0 1,

e il ke Looa 1} bl _bilp_veodl | wilda bl L vl _pea Dypgen | 3] .ok wax_ L]

g vw ey 1 mo e Lysgeen S 170 L3 Bdp sesd . wlesdded 1 dde Bl pobnie .o, Slde Ljcddis Ry oo-d wlro s Sl 15
dilla 3 peelie .y, Ll bds hip cecf sdes:bdel 1) bde 5 pedrr.z, dded 1) 08 kip el . emensdded 17
difa 3 pelnt .y, bdwfll: fde hilp coof mdes- el 15 bde B padre.y, dded 17018 Rdp_vead mloomsdded 13
didm 3 peelnt .z, bdelll: fds hip cood wpaclesddssl L cdde 3 point .z, w1} bde hip_cecd. wpacle s dded L)
didm 3 _pelnt .y, el Ll fds hilp ceod wpaclebddsl L cdde 3 _peint .z, vieden®3 1% :v¥3_polpgen]] padrme|[1],
i b Liovld peadwgon| 2] . potnte Z] . vieled8 L) ovId_poIvgon | 2] .poince] 3]0,

g A8 e _mom] Ll 1) td Fip_peed, wirlon Lowld pslegen|3] ebjezt_id)

v _erineegle_te_pelpgesiided 17 ide bdp_roeof emeeiided 15 idm 3 poit . x, sdssl Lbcdde Fiop peof ssirebodel L
dofee I pacirek oy, tdel 1) ods hilp _peed sdesioodel 1) ods 3 padre oz, ided 10 ide bdp_roof emeeiide] 10:
dde T _peuvt .z, wdesl L) pds_hip_peef oemowioeded L wdes T padrt.w, 0ded 10 0de Rip_roat eueiide] 15
dde M _peuvk g, wdel Ll pds_hiup_peed owpaclwioadel Licade 34 peuvd oo, wded L edes_hilp_reed wpeo e ogdes LD
e B _posirek oy, wedesd L el hip_peed spacleiogdel L ade 0 peand g, vamdens L L v pelpges| 3] prarde| 1],
vimben 3l L o3l palygen| 3] prmtaf). viwien3d L ovdd_polygen 3] pramkaR) i,

wop_id_to s idel | bl _hip _reodl, viebenddl Li w3 _palygen| 4] sbjess_id)

w4 b le_ta e |y] 50 bl bdp_voal] e mi il 30 e 3 peit o, il L) dde_ i sl sl |
il il _penbevn o, e 13 bl bk gl i bl 1 e Sl e w00 e il i ddled 10
il Bl _pebivt i, bl 13 bl Bkl e bl 1 bl 3 e g, ded B0 L i el wmdendded 10
il Bl et 6, bl 13 bl bl gl g Lo gl L cidis 3 pednen a, biled 13 bl bilp el g o le Gl 1
i Sl poelive .y, b1} bl hip cecd mpeoloedde Ly cddie 3l pelne.a, wiedenddd 13wl pelpges]d] padrua|1],
sk Lot Bl L s oot Topgeeera [4] . pee a2 . el bosn 3o Ly w3l pes Do [4] - pe B S 00

1,
initinlieuces

wlpdendd 1) v _pelypges Siffuees_raflactien = 0.4,

lndend=H 17 v _pelygss optesa lor_raflaotisn = 3.0,

wledend=3 1] v _pelpgs . gloen_foatar = I,

vimden= 1] v _pelpgs oo leaarervinden™ 17 :v3d _cpb.7 = D4
rimdend] 1] w34 _pelypgss oo legeeirinien®d] 17 :v2d _epk-.q = 0.3
rimser] 15 w2 _pelyges oo legreivipden®d] 17 :v3d _cpb- b = 0.3

[&=

JI_.
Figure 6.4 A full textual specification of an inter_class definition

6.2.1.4 Full mapping specification

The full specification of a mapping necessitates a textual representation of the mapping using

VML, as VML-G lacks the full representational power of VML. Figure 6.4 shows afully detailed
VML specification for the graphical representation shown in Figure 6.3. This completely defines

111

the mapping between these sets of classes, but takes much more effort to read and to determine
which features are involved in the various functions and equations than does the graphical form.
The textual views are freely editable. Modified textual views are parsed and compiled to ensure
they represent valid VML descriptions, and their information kept consistent with the canonical
representation.

6.2.1.5 Consistency between views

When changes are made to a VPE view, other views that share information with the updated view
may become inconsistent and must be updated to keep the mapping consistent across all views. All
views affected by a change are notified and, in many cases, are automatically modified to reflect
the change. This consistency mechanism works both between views of one phase of devel opment
and between views of different development phases.

I roof-lnterllass ———— |

is

—invariankts —

P
idm_hip_roof |

h3) 3|
m

normal

I
m
=1
B
=
o
=
l'I:l
g
m
L]
|

min

-

rv3d_pnlygnn

max

:
OO EEEE Y 66 GG E G

Tua e
abutting
material
trpe
apexl

object_id
diffuse_reflection
specular_reflection
gloss_factor

points

colour

@oreate
k@dump_to_file

HEATE BT
G

apexs

create P,
2 initializer

Ooooooo

] e

. <l
Figure 6.5 Modification of a graphical view

As an example, Figure 6.5 shows a modification being made to the graphical view shown in
Figure 6.3, where the number of features associated with a single equivalence is being increased
(adding apex2, from idm_hip_roof, to the last equivalence), allowing a new function to be used to
calculate the equivalence between the two forms of roof specification. This change is propagated
through to the canonical form of the schema which is updated, then all dependent views are
identified and notified of the change which has been made. VPE propagates changes to other
affected views in the form of an MViews update record (described in detail in Section 3.2.2). This
record provides a complete description of any single change. How views react upon receipt of an
update_record depends on both the view type and the nature of the change.

112

ED——— roof-1 Textual

frupdates _start(t0] .

updnta (23] . & ndd fenture idmdl}:idm_Rip_voof mpex? to mop_triangle_to_poliygon(idmd 1} :idm_kip_roof max=:
idre 13 :didm 34 podint.x, didwd 1l :idm hip_sroof . mox=ridm) 1} :idm 34 point.w, ddwd 13 :didw hip_sroof .min=ridml}:
idm 34 _point.z, didwdl}:idm hip_reof.min=>ridml}:idm 34 point.x, didwdl}:idm hip_sroof . mox=>idml}:
idm 34 _point.y, ided 13 :idm Bip_woof min=rided 1k :idm 54 point.z, ided 1} :idm Bip_wroof spexl=rided1}:
idm 34 _point.x, didwdl}:idm hip_roof . zspexl=ridwvd 1} :idm_3d_point.y, idmily:idm_bip_sroof.spexl=kidmilk:

idm 34 _point.z, wision3ddl}:+3d _polygon[d] .point=s[1], wision3d{l}:w3d_polywgon[4] . points[2], visionddi{l}:
w3d_polwgon[4] .points[3]]

updntes_end. *#

inter_class([idmd 1} :idm_Rip_roof], [qroup(visiondd{l}:+3d_palwgonl],
invariants(
idred 1% :idm bhip_roof apexl=ridnd 13 :idm 34 _point.x = didwd 1} :idw hip_wroof spexZ=rided 13 :idw 34 _point.x,
idre 1% :idm hip_roof . apexl=ridmd 13 :idm 3d_point.v = didwil}:idw_hip_roof apexZ=ridwd 1} :idw_3d_point.y
:|_,
equivanlences]
map_id_to_numl idm) 13 idm hip_roof, viziendd{l}:v3d_polwgon[l].objecst_idl,
rmop_triangle_to_poliygon(ided 13 :idm khip_wroof minzrided 13 :idm 54 _point.x, didwd1}:idw khip_roof min=ridmd1}:
idm 34 _podint.w, didwdld:didm hip_reoof.min=>ridml}:idm 34 point.z, idwdl}:idm hip_sroof.min=>idml}:
idm 34 _point.x, ided 1} :idm Bip_woof mox=rided 13 :idm 54 point.y, dided 13 :idm Bip_woof minzrided 1} :
idm 34 _point.z, didwdl}:idm hip_roof . spexl=ridwd 1} :idm_3d_point.x, idmwily:idm_bip_roof.spexl=kidmil}:
idm 34 _point.y, ided 1} :idm Bip_wroof spexl=:ided 1} :idm 34 _point.z, wision3d{1l}:v3d poliygen[l] .points[1],
wigion3d{ 1y :vid_polwgon[l] .points[2], wisiondd{l}:+3d_polwgen[l].peints[3]]1,
rmp_id to_numl idrd 13 :idm hip_roof, visiondd{1l}:v3d_poliwgon[2] .object_idl,
map_triangle_to_polwgon(idmd 13 :idm hip_sroof .min=ridwd 1} :idm 3d_point.x, ddwdl}:idw bhip_roof .min=ridmwil}:
idm 34 _point.y, ided 13 :idm Bip_woof . min=rided 1k :idm 54 point.z, ided 1} :idm Bip_woof mox=rided 1
idm 34 _point.x, didwdl}:didm hip_reof.min=>ridm1l}:idm 34 point.w, didwdl}:idm hip_sroof .min=>idml}:
idm 34 _point.z, didwdl}:idm hip_roof . spexl=ridwd 1} :idm_3d_point.x, idmwily:idm_bip_roof.spexl=kidmil}:
idm 34 _point.y, ided 1} :idm Bip_wroof spexl=z:ided 1} :idm 34 _point.z, wision3d{1l}:v3d poliygen[2] .points[1],
wigion3d{ 1y :vid_polwgon[2] .points[2], wisiondd{l}:+3d_polwgon[2] .peints[3]]1,
rmp_id_ to_numl idrd 13 :idm hip_roof, visiondd{1l}:v3d_poliwgon[3].object_idl,
map_triangle_to_polwgon(idmd 13 :idm hip_roof mox=ridwd 13 :idm 3d_point.x, ddwdl}:idw bhip_roof .min=ridmwil}:
idm 34 _point.y, ided 13 :idm Bip_woof . min=rided 1k :idm 54 point.z, ided 1} :idm Bip_woof mox=rided 1
idm 34 _point.x, didwdl}:didm hip_roof .mox=ridm)l}:idm 34 point.w, didwdl}:idm hip_sroof .min=>idml}:
idm 34 point.z, idwd1}:idm Bip_wroof spexl=:ided 13 :idm 34 _point.x, idwdl}:idm_Bip_roof spexl=:idmdll}:
idm 34 _point.w, didwdl}:idm hip_roof.zspexl=ridwvdl}:idm _3d_point.z, wision3d{l}:v3d polygen[3].peints[1l],
wigion3d] 1} :vid_poliygon[3] .points[2], wision3d{l}:+3d_polywgon[3] .points[3]],
map_id_to_numl idm) 13 idm hip_roof, viziendd{l}:v3d_polwgon[4].ocbject_idl,
rmop_triangle_to_poliygon(idmd 13 :idm khip_wroof mox=rided 13 :idm 54 _point.x, didwd1}:idw khip_roof mox=ridmd 1} :
idm 34 _point.yw, ided 13 :idm Bip_woof . min=rided 1k :idm 54 point.z, ided 1} :idm Bip_woof minzrided1}:
idm 34 _point.x, didwdl}:didm hip_roof .mox=ridm)l}:idm 34 point.w, didwdl}:idm hip_sroof .min=>idml}:
idm 34 point.z, idwd1}:idm Bip_wroof spexl=:ided 13 :idm 34 _point.x, idwdl}:idm_Bip_roof spexl=:idmdll}:
idm 34 _point.w, didwdl}:idm hip_roof . zspexl=ridwvdl}:idm _3d_point.z, wision3d{l}:v3d polygen[4].peints[1l],
wision3d{ 1} :vid_poliygon[4] .points[2], wision3d{l}:+3d_polywgon[d] .points[3]]

].l
Figure 6.6 Receipt of an update record in atextual view

In the VPE system, like EPE, update_records propagated to textual views are not applied
automatically, although many of them could be. Instead they are displayed in the view and the user
has control over which updates are applied at which time. As can be seen in Figure 6.6, the
graphical update to the inter_class definition generates an update _record in the equivalent textual
view. Many update _records can be directly applied by the system on user request, although this
particular update cannot as the system does not know where the new features should appear in the
function’s parameter list. In this case, the user is tasked with applying the required modification
and informing VPE that it has been applied. Following this, the notification of the outstanding
update is removed from the view leaving the modified textual view as shown in Figure 6.7 (where
the last equivalence now references apex2 for some parts of the function).

113

S[I=—————— roof-1 Textual

|
1 |

frupdntes_start(€0] .
updotes_end. */

inter_class([idmd 1} :idm hip_roof], [qroup(visiondddl}:+3d palygonl],
invariants(
idrd 13 :idm khip_roof apexl=ridmdl}:idm 34 point.x
idrd 13 :idn_hip_xeof .opexl=ridmdl}:idm_3d_point.y
1.
equivalenaes(
meap_id to_numlidmd 13 :idm_bip_soof, wvizionddil}:v3d_polygon[l].ebject_idl,

idnd 13 :idm_Rip_roof apex2=ridnd 13 :idm_3d_point.x,
idwd 13 :idm bhip_xoof .opex2=ridmd 1} :idm_3d_point.y

idm 34 _point.w, didwdl}:idw bhip_sroof .min=ridwd 1}:idm 3d_point.z, didwdl}:idw hip_sroof .min=>ridml}:
idm 34 _point.x, didwdl}:idw bhip_sroof mox=ridwd 1} :idm 3d_point.yw, ddwdl}:idw bhip_sroof .min=>idmwl}:
idm 34 point.z, idwdl}:idwm hip_wroof spexl=rided 1} :idw 34 _point.x, idmdl}:idm_Rip_voof =spexl=ridmdl}:
idm 34 _point.w, didwdl}:idw hip_xroof mpexl=ridwd 1l :idwm _3d_peint.z, wvigion3d{l}:v3d polygen[l].point=s[1],
vizion3di 1}y :w3d polygen[l] .points[2], +wision3dil}:+3d palygon[l] .point=s[3]],

map_id to_numlidmd 13 :idm_bip_soof, wvizionddil}:v3d_polygon[2].ebject_idl,

idm 34 _point.y, didwd 13 :idw kip_woof minzrided 13 :idm 534 point.z, didwd 1} :idw khip_wroof mow=rided 1)
idm 34 _point.x, didwdl}:idw bhip_sroof .min=ridwd 1}:idm 3d_point.yw, didwdl}:idw bhip_sroof .min=>ridmwl}:
idm 34 point.z, idwdl}:idwm hip_wroof spexl=rided 1} :idw 34 _point.x, idmdl}:idm_Rip_voof =spexl=ridmdl}:
idm 34 _point.w, didwdl}:idw hip_roof mpexl=ridwd 1} idm _3d_peint.z, vigion3d{l}:v3d polygen[2].point=s[1],
vigion3df 1} :v3d_polywgen[2] .points[2], wision3ddl}:+3d_polygon[2] .point=s[3]],

wop_id to_numlided 1% :idm_Rip_voof, wisionddf1l}:w3d_polwgon[3].object_idl,

idm 34 _point.y, didwd 13 :idw kip_woof minzrided 13 :idm 534 point.z, didwd 1} :idw khip_wroof mow=rided 1)
idm 34 _point.x, didwdl}:idw bhip_sroof mox=ridwd 1} :idm 3d_point.yw, ddwdl}:idw bhip_sroof .min=>idmwl}:
idm 34 point.z, idwdl}:idwm hip_wroof spexl=rided 1} :idw 34 _point.x, idmdl}:idm_Rip_voof =spexl=ridmdl}:
idm 34 _point.y, didwd 1} :idw kip_wroof mpexl=rided 1} :idwm 34 _point.z, wision3df1l}:v3d polywgen[3] .point=[1],
vigion3df 1y :v3id _polygen[3] .points[2], wision3dyl}:+3d polygon[3] .point=s[3]]1,

wop_id to_numlided 1% :idm_Rip_voof, wisionddf1l}:w3d_polwgon[4] .object_idl,

idm 34 _point.y, didwd 1} :idw kip_woof minzrided 13 :idm 534 point.z, idwd 1} :idw khip_wroof min=ridmd 1} :
idm_3d_point.x, idwd1l}:idm Rip_roof mox=ridmd 13 :idm 34 _point.y, idwd 1} :idm Rip_roof minsridmd 1} :
idm 34 _point.z, idwdl}:idw bhip_xroof zpexZ=ridwrd 1t :idm_3d_peint.x, idwdl}:idm_bhip_soof apex2=>idmil}:
idm 34 _point.yw, didwd 1} :idw kip_wroof spexl=rided 1} :idwm 34 _point.z, wision3df1l}:v3d polywgen[d] .point=[1],
vigion3di 1y :v3d_polygen[4d] .points[2], wision3d){l}:+3d polygon[4d] .point=s[3]]
:I 2
initinlizers|
vigion3di 1} :v3d_polygen.diffuse _reflection = 0.8,
wvizion3d{ 1} :v3d_poligen.specular_reflection = 0.5,
vigionddi 1} :v3d_polygen.gloss_factor = 2,

wvizion3di 1} :v3d poliygen.colour=rvision3dd 1} :+3d rgb.xr = 0.4,
vision3di 1} :v3d_polygon.colour=>rvigsion3df1}:v3d rgb.g = 0.3,
vigion3d{ 1} :v3d polygen.colour=>vision3di 1} :+3d rgb.b = 0.3

1
1.

mop_trimngle_to_poliygen(ided 1} :idm khip_roof min=rided 13 :idm 34 _point.x, ided 1} :idm Bip_sroof . min=rided1k:

map_triangle_to_polygon(ided 1} :idm _bhip_reof . min=>ridmd 1% :idm 3d_podint.x, didwdl}:idm hip_sreof.min=>ridm1}:

map_triangle_to_polygon(ided 1} :idm_hip_reof .mmx=>ridmd 1% :idm 3d_point.x, didwdl}:idm bhip_sreof.min=>ridm1}:

map_triangle_to_polygon(dided 1} :idm hip_reof .max=>ridmd 1% :idm 3d_point.x, didwdl}:idm hip_sreoof.max=>ridml}:

|c>

]

Figure 6.7 A textual view after manual application of an update specification

6.2.1.6 Documentation

In addition to providing a consistency mechanism between views, update recordsareretainedin a
persistent form in the VPE system, asthey arein EPE. An update record browser and editor gives
the user the ability to browse the changes that have occurred to an inter_class definition in the

evolution of the mapping specification and to add further documentation to each update record. In

this manner a portion of the documentation of the history of development of the system is

automatically built up as work progresses. Having this update history on-line also alows system

developers to trace back through previous design decisions while mappings are further refined.

114

romd Imter Class

=l
33 . ppe_graphic—vmi_view roaf-1 Inter Class @ add_connec tion ir
4 . Class lcon idm_hip_roof : updale_aiiribote
e s B el o mman resf -1 Imtesr i dnce ~chaft nacinrac
roaf-1 Inter Class Count: 42 N i it i
Inter Class lcon inter_class_7 @ delete_component —="|| abiect_id
o~ daffuae_reileckacn
.-""'.-:" sprcalur _reflection
-:..5 gloaw _facteor
fﬁ' poizts
Aemove spurbous connection of apesZ 1o the .J"rf ::::;:“
map_triangle_to_polygontl function as apes] and apex2 are equisalent| || Smg_to_file
points, and for Consis llEI'II'."lJ apedl should e used ”Ir'ﬂllgl'lﬂl.ll This —
mapping
[T [Cancen |
[Unda updates | [Reda Updates | [Camcel |
s
Wl u:té |
3 _pad
34 i

Figure 6.8 Browsing the change log for an inter_class specification

Figure 6.8 shows the update record browser displaying alist of changes that have been made to
an inter_class definition based on the update records generated by changes in various views.
These include a change in the function used to map between features, and changes resulting from
the renaming of afeature in one of the referenced schemas. The full details of the modification to
theinter_class are displayed in the top window, highlighting the comment field that can befilled in
by the system developer.

s[I=————— roofl-Inter Class Definition EE|
d¥updates_start(db). s
updates_end. */ |
documentation{roofl).
FE"
This inter_class provies the mapping for idm_hip roof's which hawve a
pyramid form, i.e.. both apex points coincident. Only a single wavy
wapping is considered as Vision3D does not map back to the IDM, this
is seen mostly in the initialisers which are all for the Vision3D side.
*7
[
=

Figure 6.9 An associated documentation view for an inter_class definition

VPE also provides textual documentation views (accessible via the hypertext navigation facilities)
for inter_class definitions, used to document the reasoning behind decisions made and other
information relevant to a particular inter_class specification in a central and managed fashion. A
useful feature of documentation views is that update records relating to the inter_class definition

115

are automatically added as textual comments to the view as the inter_class changes. Figure 6.9
shows a documentation view taken at an early stage of the mapping specification.

6.2.1.7 View navigation

As can be seen from the preceding example, the VPE modelling environment captures a large
amount of information about a mapping specification, and hence navigation facilities are needed. In
VPE the views and inter_class icons themselves act as a navigation and search facility for the
project, in a similar way to the views and icons of EPE. Mouse clicks on graphical view
components allow rapid access to other views containing that component as shown in Figure 6.10.

EII
n
invariants —
%E fidm_]:n:i.p_r-:u:-_f \ F = O
A = 0O

25 —

Select view to displau:

space_face-wall Inter Class
space_face-opening Inter Class
building Inter Class

root Inter Class

&

roof-3 Inter Class
roof-2 Inter Class
roof Inter Class
roof-1 Textual
roof-1 Inter Class

Select;!l

=1

niojejeyninggninininininajn

N MA

Figure 6.10 View navigation for inter_class specifications

6.2.2 Using the VPE environment

The VPE system offers two types of display viewsto its users. The initial typeis agraphic view
which can contain VML-G icons, representing inter_class definitions, tied to icons representing
entities from the two schemas being mapped between (see Figure 6.1 for an example of a graphical
view). In the graphical view the user has a palette of tools available, as seen on the |eft hand side
of the view. These tools offer the following functionality:

116

2.=2 Used to specify an inter_class definition in agraphical view. Clicking on an empty portion
of the drawing window after selecting thistool will create an empty inter_classicon in the
window.

Allows the attachment of an entity definition to an inter_class. To attach an entity, the user
clicks inside the inter_class, and drags the pointer to an empty portion of the drawing
window, which is where the icon will be placed. This will invoke an entity dialogue to
determine which entity to place in the window, followed by a features dialogue to
determine which attributes and methods will be visible in the icon (the default is all
attributes and methods). If an existing entity icon is selected when thistool is current then
the entity dialogue and features dialogue will be retrieved. During the entity dialogue the
user may specify a new entity, rather than select one from the proffered list. A new entity
can either be anormal entity to be added to one of the schemas, or atemporary entity to be
managed by the mapping system. During the entity dialogue, the user may also specify the
position of the named entity in the class list for the inter_class, or check a box which
defines that the entity is grouped in the classlist specification.

TEEH Used to specify the inheritance hierarchy between inter_class definitions drawn in a

graphical view. To specify an inheritance link, the user clicks on the parent inter_classicon

and dragsto the child inter_classicon.

::IE Used to specify the inclusion of an entity’ s attribute or method in an inter_class equation.

) The user selects the attribute, method, or entity name shown in the entity icon, and dragsto
the inter_class icon. The effect of the drag is dependent on where in the icon the drag
terminates. If the drag terminates in: the connection box of an existing equation, the
attribute or method is attached to the existing equation; if it terminates in one of the three
section headers (invariants, equivalences, initialisers), a new equation is created and a
connection made to that equation. If the user clicks on the line separating the entity name
from the attributes and methods, then a new attribute or method can be described through
an attribute dialogue when the connection has been made to the inter_classicon. A new
attribute or method can either be a normal one which extends the schema definition of the
entity, or atemporary one to be managed by the mapping system.

This function is not implemented in the current modelling environment. It is intended to
allow an inter_class mapping between two versions of an entity to be automatically
specified, with as many one-to-one links between the two entity versions as possible based
on attribute and method names. However, the current Snart language has a single name
space which means that two entity definitions having the same name can not be specified.

117

Used to create a new graphical view of the specified inter_class. If severa inter_classes
~ and entities are selected when this tool is used then the user will have the option of copying
all selected icons to the new window.

Hides an entity icon, or an inheritance link, or an inter_class and all its attachments (i.e.,
entities and inheritance connections). The hidden item is not removed from the canonical
representation of the schema, merely hidden in the current graphical view.

ﬁ Deletes an inheritance link, or an inter_class and all its attachments (i.e., inheritance
connections). The items are removed from the canonical representation of the schema as
well asfrom al views which contain the item.

\ Allows icons in the graphical view to be selected and repositioned in the current view.
Double clicking on an entity icon has two effects, depending upon the areain which the
double click occurs. Double clicking on the entity name brings up the entity dialogue which
allows the position of the entity in the class list to be specified, and whether the entity isto
be grouped or not. Double clicking in the attributes and methods area brings up the attribute
dialogue allowing the set of attributes and methods which are visible in the entity icon to be
modified, or to add new attributes and methods (or delete attributes and methods). Double
clicking on an inter_class icon has three functions depending upon where in the icon the
double click occurs. If the double click occurs in an equation, then the full description of
the equation is displayed in the equation dialogue. In this dialogue the user can manipulate
a textual description of the equation, function or procedure call. After modification the
textual specification is re-parsed to determine what symbol should be shown in the
inter_classicon, and what connections should be made to entities currently in view. Double
clicking on the left hand side of the icon headings (invariants, equivalences or initialisers)
brings up adiaogue listing all viewsthat thisinter _classis specified in to allow navigation
to other views. Double clicking on the right hand side of the icon headings (invariants,
equivalences or initialisers) makes the textual view of theinter_classvisible.

The second type of view offered is atextual view. Textual views allow free-form textual editing
and manipulation of the canonical definition of VML inter_class definitions (see Figure 6.4 for an
example of atextual view). Textua views are re-parsed at the termination of atextual editing stage
(as signified by the user), and all modifications propagated through to the canonical form of the
edited inter_class and to any graphical views which may be affected.

6.2.3 Implementation of VPE in the MViews framework

VPE is constructed by tailoring MViewsER (Grundy 1993), a speciaisation of the MViews object-
oriented framework which is fully described in Section 3.2.3. Though VML and VML-G have
very little relationship to the ER diagramming notation there was quite a similarity between the

118

relationships defined between objects in the MViewsER system and those needed in the VPE
system. Therefore MViewsER was used as the starting point for the VPE system and, through
some careful modification, specialised to construct the VPE environment. Figure 6.11 shows the
inheritance hierarchy for the VPE environment, with all VPE classes prefixed witha‘vpe . This
structure is very similar to that of MViewsER, and the mgjority of the MViewsER code was able to
be utilised for the VPE environment. The modifications to the MViewsER environment fell into the
following categories:

Incorporating classicons: unlike other MViews-based environments, the VPE system requires an
associated modelling notation to be displayed in a graphical view. The associated notation
is for the schema classes that are wired to denote the mapping in a graphical view. The
Snart notation was chosen as all attributes appear in the sameicon, making it easy to render
and manage (unlike EXPRESS-G). Extra coding was required to manage the two schemas
being mapped between, and to present the modeller with relevant schema information in the
graphical views.

il L Lol LS

g il b s ~3-|_-:I'.||_|.'~a-rl|

ant i — T P / — AT P ——

e TR

P T ——— VA _kssa_claer

S ——
oy haan swa N T T A b _Lrmar_sdunr
' " .-

Figure 6.11 Class inheritance for VPE from MViews
Rendering modifications: VML and ER have a very different appearance and meaning on screen.

All MViewsER display code was changed to reflect the VML appearance, and class names
in MViewsER modified to reflect the functionality of VML icons.

119

Environment modifications: The set of functions which can be performed on aVML diagram are
very different from those performed on an ER diagram. Therefore, new function icons had
to be created, and the functionality associated with them fully coded. All dialogues had to
be rewritten to reflect the requirements of a VML environment and to use the correct
terminology for a mapping support environment.

VML language parsing and generation: the underlying representation of information in the VPE
system is VML, which provides for an easy mapping between the canonical representation
and the display views. However, a parser and VML code generator were still required to
parse textual views and determine their syntactic correctness, and to generate VML code
snippets from graphical representations.

update_record labelling: the range of update records used in MViewsER was examined and
modified to suit the structure and terminology of VML.

6.2.4 Future connections between VPE and EPE

Currently there are no connections between the schema definition environment EPE and the
mapping language environment VPE. However, in the same manner that MViews has been used to
integrate multiple modelling paradigms (Grundy and Venable 1995; Venable and Grundy 1995), it
Is possible to connect the EPE and V PE environments. The benefits that this would produce are:

. mapping specifications which add to, or modify, the schemas being mapped between could
be propagated to all affected views in the EPE environment. In this way, the mapping
environment could be used as a schema integration system, allowing an IDM to be
constructed from the requirements of the various design tools being mapped to it.

. schema changes made using EPE could be propagated to all affected mappings definitions
in the VPE environment. Many of these changes could be automatically applied to the VML
specifications (e.g., renaming of entities or attributes, changes to basic attribute types).
Changes which could not be applied automaticaly (e.g., deletion of attributes, changesto a
method’' s parameters) could be tracked and notified in all the mapping views which
reference the affected item.

6.3 Management of Mapping Definitions

VML mappings specified through the graphical views of the VPE system are easily checked
against the schemas being mapped between, as the wiring to entity icons makes explicit the exact
entity, attribute or method involved in the mapping. However, when parsing a textual mapping
specification in VPE, and, to amuch greater extent, when utilising a complete VML mapping from
some other source, there is scope for ambiguity in the mappings and a necessity to cope with
schema modifications. Ambiguity in VML specifications occurs when shorthand forms of
attributes and methods are used in a mapping. In many casesit is desirable to allow this shorthand
form, as reading a specification with full references (i.e., schema name and version, then entity

120

name, then attribute or method) is fairly cumbersome. In most cases, the side of the attribute
references makes explicit the entity to which an attribute or method belongs. In some, however,
the same attribute or method name can appear in multiple entities from the same schema and
clarification is required. Another problem is that when parsing a mapping it is impossible to
distinguish between a mistyped entity, attribute, or method name and a reference to a new entity,
attribute, or method for a schema.

To cope with these problems, a VML parser and verifier (VML-Check) has been constructed
which checksinitially whether aVML mapping is syntactically correct, and then checks it against
the schemas it references, expanding the VML mapping to full references and updating the
schemas where necessary. VML-Check requires three inputs: aVML mapping definition; and two
schema definitions. Schemas that can be loaded are either in the generic schema definition format,
as described in Section 3.3, in EXPRESS format (with the same restrictions as defined in Section
3.2.4), or Snart format. Schemas in either EXPRESS or Snart format are transformed into the
generic schema definition format during the checking process. Schemas in Snart format can be
multi-file schema definitions or even whole applications (in which case only the class interface
information is extracted). VML-Check produces both a fully expanded textual definition of the
original VML mapping, and a generic database representation of the mapping definition (as
described in Section 6.4).

6.3.1 Name resolution

If all schemas had unique entity, attribute and method names, and no typing mistakes were made
during mapping specifications, the process of resolving referencesin aVVML mapping would be a
simple task. However, thisis an ideal situation and unlikely to occur, so the following problems
needed to be tackled during the resolution of references:

. determining the entity an attribute or method reference belongs to when there are multiple
entities which have the referenced name in their definition. Handling this problem is broken
into two cases. If the duplicate references are from different schemas and the mapping is
from an equation where a default side can be determined, then the reference defaults to the
entity from the schema associated with that side of the equation. If there are multiple
entities with the name reference for a particular side of an equation, or for afunction where
there is no notion of side, the user is presented with alist of possible resolutions for the
mapping and they choose the correct reference.

. determining whether areference is to an entity or an attribute when both an entity and an
attribute have the same name in a schema. Thisis treated in a similar fashion to above. If
the side of the equation the reference comes from has only the entity, or the attribute
associated with it then the checker defaults to that reference. Otherwise, the user is
presented with a dialogue to determine the correct reference.

. determining whether an unresolvabl e reference should be an addition to a schema definition
or if it isatyping mistake by the user. This cannot be handled automatically, so the user is

121

presented with a dialogue to direct the checker asto what to do with the reference.

6.3.2 Schema modification

Mapping definitions can include references to entities, attributes and methods of a schema which
do not currently exist. A mapping definition can also reference temporary entities and temporary
attributes of existing entities. All of these constructs need to be recorded against the schemas
utilised for the current mapping.

Where additions are specified for an existing schema, the generic schema definition is modified to
contain anew version, inheriting from the currently specified version, which has a creation reason
of type mapping_dependant (see Appendix G). All modifications to the schema are then specified
in this version, the mapping being checked is updated to be a mapping between the new schema
version and the other schema version. This new version captures not only new entities, attributes
and methods, but also all temporary attributes and methods which are specified in amapping. The
assumption is made that all temporary attributes and methods belong to a particular entity, that is,
there is an occurrence of a temporary attribute for every occurrence of a particular entity in a

mapping.

Temporary entities, on the other hand, belong to neither schema, and so are recorded separately
from the generic schema definitions. Temporary entities are only recorded in the generic mapping
definition (see Section 6.4) with the assumption that any implementation of VML mapping
specifications will be able to manage their creation.

6.4 Generic Mapping Database Definition

Although V PE provides a multi-view, automated consistency, modelling environment for VML, it
Is not assumed that this environment will always be used to specify mappings. Mappings could
well be created in other environments (some of the simple mappings shown in this thesis were
defined utilising atext editor), or even trandated from other mapping languages to be utilised in a
particular implementation of a mapping system. To support the range of possible mapping sources
a generic mapping notation (detailed in Appendix H) has been specified. Mappings defined using
this notation act as the input to any implementation environment for VML mappings.

A generic mapping definition contains all the information required for aVVML implementation to
perform mappings between instances of two schemas. This includes definitions of all the
referenced entities from the defined versions of the two schemas. These entity definitions define
the complete entity interface, including all attributes and methods added to the schemas by
mappings, as well astemporary attributes and methods, and definitions for temporary entities. The
actual VML inter_class definitions are split into component partsin the generic mapping definition,

122

and are all uniquely identified. The component parts of a mapping (i.e., each individual invariant,
equivalence and initialiser) contain a parse tree representation of their definition and are classified
asto the type of equation they represent, as well as listing the set of schema references which are
contained in the equation. Inverted indices (which can be statically determined) are also stored for
every entity, attribute and method referenced in all mappings. This provides quick access to
inter_classes and individua invariants, equivalences and initialisers which reference any particular
entity, attribute or method.

6.5 Appraisal of Mapping Modelling and Development

The VPE system and mapping database format create an environment which supports the
development and communication of inter-schema mappings as well as the documentation
requirements of an integrated modelling environment, as detailed in Section 6.1.1. VPE supports
these requirements in the following manner:

Connection with the schema development process. thisis only supported to the extent that schemas
can be loaded into the VPE environment to be attached to inter_class definitions. Though a
user can hand edit a class definition (e.g., rename an attribute) there is no automatic flow of
consistency checks throughout the VPE environment. The VPE environment provides
hooks which will allow the automatic handling of schema modifications at alater date (by
propagating schema update records to and from the VPE environment).

Documentation: VPE meets many documentation needs by tracking all updates made to the
mapping and recording them against the inter_class definitions that were modified. These
update records can be annotated by the user to record justifications and decisions, and
provide on-line documentation for the developing mapping. One documentation feature
which would be useful, but is not provided, is the ability to group multiple disperse update
records to represent a single update or documentation record. For example, this would
record a session of changes as a single documented change to the mapping.

Support for multiple views: multiple views are supported for all inter_class definitions which have
a full invariants specification (providing the key for the inter_class). This allows any
combination of graphical inter_class definitions to be specified and maintained with full
consistency at all times. However, due to the difference in specification level between the
textual and graphical views, there are many graphical updates which can not be
automatically applied to textual views, though all textual updates can be automatically
applied to graphical views.

Though VPE meets the mgjority of the requirements for a schema modelling and development
environment, there are some areas which would benefit from further work. These areas include:

123

Tight coupling between specification environments: though the V PE environment accesses schema
definitions when constructing a mapping view and when checking the correctness of a
mapping specification, there is no formal coupling between the schema modelling
environment EPE and VPE. A tight coupling between these two environments would allow
schema modifications in EPE to be displayed in appropriate V PE views as updates. These
updates could either be automatically applied to the current mapping, or the mapper could
apply them by hand. In asimilar fashion, the specification of a mapping which modifies an
existing schema could be propagated through all affected views in EPE, and either be
automatically or manually applied. This would increase the level of consistency between
schema definitions and mappings which are related to them. The experience of Grundy and
Venable (1995) suggests that this integration can be made with little or no modification to
EPE or VPE, by using the inter-repository relationships and multiple-base layers used in
their ISDE integration.

Collaborative design support: although large modelling projects may have a single coordinator in
charge of mapping specification development, there are likely to be several modellers
working on different aspects of the mapping. Coordinating the work of several modellers,
and maintaining the consistency of the underlying mapping under change from several
sources concurrently, has to be agoal of any real mapping development environment (see
Grundy et al. 1995 for an example of developmentsin this area).

Expanded modelling support concepts: the range of support concepts required by modellers when
developing large mappings is not clearly understood, and hence, not well supported.
Currently, documentation of mapping modification and construction is made at the atomic
level. Methods allowing for grouping of higher level concepts are imperative (including
multiple viewpoints of change sets). The manner of notification of modifications in a
collaborative environment needs attention to provide efficient methods of expressing these
changes to other designers (rather than at the atomic change level), an example of
developments in this area can be seen in Grundy et al. (1995). Navigation and summary
features tend to be primitive. In large mapping definitions with hundreds of inter_class
specifications and thousands of views, the set of views which reference a particular
inter_class could be very large. Classification of view types, or the relationship particul ar
inter_class definitions play in aview, could well help navigation around the mapping and
guide novice users through the various conceptual levels of mapping specification. Notions
of mapping versions and private workspaces need to be considered in a collaborative
environment. This allows the management of multiple design paths, and for incomplete
work to be hidden until fit to be used by other participants.

In summary, this chapter introduces the requirements for a mapping modelling and development
environment, and through the development of VPE and a mapping database format, demonstrates
that an environment meeting these requirementsis possible. This now provides atie-in between the
schema for an IDM and the schema models for DTs and users. However, to provide the full

124

description of a project requires specifying information flows and where particular schemas are
required. This is the problem tackled in Chapter 7, the last of the modelling chapters, before
detailing the implementation of a system which utilises all of the devel oped models.

125

Chapter 7

Project Modelling

To utilise the types of integrated design system that can be described with the modelling and
mapping specifications described in Chapters 3, 5 and 6, it is also necessary to manage the tasks
and people involved in the projects in which the integrated system is used. Thislevel of modelling
enables an integrated design system to be customised for use in a specific project. Project
modelling is atask that must be undertaken at the start of every project as participants and their
taskswill vary for amost every project. Thistask is usually assigned to a project manager, though
project models must be checked and accepted by all participants.

The work on project modelling presented here includes and extends work undertaken by the author
during a six-month visit to the COMBINE group at TU Delft in the Netherlands, the results of
which are reported in TU Delft and Amor 1993, and Amor and TU Delft 1993.

7.1 Introduction

A project encompasses all stages of work from inception through to demolition and possible reuse
of aparticular artifact. To manage and understand what happens in a project, amodel is required
of the various actors involved and the responsibilities and tasks they play in the project. The
development of a project model aso provides an understanding of which data models are required
in a project and what data transfer is required between these models. This influences the work
done on schema development and on mappings between schemas. A project model provides a
formal description of the various users who will be involved in the project, and formalises the
roles they will be fulfilling in the design task. The various design roles can be further refined to
individual design functions which can, in turn, be associated with the design tools available to

126

perform them. The set of design functions must be able to be scheduled, to allow a project
manager to ensure that design policies are followed, quality assurance conventions are maintained,
handover points between contractors are formalised, and design progress can be monitored.
Without the ability to model and manage these aspects, an integrated design system offers a
meaningless data transfer mechanism unrelated to areal-world project.

A large design and construction project involves many development phases, some of which may
be independent of each other, and, in many cases, need not be specified (and may not even be
known) at the start of the project. To understand and manage the large scale of projects, and their
initial indeterminacy, they are often conceptualised as happening in stages, though these stages
often overlap. Common stages in a project may include inception, management, design,
construction, maintenance and demolition. Stages may be very broad, or quite specific; for
example, the structural design stage in a particular design office. In COMBINE, the term ‘ project
window’ was introduced to describe these coherent portions of a project (see Figure 7.1). This
term is used throughout this thesis. The project windows represent a given time-slice of the
project, or some sub-process. Therefore, a project is considered as being divided into multiple,
conceivably overlapping, project windows which are specified prior to the execution of a new
phase of a project.

PW3

/

=

project completion

time

Figure 7.1 Multiple project windows in a project

Even splitting a project into multiple project windows is unlikely to provide enough flexibility for
real projects. A single project window may model weeks of work, over which period the
participants in the design team could change (e.g., bringing in an expert to help with unforeseen
problems) and various flows between design functions may need to be modified (e.g., to ensure
new aspects of the design are checked). To cope with this variability, a previously specified

127

project window model must be able to be modified and updated as the design progresses, with
immediate flow-on effects to the running control system.

The modelling of projects and project windows requires many aspects of a project to be captured.
Other research in this area has been examined to provide an understanding of the requirements for
project modelling. The notion of project models outlined above has great similarity to the concepts
of project and process in software engineering. Curtis et al. (1992) provide a review of process
modelling which categorises requirements and various approaches to process modelling. Their
four most commonly utilised perspectives in process representation (functional, behavioral,
organisational and informational) are used to rate previous process models, and are also used to
evaluate the CombiNet model developed here. The meaning of these four perspectives (from
Curtiset a. 1992, page 77) are:

Functional: represents what process elements are being performed, and what flows of
informational entities (e.g., data, artifacts, products) are relevant to these process el ements.

Behavioral: represents when process elements are performed (e.g., sequencing), as well as aspects
of how they are performed through feedback loops, iteration, complex decision-making
conditions, entry and exit criteria, and so forth.

Organisational: represents where and by whom (which agents) in the organisation process
elements are performed, the physical communication mechanisms used for transfer of
entities, and the physical media and locations used for stored entities.

Informational: represents the informational entities produced or manipulated by a process, these
entities include data, artifacts, products (intermediate and end), and objects; this
perspective includes both the structure of informational entities and the relationships

between them.
Functional Behaviord Organisationa | Informational

Procedura programming languages * * *
Systems analysis and design * * *
Al languages and approaches * *
Events and triggers *
State transition and petri-nets * * *
Control flow *
Functional languages *
Formal languages *
Datamodeling *
Object modeling * *
Precedence networks *
CombiNet * * * *

Table 7.1 Capabilities of project specification languages (after Curtis et al. 1992)

128

Curtis et al. (1992) evaluate different styles of project specification against these perspectives,
summarising their results in tabular form. Table 7.1 replicates this summary (where asterisks
represent the ability of alanguage to support a perspective) and extends it to include the work
presented here (CombiNet entry). The styles of project specification presented below cover all the
different process notations and tools presented in Sections 2.5.2 and 2.5.3.

7.1.1 Requirements

Considering the four most common perspectives offered by Curtis et al. (1992) led to the
definition of a set of views that must be able to be supported. These views include users, tasks,
data and workflow. The requirements of these views are as follows:

User View: dl the actorsinvolved in a project window and the tasks they must undertake to ensure
completion of the project window role. This view must capture the responsibilities of the
various actors and their rights in terms of viewing and modifying information in a project.

Task View: al design functions that can be performed by the design tools within the project
window. The granularity of a design function can vary from atomic changes to a design,
through to a complete design. The level of granularity is determined by the requirements of
individual projects. The only fixed requirement is that each design function must happen
between a starting and ending exchange event of information with respect to the integrated
design system. Everything that goes on between these exchange eventsisinvisible in the
project window model, being the domain of the design function. Thus, design functions
can be both on-line atomic CAD design tool operations and off-line batch mode design tool
runs.

Data View: all schemas concerned with design functions and users. In the project windows
described here thisincludes:

. The complete IDM schema.

. The IDM subschemas corresponding to the input of design functions.
. The IDM subschemas corresponding to the output of design functions.
. The IDM subschemas corresponding to the input view of actors.

. The IDM subschemas corresponding to the change access of actors.

This offers a purely static view of the project window definition, not addressing aspects of
control over instances (unless it can be modelled in the schema). The subschemas do,
however, define the state that the project must reach before a particular design function
may be utilised, or before an actor can be called into the project.

Workflow View: defines all possible flows from a particular point in a project. It ties the design
functions together and provides the way of describing the handover between various actors
in a project. The workflow defines how tightly managed and controlled a project is going
to be, from highly specified to very open. To enable the workflow view to be used, a
management system will have to be able to determine all states of a design function, the
state of the integrated design system, and control over exchange events according to
control flow constraints. Thiswill include the following aspects:

129

. whether adesign function is being performed.

. whether adesign function is a candidate to be invoked (in view of design functions
that it depends on).

. whether adesign function is a candidate to be re-run because the running of another
design function changed its original input.

. the design function state and integrated design system state resulting from previous
exchange events.

The views specified above describe aspects of a project which must be modelled to ensure that
required project perspectives can be supported. However, they do not provide a measure of the
level of control that will be exerted on a project through the views. The level of control could vary
widely, from very rigid and autocratic management through to very free and autonomous
management. Current perspectives on thisinclude:

No control astypified by current integrated design systems. These systems are merely able
to transfer data around without any in-built process context and purpose of data exchange
events. For such a system to be operational in aparticular design project, a project manager
needs to establish work procedures, task scheduling, etc. among the team of users. The
system is an insensible data router which provides no guidance on what should be done
next.

Shallow control is seen in several of the more recent integrated design system efforts, e.g.,
COMBINE, and ToCEE. This approach uses a scheduler which deals only with the control
over who, or what task, is next, and which monitors the states resulting from exchange
events. At thislevel of control, a project manager can enforce much rigour in the use of the
system. Although this might suit project windows for parametric (routine) design, itisto
be expected that most project windows will require a more flexible approach, where the
human users may interact with the control layer as well as with each other (outside the
system).

Deep control is the level that integrated design system developers aspire to and Al
researchers till ruminate over. This type of control deals with much greater complexity
than just scheduling. Deep control must deal with the pre- and post-conditions which are
related to exchange events. It should have the ability to look inside exchange events and
DT interfaces, and propose remedial actions for any failure of aDT invocation or analysis,
or propose and control how the system can recuperate from deadlocks in design
scheduling. Deep control should also deal with declarative knowledge on the meaning and
purpose of design functions and thus support goal-driven design strategies.

A deep control system, while perhaps being the type of control system that should be aimed for in
the future, is out of the scope of this thesis. Deep control, as defined above, requires the solution
of many hard research problems in the artificial intelligence field. As a first step towards
introducing process control into integrated design systems, shallow control has been selected for

130

usein al the large EU funded projects and this is the approach implemented by the author and
shown in this chapter.

7.1.2 Structure

To cover the four most commonly utilised perspectives specified in Section 7.1, and meet the
requirements of Section 7.1.1, the CombiNet formalism developed here defines three main types
of information to be modelled for a project window: project window requirements, defining part of
the informational perspective; user requirements, defining most of the functional, organisational
and informational perspectives; and flow of control requirements, defining the behavioral
perspective. Project window requirements allow the specification of starting conditions for entry
into a project window, and exit conditions (e.g., data that is required by the end of the project
window). User requirements allow the specification of the participants and their design functions
in aparticular project window. These participants (actors) perform certain design roles in a project
and these design roles can be completed through the application of various design functions. A
design function can be represented as a particular design tool used in a certain manner, e.g., to
perform one type of analysis from the range a design tool offers. Flow of control requirements
allow the specification of the paths that may be followed between various design functions to
complete the design phase encapsulated by the project window.

evaluate
structural_
code_
omplian,
whb_in.xps b_out.xps
WallBrace

ensure_structural_
integrity

efine_wal
tructures

structural_consultant

str_in.xps str_out.xps

specify_
bracing

structural_system_
design

est_out.xps
MaterialsEditor

O

Wordperfect

Figure 7.2 Example of user and function specification

131

The CombiNet formalism utilises two specification notations to model user requirements and flow
of control requirements. Though two notations are described, they are used in an integrated
manner in the specification environment, with explicit links between diagrams in both notations.

7.2 User and Function Modelling

A magjority of the functional, organisational and informational perspectives, as introduced in
Section 7.1, can be grouped together and defined in a single formalism. Functional and
informational perspectives can be defined for design functions, actors and the project window
through the definition of input and output models. These schemas specify structures and
constraints of the models used by, and produced through, the use of a particular design function,
actor or project window. Organisational perspectives can be partially defined in the same model
through connections between actors, their design roles, and the design functions required to
complete the design roles.

In Figure 7.2, a graphical specification of user and function, detailed in a CGE (Configurable
Graphical Editor, Vogel 1991) project window formalism (developed by the author), is presented.
There are three main types of icon in this diagram, connected by arrows representing performs and
requires relationships for actors and design roles respectively.

Actor: the oval iconsin the left column of the diagram represent actors (users) participating in the
project window being specified. An actor has a name defining either the actor or, asin
Figure 7.2, the type of actor which will be performing particular roles in the project
window. Each actor is associated with a pair of schema defining both the subset of the
IDM that they are able to view, and the subset of the IDM that they are alowed to modify.
These two schemas define the area of responsibility of a particular actor, and are used to
ensure the actor acts within a specified domain. These schemas can also be used to check
that the roles an actor plays are not outside the actor’s area of responsibility. Actor
responsibility can be checked against design role responsibility, as the area of
responsibility of a design role can be determined by the union of the schemas associated
with each design function it utilises. An actor is associated with one or more design roles.
In Figure 7.2 each actor has unique design roles, but thisis not mandatory, multiple actors
are allowed to perform the same design role.

Design Role: the rectangular icons in the centre column of the diagram represent the various design
roles which are performed by actors in this project window. Each named design role can
be fulfilled through the application of various design functions (the scheduling of whichis
specified at a later stage). Severa design roles can utilise the same design function in the
completion of their role. For example, the documentation design function is used by most
of the design roles.

132

Design Function: the iconsin the right column of the diagram represent the various atomic design
functions which can be carried out in the completion of design rolesin the project window.
A design function has a name defining the type of function it performs and directly under
the icon the name of the design tool which will be used to perform the named function.
Each design function is associated with two schemas defining both the subset of the IDM
which will be the input to the design tool, and the portion of the IDM which can be updated
at the completion of the design function. These two schemas define the responsibilities of
the design function. Though not shown in Figure 7.2, several design functions can be
accomplished with the same design tool, but often with different input and output schemas
defining responsibilities for the tool. The definition of the different functions performed by
the same design tool is indicated by the two schemas specified along with the design
function.

In the CGE environment the modeller can navigate from this user and function view to the top
level flow of control view through a menu item in the environment. The CGE environment is not
as sophisticated as the MViews environment utilised in Chapters 3 and 6, limiting the type of
environment that can be offered to the modeller. The main restrictions are that it can only provide a
single view of amodé (i.e., one user and function view) and sophisticated navigation facilities are
not available (e.g., it is not possible to navigate from a design function to all flow of control views
which reference that design function).

7.3 Flow of Control Modelling

A Petri net formalism provides much of the behavioral perspective required for project
specification, and, along with the DT schemas for actors and design functions defined in the user
specification detailed in Section 7.2, many properties of a project’s state can be calculated. In this
section the calculable properties of a flow of control specification are defined, along with a
formalism for describing them. This formalism is based around the design functions defined in the
user specification. However, it also overlays actor’s areas of responsibility to provide the link to
organisationa perspectives for the project specification.

7.3.1 Set theoretic background for flow of control

The control view states defined in Section 7.1.1 are calculable from analysis of dataflowsin the
integrated design system based on the schemas associated with each design function (DF). The
basis of the analysisis to assume that the input and output schemas for a design function together
describe a subset of the IDM schema. Thisis not strictly true, as the schema for a design function
is likely to have cardinality constraints, keys and value constraints which differ from the IDM.
However, these added constraints can be ignored when checking subset relationships and when

133

performing intersections of various schemas. What will be used for the set operations will be the
definition of entity names and their inherited entities, and attribute names and types which appear
in the design function schemas and the IDM. In the following conditions and constraints |, is used
to denote the input schemato a design function or actor, and o to denote the output schema of a

design function or actor.

There are two conditions which must hold on the design function and actor schema definitions:

Condition 2: Oio Actor sLjo dFof Actori (1in 0 n, 1 out U] out)

Thisjust states formally that the input and output schemas of all design functions and actors must
be a subset of the IDM, and that the input and output of any design function used by an actor isa
subset of that actor’s schemas. In practice, this means that the input and output schemas must be
defined in terms of the IDM (i.e., using the same entity, relationship, method and attribute names),
aswell as being defined by the model structure used in the actual design tool or actor view. Using
these definitions enables a static check of al schemasin the integrated system. The schemas can be
checked against the IDM to determine whether they are valid subsets of the IDM (i.e., whether the
schema has been defined properly. This will mainly pick up typing errors). The allowable
differences in schemas of a design function or actor over that of the IDM are that the former may
define: different uniqueness constraints (keys); different constraint clauses or ones which are
additional to those defined in the IDM; different cardinalities on attributes; and different optional

specifications for attributes.

Given a system which contains the IDM schema and the input and output schemas of the various
design functions used in a particular project window, and the definition of aflow of control for a
given project window, there are various properties which can be calculated. To derive these
properties from the design function schemas two constraints are defined:

Constraint 11 Ui o running bF: ko bF (i out N Cin = D)

This constraint is a concurrency check, or an invocation check, stating that a design function (c) is
a candidate to be invoked if its input schema has no intersection with the output schema of any of
the running design functions (written as rynning pF iN the constraint).

Congtraint 2. j = completed DF » Ll 0 previously run DF (i 1n N] out # D)

This constraint is a re-invocation check, stating that if the output schema of a design function
which has just terminated (DFj o) intersects with the input schema of any other design function

which was previously run (DF;), then the previously invoked design function (DF) is a
candidate to be rerun.

134

It must be noted at this point, that intersections between design functions are described only at the
schema level (i.e., static determination). Where the design functions require a model of a full
building this will be sufficient to determine the properties detailed above. However, if a design
function models only a small portion of a building (e.g., calculates properties for a single space)
then the properties calculated above could present a design function as a candidate to be rerun in
more cases than necessary. In the implementation of the flow of control system, thisis handled by
also tracking the objects which are used by each design function. The intersections between design
function schemas gives a static determination of whether a design function needs to be further
examined at run time to determine the properties defined above.

The working of the two constraints described above isillustrated in the figures below:

IDM

9

Figure 7.3 Invocable design functions

Figure 7.3 presents the situation where, even though the two design functions share data in their
input schemas, neither of the design function input schemas have an intersection with a design
function output schema. In this case, both design functions may run concurrently, and the result of
either tool will not cause the re-invocation of the other design function.

IDM

(orion
Figure 7.4 Constrained design function

135

Figure 7.4 presents an example where there is an intersection between an input and output schema
of two design functions. In this case, if DF1 is running then DF2 may not start. This figure also
illustrates what may happen with Constraint 2. If DF2 was run at some time in the past, and then
DF1 isrun, then the output of DF1 may overwrite what was previously supplied to DF2, so DF2
becomes a candidate to be rerun.

IDM

Figure 7.5 Constraints between two design functions

Figure 7.5 presents a case where the two design functions may not run concurrently, as the input
schema of each design function intersects with the output schema of the opposite design function.
Thisfigure illustrates a situation where the invocation of either of these design functions can cause
the other design function to be a candidate for arerun, apparently causing a cycle. However, this
is not problematical as the design functions are only candidates to be run. The final decision of
what can be run at any particular time is made viathe project window control flow information.

IDM

Figure 7.6 Design function constraints leading to apparent inconsistencies

Figure 7.6 presents a definition which could apparently lead to inconsistencies. The two design
functions have the same properties as those in Figure 7.5, but with the additional complication that
they overwrite portions of each others output. Again, thisis acceptable, as the running of each of
these design functions is determined by the project window definition which by its own definition
gives rights to a design function to place its output in a portion of the resultant data store. The

136

termination of either design function will mark the opposing design function as a candidate to be
rerun, making explicit the fact that the output of the design function has been overwritten.

While these examples demonstrate the interaction between just two design functions, the
constraints described earlier are general and the results can be applied over any number of design
functions.

7.3.2 Flow definition

The graphical formalism developed to specify flow of control in a project window is based very
loosely on the Petri net formalism (Jensen 1990). |cons representing places, transitions and tokens
are used in the modified definition, along with new icons to allow further functionality to be
described. Although the new formalism (called a CombiNet) looks very similar to a Petri net, the
semantics are very different. The icons in this formalism and their functionality are described
below, with reference to Figures 7.7 and 7.8.

design_building_layout

I—— spec ify,requi—rs:]p —i
_ 2 3

client architect

((_ design_and_update
8

§ building_design

g

Figure 7.7 Top level flow of control specification

Place: A place in the CombiNet (the single lined oval iconin Figure 7.7) represents asingle design
function. It can be reached from some set of transitions and it will exit to some set of
transitions. Each place represents exactly one design function, but the same design
function can appear many timesin a CombiNet.

Aggregate Place: An aggregate place (the double lined oval icon in Figure 7.7), as its name
suggests, represents a set of icons defining an identifiable subset of the process being
modelled, defined here to be all icons drawn in awindow. Thus, allowing the modeller to
group complex interactionsinto logical subnets and reference them through a higher level
mechanism. Aggregate places representing the same CombiNet may be referenced from
any number of CombiNets or many times from a single CombiNet. This allows acommon
sequence of events to be represented by a single icon in a CombiNet. It is also used to
distinguish the flow of control of different actors, or different design roles, into separate
definitions which can be linked together appropriately at a higher level CombiNet.

137

doc design_and_update

36 37

Figure 7.8 Flow of control with global elements

Global Place: The global place (the single lined rectangular icon in Figure 7.8) represents asingle
design function exactly like a place, but it has no connection to the transitions. The global
place denotes a design function that can always be activated when in the current CombiNet
(or in any descendant CombiNets, i.e., those represented by an aggregate place or global
net). Global places allow design functions which can always be invoked (e.g.,
documentation functions) to be specified in the CombiNet without having to draw links
from every single place and aggregate place in the diagram. It also allows a specific flow
semantics to be associated with the global place. This semanticsisthat after invoking the
design function in aglobal place the flow of control passes back to the place or aggregate
place which invoked the global place (rather than any place or globa place in the diagram,
as would occur if everything was wired back and forth to a single place to achieve this
effect).

Global Net: Thisisacombination of an aggregate place and aglobal place. The global net icon (the
double lined rectangular icon in Figure 7.8) represents a complete CombiNet and is
invocable from any place in the current net, and all descendants of the current net. When
inside the global net all other global elements, other than those that are already entered
(i.e., aglobal net can not call itself recursively), can be seen. The set of visible global nets
reduces as each one is stepped into, and grows as each one is completed. The CombiNet
representation of a global net is the same as a normal net, so it can have its own global

138

places and global nets as well as normal place-transition flows and aggregate places. A
global net is used for many of the same reasons as a global place (mainly for functions
which can occur at any time). Its main benefit is that a whole flow of control can be
defined in the global net rather than a single design function. For example, after completing
some set of design functions in a global net it would be possible to force the flow of
control through an evaluation function before returning control back to the original
CombiNet. The semantics of entering and exiting a global net are the same as for a global
place.

Transition: A transition in the CombiNet (the single vertical lineicon in Figure 7.7) works as the
choice point between one design function invocation and the next. It can be used to work
out the set of candidate design functions that can be invoked after a running design
function has terminated. There are two special kinds of transition that can be created. A
transition which has no entering arrows (i.e., is not exited to by any place or aggregate
place) is called a start transition and denotes an entry point into a CombiNet. A transition
which has no arrows exiting to other placesis called an end transition, and denotes an exit
from a CombiNet. In the current version of the project window definition, a CombiNet is
allowed to have only one start transition, though it may have any number of end
transitions. Having a single start transition in a CombiNet is purely areading convenience
for auser, as this guarantees that having found one start transition the reader has found the
only entry into the CombiNet (a single CombiNet can be very large and complicated and it
could be easy for the modeller to overlook some starting transitions if more than one was
allowed). A single start transition also eases the computation required when attaching to
aggregate nets. All transitions which invoke an aggregate place are connected to the start
transition of the CombiNet represented by the aggregate place. In a similar manner, the
exits from an aggregate place to atransition are all tied to the set of end transitions in the
CombiNet represented by the aggregate place.

Double Transition: The double transition (the double vertical lineicon in Figure 7.7) is a shorthand
notation for a loop between two places, which is represented by two normal transitions,
one in each direction, in a running system. In Figure 7.7 the two double transitions
provide two design function choices when exiting the design_and_update aggregate net,
either building_design or acceptance. If the building_design aggregate place is entered,
there is only one exit, back to design_and_update. If acceptance is entered then there are
two exits, either back to design_and_update or to terminate the CombiNet (and in this case
the whole project window).

Actor: The actor overlay (the large box icon with the actor name in the lower right corner, see
Figure 7.7) defines the actor responsible for a set of places, aggregate places, global places
and global netsin a CombiNet. This alows aclear distinction to be made between areas of
responsibility of various actors, and indicates the point of transfer of control from one
actor to the next. The actor overlay is needed in cases where multiple actors and design
roles utilise the same design function to perform their tasks. In this case, without the

139

overlay, there is no way of determining the actor responsible for a design function in the
CombiNet. When implementing the flow of control, moving from the design function of
one actor to that of another is treated as indicating an acceptance and sign off of all
responsibilities for the initia actor. This includes accepting and terminating all outstanding
re-run requests for the actor handing-over control. However, the new actor will see re-run
requests generated by modifications that affected run states of their previous design
function work (if any) since the last time they were involved in the project. New re-run
requests will be added for the new actor as they work through their design functions, asin
the previous definition. Again, at the hand-over to another actor al current re-run requests
for the completing actor are removed. This helps control the proliferation of re-run requests
caused by changes which may impact on every design function which has previously run.
This management of re-run requestsislocal to a single project window, and will not affect
the same actor’ swork in another project window of the same project.

Although tokens are never shown in the CombiNet diagrams, they are used in the implementation
to illustrate the flow of control in the CombiNet. A token represents the actions of one actor
performing their design roles with various design functions. A token in a place represents the
running of a particular design function. When the design function has terminated, the transitions
are used to determine the candidate design functions from the current place. When the next design
function is decided upon, the token crosses the choice point created by the transitions and invokes
that design function. If adesign function is unable to start, or terminates unexpectedly, the token is
sent back to the place it previously came from, and transitions available from that place must be re-
evaluated. If atoken movesto aglobal place or global net then after completing that function it will
return to the place from which the global function wasinvoked. A token enters a CombiNet from a
start transition and leaves on an exit transition. In every flow of control specification thereisatop
level CombiNet from which a single token is started. When a token moves across a boundary
between areas of responsibility of different actors then the user the token represents changes, and
this represents aformal hand-over between the two actors.

The differences between the working of a Petri net and a CombiNet are seen most clearly in the
flow of tokens. In a Petri net there must be a token in each place entering a transition before a
token can cross the transition. When a token crosses a transition it places a token in every place
pointed to by the transition. In the CombiNet it is completely different; atoken, which represents
an actor, isonly constrained from traversing transitions by the state of concurrency constraints as
defined in Section 7.3.1. Transitions provide a choice point between functions in the design. Also,
as a token represents the workflow of an actor, the same number of tokens are passed over a
transition as approach it. Therefore the number of tokens (workflows of actors) in the project
window remains static in the flow of control system unless a new workflow (which would require
anew token) is activated by the project manager (e.g., concurrent design in the project window).
As the project manager is shown the analysed state of a running project window, it always clear

140

when multiple workflows can be scheduled concurrently. This is shown by the set of design
functions calculated able to be run at the same time as currently running design functions.

7.4 Appraisal of Project Specification

The two part project specification formalism described above has been used (see Augenbroe 1995a
and the example in Appendix E) to describe, and then implement, a shallow level of control in
integrated design systems. The formalism, although simple, alows the definition of complicated
project models and actor interactions. In relation to the four perspectives of project representation it
meets them in the following manner:

Functional: this perspective is addressed in both notations. The definition of what process
elements are performed can be ascertained from the set of design functions specified in the
flow of control diagrams. The informational entities relevant to each process element are
specified through the input aspect model of each design function in the user and function
diagram.

Behavioral: this perspective is addressed in the flow of control diagrams. The CombiNet allows
specification of all sequencing requirements of design functions as related to the design
roles of individual actorsin a project.

Organisational: this perspective is partially addressed in the user and function diagram. This
hierarchical diagram associates actors with specific design roles, and through those design
roles to individual design functions. CombiNet’s actor overlays are used to distinguish
actor responsibilities for particular design functions where multiple actors need to utilise
the same design function. Actor responsibilities are rigidly defined through the use of
aspect models defining an actor’s view of a schema and the schema components they are
allowed to modify. Physical communication mechanisms and physical media are not
addressed in this formalism asthisis currently managed independently in integrated design
systems.

Informational: this perspective is addressed in the user and function diagram. The definition of an
output aspect model specifies what is produced by a particular design function, while the
input aspect model defines what is manipulated by a particular design function.

The CombiNet formalism for flow of control specification provides asimple yet powerful notation

to define control flow in a project. The main benefits of the formalism are:

Explicit flow of control: The use of places and transitions allows for the definition of explicit paths
through the design process. There can be iterations in the design process and choice points
in the direction that the design progresses. The flow of control can be tightly constrained to
follow set paths and invoke certain functionsin a specified sequence.

Aggregation: The introduction of aggregate places reduces the complexity of individual nets by
allowing subnets to be identified and packaged as individual components. The aggregate

141

places allow common tasks or processes to be described once and referenced many times
throughout the design process. Aggregation also allows processes pertaining to individual
actors to be specified separately from all other actors, providing avery visible separation
between actor tasks.
Global icons. These icons provide a simple notation to encode flows of control which can occur at
any time in the design process. Multiple global nets in a CombiNet represent a wiring
structure which would be very intricate and cumbersome to define with other process
models.
Wide range of control: The combination of global components and connected components
provides for awide range of control strategies to be implemented. These range from totally
unconstrained, through to totally constrained. The various states are characterised by:
Totally unconstrained: all states are defined by global places, so that anything can start at
any time. Flow between various actors in the system is still monitored, but any
actor can do anything at any time.

Partially constrained: some states are defined by global nets, therefore invoking certain
states requires passage through other states in a controlled manner.

Partially unconstrained: most states are described through the usual place-transition flows,
with some global places or global nets to represent states that can occur at any time.

Totally constrained: there are no global places or global nets defined, so all states must be
invoked by following the flows defined in the place-transition flows.

Well defined hand-over points: the hand-over of control between different actors in a project
window is explicitly modelled in the flow of control specification. This provides well
defined and easily distinguishable areas of responsibility in adesign project.

There are also certain weaknesses to the formalism as devel oped, the most important being a poor
handling of complicated boolean conditions between design functions in a CombiNet. For
example, it may be required to inhibit the execution of a particular design function until a set of
other design functions have executed, without consideration for the order in which this other set of
functions is executed. This type of specification will prove hard to code in this formalism due to
the ability to have loopsin the flow of control. For example, does satisfying all the conditions for
the first time make these conditions satisfied every other time they are encountered? Although these
types of conditions can not be made explicit in the formalism, a very weak form of these
conditions can be implicitly defined in the input schema definition of adesign function. An input
schema can specify a requirement for input which could only be met through the execution of a
given set of design functions (again only useful for the first iteration in the flow of control). An
approach to alleviating this problem would be a formalism for explicitly specifying the set of
conditions that must hold before a design function is invoked. This would alow for both the
semantics of repeat invocation to be specified and for full system-state, and data-state, pre-
conditions to be defined.

The project specification provides away of describing shallow control in a project with a degree of

142

flexibility sufficient for small through to large projects. However, there are aspects of the
specification which could be extended:

Deep control: the shallow control offered in the current project specification should be extended
towards the requirements of a deep control system. Initially this would cover greater
flexibility for specifying constraints on the project model. These could be constraints to be
satisfied before the invocation of particular design functions or constraints which guide the
flow of control based on the results of a design function. A large amount of research
would be required to try to implement a more comprehensive control system based on
design intent and it would have to be carefully crafted so as not to intimidate the users of
such a system.

Greater specification of environment in model: an assumption in the project specification was that
physical communication mechanisms and physical media need not be addressed in the
formalism, asit is currently managed independently in the implemented integrated design
systems. This assumption could be lifted to provide a more general project specification
which can model design tool parameters. For example, the environment in which they
operate, their invocation parameters, the format of input and output data-files (if they use
data-files), etc. Previous research has considered this problem and the papers on TES
(1995), and to some extent by Pascoe (1994), describe notations which allow the majority
of these parameters to be defined.

Flexible specification environment: the CGE environment was used by the author to implement
this formalism as it was the modelling tool used in the COMBINE project. Re-
implementation in an MViews-like environment would provide a more sophisticated
modelling environment, allowing multiple overlapping views of the flow of control
specifications, as well as all the coordination and documentation benefits offered in an
MViews environment. An MViews environment would also offer the possibility of tying
the project specification through to the schema and mapping specification environments
described in Chapters 3 and 6. This type of specification environment has subsequently
been demonstrated in the Serendipity system (Grundy 1996). Serendipity allows the
specification and coordination of process models alongside software development for
multiple developers, with consistency management and developer conflict resolution and
management.

In summary, this chapter presents the requirements for project specification in an integrated design
system as well as aformalism to allow its specification. This formalism allows a shallow level of
control to be specified between actors in a project, the design roles they play, and the flow of
control between design functions used to satisfy particular design roles. The project specification,
along with schemas (from Chapter 3) and mappings (from Chapter 5 and 6), is sufficient to
implement an integrated design system which can be used in a specific project. Chapter 11
describes such a control system and gives examples of its use with the project definition used as

143

examplesin this chapter, and fully specified in Appendix E.

144

Chapter 8

The Project Testing and I mplementation Environment

Although the development of an integrated design system requires the development of schemas for
the IDM, design tools, and actors, as well as mappings, design tool environment models, and
project flow definitions, they can not be developed in isolation. After defining the various
schemas, the developer(s) must be able to test what is being created to verify that it fulfils its
required purpose. To achieve this, the schemas must be instantiated with test data from the domain
they will be used in. Mappings between schemas must be tested to ensure that the result of
mapping from amodel is equivalent to the original. Design tool environment models must be tested
to ensure that the design tools start and finish as expected and that they find no problem with the
data presented to them.

To make this possible requires testing environments that allow models to be quickly instantiated
and validated to ensure that relationships and dependencies are as expected. To test mappings
requires a system which simulates the functionality of afull mapping system, coupled with model
visualisers to enable the correctness of the mapping to be ascertained. Similar testing is required
for project models and design tool environment models. Though the environment developed for
this testing could be the final integrated design system there are many reasons why it should not
be. The major reason is that integrated design systems can take many forms and assuming that
several are to be developed it islikely that each would vary in implementation to some extent. For
example, the model implementation may be very different in different systems, from arelational
database through to an object-oriented or frame-based system. To test models in each of these
variations would require very different testing environments. However, if a single model
visualisation tool was created for testing all integrated design systems during development, the
final schema could be specified in any paradigm with the devel oper being sure of the correctness of
the specification. Having a single suite of testing tools aso allows closer integration between the
testing tools, with flow-through benefits from the different stages of testing. For example, the

145

model visualisation tool can be used to inspect a derived model after performing a mapping
between two models.

In this section, the various testing environments required to test the range of models detailed in
Chapter 2 are described. A testing environment is described for each class of model described in
Chapter 2 and where they can benefit from close links between each other and the modelling
environments this is specified. Some of the environments are major pieces of work completed as
part of thisthesis, and described in more detail in subsequent chapters. Others are tools devel oped
in other projects or are yet to be implemented, and are only described below to provide an idea of
the functionality they can provide in thisintegrated framework.

8.1 Structure and Requirements

Complementing the non-linear modelling process described in Section 2.1, there is a similar non-
linear implementation and testing process. Examples of the types of cycles and interactions which
occur at this stage are detailed below:

. During any schema development stage atest suite needs to be set up to validate the schema
development. This test suite is likely to be developed incrementally as the schema
progresses, with tests representing normal, as well as unusual, design situations which the
schema should be capable of representing. This evolving suite of tests must be able to be
run against each new schema version to ensure that restructurings have not reduced the
schema’ s expressive power. Later in the project whole building models must be able to be
loaded in, not just as a test of the whole schema, but to enable testing of mappings to and
from other design tools.

. During the IDM development, and particularly towards the final stages of its development,
the IDM needs to be tested with an instantiated model. Thisis a paradoxical problem, asthe
IDM is developed to integrate DTs which can create an instance model, but the DTs can not
be integrated until the IDM is developed. Bootstrap tools are thus required to create,
visualise, and manipulate instances of the schema. These tools are used by the IDM
developers to test their model, by the DT modellers to ensure the actual datain the IDM
matches their conceptions of what should be there from the IDM development process, and
by the DT interface devel opers to test the interfaces as they are developed. The IDM is till
likely to change at this stage, so the instance model needs to be constantly restructured to
take into account all modificationsto the IDM. Changes in the instance model must then be
passed through to al DT developers who rely on the instance model for their development.

. When the mapping specifications are being developed they need to be tested with the
instance models of the IDM, to ensure that the mapping is correctly specified (the *artwork’
on page v shows the ‘small’ problems that are easily picked up from this type of testing,
this problem originated from an incorrect specification of axes in a building model

146

mapping). These tests are run by the mapping developers. Where problems are detected
they require assistance from the schema modellers of the IDM and the DT. Problemsin test
mappings may require changes to the mapping specification, or to the schemas of the IDM
and DT, where the problem is one of missing information or constraints in the schemas.
All of these changes have flow-on effects to anyone using the IDM as specified above.

. The specification of a project’s utilisation of an integrated design system is a negotiated
process and, especially in large projects, may need to be simulated to ensure that all
required design roles can be completed in the available time-frame. Results from
simulations may highlight areas of concern in the specified project flow, and lead to further
modifications and re-negotiations between actors in the project.

Modelling tool and integrated environment requirements have already been described in Chapter 2.
Similar requirements exist for the implementation tools and these are described throughout the rest
of this chapter. Again, this chapter looks at implementation environments as if they are
independent from the modelling stage. Thisis not the case, but this unnatural split does enable the
issues for each of these sections of the implementation to be considered independent of competing
and distracting issues from the other category of requirement.

8.2 Schema instance development

To help reduce the schema development time mentioned in Section 2.2, it is necessary to provide
methods to instantiate sample buildings for the evolving schema and to navigate the resultant
structures to ascertain that they meet their required purpose. There are many tools which can
provide this level of utility. Four which have been used throughout this project are described in
Section 9.2, however, requirements for this type of tool are detailed below.

8.2.1 Requirements of a schema instance maintenance system

To provide maximum utility to designers these environments must satisfy the following diverse

requirements:

Instance manipulation: devel opers instantiating or browsing a model need to inspect tailored views
of an instance, to specify values for attributes, and to specify references to other objects.
The views of the data should be able to be presented in forms which are of a similar
semantic level to that in which the developer envisages it (e.g., a graphical view of an
object’s geometry). Attribute values should also be able to be specified at a similar semantic
level (e.g., clicking on an iconic representation of objects to collate identifiers to be
referenced, rather than typing in al the object identifiers).

Correspondence with an evolving schema: as schemas evolve the previous model instances need to
be brought forward into the new representation. While a mapping specification and
mapping system can be used to achieve this syntactic transformation of the data, the model

147

maintenance system must be made aware of new schema versions. The system can then
ensure that new objects are created with the correct parameters and attributes.

Multiple views: for model developers, multiple graphical and textual views are useful beyond the
schema development stage. Similar methods for navigation, perusal and checking of the
instances in amodel are essential when dealing with amodel as complicated as a building.
Thus, the ability to view graphically the physical components of a building and to navigate
through the building structure at either atextual or agraphical level and with the ability to
switch between different representations of a selected instance, is particularly useful. Tools
offering support for viewing and manipulating instances of the model are used by both the
IDM development team and the aspect model teams to check instances of schemas,
determining whether the structure is as they imagined when detailing their schemas and
whether it accurately represents the information requirements of their DT.

Consistency: the development of an instance model can involve many of the schema devel opers,
especially where a schema covers many domainsin afield (e.g., steel structures, concrete
structures, HVAC systems). Where several developers view instance model portionsin
varying levels of detail and representation, the various views need to be kept consistent
with each other. This ensures that all modellers are aware of recent changes to the instance
model and can be certain that they are working on the most up to date version.

Navigation: even arelatively simple building model (e.g., a domestic dwelling) from a schema
with a hundred or more classes can contain thousands of objects. Navigating such a model
can be amajor task in itself. Methods of overcoming this problem are to provide high-level
navigation mechanisms (e.g., walking down part-of structures utilising a GUI) and the
incorporation of query languages which enable the identification of elements of interest.
For elements which have a graphical representation, graphical navigation methods should
also be provided.

8.2.2 Related schema instance maintenance systems

The magjority of the schema modelling tools surveyed in Section 2.2.5 have no associated instance
creation and perusal system. Though this is mainly due to the vendors perception of market
requirements, many of the modelling languages lack an ability to translate models into
implementation languages (e.g., multiple conditional inheritance in EXPRESS has no direct
trangation into languages such as C++). The majority of development systems assume that the
developed schema can be correctly specified without testing against actual data and can be
transferred to the final implementation of the developed system which will contain the methods for
creation of instances of the model. One modelling system (for software development) which
allows instances to be created against the developing schemais SPE (Grundy and Hosking 1993a)
and the associated development of Cernoll (Fenwick et al. 1994) provides for many of the
requirements described above.

148

The lack of associated instance manipulation environments in large schema devel opment projects
has proven to be a problem. In COMBINE, COMBI, ATLAS, etc. example buildings were created
for final proof-of-concept demonstrations. These model instances were invariably developed late in
the project and, with no complete tool to create the model, relied upon hand instantiation and
laborious checking to ensure validity. This meant that the models developed were small (10-20
spaces and not always utilising all classes defined in the schema) and required hand-patches as
schemas continued to evolve at the late stages of the project or as missing information was
discovered (Augenbroe 1994b).

8.2.3 Approach to a schema instance maintenance system

To work with the modelling environments described in Section 2.2 the schema instance
maintenance system has to comprehend EXPRESS schema definitions and data models sent in the
associated STEP Part 21 data-file format (1SO/TC184 1994). The tools built for the maintenance
system all operate in the same environment, which provides parsers for these formats and allows
persistent databases to be created and manipulated according to the resultant specifications and
data. The environment in which the maintenance system is built is the same as used to build the
modelling environment, which eases the burden of providing connections between the two
systems. The maintenance system tools provide the majority of requirements in Section 8.2.1,
including instance manipulation and modification in a persistent store, viewing and navigation in
both textual and graphical formats, and guaranteed consistency of the persistent store for data
being manipulated in multiple views. The tools created and used in this project for instance creation
and navigation are described in Chapter 9.

8.3 Mapping handler and controller

This module performs the translation of data between the IDM and the DT models. It must
determine whether it is possible to create a consistent model from the IDM for any one of the DT
models based upon the constraints in that DT model, and it must ensure that the IDM remains
consistent upon update from adesign tool’ s output. It must detect conflicts between various sets of
data and must be able to invoke processes to enable negotiation over conflicting data from different
design tools and users. An implementation of a mapping controller meeting these requirementsis
described in Chapter 10.

8.3.1 Requirements of a mapping handler and controller

A generalised mapping controller must offer the following facilities:

Consistency of datamodels. as developers or actors complete design functions with aparticular DT
they must be able to move relevant data through to the IDM whilst maintaining global
consistency of the developing model. They must also be able to extract the current IDM

149

model for use in a particular design function. Through all of this the datain various data
models must be kept consistent with each other when mapped through different models. In
thisway every user of the integrated system knows that they are utilising the same data as
the other users of the system, or if they are out of date they will know of any possible
problems and be provided with methods to become consistent. If consistency of the data
models can not be maintained automatically then the integrated system must provide
negotiation methods to allow the possible conflicts to be resolved.

Traceability of modifications: in any developed model a number of devel opers and actors will have
been involved in the specification of various parts of the model. Modifications made to a
particular model must be able to be traced to a particular mapping and ultimately to the user
or DT which asserted the values. Tracking the modifications allows compl ete mappings to
be applied and undone if necessary. It can also provide leverage in determining what
mappings can be applied dependent upon the source of the data, or it allows a negotiation
to be initiated with the specifier of the data to resolve conflicts.

Utilisation with different DT regimes:. different developers and actors require different types of
DTsto perform their design functionsin a project. The mapping controller must be able to
handle the requirements of various types of DTs. Some of these require all their data at the
start of asimulation or design task, and others have interactive requirements for data based
upon previous data (e.g., knowledge-based systems).

Actor and project manager links. the mapping of data between toolsisasmall part of the overall
development of a coordinated design in asingle project. To alow coordinated and managed
design tasks amongst all participants in a project the mapping controller must be tied
closely to the project management system. With close links to a flow of control system
mappings can be activated to initiate a new design task, or used at the termination of a
design task to capture the output of the task. To this extent the mapping component of most
integrated design systems should be almost invisible to its users, providing many services
in the system but unseen. The only point where it need be visible is to notify its user of
model conflicts and allow a negotiated settlement.

8.3.2 Related mapping handler and controller work

The range of mapping handlers and controllers is as wide as the range of mapping notations
described in Section 2.3.2. However, as none of the notations satisfy the requirements for a
mapping language in that section, their environments can not provide for the requirements in this
section. RDBMS provide the most sophisticated environments of any of the previously referenced
notations, allowing tight management of modifications and their flow through to affected users.
Though they can not perform the types of mappings required in this problem domain many of their
facilities for management of transactions (including roll-back and roll-forward), view updates,
traceability, and view interfaces are utilised in thisthesis.

150

All of the mapping languages appearing in this domain (e.g., EXPRESS-M, EXPRESS-V,
EXPRESS-X, Transformr, View mapping, etc) are associated with implementations. These
implementations are very limited in their scope as they implement unidirectional mappings from
one data-file of a model to the transformed data-file. Therefore they provide no management of
global consistency of datain a project. Though all mappings in the COMBINE project were hand-
coded their integrated building design system at least managed the mapping of data between tools
(in avery conservative manner) to ensure that the IDM model was globally consistent.

8.3.3 Approach to a mapping handler and controller

The user interface of the mapping controller developed for thisthesisis shown in Figure 8.1. This
system implements mappings specified with the VML notation, utilising either a transaction-based,
or individual, update mechanism to move data between related models whilst maintaining the
consistency of the models. The mapping handler allows a VML mapping specification to be used
in either direction to map data bidirectionally between models. Dependent upon the type of
mapping specified, it will ensure that only coordinated updates are performed on an IDM (i.e.,
ensuring consistency of the IDM). It also automatically manages the notification of changesto all
actors in a project who are affected by a particular modification to the IDM. The system allows
both on-line and off-line DTs to be utilised with a mapping and incorporates full tracking of
modifications, down to changes to individual attributes and permissions to change values at this
level. Chapter 10 provides afull description of the implemented mapping handler for VML.

i ™y

Mapping Manager

[S$top System] [Connect Transaction Mapping] [Sever Mapping]

[fannes! Bulamall Mapping]

Connected
idml1] - planentryl1]

Interliew Manager for: idm[1] - planentry

[Apply to other view]

HH

idm[1] transactions planentryl1] transactions
et Initial Design: planentry[1]00Z, Trebor:Desktop|i:

<
<

Figukre 8.1 Sample mapping controllers

151

8.4 Design tool connection

This module provides the connection between design tools and the integrated design system. It
should also be capable of invoking design tools when required, and determining when they have
terminated. In a generic integrated design system it should be capable of performing these tasks
over arange of hardware and software platforms, providing the interface to the integrated design
system for all actors.

8.4.1 Requirements for a design tool connection system

A design tool connection system must offer the following facility:

Interface with IBDS: to lessen the workload on the actors all of the modelled requirements in
Section 8.3.3.1 must be automated. For an off-line DT this module must be able to create
the input filesrequired for the DT (from the DT model in the system). It must then be able
to invoke the DT to perform its work and finally retrieve the output from the DT into the
DT modé in the system. For interactive DTs it must perform the same task but driven by
the demands of the design tool.

8.4.2 Related design tool connection systems

Traditionally this module isimplemented by hand-coding the parsing and pretty-printing for each
new design tool, and leaving it to the actors to run their particular design tools with the generated
input. Thisis the approach seen in all of the EU funded projects (COMBINE, ATLAS, COMBI,
ClMstedl, etc.). The systems of Amor (1991) and Pascoe (1994) provide the parsing and pretty-
printing of data-files without the need for hand-coded tools (i.e., created based on the design tool
data-file definitions). However, the design tool invocation still needs to be performed by the actor.
No known system can detect design tool invocation and termination in a general environment
(though TES environments (TES 1995) should, when implemented, provide this ability).
However, it is possible for an IBDS to provide user activated procedures which alow it to be
notified of a design tool’ s invocation and termination. Such a system is used in the implemented
project flow of control module described in Chapter 11.

8.5 Flow handling

This module directs both the inter-model mapping and design tool interface modules to perform
their tasks as required by the designers, or as directed by the project manager. This module
simulates the flow of control defined in the project model, determining what design functions are
able to be performed at any particular time. It also interfaces with designers to let them specify the
tasks they wish to perform next, and interfaces with the project manager for decisions about which
designers should be involved in new workflows in the project. The system directs the inter-model

152

mapping module to map data between different models, or to ascertain whether it is possible to
perform the mapping. It also directs the design tool interface to invoke a design tool with
appropriate data and to collect results upon termination.

8.5.1 Requirements of a flow of control manager

A flow handling system must offer the following facilities:

Calculation of possible design functions at any time: in alarge project, with many design functions
and where actors are working concurrently, it becomes very difficult to determine which
design functions can operate without affecting current work. The flow handler must be able
to smulate the flow of control specified with the tools described in Section 2.5. Thisinitial
simulation indicates design functions which are candidates to be performed at any instant in
time. In a concurrent design environment many of these candidate functions will not be
available due to possible conflicts with the data used by design functions already
underway. Problems in the design are also registered by the flow handler which must
backtrack through the specified flow paths to determine previous design states that can be
worked from.

Visualisation of project state: the project manager must always be able to determine the current state
of the project, and actors need to see what tasks they must still complete. Through
coordinating a project the flow handler holds much information about the state of the
project, both current and past. Thisinformation can be utilised to compare against expected
or required deadlines as well as to estimate completion time for the project. Time-lines of
expected versus actual time to completion of design functions can be derived from
information held by the flow handler.

Control interface for actors and the project manager: al users of an IBDS need an interface with the
system. The flow handler islikely to be the only interface the user has with the integrated
design system. It will provide the actor with an interface for initiating design functions and
for signifying the termination of design functions assigned to them. It will also allow the
project manager an overview of the state of the project and the design functions being
undertaken by different actors. Thisinterface will allow the project manager to move and
manage resources as required in the project to ensure its timely completion.

8.5.2 Related flow of control manager work

While Sections 2.5.2 and 2.5.3 describe several notations for describing flow of control in a
project, as well as environments to define project flows in, only one of these systems follows
through to aflow of control manager (TU Delft and Amor 1993). The majority of tools associated
with the standard flow definition notations (IDEFO, IDEF3, Pert charts, state diagrams, etc.) either
provide simulation capabilities or can output the model in aform understandable by stand-alone
simulation tools. These simulations provide as output a likely schedule for a particular project,
often presented in the form of a Gantt chart. Such charts are used by project managers to direct and

153

manage design functions on a project. As a paper system, however, they are not useful in
managing design tools and the flow of information to and from them. They also become difficult to
use when a very large number of design functions are specified on the chart(s), as the project
manager needs to be mindful of all running and upcoming tasks and their relationships at the same
time.

The CombiNet (TU Delft and Amor 1993) does have an associated management tool. Thistool can
load in a CombiNet definition and uses it to inform actors of their upcoming design functions, as
well as to determine allowable design functions at particular times in the project. An initial
prototype of the management tool was developed by the author for the COMBINE project. This
prototype was later used as the specification for a more robust tool written in ‘C’ which was
demonstrated at the end of the COMBINE project as the top level controller of their whole
integrated building design system.

Project Window: Initial design and evaluation

Runnable Status
[

Place 3 can invoke place: 40 - Documentation
Place 3 can invoke place: 5 - Area costing Masimum area calculation: Started (1994-05-30 16:24:24).
Place 3 can invoke place: 4 - Material specifier - i area tion ted.

Place 3 can invoke place: 6 - Energy useage calculator

Initial layout: Started (1994-05-30 16:24:37).
- Initial layout completed.

Design modification: Started (1994-05-30 16:25:00).
- Design modification completed.

Energy useage calculator: Started (1994-05-30 16:25:53).
C
CombiNet for Detailed design E%]

afd
2]
nvoke: [| Invoke DTF Close EXEx

Figure 8.2 An operating flow of control manager

8.5.3 Approach to a flow of control manager

The flow of control manager, described in Chapter 11, is an extension of the system developed by
the author during hiswork on the COMBINE project and provides for the majority of requirements
as specified above. As seen in Figure 8.2, the interface provides a visual reference to an actor’s
location in a project flow, aswell as the calculation of invocable design functions, those which are

154

stalled, and those which may be required to be reinvoked. Though the current project state is
always ascertainable there is no global project state assessment or ssimulation. Thereis, however,
enough information held in the flow of control manager to make it possible to output data which
could be used with standard scheduling simulation software to calculate estimated time to
completion. Actors and the project manager are provided with control interfaces of dlightly
different functionality. Project managers may investigate and control work over the whole project
flow, whilst actors are restricted to the flows related to their design roles. As design tool
invocation and termination can not be automatically determined by this flow of control manager,
each actor is provided with an interface to specify when a particular design tool is working and
when it has terminated.

8.6 Project Testing and Implementation Environment Summary

This chapter described the tools required to provide for the testing and implementation of the
models devel oped in the types of environments specified in Chapter 2. The provision of tools and
an environment as described in this chapter compliments the development of models in their
modelling environment by allowing testing and development to be totally inter-connected. The
tools described in this chapter taken as a whole provide an environment which has the mgjority of
the functionality of an actual implementation of an integrated design system. Thus the validity of
such an environment can be tested with all design tools and users of afina system prior to a
commitment to a large implementation process. The major tools required for this testing and
implementation environment are further described in the rest of this thesis. Chapter 9 describes
schema instance maintenance in the Snart environment along with connections to EXPRESS and
STEP Part 21 data-files, which have instance maintenance systems as well. Chapter 10 describes
an implemented mapping system which can maintain data correspondences between many
participating users, design tools and integrated data models. Chapter 11 describes a project
management tool which controls flows of control between the various users and a project manager,
helping to ensuring that the final designed artifact has been created with the input and attention
desired by the client and project manager.

155

Chapter 9

Schema Instance M anagement

In an integrated design system instances of evolving schemas must be able to be quickly and
correctly created and maintained. Thisaids in the testing and validation of both the schemas and the
inter-schema mappings, and helps to reduce schema development time. Tools are needed to
Instantiate sample building models for evolving schemas, and to navigate the resultant structures to
ascertain that they meet their required purpose. To alarge extent this requires tools which mimic
the functionality of the tools (DTs) that will be part of the final integrated system. Thisleadsto a
conflict between the need for tools which can quickly create and maintain complete models for the
devel oping schemas, versus avoidance of effort spent devel oping tools specialised for a particular
schema, which is likely to change, and will be discarded at the end of the development phase.
Generic tools are required which are either independent of the developing schemas, or quickly
tailorable for specific schemas where independence is not achievable. A set of requirementsfor this
type of tool is detailed below. Four tools of this type which have been developed or used in this
project are described in this Chapter.

9.1 Requirements for Instance Management

To enable instance creation and maintenance in the devel opment environment the tools used must
satisfy a diverse range of requirements. The main requirements are covered in Section 8.2.1, two
smaller requirements are described below:

Genericity: instances for a wide range of schemas need to be created, maintained and navigated.
Tools must be independent of the developing schemas, or easily adaptable. Devel opers will
not wish to spend large amounts of time customising tools for the different schemas, so
tools which adapt to specified schemadefinitions will be of great benefit.

156

Persistence: as the schemainstance test set may become very large (e.g., for acomplete building),
it is preferable that instance maintenance and navigation tools maintain a persistent
representation of the data independently of the ASCII data transfer format (1SO/TC184
1994) used to communicate between design tools in the final system. This will save a
significant amount of loading, validation, and saving time when working with instances of
amodel.

9.2 Instance Management Systems

To work with the modelling environments described in Section 2.2, the schema instance
management system has to comprehend EXPRESS schema definitions and data models sent in the
associated STEP Part 21 data-file format (ISO/TC184 1994). The tools built for the instance
management system in this project all operate in environments which provide parsers for these
formats, and allow persistent databases to be created and manipulated according to the resultant
specifications and data. These instance management tools meet the majority of requirements in
Section 9.1, including instance manipulation and modification in a persistent store, viewing and
navigation in both textual and graphical formats, and guaranteed consistency of the persistent store
for data being manipulated in multiple views. The four tools created or modified for use in this
project for instance creation and navigation are described below.

9.2.1 EPE: an instance construction and browsing system

The EPE system (Amor et al 1995; and as described in Section 3.2), developed to satisfy the
requirements of Section 2.2.1, also supports implementation and maintenance. A schema
developed in EPE can, at any time, be compiled to an underlying object-oriented form (Snart), and
instances of the entities can be created and manipulated. Whole instance models, in the form of
STEP data transfer format files, may be loaded into and transferred out of the system. Figure 9.1
shows an instance view of the ventilation_generation_system entity modelled in a previous
COMBINE IDM.

Instance views consist of visual renditions of entity instances listing their attributes, each
attribute's value (where one exists), and the links between entity instances. Navigation through the
instance model is viathe entity instance links, which are displayed as small boxes in an instance
view. These links can be expanded to view the data contained in the linked instances. The amount
of data seen for each entity instance can be controlled by the user to present views which show, for
example, all instantiated attributes, or all attributes which are references, or all attributes with a
basic type, or some combination of types. In Figure 9.1, all attributes of an instance of a
ventilation_generation_system are shown, including links which are not instantiated (shown as
greyed boxes). This figure also shows the single reference to a building contained in the
is used by building attribute, and all the information in that instance of a building.

157

The user aso has control over the way in which the information in entity viewsislaid out. Thisis
defined through the use of a special purpose display language. This display language allows for
displays which present sets of information in a variety of useful forms, such as bar graphs and
tables, and allows templates of agiven layout to be created.

In asimilar fashion to the requirements for analysis and design views in the schema modelling
section, multiple instance views with overlapping information can be created. The elements (e.g.,
entity attributes) in instance views are editable, allowing changes to be made to the underlying
model instance. EPE's instance editor is a specialisation of Cernoll, a run-time debugger and
visualisation system developed as a companion for SPE (Fenwick et al. 1994; Grundy et al.
1993).

S([I=——————————— Uentilation Window 1

26

ventilation_generation_system

has_efficiency B

has_outside B

has_parts_space_techrnical_component BB

has_parts_technical_ component 2]

has_space a

id_name FENT-20- T

is_part_of B

is_used_by_building (el [bvilding]

is_used_by_space El\ 0 0

is_used_for O

maximum_powey JESVY 1 g 31

satisfies O building

system_type TNRP-3 T buvilding_uvsage &-T.3

uses O built_in oy
floor_area FEIT
form BEP-REC- T
has_aspect B

has_buvilding_geometry B
has_buvilding_local_site B
has_functional_view of B
id_code FILLERZ/E

id_name Fxlloot
is_characterized_by a
is_made_of B
is_part_of B
name A4
period 4T
storey_number o

uses O

Figure 9.1 Instance viewing and navigation

The original Cernoll environment provided most of the functionality initially required for this
project. However, extensions were made to specialise the system for the types of model and
domain the system had to be tested in. The main extension was to alow instances of amodel to be
loaded, or saved, in the standard form used in model development in the building domain (i.e.,
STEP Part 21 data-files, ISO/TC184 1994). Ancther extension was to add the ability to view and
modify facet information for any attribute of an object. This facet information includes the unit of
an attribute’ s value, along with where the value was derived from, and constraints on its value. A
direct manipulation tool was also incorporated which allows objects to be created and automatically
linked to an attribute’ s value, or into a set, bag or list of object references for an attribute.

158

While EPE provides direct manipulation of objects and references, along with multiple views and
consistency, it does not allow for graphical representation of objects which have an underlying
graphical state (e.g., most physical building objects).

9.2.2 InSTEP: a graphical instance browser

The author was not directly involved in the development of INSTEP. It is described here to provide
an understanding of the type of tool used to navigate and modify schemas both in this thesis
project and in the COMBINE project.

INSTEP is one of several tools developed during the first phase of the COMBINE project to enable
participants in the project to manage the devel oped schemas and instance models. InSTEP enables
textual and graphical browsing, navigating and editing of a STEP file according to a specific
EXPRESS schema. While thisis not by itself remarkable, INSTEP is unique in that it provides a
graphical view of any model which is based on a schema which uses graphical entities of known
types. Figure 9.2 shows both the graphical and textual view of a portion of abuilding. In this case
INSTEP recognises entities that have a predefined geometrical representation, and will render them
in agraphical view which gives the user the ability to navigate through the instance model using
either textual links or graphical links.

=] InStep ¥ 0.998 IDM 1=
File Edit View Migrate Help ||
=| Schema Viewer o =
Print View Help
5 7 ENTITY Enclosing_Element_Seg
‘ Enclosing | ‘ Physical | SUBTYPE OF [Physical_Object)

Element. Ohject

bounded_by_joints : SET OF Jo

composed_of_first_finish : OPT
composed_of_second_finish : ¢
global_design_rep : Rm_Face;
INVERSE
inv_includes_segments : SET[]
END_ENTITY;
-
” Joint

- ENTITY Physical_Object
Graphical Browser 5 SUBTYPE OF [Idm_Object];

Print ¥iew Projection Gotit Textsnap Unselect Help composed_of : 8ET OF Physica
e a2e adjacent_to : SET OF Physical_
?ﬁl %I ,&I ((I K)I @%I QI @Ig:gg Hiwar 4 includes: SET OF hysicaITOhi
— bounded by : Ph 3
= Textual Browser
‘ # 2081 = Construction_Type [unnefer. || auery|[snapsrapn [|
= Fd | el ‘ << | ‘ Jump I ‘ B2 |
r:umposed_uf | §
djacent_t
facent to | [s ["search |[cotii || Detete |
Fncludes | 4
e N [Refer. By || NewRer || cast |
represematiuns | $ Browse| [New |
|':'"" = DM +
posed_of_layers @7 (#2085,#2084,4#2083 #2082)| £ S6_GEOMETRY O]
| | £S5 _RM_REP
£ 54_RM_TOPOLOGY
| | = §3_ENCLOSURE
| | # Construction_Type
@ Technical_Component
| | @ Door
@c ized_Element
3 | | @ Enclosing Element Seamerit [*]
& | 1 ‘AﬂrihmeTere: LIST [1:7] OF Layer; [mistory | [ox]

| Graphical Browser

Figure 9.2 InNSTEP's graphical and textual views

159

The textual browsing and editing of the model is performed on an object by object basis, though
the user may follow relationships between objects in a hypertext like fashion. The graphical view
displays a selected portion of the model, and the user can set the level of navigation and selection at
which the tool will operate. In Figure 9.2 the user is navigating through the graphical model at a
wall level, though other object types are displayed for reference.

In COMBINE this tool provides feedback to the conceptual task. Once a conceptual schema has
reached a more or less stable version, DT teams and anyone who has a direct interest in the IDM

are encouraged to browse instances of the schema and suggest modifications. In this thesis
INSTEP was mainly used to ensure the validity of graphical representations in STEP data-files
being developed for demonstration purposes.

9.2.3 SnartQuery and the ObjectViewer

The Snart language and development environment have been extended by the author to provide
guery and visualisation tools, as an adjunct to the environments described above. The query
language allows a data model to be searched for objects matching a general query term. The
ObjectViewer allows adynamically updated view of an object to be created, and includes buttons
for invoking object methods or allowing object modification.

SnartQuery allows a named data store to be searched, and for sets of objects matching several
classes to be returned (i.e., response to aquery is not limited to asingle class type). The query can
consist of attribute references, object ID references, referenced attributes (i.e., following pointer
chains) and method calls which can be treated in a functional manner (i.e., either true or false or
returning a single value). Compound query terms can be constructed with full arithmetic
calculation, including Prolog predicates and aggregating functions (i.e., sum, count, minimum,
maximum, average). List and array elements can also be accessed individualy in the query. The
returned list of object tuples matching the classes specified in the query can be utilised to invoke
the ObjectViewer or the EPE view navigation environment. Invoking SnartQuery can be performed
by accessing a menu item in the LPA Prolog environment or through an equivalent predicate call.
Figure 9.3 shows both a query dialogue and the query result in the working window. A complete
description of the query language can be found in Appendix C.2.

The ObjectViewer provides a general purpose debugging tool for the Snart language as well asa
data model viewing and navigation tool. The basic premise of the ObjectViewer is that it spies
upon an object, and always reflects the current state of the object. It is more powerful than that, as
it also allows attributes to be modified, and methods of the class to be invoked, from the object
view window. The ObjectViewer system allows a layout template for attributes and methods of a
class to be specified when the class is defined, or by default it will create aview with all attributes
and a selected set of methods (see Figure 9.4 for a default view for an idm_hip_roof class).
Buttons and pull-down menus can be specified in the class template, allowing class methods to be

160

invoked from the object view independently from the application that created and is manipulating
the object. An object view can be created by accessing an extended menu item in the LPA Prolog
environment, or through a hot-key. By default, the view command searches the currently
highlighted text and creates an object view for every object identifier found in the highlighted text.
A complete description of the ObjectViewer can be found in Appendix C.5.

Selected objects
felected objects

I nu
W
[5
=
o

Selecting matching object ID'=

From {classes):
idm_building

There (conditions):

num_of_occupants>20,
enrvironment=>seismic_area=c

=

Figure 9.3 A SnartQuery dialogue and result

data_store_1_18 : idm_hip_roof

abutting [[data_store_1_7] |
apexl |data_stnre_1_21 |
apeun? |data_stnre_l_22 |
material |'?Hu Nalued! |
max |data_stnre_l_2l! |
min |data_stnre_l_19 |
name |'?Hu Nalued! |
normal | ?No Dalue? - |
type classify | idm_hip_roof - |
Window: | Popup Menu v |

L%
Figure 9.4 A default ObjectViewer object layout

While the ObjectViewer provides direct manipulation of objects and references, along with design
tool independent method invocation, it is exactly like EPE in that it does not allow for graphical
representation of objects which have an underlying graphical state. The advantage of thistool over

161

EPE is that it is built directly into the Snart language as a very small and efficient sub-system,
unlike the EPE system which is alarge system built using Snart, creating alarge overhead to have
loaded and operating for many applications. The SnartQuery language is also built into Snart and
the result of aquery isin the form required by the ObjectViewer to enable the identified objectsto
be viewed.

9.2.4 Reflex: an object-oriented CAD system

The commercial OO-CAD system Reflex (Reflex 1996) only became available at a very late stage
of the project, but was incorporated as it offers many features which make it highly suitable as an
instance creation and manipulation system. Reflex provides the mgjority of features found in
normal CAD systems, with the benefit of a central object-based model. This means that objects
with a graphical representation can be quickly created and assembled with other objects. The
Reflex system also provides an object and dial ogue specification language. This means that new
libraries of object types can be created easily. Appendix F.1.3 describes the trandator built on top
of the EXPRESS parser which allows any schema to be transformed into the required form for a
Reflex library. Because Reflex’s main domain is buildings, libraries of intelligent object
definitions are a standard part. With a small modification of the translated EXPRESS schemait is
possible for the library of object definitions to inherit the full specification of the existing Reflex
objects. This provides objects which have the complete graphical representation and checking
methods as in Reflex, but with the attributes defined in the EXPRESS schema. Figure 9.5 shows
amodel being developed in Reflex with object definitions translated from an EXPRESS schema.
Object definitions can also include default values, which means that complete model definitions can
be defined very quickly ssimply by placing objectsin a2D or 3D Reflex view.

T —
! —

LaryersiendoRight | TLmywrsl i Tarigh
B
e —

T E—
. ——

Fefes dnrbings
HHH"
Wian [|
m'._|r| llilﬂlﬁ:lhlll
oy | cans | v |

T T | FEFC P CEL

Figure 9.5 Reflex’s multiple graphical views, along with an object’ s attribute dialogue

162

STEP data-file models can be imported into, or exported from, Reflex. Importing models with
geometric specifications requires extra coding, as the internal representation of an object’s
geometry in Reflex is different from that specified by all other schemas. In the context of this
thesis, Reflex is best suited to the initial creation of amodel for a particular schema, which can
then be exported for use with the other tools described above. Another difficulty is that the
rel ationships between objects that Reflex maintains are usually different from those required in the
loaded schemas. To handle this, either the Reflex object library definitions need to be augmented
with code which maintains rel ationships as defined in the schema, or these relationships must be
created and maintained in another tool. The latter method was the one used in this project.

9.3 Appraisal of Schema Instance Management

The set of tools described in Section 9.2 meet the majority of requirements defined in Section 9.1.
All of thetoolsin their standard form can work with any schema definition, requiring no tailoring.
However, most can be enhanced by providing further information about the schema definitions. In
the case of Reflex this provides objects with their most suitable graphical representation and
behaviour. With INSTEP it allows a model’ s objects to be rendered graphically if the geometric
representation is defined. Multiple views of models are supported, offering geometrical
representations, textual representations and graphical layouts of text using EPE. These views
provide many ways of navigating around instances or through following references, traversing
geometric connections between objects, or direct queries to identify required objects. All tools
reflect the state of the central model in their views, and EPE allows multiple overlapping views of
data to be displayed and manipulated.

The only aspect which is not closely managed by any of these toolsis the correspondence with an
evolving schema. All of the tools except INSTEP will allow an internally stored model to be
viewed and manipulated with an updated schema definition. However, they will all disregard data
values in attributes which don’t exist in the new schema, and there will be no checking that
attributes which do transfer across match the type now specified for the attribute. All tools make
the assumption that in order to move data models to a new version of a schema, a mapping is
specified between the two schema versions and the data mapped across before being reloaded into
the instance management tools. An extension to the integrated framework described in thisthesis
could aleviate this problem. The EPE tool aready tracks all modifications to an evolving schema,
asmall extension to thistool would enable it to aggregate these modifications together to form the
bases of a VML mapping between two states of the schema. Though not all mappings could be
captured automatically it would be possible to represent the vast majority of changes with this
extension.

163

Chapter 10

Mapping Controller

The development of a generic mapping controller has been a neglected area of research amongst
the components of an integrated building design system. To date, the majority of integrated
building design systems have employed hand-coded trand ators to move data from their IDM to the
design tools used. This has been due partly to the lack of alanguage which allows a high-level
specification of mappings between models, though VML, and other mapping languages, have now
partly solved that problem.

Given amapping specification between two schemas, there can be many implementations which

will achieve the correct movement of data between the models. In many cases the style of

implementation will be dependent upon the type of IBDS being developed. For example, an IBDS
utilising many KBS's could require a very interactive connection between the IDM and each

design tool. There are three levels of control that can be offered by a mapping controller for a

particular mapping. These are:

Complete: the whole database is mapped every time data needs to be passed to or from the IDM,
destructively overwriting the data in the data-store it is being mapped to. For this type of
control no information about previous mappings needs be maintained, as the whole
mapping is re-evaluated every time it is required. Thisis the scenario put forward in the
| SO-STEP standard, where a single file representing the informational content of an AP is
passed to the design tool requiring information (and the same to pass information back).
While thisisthe ssimplest case to implement, it is aso the most expensive computationally
as the whole database must be mapped every time adesign tool isinvoked.

Modified: only the data changed since the previous mapping is passed to or from the IDM, where
it merges with the previously mapped data. This method provides the same result as a
complete mapping, but as only modified datais mapped it requires less computation. This

164

level of control assumes that there is a method of determining the changes between the
model at the time of the previous mapping and the current state of the model. Information
about previous mappings may be kept for this type of control to simplify the mapping of
modifications, but is not absolutely necessary.

Interactive: an adaptation of the modified mapping controller where individual changes are mapped
as they are recorded. As with the modified mapping controller, only modified data is
mapped to or from the IDM to merge with the existing data. Thisleve of control allows for
very interactive design tools to be used in an IBDS, especialy where the data requirements
may not be ascertainable when starting the design tool (e.g., a KBS whose input is based
on what it has previously seen as well as what its user is asking for). However, this level
of mapping can lead to long periods of inconsistency in the models being mapped to, while
information is entered by the actor using the design tool. The length of time over which
actor changes are made is likely to be orders of magnitude greater than the time taken to
map a set of changes as in the complete or modified scenarios above.

Though the result of a mapping using any of these three strategies would be identical, the time
taken to achieve it, and the structure of the mapping controller required to implement it, will be
very different. In the mapping controller described in this chapter, the second two control
strategies (modified and interactive) are implemented. Thisis mainly dueto the fact that they offer
the greatest range of interactional possibilities for design toolsin an IBDS. Implementation of a
partia update mapping controller also alows modes of interaction for collaborative designersto be
examined, as well as investigating strategies for tracking previous data mappings to reduce the
computational workload in mapping data.

The remainder of this chapter details the working of a mapping controller. This starts with a
consideration of what model changes need to be tracked and how this was achieved. The process
of mapping is described, starting with considerations of ensuring the correct state of the data-
stores to perform the mapping, and then the details of matching up objects and solving equations
are defined.

10.1 Data-Store Modification Records

For a mapping controller to be able to handle partial mappings it must be able to determine the
changes to a data-store between any two of its previously published states. When maintaining a
mapping between two data-stores the mapping controller also needs to know when the state of one
of the data-stores has changed. There are many ways that each of these requirements could be
realised. In this section an implementation of persistent data-stores in Snart is detailed which
provides all the information required by a mapping controller.

165

All versions of Snart, the implementation language of this system, have had an implementation of
data-stores of varying complexity added to them (Grundy 1993). In its simplest form a data-store
provides a named space inside which objects can be created. The most complex implementation of
a data-store in Snart allows all objects created in a named space to be identified, and provides
hooks to add data-store dependent functionality onto the creation and deletion of objects in the
space.

These data stores have also been specialised to provide persistency. The persistent data-store
developed for this project allows all the objects created in a space to be saved to afile, the name of
which is specified when the space is created. It also allows the reloading of the persistent data-
stores, with object identifier renaming if required, into the running Snart environment (see
Appendix C for acomplete description of object spaces and persistent stores).

ocbject zpmag

objrot_spuoes

rsn'm 11 perzistent spaceﬁ|

file
kind
|tracer |

traoed objects

ﬁns traced persistent spacé1
L A

tracer

-
ms db controller

object_store f£ilenanm
sohemm_id
transactions
current_transaction
connected wiews

wiew user

LS al

Figure 10.1 Structure of the traced persistent space in Snart

To provide the functionality required for a mapping controller, this persistent data-store allows all
objects created in a data-store to be traced. Thiswas achieved mainly by utilising the functionality
of atracer class, provided in Snart, specialised for use as a controller for the data-store (see the
class hierarchies shown in Figure 10.1). Using this arrangement, all object creations are caught by
the ms_traced persistent_space object which ensuresthat they are traced by the ms_db_controller
object for that data-store. All attribute value instantiations and method calls are caught by the

166

ms_db_controller object and, if necessary, recorded.

In each data-store thereisasingle ms_db_controller object which catches all events pertaining to
traced objects. The ms_db_controller object collates modifications into a structure named a
transaction, which contains all work performed for a particular task (e.g., specifying the space
layout or completing a change request). The ms_db_controller has a notion of working and
finished transactions. There may be many working transactions open at any time, one of which
will be a default transaction in which modifications are recorded, unless specified otherwise. As
each transaction collates information on a particular task in a project, having several working
transactions allows an actor to manage several tasks at once, moving between them as ideas,
deadlines or project managers dictate.

When the ms_db_controller is notified of an event that should be recorded, a new modification
number is assigned (a monotonically increasing number) and arecord of the event is stored in the
default transaction. The raw events which are stored in atransaction are:

create object: creation of an object, with optiona parameters

delete object: deletion of an object

add vaue: initial specification of avalue of an attribute

change vaue: modification of avaue of an attribute

delete value: deletion of avaue of an attribute

invoked method: caling of amethod of an object, with optional parameters
add facet: initial specification of avalue of afacet of an attribute
change facet: modification of avaue of afacet of an attribute

delete facet: deletion of avalue of afacet of an attribute

The record of these events contains previous values, where these are known, so that a
modification can be reversed (undone) or, at the transaction level, a whole transaction may be
reversed. The transaction system also contains a notion of an aggregate transaction, which allows
multiple transactions to be collated together and subsequently treated as a single transaction. These
services are available to all design tools using the persistent traced space, though few have been
developed to make use of them (e.g., implementing an undo/redo function inside a design tool).

When an actor has completed atransaction, alabel for the transaction must be supplied. This|abel
allows the actor to specify, in a human readable form, what work was undertaken during the
course of the transaction. It is this label which will be used, initially by other actors, to deduce
what work was completed in a given transaction. Thislabel is used to form a unique identification
for each transaction (See Figure 10.3 for examples of transaction labels) by appending a unique, to
the data-store, transaction number (a monotonically increasing number) along with the filename of
the data-store. Thislabel is guaranteed to be unique for all data-stores on a system, and with alittle
padding out (e.g., written in URL form) could be unique over any number of machines.

167

When a transaction is complete, as signalled to the ms_db_controller, the raw event data is
processed until there is at most one record for each object that was modified. In this form, multiple
changes to a single attribute and its facets are stored as one item. Objects which were created,
modified and then deleted inside the transaction have no record in the processed form. This
compaction introduces constraints on the type of method that can be mapped between systems
utilising a transaction-based mapping. Mapped methods are constrained to have no side-effects on
other related objects. This constraint is not enforced, so the system will attempt to map any method
specified in amapping. Where methods have side-effects this could lead to failed method calls due
to non-existent objects. Three types of processed events are stored:

Cregte: lists the modified attributes and method calls of the object which has
been created

modify: lists the modified attributes and method calls of the object which has
been changed

deete: records that the object has been deleted

Although the processing collates modifications which could be widely dispersed in the transaction,
the initial ordering of object use remains constant. Therefore, the final ordering of processed
modifications reflects the order in which object creation, the first modification of an object, and
object deletion, were encountered.

When the processed form of a completed transaction has been calculated, the ms_db_controller
informs all objects which have registered an interest in the data-store (usually mapping controllers)
that a new transaction has been completed in the data-store. Interactive mapping controllers are
aso informed of each modification which occursin the data-store.

As the description of the modification records might indicate, the number (and space requirements)
of the stored modification records can build up very quickly, especially in an object-oriented
application which requires much computation, and hence many method calls. To manage this
storage requirement in the limited application space of the Prolog development environment a
menu item allows the storage of these method call records to be turned on or off.

This data-store implementation provides the notification of modifications for each design tool and
the IDM used in the IBDS. In this IBDS every design tool must interface through a data-store of
thisform to gain, or pass back, information from the IDM. This means that a mapped model of the
IDM exists for every design tool used in the IBDS. In the examples used throughout this thesis
most of the design tools are implemented in the Snart environment (i.e., PlanEntry,
Thermal Designer, FaceEditor). However, the VISION-3D design tool is a stand-alone tool which
requires a data-file to be read in to supply the information for the tool to operate. Hence, the use of
both independent and tightly coupled design tools is catered for using the described data-store
implementation.

168

Mapping Manager

[5top System } [Connect Transaction Mapping } [Sever Mapping }

[tonneot Hutamati Manning J

Connected
idm[1] - planentryl1]

[

<

L
Figure 10.2 An actor’s mapping controller interface

10.2 The Mapping Controller

The actor interface to the mapping system must allow the actor to manage al mappings between
design tools that they require to perform their design role in a project window. To enable this each
actor has a mapping controller interface as shown in Figure 10.2. Thisinterface allows the actor to
manage a design session where data is to be transferred between the IDM and a range of design
tools. The range of functions available through the interface are:

Start System: initialises the mapping controller and allows the specification of a persistent data-
store for the storage of information about the mappings. If an existing data-store is
specified, the mapping state that was saved in it is restored and actors can continue from
where they left off. If anew data-store is specified no mappings are loaded initialy. When
the mapping controller has been initialised the Sart System button changes into the Stop
System button as described below.

Stop System: allows the design session to be temporarily suspended. All data pertaining to the
current set of mappings (and any which were previously connected and then severed) are
saved to the persistent data-store.

Connect Transaction Mapping: starts up a transaction-based mapping between two data-stores
which contain data models as specified during the creation of the mapping database as
described in Chapter 6. The actor identifies the two data-stores to be used in the mapping.
These can be existing data-stores or new data-stores, in which case anew fileis created for
the data-store. A mapping manager is created for each mapping which is connected into the

169

system. See Figure 10.3 for a transaction-based mapping manager interface.

Connect Automatic Mapping: starts up an automatic mapping between two data-stores which
contain data models as specified during the creation of the mapping database as described
in Chapter 6. The actor identifies the two data-stores to be used in the mapping. These can
be existing data-stores or new data-stores, in which case anew file is created for the data-
store. A mapping manager is created for each mapping which is connected into the system.
See Figure 10.4 for an automatic mapping manager.

Sever Mapping: the actor can select one of the mappings which has been started up and remove it
from the set of active mappings. When a mapping is severed the current mapping state is
stored in the mapping controller data-store in case the mapping is ever required again.

When a mapping manager is established it informs the two data-stores it is connecting that it is
interested in all transactions that are completed, and for the automatic manager all modifications as
well. The data-store records the details of the interested mapping manager and adds it to itslist of
objectsinterested in its state. Several mappings may reference the same data-store and see al the
changes made to that data-store, thus establishing a central IDM with multiple views for the IBDS.
A collaborative environment with multiple concurrent actorsis envisaged for the IBDS. However,
because a Macintosh environment lacking a client-server-based object-oriented database has been
utilised, the effort put into considerations of concurrency has been minimal. In the single machine
environment, data-stores are locked only when a mapping is being applied to them. It is envisaged
that this scheme could be used by an object-oriented database serving several actors on different
machines. The only other capability the object-oriented database would require is the ability to pass
amessage through to the mapping manager objects on each machine which need to be informed of
new transactions or modifications (a CORBA-like environment (Otte et al. 1996) would support
this).

Interlliew Manager for: idml1] - planentryl1]

[Apply to other view }

#i

idml1] transactions planentryl1] transactions
4H Initial Design: planentry[1]002, Trebor:Desktoplq

o

<

T:igure 10.3 A transaction-based mapping manager

The mapping controller operates in its own persistent data-store, along with al the mapping
managers that it oversees. Therefore, the set of loaded mapping managers and their state can be
retained between sessions with the mapping controller. Having a persistent data-store for the
mapping managers also means that all previous mappings between the two data-stores it manages

170

are retained and all the dynamically created indices, described in detail in later sections, can be
saved between sessions. This ensures that all the work performed in determining previous
mappings does not have to be duplicated when a new transaction is mapped in a later session.

10.2.1 Transaction-based mapping manager

When a transaction-based mapping manager is connected, it interrogates the two data-storesit is
connecting to ascertain what transactions they have recorded in them. A difference list is
constructed, and presented to the actor in the interface shown in Figure 10.3. The data-store’s list
of transactions can be used to ascertain which common transactions have been applied to each
data-store as when a mapping is performed the full transaction name (actor label, data-store name
and number) of the originator of the transaction is used to label the changes made in the opposing
data-store. Using the two lists of outstanding transactions the actor determines which transactions
to map between the two data-stores, when they should be mapped, and, within certain constraints,
in which order they are mapped. As new transactions are completed in each data-store they are
notified to the mapping manager and are added to the list of outstanding transactions for the
particular data-store.

If one of the schemas in the mapping being used to maintain the connections between the data-
storesis specified asread_only (see Chapter 5 for the different types of mapping available) none
of the transactions in that data-store will be displayed in the mapping manager. When an actor
selects one or more transactions to be mapped through to the other data-store, the mapping typeis
examined to check whether the other store is categorised as integrated, in which case a check is
made to ensure that all outstanding transactions from the integrated data-store have been applied.
This ensures that data-stores labelled as integrated are only updated by mappings from data-stores
which are consistent with the integrated data-store’ s state. If all outstanding transactions from the
integrated data-store have been applied then the mapping is allowed to proceed to the next stage of
consideration, otherwise it is aborted with an appropriate message to the actor. When a set of
transactions are organised to be mapped they are examined to ensure that there is no other
outstanding transaction from the same data-store which must be mapped through before the
selected one; for example, where a selected transaction depends upon a modification in an earlier
transaction, such as the creation of an object for which an attribute has been specified. If there is
no conflict the transaction mappings are started, otherwise an appropriate message is presented to
the actor and the mapping aborted.

Interliew Manager for: idml[1] - planentryl1]

Figure 10.4 An automatic mapping manager

171

10.2.2 Automatic mapping manager

An automatic mapping manager can only operate between two data-stores which have had the
same transactions applied to them. When an automatic mapping manager is connected, it
interrogates the two data-stores it is connecting to ascertain what transactions they have recorded in
them. If the two lists are different it will not allow a connection. When the conditions for an
automatic mapping manager are met, an interface asin Figure 10.4 is created. This provides no
functionality to the actor, but provides information about when data is being mapped between the
two data-stores. As well as mapping individual modifications between the two data-stores, the
automatic mapper recognises signals for a completed transaction and collates the corresponding
modifications in the mapped store to become the modifications corresponding to the newly named
transaction.

The mapping controller may be used to start up a mix of mapping managers, as transaction-based
and automatic mapping managers readily coexist. However, the changes propagated by one type
of mapping manager may be seen dlightly differently by the other type of mapping manager. For
example, if an IDM is connected to both transaction-based design tool models and automatically
mapped design tools, al automatically mapped modifications made to the IDM will not be seen by
the transaction-based design tools until an end of transaction is mapped through, at which time it
will see the collated set of atomic modifications. The case of afull transaction mapped to the IDM
will be seen by an automatic mapping manager as alarge set of individual modifications queued
for processing.

10.3 Performing a Mapping

The sections on data-stores and the mapping controller have laid the groundwork required to
describe the actual mapping process. The reader should now have an idea of how modifications
are gathered in a data-store and the compressed form in which they are presented to the mapping
system. The reader should also understand the control options available to the actor and under
what conditions they allow a mapping to proceed. In the following sections the process followed
for a transaction-based mapping is described. It is aimost identical to that followed for an
automatic mapping.

To describe how a mapping is performed, a top down approach is adopted, looking at some

general setup work, then the various cases presented by different types of objects, leading down to
how individual equations are treated in the mapping system.

172

10.3.1 In preparation to map

Before a mapping can proceed it is necessary to ensure that the data-stores are in the state specified
by the transactions being mapped (see Table 10.1 for the pseudo-code). To ensure this, all current
work on the data-store and all outstanding transactions which are not being mapped must be
reversed. Thisis possible because the persistent data-store controller tracks all transactions, both
working and finished, and the transaction records all modifications (and the order in which they
were performed). To bring the data-store into its correct state all working and unmapped
transactions are rolled-back. Transactions to be mapped are checked against working and
unmapped transactions to ensure that no dependencies exist between them. If the transactions to be
mapped are dependant upon other unmapped data then the user in informed of the dependant
transactions and the mapping is terminated. The roll-back |eaves the data-store in the state it was at
the completion of the specified transactions. As the data-store is locked during the mapping,
rolling-back the data-store does not affect any running applications, apart from stalling them. At
the end of the mapping the data-store is returned to its previous working state by rolling-forward
all the rolled-back modifications.

performing a mapping
determine outstanding transactions (working and unmapped)
cal culate dependenci es between outstanding transactions and transactions to map
if dependenciesexist
then
cancel mapping and inform user
else
roll-back al outstanding transactions
perform mappings
roll-forward all rolled-back transactions

Table 10.1 Pseudo-code for performing a mapping

establish amapping
determine all inter_class definitions purely for the store being mapped to
for each inter_class found above
if object of specified class exists matching the invariants
then
do nothing
ese
create object of named type
solveadl initialisers

Table 10.2 Pseudo-code for establishing a mapping

10.3.2 The first mapping between two stores

The first time a mapping is performed to a particular data-store, some objects may need to be
created in the data-store (see Table 10.2 for the pseudo-code). In aVML mapping thisis specified
by an inter_class which only lists classes for one of the schemas being mapped between. If thisis
the first known mapping to the particular data-store, the mapping system searches the mapping
database for any inter_class definitions of thisform. If any are found the data-store is searched for

173

objects of the class specified. If none are found new objects of the specified type are created and
the equations, usually initialisers, calculated as defined later in this chapter.

perform mappings
for each aggregated modification to be mapped
case aggregated mapping of
cregte:
find inter_class definitions referencing class of created object
for each inter_classidentified
determine initial object groups
generate object combinations for theinter_class
for each remaining combination
if created object is grouped in inter_class header

then
match with existing mappings of thistype
re-evaluate grouped objects
re-evaluate invariantsif object’s classinvolved
if invariants are violated
then
dissolve existing mapping
ese
re-calculate affected equivalences
ese
create required objectsin other data store
apply initidisers
solve equivalences
modify:
{ see Table 10.11 }
delete:

determine all existing affected mappings

for each affected mapping

if object’ s classisgrouped ininter_class header

then

re-evaluate grouped objects

re-evaluate invariantsif object’s classinvolved
if invariants are violated
then
dissolve existing mapping
ese
re-calculate affected equivalences
ese
{ see Table 10.10 }
find all other inter_class definitions with object’ s class grouped
for each inter_classidentified
{ perform mapping as for create above }

Table 10.3 Pseudo-code for performing mappings

10.3.3 Consideration of modification types

The three classified forms of object modification obtained from the data-store (create, modify and
delete) are handled separately in the mapping system, though the create and modify forms are very
similar. A general outline of what happens for each of these types of object modification is
presented initially and then more detail will be presented on important aspects of their handling
(see Table 10.3 for the pseudo-code).

174

create: al inter_class definitions which reference the class of the new object are identified. All
combinations of the classes in the header of the inter _class specifications are created from
objects in the data-store being mapped from, but using the created object as a placeholder
for the classin the header. Then all the invariants pertaining to that side of the mapping are
applied to the combinations to determine if any of them are applicable. If any pass the
invariants then al the initialisers and equations are solved as described later in this section.

modify: all existing mappings which use the modified object are notified of a change to the object
and must re-calculate any changed equations. If the modification affects invariants of
inter_class definitions then they must be re-evaluated as for a newly created object, i.e., it
may be possible to create a mapping with the new values, or it may be necessary to
dissolve a mapping as for delete below.

delete: all mappings referencing the deleted object are notified and must re-calculate their
equations. If the object was part of the header of an inter_class then the mapping is
dissolved and any objects created in the mapped to data-store due to the now deleted object
are themselves deleted.

10.3.4 Determining combinations of objects from an inter_class

header

When instigating a mapping between two data-stores, or propagating changes between data-stores,
it is necessary to determine which objects are going to be used with each inter_class definition.
The first step towards this is determining the combinations of objects to be tested against the
invariants for each inter_class definition (see Table 10.5 for the pseudo-code). Thisis calculated
by examining each class in the header of an inter_class and returning alist of possibly matching
objects. The only exception is for the class of the newly created, or modified, object where the
returned list contains just the newly created, or modified, object (unlessit is denoted as grouped).
If the class of the newly created, or modified, object isin the header as grouped then the returned
listisalist of alist of al objects matching the class defined. Table 10.4 shows some combinations
of headers and the resulting lists of objects returned. CK isthe class of the known (newly created
or modified) object, C1 and C2 are arbitrary classes. The resultant object list is either a single
object or a number of objects (shown as 1..n, or m or p), the O denotes an object and is
subscripted with the class type from the inter _class header.

As the combinations of all objects in these lists grows exponentially based on the number of
objectsin each list, a pruning algorithm is employed to help minimise the number of combinations
produced (see Table 10.6 for the pseudo-code). Note that in the worst case, where there are no
invariants, the number of combinations will equal the cross-product of al objectsin each list. The
pruning algorithm about to be presented is not optimal computationally (the author is aware of
optimal methods from relational database work, Ullman 1982), but is used to prototype the
mapping manager implementation and is a workabl e tradeoff between programming time available

175

(minimal), program intricacy (simple), and efficiency (moderate).

inter_class header Resultant object lists

[CK] [[Ock]]

[CK, C1] [[Ockl, [Olc1..Onc4]]

[CK, C1, C2] [[Ock], [O1lc1..Oncy], [Olcz..Omco]]
[CL, CK] [[Olc1..Onc4], [Ockl]

[CK, group(C1)] [[Ockl. [[Olc1..Oncall]

[CK, group(C1), C2] [[Ockl. [[Olc1..Oncall, [Olcz..Ome]
[group(CK)] [[[Olck..Opexll]

[C1, group(CK)] [[Olcy..Oncy], [[Olck.-Opek]l]

Table 10.4 Examples of inter_class headers and resultant object lists

determine initial object groups
for each classininter_class header

If classis grouped

then
find all objects of named type
return asalist of alist

elseif classis of key object
then

return the key object in alist

ese

find all objects of the named type, returnin alist

Table 10.5 Pseudo-code for determining initial object groups

To prune the number of object combinations at each stage the following algorithm is used. Starting
with the last list of objects, the list is reduced by applying al invariants which apply purely to
those objects. The next set of objectsis similarly reduced, then the cross-product of the two setsis
obtained. This combination is reduced by applying any invariants which pertain just to the two
classes in the cross-product. Then the next set of objects is reduced by applying all invariants
which apply purely to those objects. Then the cross-product of the reduced set and the previous
cross-product is obtained. This combination is reduced by applying any invariants which pertain
just to the classes in the new cross-product. Thisis repeated until the first set of objects has been
incorporated into the cumulative cross-product. The result isalist of lists of objects which match
al theinvariantsin the inter_class definition. Each of these lists can be used to create a mapping to
the other data-store. In the worst case, where there are no invariants, the number of combinations
is equal to the cross-product of all objects of all classes. However, assuming this is a valid
specification of amapping then it must be handled by the mapping system.

176

generate object combinationsfor the inter_class

initialise current result set to empty

for each set of objectsrelating to aclassin theinter_class header
determine invariants relating purely to this class
apply selected invariants to the set
create cross-product of reduced set with current result set
determine invariants applying to classes incorporated in current result set
apply selected invariants to the result set

Table 10.6 Pseudo-code for generating object combinations for an inter_class

The way in which an invariant is applied to objects of a class varies, dependent upon whether the
class is grouped or not. If a class is not grouped, and an object fails an invariant, the whole
combination is removed from the list of combinations to be further considered. If a class is
grouped, then the invariant is applied to each object in the group and is used to reduce the number
of objectsin the group. The application of this agorithm is demonstrated in the following example
based upon an inter_class definition for mapping between the IDM and PlanEntry. In this
example, a mapping from PlanEntry to the IDM is being undertaken. The pe_face object is the
newly created object, and there are six pf_plane_object objects and five pe_opening objects. The
values of selected attributes and functions of the example objects are shown below the header and
invariants section of the inter_class definition. Note that in the values column for objects of class
pf_plane_object the result of calling the function map_orientation_axis is shown, rather than an
attribute value, and for the objects of class pe_opening the result of calling the function
contained _in_faceis shown.

inter_class([idm_space face], [pe face, pf_plane object, group(pe _opening)],
invariants(

type of face \="opening’,
member(pe_face.orientation, ['n', 's]),
pe face.offset = pf_plane _object.offset,
map_orientation_axis(pe_face.orientation, pf_plane_object.axis),
contained _in_face(pe face, pe_opening),
pf_plane object.axis\="z

177

ObjID Type Attributes/ Functions Values/ Results

ol pe face [orientation, offset] ['n', 12.5]

02 pf_plane_object [axis, offset, map_orientation_axis('n', 'x")] ['X', -7, false]
03 pf_plane_object [axis, offset, map_orientation_axis('n', 'x")] ['x', 12.5, falsg]
o4 pf_plane_object [axis, offset, map_orientation_axis('n', 'y")] ['Y', -11, true]
05 pf_plane_object [axis, offset, map_orientation_axis('n', 'y)] ['y', 12.5, true]
06 pe_opening [contained_in_face(ol, 06)] [true]

o7 pe_opening [contained in_face(ol, 07)] [false]

08 pe_opening [contained in_face(ol, 08)] [false]

09 pe_opening [contained_in_face(ol, 09)] [true]

010 pe _opening [contained in_face(ol, 010)] [false]

oll pf_plane object [axis, offset, map_orientation_axis('n', 'z')] ['Z, O, falsg]
012 pf_plane object [axis, offset, map_orientation_axis('n', 'z)] ['Z, 2.3, falsg]

The initial list of list of objects for the header [pe_face, pf_plane _object, group(pe_opening)] is
[[01], [02, 03, 04, 05, 011, 012], [[06, 07, 08, 09, 010]]]. The first step is to try to reduce the
grouped list [[06, 07, 08, 09, 010]]. However, there are no invariants which apply purely to these
objects, so the next list is selected, [02, 03, 04, 05, 011, 012] and it is also reduced. In this case
the invariant checking that the axisis not z can be applied, producing the list [02, 03, 04, 05]. The
two resultant lists are combined to create the following cross-product:

[[02, [06, 07, 08, 09, 010]],

[03, [06, 07, 08, 09, 010]],

[04, [06, 07, 08, 09, 010]],

[05, [06, 07, 08, 09, 010]]]

There are no invariants affecting only pe_opening and pf_plane_object items so thisinitial cross-
product can not be further reduced at this time. Then the next list is selected, [01]. There is one
invariant which applies purely to this object (member(pe_face.orientation, ['n', 's])), this is
checked against the object in the list to produce the same list, [01]. Thislist is then combined with
the other lists to create the cross-product below:

[[01, 02, [06, 07, 08, 09, 010]],

[0l, 03, [06, 07, 08, 09, 010]],

[01, 04, [06, 07, 08, 09, 010]],

[01, 05, [06, 07, 08, 09, 010]]]

Now the remaining three invariants on the PlanEntry side can be applied to each combination. The
first list, [01, 02, [06, 07, 08, 09, 010]], isrejected as ‘ pe_face.offset = pf_plane object.offset’ is
false, the second list, [01, 03, [06, 07, 08, 09, 010]], passes that invariant but fails the
‘map_orientation_axis(pe_face.orientation, pf_plane _object.axis)’ invariant. The third list, [01,
04, [06, 07, 08, 09, 010]], is rejected as ‘pe face.offset = pf_plane _object.offset’ is false, the
fourth list, [ol, 05, [06, 07, 08, 09, 010]], passes that invariant and the
‘map_orientation_axis(pe_face.orientation, pf_plane_object.axis)’ invariant. The last invariant,

178

‘contained_in_face(pe face, pe_opening)’ is used to reduce the objectsin [06, 07, 08, 09, 010] to
the final list of [06, 09]. Therefore the reduced list of lists from the given set of objects being
applied to the invariants of thisinter_classis[[0l, 05, [06, 09]]], meaning that one mapping is
performed across to the IDM for the newly created object ol.

10.3.5 Four pass mapping process

In recognition of the fact that the order in which objects are created in one data-store may not
match the order objects should be created in another data-store, the mapping processis performed
in four passes (see Table 10.7 for the pseudo-code). Using afour pass system obviates problems
that may occur in transaction-based mapping due to the collating of all object modifications to one
point, rather than the actual order they occurred. The work performed in each pass is detailed
below:

First pass: determine all combinations to be mapped from the initial data-store. Where necessary,
create new objects in the data-store being mapped to as described in Section 10.3.6. At this
point not all objects, which could be connected together to match classesin theinter_class
header, are created, so only specify values for the attributes of the newly created object. At
the end of pass one it is guaranteed that the minimum state of the mapping is that all
combinations to be mapped have been identified, and the object matching the first class of
the inter_class header for the data store being mapped to has been identified. It is also
guaranteed that all values that are directly identifiable for that first object have been
calculated.

Second pass: determine all objects matching the header class specification. In mappings where
there is more than one class specified in the header of the inter_class for the data-store
being mapped to, try to connect to existing objects for the other classes rather than create
new objects. At the end of passtwo it is guaranteed that all objects matching the inter_class
header for the data store being mapped to have been identified or created. It is also
guaranteed that all values that are directly identifiable for these objects (i.e., specified in an
inter_class where the object’s class is specified in the header) have been calculated, this
includes initialisers, equivalences and invariants.

Third pass: attempt to solve equivalences for each affected object. Some equations with values that
are accessed down a pointer chain may not be solvable at this time, as the values for the
referenced object may not have been calculated. At the end of pass three it is guaranteed
that all indirectly referenced objects (i.e., those specified through a pointer chain in
equivalences) have either been associated to the inter_class (where they existed aready), or
created and initialisers solved. Due to the lack of control over the order that these indirectly
referenced objects get created, and their initial values specified, there isarequirement for a
further pass to solve outstanding equivalences. For example, the following equation
01/=>09=>03=>ay = 01,=>0=>03,=>ay, Where each of the object referencesis solvable
by another mapping (e.g., if mapping from left to right, the object ID of 0y, is determined

179

from the mapping of 0y)) is not solvable until all associations have been completed. Thisis
because the attribute references are not able to be determined until phase two is complete,
and depending upon the order of solving mappings this equation might be attempted before
all other attribute references have been matched.

Fourth pass: reassess all previously unsolvable equationsinvolving referenced values to determine
whether they are now calculable. At the end of pass four it is guaranteed that all
equivalences which can be solved from the data available in the data store being mapped
from, through the inter _class definitions, have been calculated.

four-passinter_class resolution
case pass humber of

one:
determine all combinations to be mapped from data store
create objectsfor first classin inter_class header specification
apply appropriateinitialisers, equivalences and invariants
two:

attach or create objectsfor al other classesin inter_class header
apply appropriate initialisers, equivalences and invariants

three:
for each mapping combination apply all equivalences

four:
determine unsolved equivalences affected by pass three resolutions
re-cal cul ate determined equivalences

Table 10.7 Pseudo-code for the four-pass inter _class resolution

10.3.6 Mapping a new combination to the other data-store

When preparing to map a combination of objects it is checked against object combinations that
have already been mapped to the other data-store (see Table 10.8 for the pseudo-code). If the
combination of objects, except for those in grouped classes, is unique, then a new mapping is
initiated. If the combination matches, except perhaps for objects in grouped classes, then all
affected equations of the existing mapping are re-evaluated.

When a new mapping is created, an object whose classis that of thefirst classin the header for the
side being mapped to is created. In the example above, an object of classidm_space face would
be created. Then al initialisers, equivalences, and invariants which determine values for the new
object are solved. If the inter_class header for the side being mapped to contains more than one
class, then a combination determining procedure, as outlined in Section 10.3.4, is followed in the
data-store that is being mapped to during the second pass through the mappings. This provides a
way of linking up with existing objects in the data-store being mapped to, rather than creating
superfluous objects during the mapping. If a matching combination is found, then al equivalences
which apply to the found objects are solved. If ho matching combination is found, then a new
object is created for the next class along in the header, all initialisers, equivalences, and invariants
which determine values for the new object are solved and the matching process is retried. This
processis duplicated until either amatching combination of existing objectsis found for the rest of

180

the header classes, or until new objects have been created for every class defined in the header of
theinter_class.

mapping al combinations of objects
for each combination of objectsfor an inter_class header
if combination matches an existing mapping combination (except grouped)
then
re-calculate affected equivalences
ese
create object for first classin inter_class of side being mapped to
apply initialisers, equivalences and invariants purely for this object
for each following classin inter_class header (in pass 2)
search for matching objects
if no objectsfound
then
create object for class no object could be found for
apply initialisers, equivaences and invariants
solve all equivalences and invariants for the mapping (pass 3 and 4)

Table 10.8 Pseudo-code for mapping a new combination

10.3.7 Procedures followed when a new object is created

Whenever a new object is created during a mapping, the initialisers section of the inter_class
definition being used is examined and any initialisers which apply to objects of that class are
solved, setting values for attributes, or calling methods of the newly created object (see Table 10.9
for the pseudo-code).

Whenever an object is created in amapping it is cross-referenced against the mapping in which it
was created. In this manner the list of objects created in each individual mapping can be
ascertained, and this information used when objects need to be deleted.

anew object has been created
if an object clash was reported
then
find existing object which matches known criteria
delete newly created object (if not already discarded by system)
utilise the found object’ s ID as the new object ID
ese
find all initialisers applying to the object
for each identified initialiser
resolve initialiser
cross-reference object creation against this mapping

Table 10.9 Pseudo-code for creating a new object

As the mapping manager tries to distance itself from the underlying implementation of the data-
stores, it does not duplicate the functionality which would be provided by e.g., relational
databases. To this extent, determining object uniqueness (i.e., key violations in a relational
database) is not handled explicitly by the mapping manager. Instead, if an object is created which
conflicts with existing objects, the mapping manager expects to be informed of this fact by the

181

underlying data-store. If such a clash is detected, the mapping manager searches the existing data-
store to find the previous object. The object whose newly asserted value caused the clash is deleted
and the existing object used for all further references. In this manner the mapping manager can
reuse existing data-store objects, rather than creating multiple instances of objects containing the
same data. However, this is not demonstrated here as the Snart persistent data-store used in the
demonstrations of the mapping manager does not yet have an implemented key uniqueness
verification system for objects created inside it. This remains for future work.

10.3.8 Tracking objects created and referenced in mappings

The fact that an object is referenced in amapping is also tracked. This tracking encompasses more
than just the objects collated together to match the header classes of the inter_class, but includes all
objects referenced through the equations in the inter_class. Objects that can be included in this
manner are those that are used to follow reference chains. In thisway alist of mapping managers
is compiled for every object used in a mapping. Then when an object is modified the set of
mapping managers which may have to perform recalculations is quickly identified. These mapping
managers are informed of the modified object and affected attributes, and using the pre-computed
lists of objects and attributes in each equation determine which equations have to be re-computed.

an object was deleted requiring a mapping to be dissolved
delete primary object from first class of header intheinter_class
determine al other objects matching the header
for each object
if this mapping is only reference to the object
then
delete object
ese
update mapping references to the object, deleting dissolved mapping
determine all objects created when solving equivalences and initialisers
for each object
if this mapping is only reference to the object
then
delete object
ese

update mapping references to the object, deleting dissolved mapping

Table 10.10 Pseudo-code for mapping an object deletion

10.3.9 Mapping the deletion of an object

The mapping of an object deletion in one data-store is handled using a type of garbage collection
scheme (see Table 10.10 for the pseudo-code). If the deletion of an object causes a mapping to
become non-viable (e.g., not enough objects for the classes in the header, or an invariant is
violated) then all objects which were necessarily created when setting up that mapping (e.g., the
object for thefirst classin the inter_class definition) are deleted. All the other objects which were
created during the mapping are examined. If their only point of reference isthe mapping whichis
being dissolved then they are deleted as well. Also, all objects referenced by equations in the

182

mapping are examined. If their only point of reference is the mapping which is being dissolved
then they are deleted aswell.

10.3.10 Mapping the modification of an object

Objects whose attributes have been modified use the lookup table (an AVL tree structure) to
determine which mapping controllers need to be informed (see Table 10.11 for the pseudo-code).
When the mapping controllers learn of the modification they initially check whether the
modifications affect any of the invariants of the inter_class. If invariants are affected then they are
re-evaluated to ensure that they still hold. If the invariants are violated the mapping is dissolved
with deletions of objects as defined in Section 10.3.9. If the invariants are not affected, or if they
still hold, then all affected equations are identified and re-cal cul ated.

an object has been modified
determine affected mappings
for each affected mapping
if modification affects an invariant specification
then
re-evaluate object combination
if new combination results (except for grouped classes)

then
dissolve existing mapping
create required objects in other data store
apply initiaisers
solve equivalences
ese

re-caculate affected equivalences
ese
re-caculate al affected equivaences
find inter_class definitions referencing class of modified object and also in invariants
for each inter_classidentified
determineinitial object groups
generate object combinations for theinter_class
for each remaining combination
if combination matches existing mapping, or classis grouped in header
then
do nothing as will have been solved above
ese
create required objects in other data store
apply initiaisers
solve equivalences

Table 10.11 Pseudo-code for mapping an object modification

All inter_class definitions which reference the modified object in their class headers are also
identified. They are checked to see if the modified attributes affect any of the invariants of these
inter_class definitions. If they do, then the object combinations are computed as in Section 10.3.4
and any new combinations are used to initiate new mappings as detailed in Section 10.3.6.

183

10.3.11 Evaluating, or re-evaluating affected equations

All equivalences in an inter_class are passed through to the equation solver, along with all
attributes affected by the object creation or modification. Prepended to al the equivalences are the
invariants which apply to objects in the data-store being mapped to (i.e., what has to hold for the
objects that are being created or modified). As each equation is pre-processed and all objects and
attributes used in the equation identified, the first step in solving an equation isto identify values
for all necessary object and attribute references in the equation (see Table 10.12 for the pseudo-
code).

The result of this search for values is used to determine whether the equation can be solved
currently or not. When performing a mapping, the controller is not allowed to make changes to the
data-store the mapping is coming from. The assumption is that the transaction is not modifiable as
it may have already been mapped to other data-stores. Therefore, any equation with unknowns on
the side being mapped from is classed as unsolvable. Given that al values are known for the data-
store being mapped from, the three different types of equation are handled dightly differently:
procedure: all values from the data-store being mapped from are matched to the procedure
parameters. If there are any object references for the store-being mapped to, then either the
existing object reference is supplied, or a new object is created to be passed in. If the
parameter $mapping_system$ is specified then the object ID of the mapping system is
passed as a parameter. Any attribute unknowns are recorded and the procedure invoked.
When it terminates, any of the unknowns which were calculated during the procedures
calculations, and passed out in the parameters, are assigned to the specified attributes.
function: all values from the data-store being mapped from are matched to the function parameters.
If there are any object references for the store being mapped to, then either the existing
object reference is supplied, or anew object is created to be passed in (on the assumption
that a function will not know how to create an object in a data-store). Any attribute
unknowns are recorded and the function invoked. When it terminates, any of the
unknowns which were cal culated during the function’s calculations, and passed out in the
parameters, are assigned to the specified attributes.
equation: the mapping system contains an equation rearranger which can take most equations and
rearrange to solve for a particular attribute. Therefore it is only necessary to identify the
attribute that needs to be solved in the equation. If there is one unknown in the set of
attributes of the data-store being mapped to, then this is the unknown attribute for which
the equation is solved. If there are several unknown attributes, then the equation can not be
solved at the current time, though it may be solvable after other equations have been solved
(i.e., some of the unknowns are calculated by other equations), and is placed in a queue to
be re-examined. If there are no unknowns, an alternate approach must be taken. Part of the
meta-data recorded for each attribute, by way of facets, is afacet determining who supplied
the datafor a particular attribute. Where all attributes are known, this facet information is
used to provide aranking of the attributes in terms of the importance of where their data

184

was asserted, from default data through to actor defined data. This ranking is applied to try
to identify the least significant piece of data known. The equation is then solved for this
attribute. If no attribute can be identified to be solved then the equation is placed on a queue
to be examined when the other equations have been solved, to see if they provide any
further assistance in solving the difficult equation. After al equations have been attempted,
the queue of unsolvable equations is re-examined, checking whether anything has changed
which makes these equations solvable. This queue isiterated over until there is no change
in the status of the equations in the queue, i.e., nothing was solved in a particular iteration.
Any equations which can not be solved, after all the procedures outlined above, are
rewritten as constraints and asserted against the particular object involved. In thisway the
values that should hold for a particular object, or set of objects, are recorded and are seen
in the data-store even after the mapping has completed. Asserted constraints are specified
in the constraint specification language implemented in Snart (Mugridge et al. 1995). The
Snart constraint specification language has a similar syntax to the VML notation, enabling
VML equationsto be easily rewritten and asserted in Snart.

identify values for an equation

for each reference in the equation to data-store being mapped from

find value for the reference
if any missing references in the equation to data-store being mapped from
then

terminate solving of equation
ese

for each reference in the equation to data-store being mapped to

if valueisknown for the reference

then
return known value
ese
case equation type of
procedure:
case reference type of
object:

{ see Table 10.9 }
$mapping_system$:
return object ID of mapping system
attribute:
record as unknown
function:
case reference type of
object:
{ see Table 10.9 }
attribute:
record as unknown
equation:
record as unknown

Table 10.12 Pseudo-code for identifying values for an equation

The ranking of importance of values assigned to an attribute is managed by the mapping system.
The mapping system ensures that no low ranked values are able to overwrite high ranked attributes
(e.g., an attribute defined through a default value being mapped over an attribute previously

185

defined by an actor). In most cases, values at the same ranking may overwrite each other if
specified later in time (e.g., a design tool calculated value can overwrite a previous design tool
calculated value). Thisis not automatically true for one case, that of actors. In this case, adialogue
isinitiated to ensure that the new actor-specified datais allowed to overwrite the previous actor-
specified data. If the overwriting is allowed, then that permission is maintained for the whole
mapping of the transaction, before being rescinded again. The full set of update authorities is
shown in Table 10.13.

New User Design Tool Congtraint Default Unknown
Previous
User negotiate no no no no
Design Tool yes yes yes no no
Constraint yes no merge no no
Default yes yes yes yes no
Unknown yes yes yes yes yes

Table 10.13 Update authorities for attributes derived from different sources

When an equation is solved and avalue instantiated for an attribute, it is necessary to instantiate the
facet recording who specified the calculated value. In some cases this is easily calculated.
Initialisers and invariants which specify a constant value for an attribute allow the value to be
categorised as default. Equations which equate single attributes or pointers can be categorised
utilising the same categorisation as the attribute from which the value or reference is mapped.
Equations which involve severa attribute values which may come from very different sources
(e.g., default values and actor-specified) require a more sophisticated method of determination. In
the mapping system the highest level specifier is used for complex equations. For example, in an
eguation involving default values, design tool calculated values, and actor-specified values the
final attribute value will be defined as coming from an actor. Using this method, the valuesin a
mapped system tend towards being actor-specified, seemingly imparting a high level of confidence
in the datain the system. However, this a'so means that an actor must intervene more often during
the mapping process to assert the right to overwrite values specified by other actors (assuming
they are within the actor’ s schema specifying modification permission).

10.4 Appraisal of Mapping Controller

The mapping system described in this chapter provides an implementation of the VML language
capable of both transaction-based and interactive mappings between data-stores. The implemented

186

system allows multiple data-stores to be connected to an IDM, with full maintenance of the
consistency of the IDM at all times, as well as reflecting changes made in any connected data-store
through to all affected data-stores. The mapping system has been tested with a wide set of
mappings, including many small mappings drawn from other work in the area (see Appendix D
and Clark 1992; Bailey 1994; Hardwick 1994), and a large example showing the integration of
four design tools connected through an IDM (see Appendix E; Hosking et a. 1995; Mugridge et
al. 1996). The large example described in Appendix E shows the use of the mapping system to
maintain information updates and consistency back and forth between the interactive tools being
integrated, as well as being output to a visualisation tool. The use of the different tools is
controlled by a process model for the task being attempted, which establishes when actors can
perform their design functions, and manages the mappings which are allowed. This example in
Appendix E provides the main demonstration of how all the components of the thesis work
together to create an integrated design system.

Although the mapping system is capable of maintaining the correspondences between two data-
stores, it is not capable of linking together two independently developed data-stores (e.g., the
same building specified independently in two different design tools). Thisis mainly due to the
assumption that a new object is created in the data-store being mapped to for every inter_class
mapping which isinitiated with objects from the other data-store. The class matching algorithm
could be extended to attempt a match of the initial class rather than creating one, but this may not
provide the required solution in al cases. The problem is partially that there is no syntax to specify
whether an object should be created or searched for in a mapping, and partially that there are cases
when it is not possible to decide whether an object should be created or searched for. Part of the
problem comes from object-oriented systems where there are not necessarily keys defining which
objects must be unique. Instead it is assumed that the object-oriented system ensures the
consistency of the model by the way in which it is devel oped (semantics of the application). These
semantics may not be able to be specified in amapping without implementing alarge amount of the
object-oriented application within the mapping.

The mapping system requires more work in the section which decides which attribute of an
equation to solve for. The current method works well where there are small numbers of attributes
in an equation, or where there is a previously asserted value which is a default or other low level
of specification. However, where several attributes were al previously asserted at the same level
there is no good way of deciding which to solve for. The addition of reasons, as implemented in
the Snart language (Hosking et al. 1994), may provide away of deciding which attribute to solve
for depending upon which attribute, or attributes, changed in the object being mapped from. This
could, however, make the equation definition much larger and more difficult to maintain, though
the use of default directions would alleviate this problem. The real problem is dealing with an
actor’ sintent in specifying information. If thisintent could be captured, perhaps partly through the
process specification, then it would be easier to determine what data could change. For example,

187

information derived from trialling a design variation should not take precedence over previous
information asserted for a legally binding project sign-off stage. Capturing the level of intent
would extend Table 10.13 to include classifications such as actor assumptions, derived
information, informed specification, and constraints due to standards, codes of practice, best
practice, etc.

Several speed improvements could be made to this system. Mapping of small building models (a

building consisting of two spaces with doors and windows) between an application and the IDM

takes twenty minutes, or more, on the Macintosh on which this was developed. Two sections of

the mapping system are known to be inefficient.

. The persistent data-store which traces and records all modifications and method calls adds
avery large burden on all applicationsinwhichitisutilised. Thisis especially true for the
tracking of method calls as the calls in the running mapping system (written in Snart) are
trapped as well as those in the running design tools (also written in Snart). However, the
method calls of the running mapping system are discarded immediately. Rewriting the data
and method call tracing in alower level language would provide large speed improvements
to design tools and the mapping system.

. The generation of combinations matching inter_class headers is very slow when large
numbers of objects are involved. Two improvements are considered for this problem.

- Thefirst isto implement the more efficient combination generation algorithm from
relational database work (Ullman 1982). Though the worst case combination
generation isapolynomia of the same order as the number of classesreferenced in
a header (asin arelational database system), thisis unlikely to ever be a practical
problem. The reasons for this are that usually only avery small number of classes
are grouped through a header, and where alarger number of classes are referenced
it isusually to associate information from asingle uniquely identifiable object. The
relational database algorithms can ensure that the most efficient combinations are
computed first and the resultant sets are reduced as soon as possible.

- The second is to ensure that combinations are only generated once for any set of
new, modified, or deleted objects. In the current system this is not the case and
each new, modified, or deleted object forces the generation of its own set of
combinations, before checking that the generated combinations are not already
being used.

Other speed improvements are possible from the use of alow-level programming language like C

rather than the LPA Prolog used in this thesis. Trials with a rewritten Snart have shown two

orders of magnitude speed improvement for some operations (in the constraint processing).

However, Prolog was the correct choice for prototype implementation for this PhD thesis in that

more functionality was programmed than would have been possible in the same time with other

languages.

188

Chapter 11

Flow Handling

A flow handler ties together all the work detailed in the rest of this thesis, providing a tool to
manage the actual design process for individual projects. Earlier chapters describe methods of
modelling: actors in a project; design tools used; the integrated data model; relationships between
datain various schemas; and desired flow of control in a particular project. Chapter 10 describesa
system which will move data between model instances of a particular building, and Chapter 8
refers to work on automating the invocation of design tools. The final step is to put the process
control tool in place in order to manage the allowable design tasks at any particular time, and to
ensure the design is accomplished according to the flows defined by the project manager. This
chapter describes a particular implementation of aflow handler which provides manageria control
to a project manager and task level control to the actors working on a particular project.

11.1 Requirements for Flow Handling

A flow handling system must provide two distinct categories of functionality. The first isfor a
project manager who oversees the running of a particular design project and must ensure atimely
completion, aswell as afinal design which meetstheinitial design criteria. The second isfor the
actors, who need to see what design functions remain to be completed in their design roles and
when they can pass the design on to another actor. The different requirements of the two main
classes of user of the integrated design system are detailed in the following subsections.

189

11.1.1 Project manager requirements

The manageria requirements of a project manager are detailed below:

Project overview: the project manager must be able to determine the current state of the project;
which stages of the project have been completed; which stages are still being worked upon;
who is currently working on various stages of the project; and what design tasks are still to
be compl eted.

Track design path: in most projects it is imperative to be able to determine who worked on what
portion of the design, and to see when particular design tasks were compl eted.

Status: the project manager must be able to determine the current status of the project window; to
see who isworking, and on which parts of the design.

Dynamic project flow modification: the project manager must be able to intercede in the flow of a
project if it is clear that new resources are needed to complete the project. The project
manager must be able to move an actor to a new task; stop a task before its normal
completion; stop an actor’s design role work; and start a new actor working on a new
design role, perhaps concurrently with other actors.

Dynamic flow diagram modification: if the project manager determines that a new path is required
in the flow diagram (e.g., to force a particular task to be performed, or to add new
functions into the design process, or to add paths requested by actors in the project) then
modifications should be able to be made to the flow diagram, and they should be reflected
in the running project.

11.1.2 Actor requirements

The requirements of actors are more closely related to their design roles, as detailed below:

Design role overview: actors must be able to manage the design functions required to complete
their design roles, and they must be able to determine what is required to complete their
designrole.

Formal handover between actors. the completion of a design role and handover point between
actors needs to be documented, both for the time of handover and the state of the project at
the time of the handover.

Determination of allowable functions: the possible design functions for each actor are calculable
based on the other actors currently working on the project and the design functions they are
working on. Only currently invocable design functions should be allowed to start up, and
the status of all currently available, or stalled, design functions should be re-evaluated
upon the completion of any design function by any actor in the project.

This provides a level of control suitable for a strict project management regime. Actors have
control over the work they perform towards their design roles, but limited to design functions
specified in the project window definition. If an actor requires modifications to the project window
this must be negotiated with the project manager. This ensures that specified design functions are

190

performed and there is no way to work around the requirements implicit in the workflow
specification.

11.2 The Exchange Executive

The Exchange Executive (EXEX) provides the implementation of the flow of control definitions of
Chapter 7 and implements the requirements of a project manager and actors as defined in Section
11.1. The main component of the EXEx isasimulator for the CombiNet specification, determining
the design functions which could be next completed in a project. As well as simulating the
CombiNet, the EXEx accesses the schema definitions of the various design tools and actors to
determine possible restrictions between the design tools when invoked concurrently. Finally, to
present the information to the various users there are separate user interfaces tailored for project
managers and actors. The working of all of these components is detailed in the following
subsections.

11.2.1 Simulation of flow of control

To describe the simulated flow of control in the EXEX, the flow through a net which comprises

simple places and transitions will be described (as all CombiNets can be rewritten in thisform). In

this type of net there are four components: places, transitions, tokens, and connecting lines. The
implementational semantics of these four components are described below:

Token: atoken represents the current state of an individual workflow. When shown in a place it
represents an actor working on the design function represented by that place. As the
workflow progresses from design function to design function it may pass across actor
boundaries and thereby denote a handover phase between actors. There may be severa
tokens in a simulated CombiNet representing different concurrent workflows. While a
token in a place represents an actor performing a particular design function, an actor may
be involved in several tasks at any one time. Each of these tasks would be defined by
separate tokens in the CombiNet representing the particular workflow associated with the
tasks being undertaken.

Place: a place represents a design function, which may or may not be realised through the use of a
design tool. If the place represents a design tool, then the movement of a token into the
place signifies the invocation of the design tool with data from the IDM, as described in its
input schema definition. The movement of atoken out of a place represents the termination
of the design tool and the transfer of its resultant data (if any) through to the IDM.
Between these two events the actor is free to perform whatever actions they wish with the
design tool (as long as the action is within the scope of the area of responsibility of the
actor, as defined by the actor’ s schemas).

191

Transition: a transition has no implementational semantics in the EXEXx. It is purely a
representational notation to describe a choice point between several places. Transitions are
of most use when accessed by several places, reducing the number of lines in a diagram.
The whole CombiNet definition could be redrawn without transitions and retain the same
semantics, but many more lines could be required to represent flows between places.

Connecting lines: lines with an arrow at one end provide a path for the flow of control to proceed
along. Each line represents a possible pathway, either from a place to atransition, or from
atransition to a new place.

Project Window: Trebor_house
Runnable DTFs Project status
& &
DOTF 89 can invoke DTF: 99 - design_building_layout
DOTF 89 can invoke DTF: 94 - evaluate_general_thermal_properties specify_requirements: Started (1997-05-17 17:32:50).
- specify_requirements completed.
CombiNet for design_and_update
design_building_layout
view_model
specify_bracing
I
i
neraLthermal,prnperlies
17
glazing_layout

Figure 11.1 Calculating potential design functions from a CombiNet

The smulation of flow in anet comprising the above elements operates in the following manner:

. I dentify each token in a place in the CombiNet.

. For each token in a place identify all transitions that can be exited to from that place.

. For each of these transitions identify the set of places which can be invoked from the
transition.

. Determine the set of places which are candidates to be invoked from the current place by

taking the union of all of the sets of places for each transition .
For example, Figure 11.1 shows a token (the small open circle) in the place representing the
glazing_layout function. Upon completion of this function there is a single transition which can be
exited to. Thistransition leads to the evaluate general_thermal_properties place, however, thereis

192

also a global place that can be invoked, called design_building_layout. The total set of design
functions which can be invoked from this point is shown in the Runnable DTFs box of Figure
11.1.

There is a separate set of candidate places maintained by each token, representing possible
continuations of the workflow, in the CombiNet. The set of candidates for each token is reduced
by taking into account the following conditions:

Stalled place: thisis derived from Constraint 1 in Chapter 7: if there is a currently running design
function whose output could modify the input of the candidate place then it is labelled as
stalled and removed from the list of candidates (e.g., Figure 11.2 shows the DTF
evaluate_general thermal properties of Figure 11.1 running. The output of that DTF
impacts on the evaluate _thermal _code _compliance DTF sinput and for the actor shown in
Figure 11.2, forces it to become stalled, as shown in the bottom right sub-window).

Insufficient data: if the data in the IDM is not sufficient to invoke the candidate design function
then it isremoved from the list of candidates.

Failed start: if there was enough data to start the tool but the tool would not start when invoked
(usually through afailed constraint) then it is removed from the list of candidates.

Fuenable OITs Frajecl sfafas

BTF 40 can mene e OTF: 9% - dronge. Bl ldieg - isgaui wecify requiremenbe Slavied (188 7-04-77 | T340
spmporig_reguremanis campiried.

devign_Duikliag_lagoe: Sailed T8 F-23-27 12 ML
e e i e _ @m0 D e T

wrcify glarire properbes Siaried (I987-04-77 0 75k 151
spEriiy giarng grapEriies compisise

sraksie_gmerel =l preperlie: Slaried (V9T 0477 I TE2E01L

E i NE _ETE A LIS RSB [=F i 1IES o TRndieg. @il al;

D wierind wiegisnly Lladled OTF 5
| mAkiddr ifrmal rode rempbanne s clsied

Figure 11.2 Multiple actors causing select design functions to become stalled

The set of candidates that can be run at any time is re-evaluated every time a running design
function terminates or when a new design function is invoked. This re-evaluation may: add new
placesto the list that can be invoked; remove places from the list of candidates; or change the status
of places whose statusis un-runnable due to the conditions listed above.

193

Project Window: Trebor_house

Runnable DTFs Project status
&

[

Starting can invoke DTF: 34 - specify_requirements

CombiNet forTrebor_house e —7»1 |

building_deshgn

Figure 11.3 Initial CombiNet in a project window

We now extend the simulation semantics to cover several special states, and icons. Their flow

conditions are described below:

Start of the project window: the start of the project window is determined by looking at the top
level CombiNet (referenced by the user and function modelling diagram, see Chapter 7 and
Figure 7.3). The start transition of this CombiNet is identified and the places reachable
from it collated to become the initial candidates for the project window (e.g., Figure 11.3
shows the starting point for the examples used in Chapter 7. In this example there is only
one place that may be invoked to start the project window, namely specify_requirements).

End of the project window: the end of the project window is found by identifying the end
transitions in the top level CombiNet. Whenever one of these transitionsis visible from a
place with a token in it, there is the possibility of terminating the project window. In
practice the completion of a project window is when the last token in the project window
reaches the end transition (or the last token is terminated by the project manager) (e.g.,
Figure 11.3 shows a single end transition which can only be reached from the acceptance
CombiNet).

Actor’ s design role: when atoken passes from one place to another, where the specified actors for
the two placesis different, this signifies the end of one actor’ s design role and the start of a
new actor’s design role. At this point the actor involved in the workflow represented by the
token changes. This event is notified to the project manager who is responsible for
permitting the new actor to start their design role (or who may terminate the token). At the
end of an actor’ s design role the actor may aggregate the work performed into an aggregate
transaction, rather than single transactions for every design function they performed (as
previously described in Sections 10.1 and 10.2). If this option is chosen, all their work
since starting the current design role is collated under a single label in an aggregate
transaction (e.g., Figure 11.3 has an actor changeover between specify _requirements and
the design_building_layout design functions. At this point the client has completed the

194

requirement specification role and the architect starts the building design role. The whole
requirement specification role could be recorded as a single aggregate transaction). At a
hand-over point which offers the possibility of several actors working concurrently, it is
up to the project manager to instigate any required concurrency, as is current practice in
building design.

CombiNet for design_and_update

]

design_building_layout

view_model

specify_bracing

neral,thermal,prnperties

specify_requirements design_building_layout design_and_update

Figure 11.4 Multiple levels of aggregate functions

Aggregate place: an aggregate place represents a whole CombiNet, so when evaluating what can
be invoked in an aggregate place, the start transition of the denoted CombiNet is identified,
and the places which are reachable from that transition collated (e.g., in Figure 11.4 the
design_and_update aggregate place, as shown in Figure 11.3, connects directly to the five
places reachable from the starting transition, and can also access a global place). This
evaluation process can be nested down several levels, as the start of a CombiNet can
reference an aggregate place whose start transition would have to be identified, etc. When
an end transition is reached in a CombiNet referenced by an aggregate place, it istied to the
output transitions of the aggregate place which referenced the CombiNet (e.g., when the
client exits the acceptance CombiNet shown in Figure 11.5 (small CombiNet with two
places) the end transition istied to the output transitions of the aggregate place it was called
from, in this case the acceptance aggregate place shown in Figure 11.3. In this example
there are two output transitions, one is the end transition of the project window and the
other leads back to design_and_update). Again, this evaluation may be recursive, as the

195

termination of a CombiNet at one level could lead to the end transition of the CombiNet
above it, etc. The path travelled by atoken is always maintained dynamically, as many
CombiNets could reference the same aggregate place (representing the same CombiNet).
As aresult, the path taken to a particular design function is not necessarily unique (e.g.,
design_and_update can be accessed from the top level CombiNet shown in Figure 11.3,
but is also accessible as aglobal net at other stages in the project window). These different
points of accessto alower level CombiNet can also have different actors assigned to them
through the actor overlays described in Section 7.3.2.

Project Window: Trebor_house
Runnable DTFs Project status
&)
DTF 78 can invoke DTF: 79 - view_model
DTF 78 can end project window. specify_requirements: Started (1997-04-27 16:19:31).
- specify_requirements completed. 4
design_building_layout: Started (1997-04-27 16:20:52). T p:
- design_building_layout completed.]
specify_bracing: Started (1997-04-27 16:24:28). C
- specify_bracing completed.
view_plans: Started (1997-04-27 16:33:38).
- view_plans completed.
=——————— CombiNet for acceptance =———|
= =
Stalled DTFs
@] [l

CombiNet for Trebor_house

view_plans

specify_requirements design_building_layout design_and_update

Figure 11.5 Exiting from a CombiNet representing an aggregate place

Global places. aglobal place is reachable from any place in the CombiNet in which it is defined,
and from any CombiNet invoked through an aggregate place or global net (i.e., any
descendant CombiNet). When exiting a global place, the token returns to the place from
which the global place was invoked (e.g., the design_building_layout global place in
Figure 11.4 can be reached from all the other places shown in that window. After
completing the design_building_layout function the available design functions would be
recalculated from the same place as the design_building_layout function was entered
from). A global placeis also accessible by all descendant CombiNets reachable from the
CombiNet in which the global place resides.

Global net: aglobal net has the same functionality as a global place, except that, asit represents a
whole CombiNet, its candidate places are calculated in the same manner as for an aggregate

196

place. As noted previously, when inside aglobal net it is not possible to reinvoke the same
global net (it isremoved from the list of candidate places).

Double transition: this shorthand notation is replaced with its two-transition equivalent in the
ExEx, and handled in the same manner as other transitions (e.g., the transitions between
building_design and design_and_update in Figure 11.3 are the expansion of a double
transition).

When determining the set of candidate places from a given place it is possible to encounter the
same design function along different paths. All occurrences are displayed for the actor to choose
between, as each occurrence is part of a different workflow through the project window. Currently
actors must navigate the CombiNets to ascertain the actual path traversed to particular instances of
adesign function.

11.2.2 Representation of design tool invocation

The EXEX, described in Section 11.2.1, simulates actors working in a particular project window.
However, to perform this simulation, it requires information about the status of the design
functions which are being performed. Though this EXEx implementation does not support design
tool invocation (for the reasons described in Section 8.4), the point at which this would occur is
simulated through a starting and ending dialogue for each design function. These two dialogues
are described further below.

Design Tool Function: design_building_layout
is starting up, will it:

Figure 11.6 Design tool start up dialogue

At the time an actor decides to perform a particular design function which requires the use of a
design tool adialogueisinitiated (see Figure 11.6). This dialogue is used to ensure that the actor
performs a mapping from the IDM through to the design tool model, using the mapping manager
described in Chapter 10. Dependant upon the outcome of the mapping process, and the ensuing
design tool start up, there are two messages that can be passed back to the EXEx by selecting one
of the buttons in the dialogue. These are:

Succeed: al of the required data existed in the IDM and was able to be mapped through to the
design tool model. The datain the model was successfully trandated into the form required
by the design tool, and the design tool started without problems.

Fail: someinitial constraints in the design tool model were invalidated, or it was not possible to
start the design function due to the failure of the design tool to start up (e.g., dueto design
tool constraints not specified in the design tool’ s data model).

197

OTF running

design_building—layout is running, will it:

L
Figure 11.7 Design tool termination dialogue

r

After the design tool start up dialogue is completed, a new dialogue is presented (see Figure 11.7).

This dialogue must be completed when the actor has finished work with the design tool and has

mapped resultant data back to the IDM, using the mapping manager described in Chapter 10.

Dependent upon the outcome of the mapping process there are three messages which can be sent

back to the EXEx by selecting one of the buttonsin the dialogue. These are:

Succeed: the design tool completed normally, and all data in the resultant data-files of the design
tool were mapped back to the IDM through the design tool data mode.

Fail: the design tool terminated abnormally or incorrectly.

Fail Data: the mapping system was not able to map the resultant data through to the IDM. This
would be due to a violation of constraints specified in the IDM schema, which may be
more constrained than the design tool’ s output model.

If the EXEx isinformed of any of the three failure modes described above, it will roll the token
back to the place at which the choice was made to invoke the design tool which just failed. The
choices at that point are re-evaluated. The new list of available functionsis presented to the actor
and a new design function is chosen to continue work on that actor’s design role. This list may
still include the design function which previoudly failed if the failure was due to its operation rather
than data constraints.

It is concelvable that failures of design functions could lead to a state where an actor has no further
choices available. There are two possible methods of resolving this situation. First, if other actors
are working on the project window, their completion of design functions will force the re-
evaluation of stalled and failed tasks. Second, the project manager isinformed of any actor whois
stalled in this manner. The project manager has two options at this point, either: terminate the
actor’ s design role (removing the token); or move the actor to anew point in the design process.

11.2.3 Project manager interface

To support hisher project management role, the project manager is provided with a comprehensive
guery, control, and browsing interface to the EXEX, allowing arbitrary movement around the flow
definitions, and with the ability to easily modify the status of actors working in the project
window. The main interface provided for the project manager is shown in Figure 11.8. This
shows alist of al actor workflows currently executing in the project window, and the path which

198

brought them to their current position. The path for a particular actor workflow starts at their
current position and steps back through all design functions invoked in their design role. Where an
aggregate place or global net has been entered abullet is placed before the place name to denote the
point at which the lower level CombiNet was entered. For example, in Figure 11.8 the structural
consultant is working on define_wall_structures, the path taken to this design function for the
particular design role and workflow is from the structural_work aggregate place and before that the
building_design aggregate place. Any actors who are currently stalled (i.e., having no possible
design functions available at the current time) are denoted with a“«’ before the actor name. Actor-
specific functions supplied by the buttons in the interface become available when an actor is
selected. The actor-specific functions offered by the buttons are:

Project Management: Trebor_house

Actors

client
DTF: 78 - view_plans
= DTF: 41 - acceptance

B

structural_consultant
DTF: 57 - define_wall_structures
* DTF: 71 - structural_work
+ DTF: 40 - building_design

architect
DTF: 94 - evaluate_general_thermal_properties
DTF: 91 - specify_thermal_properties
= DTF: 38 - design_and_update
DOTF: 35 - design_building_layout

<l

i Liog gty

Figure 11.8 Project manager user interface

Find: opens up all CombiNets that were entered by the highlighted actor to reach the position at
which the actor is currently working. The windows are opened in order, from the top level
CombiNet through to the CombiNet in which the actor is currently working. Any
aggregate places or global nets that an actor passed through to reach the current position are
denoted with a filled token in the higher level diagram. A token is shown in these
CombiNets for any other actor working in a CombiNet passed through to reach the
selected actor.

199

Information: details the design functions available to the selected actor, shows any stalled design
functions, and lists the work performed by the selected actor, using the interface provided
to individual actors (see Figure 11.10 for an actor’ s user interface).

Stop: terminates the design function and workflow in which the selected actor is involved. The
actor isremoved from the project window at this point and must negotiate with the project
manager if they wish to be re-involved in the current project window.

Modify: the selected workflow of an actor is modified to work in a new place in the project
window. Thisis used to help an actor workflow which has no available design functions,
or to make more resources available in a certain portion of the project window. The
selected actor workflow is removed from the current location, and the project manager
navigates through the CombiNets (as explained for the Navigate function below) to the
place where the workflow is to continue from. When the project manager finally double
clickson aplace, or global place, thisis defined as the current location of the actor in that
workflow. After placing the actor, the project manager must specify the place, or global
place, from which it is assumed the actor reached the current place. Thisisin case the
design function fails and the actor hasto roll back one place.

CombiNet for Trebor_house

building_design

CombiNet for building_design

thermal_wor|

daylight_work

design_and_update

== CombiNet for structural_work =—————

défine_wall_structure
structural_work

documentation design_and_update evaluate_structural_code.

specify_bracing

Figure 11.9 Project manager navigation through CombiNets

The project manager also has three function buttons available which are always invocable. These

alow the following management functions to be performed:

Navigate: closesall currently visible CombiNets and displays the top level CombiNet. The project
manager can double click on aggregate places, or global nets, to expand a level in the
project window, displaying the new CombiNet. The project manager can backtrack to the
previous CombiNet by closing windows (see Figure 11.9 for a navigated view from a

200

project manager interface).

New Actor: allows the placement of a new workflow for an actor in the project window. The
project manager starts navigating from the top level CombiNet as explained in the Navigate
function above. The aggregate places and global nets passed through during the navigation
provide the path of the new actor. When the project manager finally double clicks on a
place, or global place, thisis defined as the current location of the new actor. After placing
the new actor, the project manager must specify the place, or global place, from whichitis
assumed the new actor reached the current place. Thisisin case the design function fails
and the new actor has to roll back one place.

Load Net: replaces the currently loaded project window with a modified version. The paths of the
actors in the current project are used to try to place the actors in the new project window
definition. If any actor can not be placed in the new project window (for example, if a
place they passed through does not exist any more) then they must be placed in the new
project window by the project manager in the manner described for the Modify function.

Project Window: Trebor_house

Runnable DTFs

Project status

] i
DTF 89 can inroke DTF: 99 - design_building_layout
DTF 89 can invoke DTF: 94 - evaluate_general_thermal_properties specify_requirements: Started (1997-04-27 17:24:40).
- specify_requirements completed.
design_building_layout: Started (1997-04-27 17:27:09).
- design_building_layout completed.
specify_glazing_properties: Started (1997-04-27 17:30:35).
- specify_glazing_properties completed.
evaluate_general_thermal_properties: Started (1997-04-27 17:34:11),
- evaluate_general_thermal_properties completed.
glazing_layout: Started (1997-04-27 17:48:39).
- glazing_layout completed.
17 17
DTF rerun requests Stalled DTFs
evaluate_general_thermal_properties is a candidate to be rerun. || €|
7 12
DTF: l:l Invoke DTF New workflow Close ExEx

Figure 11.10 Actor’s user interface

11.2.4 Actor interface

The actors are each provided with atask level interface to the EXEXx, allowing specification of the
design function they wish to work upon and determination of the status of the candidate design
functions from their current position. This interface concentrates upon an actor’s design role and

201

provides very little information about the status of other actors in the project window. However,
any actors working in the same CombiNet (having followed the same path) will be displayed in the
actor’s interface. An actor will also see any filled tokens denoting an actor working down an
aggregate place, or global net, which is represented in the actor’ s current CombiNet.

The main interface for an actor is shown in Figure 11.10. There are four main sections to this

interface providing information about the actor’ s current state, as described below:
Runnable DTFs: provides alist of design tool functions which are currently invocable. Thislistis
recalculated for the current actor every time an actor in the project window completes or
starts adesign function. Thislist isalso calculated over the time that an actor is performing
a design function, providing a list of design functions that the actor could perform
concurrently (e.g., a documentation function at the same time as a simulation function).
Apart from the design functions that an actor can perform there are two specia states which
may be shown in this window, they are:
end: denotes the end of the project window, usualy only reachable by one or two actorsin
the project window. By specifying end the actor terminates the project window
(assuming that no other tokens exist in the current project window).

hand-over: denotes the hand-over point from one actor to another. The hand-over specifies
the actor who takes up the new design role and the design function they will
perform to start that role. When choosing a hand-over the actor’s design role is
completed, and the token now represents the actor to whom the design has been
passed. When an actor completes their design role they may choose to collect their
work into an aggregate transaction representing all the work performed in that
designrole.

Status: details the work performed by the current actor in their design role. Thislist details when
design functions were started, when design functions completed, if any design functions
failed to start, or terminate, normally.

Stalled DTFs:. providesalist of candidate design functions which are not currently invocable. This
can be due to the functions being performed by other actors, or to the failure of design
functionsto start or terminate correctly when previoudly tried.

Rerun requests: lists all design functions previously performed by the actor whose input has
changed due to the performance of subsequent design functions. This list is purely
informative, and carries no obligation for the actor to re-perform a design function whose
input has changed.

As well as being provided with the textual interface to current design functions and the design
status, an actor is also presented with a graphical window showing the CombiNet they are
currently working in, see Figure 11.5. These views can be navigated in the same way as described
for a project manager. As the actor chooses new design tasks to perform, the token representing
their position in the CombiNet moves through the graphical view. As they move up or down

202

between levels in the project window, new graphical views are provided showing their current
location.

11.3 Appraisal of Flow Handling

The ExEx provides an implementation of the flow of control specification from Chapter 7, with
enough checking and control to manage project windows of the small size demonstrated in the
figuresin this chapter, through to large project windows (containing several hundred places) as
demonstrated in the COMBINE project (Flynn 1994). The interfaces to the EXEx provided for its
users provide the required access to the state of a project window and the control required to
manage the running of the project window. The project manager has full control over who works
in the project window and what functions they perform, but, assuming that the actors work well
together and the design progresses without problems, the project manager may not have to do
anything to aid the completion of the project window. The actors only have control over their
design functions, but can manage all tasks pertaining to their design role with the guarantee that
they are not impinging on other actors working in the system.

There are a few aspects of the EXEx which do not provide the level of support or control which
was envisaged at the start of the project. These points are elaborated below.

The project manager’ s ability to dynamically modify the running project window islimited. What
isrequired is aclose link between the project specification tool and the EXEX, so that the project
manager may make modifications to the project window definition and have them appear in the
running project window, without the need to reload the whole project specification as is the case
currently.

Thereis agap between the set of available design functions displayed to an actor in their control
interface and what they can determine from the CombiNet display of their current place. This gap
is due to not being able to see the path to all the design functions which are available at any one
time. However, there seems to be no easy way to resolve this problem, as available design
functions could have been inherited from several CombiNets above the current CombiNet as well
as from several CombiNets below through aggregate places and global nets. Place navigation aids
are available to provide navigation similar to that offered to the project manager, but these till do
not provide a good view of the relationship between the current design function and all the
available options.

The mechanism used to calculate stalled design functions provides an overly conservative

determination of what can be performed concurrently. This is due to some portions of the IDM
being generic (e.g., the geometric model). Almost al design tools draw data from the geometric

203

definition, so any design function which outputs geometric data will stall ailmost every other
design function in the project window. In some cases this may be sensible, but in the mgjority it is
not necessary. For example, consider a design function which defines the paving around a
building. When using this design function, all design functions which require only internal aspects
of the building will be stalled as they access the geometry portion of the IDM. One solution would
be to mark portions of the IDM as being generic (e.g., geometry, documentation) and not consider
these portions when determining stalled design functions. However, this may be problematic for
design functions where the use of generic portions of a model does impinge on their operation
(e.g., avisualisation tool whose input is almost purely geometry). Another solution is to consider
the actual objects used by running design functions when determining what is stalled in
collaboration with the intersection of models. However, it isimpossible to know whether a design
function will produce output which is going to affect a design function which wishes to start up.
The method used in the EXEx does guarantee consistency of the model, with the trade-off that
design functions may stall unnecessarily.

In a similar vein, the current model of intersection checking does not consider two design
functions whose output may partially overwrite each other, for the reasons described in Chapter 7.
However, assuming concurrent design in a project window, the current EXEx does not stop a
design function writing its data back to the central store, even if it may be overwritten by a design
function which does not have permission to overwrite it (e.g., a running design function which
should be completed before the design function which wishes to write the data). Stalling design
functions whose outputs overlap with currently running design functions would provide a
conservative strategy (for the same reasons as mentioned above), but would guarantee consistency
of the central model. This problem and the one above indicate that further work is required in
determining strategies to manage concurrency and consistency in project windows.

204

Chapter 12

Conclusions

The research presented in this thesis examines the type of development framework required to plan
and implement an integrated design system. The central premise is that existing stand-alone tools
lack the functionality required for large or medium sized integration projects. Research in this
thesis also recognises that insufficient aspects of an integrated project are modelled, resulting in
stand-alone, or poorly connected tools. Although many projects and many hundreds of person
years have been spent developing integrated design systems, their development frameworks all
have major shortcomings. These shortcomings range from the limited amount of information
modelled through to the nonexistence, or low capability, of tools needed to implement prototype or
commercia systems. Thisthesis analyses and identifies the full range of information which needs
to be modelled for an integrated design system and demonstrates a range of tools to support this
modelling.

The above analysis shows that modelling and integrating purely data aspects in a project is not
enough. To be usable in a development project, an integrated design system must take into account
the processes involved in the development and final use of the system. Thus a very wide range of
modelling methods covering data, processes, documents, legal aspects, activities, etc. (c.f. the
IDEF family of models, Mayer et al. 1994) is needed. Support tools are required to facilitate the
creation of an integrated design system, and this thesis demonstrates the benefit offered to a project
when they are available. Examples in this thesis show the application of these ideas to an
integrated building design system. The need for the tools and integrated systems shown in this
thesis is currently growing more urgent. Many small to medium sized integrated design
environments are under consideration, or even under development. To ensure that these projects
complete successfully, and operate as required by those in the industry, tools and modelling as
described in this thesis need to be developed and introduced to the industry.

205

The major framework advances proposed in this thesis fall into three areas. First, more capable
modelling tools are required for the development and testing of the very large models which must
be specified for many information types (e.g., product and process). This thesis demonstrates the
benefits of such environments. Second, formal mapping languages are required to define the
correspondences between information in the many views of a domain found in integrated design
systems. The thesis defines one such language and shows that such languages can be supported
by automated implementations (rather than using the mapping as a coding specification). Third,
formal process specification languages need to be adopted to model the intent and usage of tools
inside an integrated design system. This thesis defines a process formalism and demonstrates an
implementation which can be used to test and control arunning integrated design system.

The remainder of this chapter examines the contributions made by this project and the conclusions
that can be drawn from this work, and then proposes further work required in this area.

12.1 The Project Development Environment

This thesis has highlighted the need for development environments to help with the creation of
integrated design systems. The tools currently available to developers of such environments, and
the model specifiers, are totally inadequate for awell managed project. |nadequacies highlighted in
this thesis are: an inability to guarantee the consistency and correctness of a model and the data
used to test that model; an inability to manage and present overlapping views which make the
models more understandable than canonical forms; and an inability to cope with development
teams larger than a single person. This makes existing tools poorly suited for use in development
projects where models with hundreds of classes are the norm and where the size of the
development team is usually greater than ten people. The development tools presented in thisthesis
show capabilities which tackle and resolve all of these problems.

The use of several modelling methods to capture different aspects of a project, each supported by a
development tool and environment, highlights the need for connections between models. Where
several models of information in design tools and central models exist it isimperative to provide a
method of mapping between the representations. Where processes and activities are defined they
must be linked with the data aspects that support the processes and activities. When information in
one model changes there are a range of inter-related models which are in some way dependent
upon the changed information and require updating. This requires that all of the development
environments communicate between themsel ves when dependent data in their models is modified.
All of the development tools demonstrated in this thesis are built upon a platform which allows
related modelling systems to be attached with notification of changes to dependant objects. Even
during the schema devel opment stagesiit is clear that all aspects of the project domain need to be
consulted to ensure that the schemas capture the domain sufficiently. The best way to ensure this

206

sufficiency is to model also the related aspects. This has led to models of data, correspondences
between data model, processes, activities, actors, and design tool parameters being incorporated
into the demonstrated system. Other related aspects also need to be incorporated, including
documents and their associated legal aspects for a project, possible conflicts and their
management, though these two aspects are both implicit in the constraints which are seen in the
process models.

The development environments created in thisthesis all provide a common set of functions much
needed in the area. This includes the ability to use multiple overlapping views of components,
enabling subset views of a schemato be presented for various design processes, thus highlighting
different aspects of a schema and the relationships between entities in the schema. This helps
ensure the correctness of schemas by allowing concentration of particular aspects of the schema at
any one time and makes the schemas more understandable to audiences with different interests.
The other main ability is to be able to work with both textual and graphical representations in the
same environment. Again this enables views of varying levels of complexity and completeness to
be presented to different audiences for different tasks. Supporting these abilities in existing
commercial and research tools would have a marked impact in terms of greater certainty of the
correctness of the models being developed, a greater ability for them to be understood, and the
reduced time that would be required to devel op them.

Though there are only simple ties between the schema devel opment and the testing environments
in this project, they show the utility of afast and automated path between specification and testing.
The testing environment tools developed for this thesis allow schemas to be instantiated and then
visualised, both in terms of values corresponding to data structures and for renditions of graphical

definitions, to perform quick checking of schema sufficiency and validity. The tools devel oped
allow for an early and continuous feedback loop into the model development phase of a project. In
this way the sufficiency of the models can be demonstrated and checked from early in the model

development. These types of tools and their close linkages with modelling environments need to
be more widely used to reduce the number of large schemas which are devel oped from theoretical

foundations without the ability to test against actual working needs until late in the project. It is
recommended that instantiations of schemas should be developed almost in adirect parallel with
the schema development. This usage of test data alongside the model devel opment does however
introduce an additional requirement on the linked tools, that being the ability to move test data sets
forward to new schema representations as modifications are made. The use of the VML mapping
language is recommended for this phase, especially if tied to the semantics of modification
functions in the modelling environments, which allow mappings to be built automatically as
schemas are modified.

207

12.2 The Mapping System

Previous research work into integrated design systems has highlighted the necessity to perform
mappings between representations of information in a domain, usually between central models and
those utilised by the different actors and design tools used in the integrated system. EXxisting
mapping languages and techniques have, however, proved too restrictive for thistask, mainly due
to assumptions of commonality of semantics between models being mapped. It is certainly not
possible to guarantee this between the models of existing design tools, let alone those employed by
the actors from different disciplines in a project. This thesis presents an analysis of the types of
mapping required between various models and leads to a set of requirements for a mapping
langauge. The VML language was specified to meet these requirements and is demonstrated
through an interpreted implementation.

The VML language provides a mechanism to describe the correspondences between two schemas.

One of the main premises of the language is that bidirectional mappings must be supported (as
most non-trivial mappings must be performed in both directions). This led to a high-level

declarative language with an in-built assumption that any implementation of the language will

provide a mechanism to run mappings in the required direction. VML provides a language of far
greater range than alowed in RDBMS views, with the obvious drawback that not all described
mappings are invertible (which is guaranteed in an updatable RDBM S view). However, the power
of automatically invertible declarations is also greater than that offered in RDBMS views, and
demonstrated to work through an implementation which must track all modifications and previous
mapping connections. To support non-invertible mapping definitions the VML language offers a
fall-back position of defining two procedural mappings to enact the mapping in both directions.

A base VML mapping component offers three main functionalities: a specification of constraints to
determine when the mapping can be applied; a set of mappings to be applied; and initial values to
be instantiated when new objects are created during amapping. A VML mapping provides unique
functionality in allowing methods in object-oriented systems to be referenced and invoked as part
of anorma mapping. For example, it enables the semantics of method calls to be mapped between
various systems, especially those which have side-effects outside the scope of the data in the
model, e.g., screen display calls.

VML alows a mapping to be specified between two schemas. It also describes what type of
mapping can be performed, i.e., read only, read-write or an integrated mapping which forces a
consistent state to be achieved before application. A network of VML mappings can be specified
between arange of design tools. The examples of this project demonstrate a star topology through
acentral integrated model. However, many other topologies can be specified.

208

The implementation of VML in this thesis demonstrates the ability to implement complex VML
specifications and run them bidirectionally, as illustrated for a set of tools in the building and
construction domain. To enable mappings to be made in either direction the mapping system tracks
a large amount of meta-data about the mappings which were previously applied. This allows
updates to a mapping to be identified and applied with greater efficiency in the implementation.
However, it is clear that the amount of meta-data tracked soon greatly outweighs the amount of
datain the individual repositories, especialy if many small mappings are applied between two data
stores. However, this is a minor cost to be paid for the ability to perform complex mappings
bidirectionally between two data-stores. It is clear that any system required to perform efficient
mappings between two stores will need to track this level of meta-data. Thisis the only way to
avoid problems of trying to match structures in two existing stores through the mapping
definitions.

Trying to compare VML to other mapping languages highlighted the need for a methodology to
compare mapping languages, and, underlying this, the need for a formal description of the
mapping domain. With a description of the mapping domain it would be possible to describe the
power of individual mapping languages, their strengths and weaknesses, and their sufficiency for
different types of applications. This has been attempted to some extent in the thesis by selecting
features of the mapping problem that needed to be supported for the particular domain. However,
these features are overlapping in that they provide different views of similar functions and do not
necessarily represent a comprehensive set of mapping language requirements.

As previously noted, it is not possible to apply all declarative mappings bidirectionaly. In fact, it
is not possible to determine which mappings are possible in a particular integrated environment
until the power of the mapping implementation is determined (not all VML specifications need to
be implemented in al mapping implementations), and some techniques make more mappings
possible, e.g., incorporation of a simultaneous equation solver. So, though a VML specification
can describe how a mapping could be performed, it may or may not be calculable in a particul ar
integrated design system. One partial solution to this problem, utilised in this thesis, isto allow
constraints to be imposed on particular data sets following a mapping. In this way, though the
value for an attribute may not be calculable, it will be possible to determine whether a newly
specified value equals the value in the store from which it should have been calculated, or if anew
mapping is required to change valuesin the original store. For example, with area=height*length it
is ot possible to determine height or length from area, but the two attributes can be constrained to
equal the value of area when multiplied, or if they do not equal area at some later stage it requires
area to be updated with a new application of the mapping.

12.2.1 Additional applications of the mapping language

The VML mapping language is designed to be domain independent, asis the relational database
language SQL. Thus it should be applicable to any situation which requires views of a similar

209

domain to be kept consistent, and where the system needs to be easily extended without having to

compile in new features, functions, or tools. Some areas where VML would be immediately

applicable are:

RDBMS Views: VML has already been shown to be at least equivalent to the operators in a
RDBMS (see Appendix A.3). Therefore, any existing RDBMS view can be described in
VML. However, VML allows more powerful views to be defined as there is no
assumption that the view and base are semantically equivalent. Therefore, VML could
allow more sophisticated RDBM S views to be defined and updated automatically.

Schema Integration: as with RDBM S views, schema integration techniques for RDBM S assume
that the schemas being integrated are semantically consistent before integration. In many
real-world applications this is not possible to ensure and hence VML would provide the
ability to integrate non-consistent schemas, but still maintain the semantics of the individual
schemas. Appendix A.3 shows that VML is at least equivalent to RDBMS schema
integration operators.

Object-Oriented Views. some object-oriented languages and distributed object environments allow
multiple public interfaces to be defined for an object (e.g., the interface description
language (IDL) in CORBA, Otte et al. 1996), equivalent to database views except
enhanced with method calls. VML provides an alternative mechanism to specify these
views and also allows access to methods to allow methods calls to be tracked or invoked
during a mapping.

Data Store Migration: some data repositories need to migrate to new schema definitions over their
lifetime. Where simple changes are made, such as adding a new attribute, there is no great
problem, but where the schema change involves existing attributesin anew formit is often
difficult to create the new version of the data store. VML provides a specification and
migration environment which can handle this problem.

Loosely Connected Toolkits: many systems exist as a set of loosely connected components or
tools. Where each tool has awell defined set of functions and provides services which may
be of use to many other tools not always known in advance. VML can be used in such
systems to provide the glue to connect each of these tools as needed using a network
approach to defining interfaces between associated tools, or through a mapping to a global
and common data store.

12.3 The Flow of Control System

The specification of processes and the flows between them has received scant attention in the
development of integrated design systems, mainly due to a focus on data and its transmission.
However, as previously stated, it has been recognised that this focus on pure data transmission
does not provide a system which can integrate with the processes required in the domain that the
integrated systems sit in. Though the more recent European integration projects have considered

210

process and workflow in their systems, this modelling has often been of processes independent of
the rest of the system. In thisthesis, the full set of interconnections between various aspects of a
project’s information was considered. This shows dependencies between a process and data,
documents, actors, design tools and the influence on process invocation due to legal constraints,
standards and regulations, and the state of the executing system.

The CombiNet process modelling formalism addresses many of these issues by defining a two
level specification. At one level this defines the actorsin a project, their design tasks, and design
functions which are tied to data specifications and design tools. The second level of specification
provides a hierarchical specification of design functions and their possible flows of control.
Varying levels of constraint in the process flows can be defined using either global processes at
different levels of the hierarchy to provide unconstrained process flows, or totally connected
processes to force a strict flow of control. This level allows the point of actor handover between
processes to be further specified, and allows the user to place constraints on the invocation and
completion of processes. One of the major benefits of the flow of control specification is that it
allows looping or iteration between processes which is not allowed in the major process modelling
formalisms due to the difficulty in simulating processes with loops (unless the number of iterations
can be pre-determined). However, in the integrated design systemsin which this process model is
utilised, it is not important to simulate time taken to complete a project (though that is useful), but
it is necessary to define the possible flows between design tasks of the actors to control the
project. Though CombiNet ties together many aspects of a project there are still links that could be
defined. One of these isalink to documents and documentation which feed into a process, or are
required at the termination of a process. This would enhance the ability to specify constraints on
processes by alowing legality aspects to brought into the project (e.g., whether a stage has been
signed off properly).

The implementation of the CombiNet formalism provides a control system for a running project.
This includes project manager type overview functions for controlling the work done on the
project. It also provides interfaces for actors to specify the design functions on which they are
working, and to notify others of their progress. It also alows actors to identify design functions
that they are next able to work on, or to specify a handover to another actor in the project. Due to
the connections between the different aspects of a project, the flow of control system can track and
manage many functions of arunning project. It can determine what design functions can run at any
time in the project, providing help to those attempting concurrent engineering. It can also identify
which actor in a project is hindering other work, allowing the project manager to smooth the
running of a project, or to examine business process re-engineering of the processes. As the
implemented flow of control system tracks all processes undertaken, it provides a record of task
progression to alow actors to show they completed all design tasks in their programme of work.

211

12.4 Future Work

The work presented in this thesis has examined requirements for an integrated design environment
and provided prototypes of components required to make this environment reality. However, not
all of the requirements could be addressed within the scope of this work, and several areas for
further work have been identified. A selection of the more important areas for future work are
addressed below.

12.4.1 Tighter system integration

The integrated design system framework developed in this thesis provides for communication
between severa of the modelling and testing tools. However, there is benefit in providing for even
closer integration of these tools. One approach envisaged for achieving this integration isto extract
the underlying model requirements of each of the tools, and develop an integrated schema
incorporating these models. In this way, the development framework could provide services
similar to those being created in the integrated design system itself. For example, if the schema
modelling and process modelling tools utilise a common data store containing the combined
models, then by specifying the model portions in which each tool isinterested it would be possible
for a tool to be notified when changes are made to information it is referencing. This would
provide for greater consistency in the total set of models developed for an integrated design
system.

Providing these meta-models for tools would a so enable awider range of modelling paradigmsto
be more easily integrated into the design framework. If generic model concepts are encapsulated in
the developed meta-models, then a variety of modelling methods (e.g., NIAM, EXPRESS and
ER) could be used, as long as the tools which model with a given methodology can translate their
models into the meta-model, or accept modelsin the meta-model format.

Tighter integration could also apply between the tools defining models and those mani pulating and
populating those models. In this way, automatic migration of test data sets between versions
would be more easily achieved. Modelling of the functionality available in the different tools, and
describing how this maps to the associated data manipulation tool is of considerable benefit. For
example, when an attribute’ stype is modified in a schema devel opment tool, it must identify what
function, or set of functions, this maps onto in the data model manipulation tool.

The final outcome of this environment integration would be a set of tools which communicates
with all other tools upon which it has an impact. Thiswould apply whether it is amodelling tool or
a data manipulation tool. In this environment designers would be sure they are working with the
most up-to-date models and that all affected models would be notified of changes made.

212

12.4.2 Distributed environment

Though all of the tools developed in this system are stand-alone and could be used by a number of
concurrent users, multi-user development was not supported in this thesis. The connected toolsin
this thesis have a very simple view of the information logistics server with which they
communicate (i.e., the Macintosh OS). This should, however, be easily scalable to incorporate
information logistic servers which handle multi-platform, multi-user and multi-organisational
environments. It is envisaged that interfaces to CORBA-like platforms (Otte et al. 1996) would
enable the handling of distributed data and distributed functionality for the tools defined in this
thesis. The ‘mapping through transaction-based updating’ approach provides a model which
would enable multiple users to work on the same underlying model through a distributed
environment and guarantee consistency (though at ahigh level of granularity).

Providing this extension would make the framework developed in this thesis more palatable to the
types of teams which are used today to develop integrated building design systems. These teams
consist of several modellers and testersin several organisations, usually also in several countries
(for the EU funded projects). For these teams, a distributed environment which manages model
and data consistency would be in itself of enormous benefit.

12.4.3 Wider incorporation of project aspects

Throughout this thesis it is argued that integrated design systems must enable all aspects of a
project to be encompassed in the final system. The system developed for this thesis shows the
integration of data and process aspects with some computing environment information also drawn
in. However, there are other areas which need to be brought into the system. Documents and
documentation are the most important aspect not currently tied into integrated design systems,
though there are many commercia systems available (11C Consulting and Cimtech Limited, 1996).
Documents and their legal aspects are closely examined in the ToCEE project (Amor and Clift,
1997) and the following points noted:

. Documents are the main communication mechanism in any construction project.

. All project information is passed through documents and they are the input to al processes,
aswell asthe output of all design processes.

. Documents are the only legally binding information medium in a project.

Therefore, by incorporating documents, it is possible to track and manage legal aspects of a project
as they impact on processes and the data being manipulated (e.g., contracts and sign-off points).
The development of models and frameworks to handle wider project aspects can be seen in the
recent work on the BCCM in STEP (Building Construction Core Model, 1SO/TC184, 1996) and
the EU-ESPRIT funded ToCEE project (Towards a Concurrent Engineering Environment,
Katranuschkov et al. 1996).

213

Other aspects which could be considered for incorporation include conflict management and
negotiation. In past construction projects, this was limited to clash detection (e.g., does a pipe's
position clash with a column’ s placement). This needs to be extended to allow negotiation between
project partners when designers fail to agree on the state of overlapping portions of a design. In
some instances this can be managed by providing the project manager with tools to arbitrate
disputes and apply decisions to the project team, though in others a dialogue between partners
must be supported before decisions are enacted.

A final aspect which could be considered, and which certainly has an impact on the whole system,
isthat of constraints on a project due to standards and regulations. In some cases they determine
what processes can be enacted, or in what order. In many cases they impose pre- and post-
conditions on invocation of a process as well as on aspects of the data model and documentation
which must be produced.

12.4.4 Formal definitions of the mapping domain

In Chapter 5t is noted that there is no method available to provide arigorous comparison between
different mapping languages. Part of the reason for thisis alack of understanding in the research
community of the scope of the mapping problem and few formal methods to help describe
mappings (though Ainsworth et al. 1996 seem to provide a way to approach this problem).
Further work is required to define the semantics of mappings and mapping languages as the initia
step to allowing mappings to be validated and languages to be compared. Though Chapter 5 details
the main requirements of a mapping language, these are drawn from analysis of mappingsin a
single domain (i.e., construction). The scope of these requirements needs to be validated for a
wider set of domains and specified in a more formal way. This more formal specification would
then allow the power of related techniques to be gauged (e.g., constraint specification systems and
the Interface Description Language (IDL) of CORBA, Otte et al. 1996).

A formal specification of the semantics of mapping languages would aso help clarify the use of
methods and transactions in a mapping. Currently VML allows method calls to be mapped
between models, though the time dependency of the method calls is collapsed through the use of
transactions to amal gamate multiple model modifications into a single mapping. A formal treatment
of methods and their mapping requirements would provide an insight into where transaction
boundaries should be drawn for a mapping.

12.4.5 Alternate mapping language implementations

In this thesis an interpreter for VML was constructed. However, VML could be tranglated into
many other forms. An interesting project would be to examine the requirements for tranglating
VML into other languages. This would clarify the trade-off that has been made between the
specification language power and implementation complexity. For example, the translation of

214

VML into a procedural language is likely to be very difficult even when supported by a powerful
set of backing libraries to provide many of the mapping functions. Examining the requirements
would enable a decision on the technical feasibility and commercial viability of thistrandation to
be made. The trandation requirements would also determine the possibility of extending other
systems to handle mappings, for example, constraint solving systems.

12.4.6 Incorporation of measure tools

Once al project aspects are incorporated into an integrated design system, there exists a central
repository of all information relevant to a particular project and its progress. This would provide
an exciting opportunity to data-mine the workings of a project, either to provide feedback for new
projects, or as amonitor while a project is running.

A set of tools incorporated into the integrated design system and development environment could
provide measures of the state of the running or developing system. These measures could identify
aspects of a project which are: outside of best-practice (e.g., an inheritance hierarchy over twenty
entities deep); or bottlenecks (e.g., the structural and HVAC engineers are both waiting for the
architect to finish the redesign, they have been waiting 2 days, and this is the third time this
month); or performance indicators (e.g., how much various parts of the project deviate from
schedule).

Tools to examine completed projects would examine common aspects of a series of projects to
identify possible improvements. For example, any possibilities for concurrent engineering in
similar projects could be identified, or the feasibility of applying business process re-engineering
to reduce the development time, and hence the project cost.

12.4.7 Dissemination and exploitation

The integrated design system development environment proposed in this thesis has been
demonstrated for the construction domain. However, the system was devised to be generic and
applicable to any domain with similar problems. To this extent, the system should be transferable
to most engineering domains as well as medical domains and software engineering domains, al of
which require the development of similar integrated systems. In many casesit islikely that such a
system would make more impact, as these domains are further advanced in terms of data models
developed and used, their understanding of process, the legal implications of getting it wrong, and
the profits to be made by improvements.

In terms of general software systems there are several existing data management systems which
could be improved through the use of a system as described in this thesis. RDBM S specification,
development and maintenance could be subsumed by an integrated design system such as
demonstrated, providing the same wide range of benefits aswell as providing more powerful data

215

views for the database users. The same approach could be taken for heterogeneous database
systems as long as a more sophisticated information logistics system was incorporated. Again this
would provide greater power in the data views supported.

216

Appendix A

The View Mapping Language

VML isamajor component of thisthesis. This appendix provides the technical specification of its
syntax, the graphical notation, and comparisons to other methods to show equivalence.

A.1 VML Syntax

The syntax of the mapping language is detailed below in two parts. The first part provides high-
level structures in the language, and the second part provides low level definitions for basic
structures such as strings and numbers. The starting point of the syntax below, which is listed
alphabetically, isthe mapping specification.

and_op ="',

attribute_id = sinple_id | variable_id .

attribute_name = class_nane '.' (attribute ref | 'SELF) .

attribute_ref = attribute_spec [attribute ref_tail]

attribute ref _tail ='=>('" expression')' | '=>' attribute_spec [attribute ref_tail]
attribute_spec = attribute id ['"[" [list_id { "," list_id}] "']"] .

attribute_value = [[nodel _id ':"] class_id '.'] attribute_ref | variable_id .
bijection_expr = class_nanme | attribute_name | invariant_sinple_expr .
class_id = sinple_id .

class_list ="'[" [class_list_name { ',' class_list_name }] ']’

class_list_name = '"group(' class_nane ')' | class_name .

class_ nane = ([nodel id ':"] class_id | variable_id)
["[" [list_id { *," list_id}] '1" 1.

constant_values = '"pi' | atomliteral | integer_literal | real_literal | string_literal
| bool ean_literal

equi val ences_def = 'equival ences(' equivalent { ',' equivalent } ")' .

equi val ent = expression '=" expression | '"map_to_from(' predicate ',' predicate ')’
| "bijection(' bijection_expr ',' bijection_expr ')' | predicate .

expression = term{ add_like op term} .
factor = sinple_factor { '~ sinple_factor } .
function = function_1 arg | function_2_arg .
function_1 arg = 1_arg predicate expr ')’

217

function_2 arg = 2_arg predicate_expr ',' predicate_expr ')’
group_expression = ' (' expression { ',' expression } ')’

inherits = "inherits(' inherit_list ")’

inherit_list = inherit_map { '," inherit_map } .

inherit_map = "inter_class(' class_list '," class_list ")’

initialiser = expression '=' expression | method | predicate .

initialisers_def = 'initialisers(' initialiser { '," initialiser } ")" .

inter_class_def = 'inter_class(' class_list '," class_list [',"' inherits]
["," invariants_def] [',' equivalences_def] [',"' initialisers_def] ")" ".'

inter_viewdef ="'inter_view' model id ',' nodel _type ',' nodel _id',"' model _type ',"
map_type ') ..

invariants_def = 'invariants(' invariant_expr { or_op invariant_expr } ')'.

i nvariant _expr = invariant_sinple_expr { and_op invariant_sinple_expr } .

invariant_sinple_expr ="' (' invariant_expr { or_op invariant_expr } ')’
| expression rel _op expression | predicate | function | method
| "group(' attribute name { ',' attribute _name } ')’

list_expression = '[' expression { ',' expression} ']’

list_id =integer_literal | attribute_value .

mapping = inter_view def { inter_class_def } .

map_type = 'conplete' | 'partial’

method = ([[model _id ":"] class_id '."] method_attribute ref | [nodel _id ':'] class_id
| O) '@ (method_id | predicate) .

method_attribute ref = attribute _spec [nmethod_attribute ref_tail]

nethod_attribute ref tail ='=> attribute spec [method attribute ref _tail]

nethod_id = sinple_id .

nmodel _id =simple_id ['{" version'}"] .

nmodel _type = 'integrated ' | 'read_only ' | 'read_wite '

or_op =";" .

predicate = predicate id ' (' predicate_expr { ',"' predicate_expr } ')’

predicate expr = '[' predicate expr { ',' predicate_expr } ']' | expression .

predicate_id = sinple_id .

sinple_factor = group_expression | list_expression | function | predicate | attribute_nane
| method | constant_val ues.

term= factor { multiplication_|like_op factor } .

version = integer_literal | real _literal | atomliteral | string_literal

1 arg = "abs(' | '"average(' | 'cos(' | 'cos_1(" | 'count(' | 'deg_rad(' | "exp(' | "int("
| "In(" | "maxinmun{' | "mnimun{' | 'rad_deg(' | 'sign(' | 'sin(" | "sin_1(" | "sqr(’
| "sqrt(" | 'sun(' | 'tan(' | 'tan_1('

2 arg = "pw(' | "pw_1('

0

% Low | evel definitions for strings, nunbers, comments, etc.

O

add_like op ="+ | "-"' .

atomliteral =\q { atomliteral _char } \q .

atomliteral _char = character | ' ' | "™

boolean_literal = 'false | 'true'

character = digit | letter | special

digit ='0" | "2 | 2" | "3 | ‘4 | '5|'6 | "'7T|]"'8 |9

digits =digit { digit } .

enbedded_remark = '/*'" { enbedded_remark_el } "*/'.

enbedded_remark_el = not_| paren_star | | paren_not_star | star_not_rparen | enbedded_renark .

integer_literal = digits .

letter = | ower_case | upper_case .

logical literal = "'false | 'true'

lower case ='a" | 'b" | ‘¢ | 'd | e | "f] ‘g | ‘h |ttt kT] 'm
O A T A T - R S U O A I O I A 4

| paren_not _star ='/' not_star .

multiplication_like op ="*"| "//" | */" | 'mod

not | paren_star = not_paren_star | ')’

not_paren_star = letter | digit | not_paren_star_special

not_paren_star_special ="'!" | '@ B2 B S) B - I I (R I R
IR T N G T A TR S D R B I A I B B
R RN L AN I RN Y

not_rparen = not_paren_star | '*'

218

not_star = not_paren_star .

real _literal =digits '.' [digits] ('€

rel_op='<=' | '>= | ' | < | >

renmark = enbedded_remark | tail _remark .

sign ="+ | '-' .

sinple_id = lower_case { sinple_id char } .

sinple_id char = letter | digit | '_

special = not_paren_star_special | '*" | '/’

star_not _rparen = '*' not_rparen .

string_literal ="'"" { string_literal _char } '"'

string_literal _char = character | ' ' | \q .

tail _remark ="'% { tail _renark_char } \n .

tail _remark_char = character | .

upper_case ='A | 'B | 'C | 'D | 'E | 'F | 'G | 'H ["1™] "3] 'K | 'L] 'M
| "N 'O ["P | "Q | 'R | 'S ['T ["U | 'V |'W]|]'X|"'Y|"'Z

) [sign] digits .

'E
[\

variable_id = upper_case { sinple_id_char } | "' (letter | digit) { sinple_id_char } .
whi tespace = { whitespace_char } .
whi tespace_char ="' ' | \n | \t | renark .

A.2 VML Graphical Notation

The graphical notation for VML was created in order to specify high-level over-views of
mappings. It comprises few components and is basically awiring notation. Figure A.1 shows the
main components of the notation.

—invariants —
idm_hip_roof JE' = g
= O
ru?rmal EIEqUi‘."EI.lEILDE'S —
mim
o = fune [i vad_polygon i
=1 func =N
name 1al fune =H object_id
abutting 1] fune el diffuse_reflection
material o func =H specular_reflection
type] fune el gloss_factor
apexl E fune =1 point=
apexl] func =H colonr
[Acreate | iritialisers — [Acreate
O - =] L @dump_to_file)
| = O]
O = i
O = Eif
| = O]
o - =]

Figure A.1 VML graphical notation

Classes being mapped between are denoted by rounded rectangles. Normally mapped classes are
shown with asingle line (e.g., idm_hip_roof) whilst those which are grouped in the mapping are
shown with a double line (e.g., v3d_polygon). An inter_class definition is shown by arectangular
box broken into three sub-components, one each for invariants, equivalences and initialisers.
Individual objects and attributes involved in a single equation are wired to the same line in the

219

inter_class specification. Four different types of equation can be specified in this notation, straight
equivalence (=), more complicated equations (egn), functions (func), and procedures (proc).

A.3 VML Comparison to other Notations

VML provides greater functionality than current languages for specifying views of data, though
these languages are based on aformal specification able to guarantee integrity of data. To help the
claim of VML’s power, it is necessary to show its equivalence to existing methods. Here the
equivalence to relational operators and those used in one method of database integration are
shown.

A.3.1 Comparison to database operators

In this section it is shown that VML has an equivalent expressive power to the five basic operators
required in a relational database system (Ullman 1982), i.e., projection, selection, union, set
difference and cartesian product. After this, the emulation of some of the more useful higher order
functions used in relational databases is shown.

A.3.1.1 The five basic operators from relational databases

1) Project

Given a source entity with attributes S,..S,,, and atarget entity with attributes T,..T,, then a project
is accomplished with the following mapping:

inter_class([S], [T],
equivalences(...,
S=T, ..)
).

2) Select
A select statement is accomplished through the use of the invariants section of a mapping. Given a
source entity S, with attributes S,..S,,, and some set of boolean formulas F which work on

attributesin Sto give atarget entity T then a select is accomplished as follows:

inter_class([S], [T],
invariants(F),

equivalences(S, = T,,

Sn=Th)
).

220

3) Union
The union of entities R and S, with attributes R,..R,, and S,..S,,, to atarget entity T is performed
by specifying two mapping definitions with no invariant definition such as:

inter_class([R], [T],
equivalences(R, = T,

Rn=Th)
).
inter_class([S)], [T],
equivalences(S, = T,,

Sn=Thn
).

4) Set difference
The difference between entities R and S, which have key attributes R,..R, and S,..S, and
attributes R;..R,,,, to atarget entity T is specified by checking that R does not exist in the set of S

entities. To do this afunction called same_key is introduced. This function is assumed to return
true if an object has the same key as any of a set of objects passed as the second parameter. In this
case Sisgrouped in the header which means that the set of al S are associated with each mapping.
Therefore, the reference to Sin the same_key function will be substituted with the whole set of S
objects when called.

inter_class([R, group(S)], [T],
invariants(not(same_key(R, S))),
equivalences(R; = Ty,
Rn=Ta)
).
5) Cartesian product
The cartesian product of entities R and S, with attributes R,..R,, and S,..S,, to atarget entity T

with attributes T,..T .., isSimply specified as below:

inter_class([R, S, [T],
equivalences(R, = Ty,

Ry = Th,
S = Tt

Sy = Tonen)

221

A.3.1.2 Higher order operators from relational databases

I ntersection
The intersection between entities R and S, which have key attributes R,..R, and S,..S, and

attributes R,..R,, to a target entity T is specified with an invariant to find all the intersecting
objectsin the consideration set and then projecting the attributes of R as follows:

inter_class([R, S, [T],
invariants(R, = S, ..., Rc = S)),
equivalences(R; =T,

R = Tr)

Join
Thisis basically a cartesian product coupled with an invariant. The join of entitiesR and S, with
atributes R,..R,, and S,..S,,, under the conditions F to a target entity T with attributes T,..T .., IS

simply specified as below:

inter_class([R, S, [T],
invariants(F),
equivalences(R, = T,,

Rn=Tom
S1 = Tm+1’
Sh = Tinen)
).
Natural join

Againthisisvery smilar to a cartesian product, but thistime the invariant is composed of akey in
the source entities. The natural join of entities R and S, with attributes R;..R,, and S,..S,, and

keysR;..R, and S,..S, to atarget entity T with attributes T,..T ... IS Simply specified as below:

inter_class([R, S, [T],
invariants(R, = S,, ..., R = S),
equivalences(R; = T,
Rn=Th,
S(+l = Tm+11

Sn ’: Tm+n—k)
).

A.3.2 Comparison to Motro virtual integration operators

Inthis section it is shown that VML has equivalent expressive power to the ten operators defined
in Motro (1987) for the definition of superviews for multiple databases. Some of these mappings
will look rather simple (for example the rename operator) as the main scope of Motro is the

222

definition of a superview model, whereas VML is more concerned with the definition of
equivalences between existing models. However, as discussed in the thesis, it is possible to use
the mapping system to perform model integration so the comparison to an existing model
integration language is of benefit.

1) Meet
The meet of two entities S and T with attributes S,..S, and T,..T,, which share a common key
S,..S. and T,..T, and have shared attributes S,..S,,and T,..T,, (Wheeem >k and n>m and p >

m) to three entities S, T' and U where U is the common generalisation of Sand T is as follows
(note that U is not seen, asboth S and T' inherit from it):

inter_class([S], [S],
equivalences(S, = S,

5=,
).

inter_class([T], [T'],
equivalences(T, =T',,

TET
).
2) Join
The join of two entities S and T with attributes S;..S, and T,..T,,, which share a common key
S..Scand T,..T, (where n > k and p > k) to the entity U where U isthe generalisation of Sand T

is defined asfollows:

inter_class([S, T], [U],
invariants(S, = Ty, ..., Sc = T\,

equivalences(S, = U,

S, = U,
Tk+1 = Un+1a
Tp = Un+p—k

).

3) Fold
Thefold of two entities Sand T with attributes S,..S, and T,..T,,, where T isa generalisation of S

(n>pandS; =T, .. S, =T,) to the entity T' where T' contains all of Sand T is defined as

follows:

223

inter_class([T], [T1,

invariants(var(T'y.), ..., var(T',)),
equivalences(T, = T',,
).

inter_class([S], [T],

invariants(nonvar(T',.,); ...; nonvar(T',)),
equivalences(S, = T'y,

§=T,
).

4) Rename
Renaming the entity Sto the entity T isachieved asfollows:

inter_class([g], [T],
equivalences(S, =T,

S, =T,
).

5) Combine
Combining the equivalently typed entities Sand T to the entity U is defined as follows:

inter_class([S], [U],
equivalences(S, = U,,

S = U,
).

inter_class([T], [U],
equivalences(T, = U,

T,=U,
).

6) Connect
Connecting the entities Sand T with attributes S,..S, and T,..T,, where the type of Sis contained

inT (son<p) to the entity T' which is equivalently typed to T is defined as follows:

inter_class([T], [T,
invariants(nonvar(T",,,); ...; nonvar(T",)),
equivalences(T, = T",,
e,
).

224

inter_class([S], [T1,

invariants(var(T',.y), ..., var(T')),
equivalences(S, = T'y,

S, =T,
).

7) Aggregate
The aggregation of Sto classes S and T is defined as follows:

inter_class([9], [S, T],
equivalences(S; = S,

Sn=Sm
.= S.T=>T,
S =ST=>T,..

).

8) Telescope
Telescoping the entitiesSand T into S is defined as follows:

inter_class([S, T], [S],
equivalences(S, = S,

55,
ST=>T, = Sy,
ST=>T,=S,.,
).
9) Add

The addition of an implied attribute S|, to the entity S with attributes S,..S, to give the entity S
is defined as:

inter_class([S], [S],

invariants(S',,; = function_result),
equivalences(S, = S,
Si'=s,
).
10) Delete
The removal of anon relevant attribute S, from the entity Swith attributes S,..S, to give the entity

S isdefined as;

225

inter_class([S], [S],
equivalences(S, = S,

Sn1=S,,

226

Appendix B

Project Specification Language

The project specification language as described in Sections 7.2 and 7.3 of this thesis consist of a
graphical notation, as all information is ascertainable in this form. However, to be transferred to
the ExEx described in Chapter 11 there is a schema specification which is used to define what
should be transferred. The schema definition of the CombiNet is included below, followed by a
description of the graphical icons used in the notation.

B.1 Project Model Transfer Syntax

The schema definition for project window specification is given below in the EXPRESS modelling
language.

SCHEMA pw_reference_mode!;

TY PE schema filename = STRING;
END_TYPE;

TYPE design_tool = STRING,;
END_TYPE;

ENTITY project_window;
caled: STRING;
requires: SET [1:7] OF actor;
scheduled_by : combi_net;
UNIQUE called;
END_ENTITY;

227

ENTITY actor;
has name: STRING;
performs: SET [1:7] OF design_role;
viewable_schema: schema. filename;
modifiable schema: schema filename;
UNIQUE has_name;

END_ENTITY;

ENTITY design role
has role: STRING,;
requires: SET [1:7] OF design_function;
UNIQUE has role;

END_ENTITY;

ENTITY design_function;
has function : STRING,;
is_performed by : OPTIONAL design_toal;
has_input_schema: OPTIONAL schema filename;
has output_schema: OPTIONAL schema filename;
UNIQUE has function;

END_ENTITY;

ENTITY combi_net;
caled: STRING,;
places: SET [1:7] OF abstract_place;
trangitions: SET [2:7] OF abstract_transition;
actors: OPTIONAL SET [1:7] OF actor_overlay;
END_ENTITY;

ENTITY abstract_place
ABSTRACT SUPERTY PE OF (
ONEOF (invocable place, globa _place, global _net));
X_loc: INTEGER,
loc: INTEGER;
END_ENTITY;

ENTITY invocable place
ABSTRACT SUPERTY PE OF (
ONEOF (place, aggregate place))
SUBTY PE OF (abstract_place);
exits to: SET [0:7] OF trangition;
END_ENTITY;

ENTITY place SUBTY PE OF (invocable_place);
represents : design_function;
END_ENTITY;

ENTITY aggregate place SUBTY PE OF (invocable place);
represents : combi_net;
END_ENTITY;

ENTITY globa_place SUBTY PE OF (abstract_place);
represents : design_function;
END_ENTITY;

ENTITY globa_net SUBTY PE OF (abstract_place);

represents : combi_net;
END_ENTITY;

228

ENTITY abstract_transition
ABSTRACT SUPERTY PE OF (transition, double_transition);
x_loc: INTEGER,;
loc: INTEGER,;
END_ENTITY;

ENTITY transition SUBTY PE OF (abstract_transition);
invokes: SET [0:7] OF invocable place;
END_ENTITY;

ENTITY double _transition SUBTY PE OF (abstract_transition);
invokes: SET [2:2] OF invocable place;
END_ENTITY;

ENTITY actor_overlay;

represents : actor;

covers: SET [1:7] OF abstract_place;
END_ENTITY;

END_SCHEMA,;

B.2 Project Modelling Graphical Notation

The project specification is detailed in two separate types of diagram. The icons of the user and
function modelling are described below, followed by the iconsin the flow of control specification.

B.2.1 User and function specification

There are three icons available for user and function specification at this level. These icons are
shown in Figure B.1. From left to right they allow specification of actors involved in a project,
their design roles, and the design functions associated with those design roles. A fuller description
is provided below:

esign
unction

ctor viewable ctor modifiable

esign tool input esign tool output

esign tool

Figure B.1 Icons used for user and function specification

actor: every person involved in a project must be specified at thislevel. The actor icon allows the
name or type of person to be identified along with two schema definitions which provide
the specification of the viewable portion of the integrated data model for the actor, and the
modifiable portion of the integrated data model for the actor. The actor can be connected to
multiple design roles which defines their sphere of influence and activitiesin a project.

229

design role: the design role is a high-level definition of a particular role required by an actor. The
design role icon allows the name of the role to be specified. Design roles are broken into
several design functions which define the tool supported activities which are required to
complete the design role. Multiple actors can access the same design role and the design
role can be connected to multiple design functions.

design function: a design function is an identifiable portion of work, usually associated with a
single design tool. The design function allows the name of the function to be specified and,
if adesign tool is used to perform the design function, the name of the design tool to be
used along with the input schema for the design tool and its output schema. Several design
functions can use the same design tool. However, in this case the input and output
schemas are likely to be different to reflect the work performed by the design tool for
different design functions (i.e., limit what can be written back to the IDM to reflect the
function being performed by the design toal).

A convention used in the CGE tool created to support this formalism is to have atitle block for

each diagram. In the CGE tool there may only be one diagram for user and function specification.

The project name specified in the title block istreated as the name of the top level CombiNet for the

project window.

B.2.2 Flow of control specification

There are seven icons available for flow of control specification at this level. These icons are
shown in Figure B.2. A set of the icons shown below can be grouped together to create what is
called asingle CombiNet. As most project window specifications will require hundreds of design
functions to be specified it is likely that multiple CombiNets will be required to show the whole
project specification. To alow this, the notation allows for the aggregation of items into named
CombiNets. Again, in the CGE tool, each CombiNet has atitle block. The name of a CombiNet is
specified in this title block, and becomes the name used to reference the whole set of iconsin any
other CombiNet. A fuller description is provided below:

global place global net

PGS ST

actor overlay| double transition transition

Figure B.2 Icons used for flow of control specification

230

place: a place represents one of the design functions specified in the user and function diagram.
Each place icon is |abelled with the name of the design function. If the design function is
only used by asingle actor then it can be calculated who is able to use the design function.
If several actors can use the design function then an actor overlay (see specification below)
is needed to define who will be using the design function in this part of the workflow.
Places are joined to other places or aggregate places through transitions as described
below. Multiple arrows may leave a place to connect to transition icons (see description
below), and define possible flows of control. Multiple arrows may point to a place
representing multiple paths to the design function.

aggregate place: these icons, very similar to a place, represent awhole CombiNet. The label in the
aggregate place defines the name of an existing CombiNet whose components will be
substituted for the icon in an implemented system. Arrows entering an aggregate place are
implicitly tied to the starting transition of the named CombiNet, whilst arrows leaving an
aggregate place come from the end transitions of the named CombiNet (see transitions
below). Multiple arrows may leave an aggregate place to connect to transition icons (see
description below), and define possible flows of control. Multiple arrows may point to an
aggregate place representing multiple paths to the CombiNet.

global place: aglobal place represents a design function that can be accessed at any time (i.e., it is
not sequenced). Therefore it is visible from any point in the CombiNet in which it is
specified, and all CombiNets that are accessible from this CombiNet. When a global place
terminates, the flow of control is returned to the point from which it was called.

global net: this represents a CombiNet which can be accessed at any time (i.e., it is not sequenced)
and itsvigibility is the same as for aglobal place.

actor overlay: Thisbox is drawn over al design functions and CombiNet specifications which are
utilised by a particular actor (where thisis not uniquely defined by the user and function
diagram). When drawn over global nets and aggregate places it affects everything in the
CombiNet that those global nets and aggregate places represent. Actor overlays may
overlap to specify design functions or CombiNets which can be followed by different
actors.

transition: these are used to sequence the workflow in a CombiNet. Many arrows may lead to a
transition representing flow of control from the termination of design functions and
CombiNets. Many arrows may leave from a transition representing the possible flows of
control available. A transition with no arrows leading to it is called a starting transition and
represents a possible starting point for a CombiNet. A transition with no arrows leaving
fromit iscaled an end transition and represents the completion point of a CombiNet. If the
CombiNet is at the top level for a project then its end transitions define the end of a project,
or project window. For lower level CombiNets, the end transition represents the interface
back to lines leading from the point at which the CombiNet was referenced.

double transition: this is a shorthand notation to represent two transitions forming aloop between
places or aggregate places.

231

Appendix C

Snart

The Snart language, in which the mgjority of this thesis has been implemented, was under
continuous development over the life of this research. Started for use in another PhD thesis
(Grundy 1993), it was taken up for teaching purposes and other research projects (Mugridge et al.
1995). Work on this thesis highlighted support areas which did not exist in Snart at the time. To
enable Snart to be used efficiently for this thesis several extensions were proposed and
implemented. Some of these are now part of the basic Snart release (Mugridge et al. 1995). This
appendix describes extensions to Snart for the specification of facets for attributes, a query
language, object spaces, persistency, and a dynamic object viewer.

C.1 Facets

Previous research work by the author (Amor 1991) identified the requirement to specify additional
meta-information about attributes in a schema (like a data dictionary in relational database
systems). This allowed information to be associated with an attribute such as units for values,
default values, constraints, textual description, and who asserted a value. The frames-based
system developed for ICAtect (Amor 1991) supported this concept. When working on thisthesisit
was recognised that facet information would again be required, and this was not supported by
Snart. To accommodate this requirement, the syntax of the language was extended to allow
arbitrary facet information to be specified in a schema definition. The snippet of syntax diagram
below shows what was added to allow facets to be represented.

232

attribute = name ' (' 'facets(' facet_list ")' ")' | name ':' 'facets(' facet_list ") |
nane ' (' attribute_type ')' | nane ':' attribute_type .

facet list ="'[" [facet { ',' facet }] ']"' .

facet = facet_name '(' value ')' .

/* The list belowis not conplete */

facet _nane = "type' .
facet_nane = "unit' .
facet _name = 'default' .
facet _name = 'asserted_by'
facet _name = 'constraints'
facet _name = 'description
facet _nane = prol og_atom.

It was also necessary to extend the language to allow facet values to be set and to allow facet
values to be retrieved. The following snippet of syntax diagram shows the additions to the Snart
language to support these requirements.

snart_statenent = attribute_value | facet_value | method_call | attribute_assignnent |
f acet _assi gnment .

facet _value = object_id '@ nane '@ facet_nane '(' value ")" .

facet _assignment = object id '@ nane '@ facet_nane ':= value .

The set of facets able to be defined for a single attribute is not constrained to those specified in the
schema. New facets can be added to an attribute dynamically. Facet information was used heavily
in the mapping system (see Section 10.3.11) to determine what values in a mapping took
precedence when choices had to be made about how to solve equations referencing several
attributes. The instance management system developed for EPE (see Section 9.2.1) also allowed
an attribute’' s facet information to be viewed and modified.

C.2 Query Language

This sub-appendix describes the query language provided for the object-oriented language Snart
(Mugridge 1994, following on from Grundy 1993). This query language provides a very
powerful method to determine sets of objects which match certain criteria. Development of this
language is partially in response to the Snart language supporting multiple persistent object-spaces
aswell as normal non-persistent object-spaces (where a persistent space may be used in asimilar
manner to arelational database system), and partly through the development of an inter-schema
mapping language (see Chapter 5) which requires groups of objects to be identified in order to use
amapping specification.

C.2.1 Introduction

There are many occasions when it is useful to find a set of objects which match a certain criteria.
In some circumstances all objects of a certain class are needed, in others objects whose attributes
have a particular value are required. So it is of no surprise that many object-oriented database
systems have followed the path of their relationa counterparts and offer a query language, in most
cases avariant of SQL. However, a straightforward adaption of SQL to the object-oriented world

233

is not always possible. Notions of tables, relations and allowable operations in the relational
database field often have no fixed counterpart in the object-oriented field. Methods devel oped to
evaluate conditions and optimise queriesin the relational database field can not be taken directly
through to the object-oriented field. New methods of evaluating queries for object-oriented
database systems have been developed and some of these ideas have been incorporated into this
query language (see the description of language implementation in alater section).

Selecting matching object ID's

From (classes):

space

Where {(conditions):

space@area > 30

-

Figure C.1 Snart query language interface

The query language is accessible in two forms. For the users of the Snart programming
environment, there is a query window interface invoked from the pull-down menus. This allows
the user to specify queries and have the resultant objects ID’s displayed (see Figure C.1 which
displays a query to return all space objects with an area greater than 30m2). For Snart
programmers, there is a search predicate through which a programmer can specify a search
condition and be returned a list of matching object ID’s. This second form of access to the query
system is an important feature for the work on providing multiple views of a base model through
the inter-schema mapping language of Chapter 5. One critical requirement of aview maintenance
system is to be able to define specific criteria which must be met before a mapping is performed.
The query language is the vehicle through which this portion of the mapping system can be
achieved.

C.2.2 Example Schemas
To illustrate the querying system throughout this section | will define two simple classes which
can be used in al further examples. These are a space and wall class as detailed below:

234

cl ass(space,
f eat ures(
hei ght : fl oat,
area : float,
connect _space : space,
walls : list(wall)

).

class(wal |,
f eat ures(

hei ght : fl oat,
width : float,
wal | _type : atom
ny_space : space,
position : [float, float, float],
calc_ratio(float),
is_exterior

).

C.2.3 Old Style Queries in Snart

The original Snart querying system was tiered in three levels, this structure has been modified in
the new system. One could query by the exact object identifier, in which case one object was
returned, if it existed. Alternatively, one could query through a combination of the class name and
a set of attributes value pairs. The class name and conditions could be applied simultaneously or
independently to give differing sets of objectsin return. One could also select objectsin agiven
object space, which narrowed the search even further. The structure of the query for class and
attribute querying was.

sn_find_objects(+C assNane(s), +Conditions, -TheObjects)

sn_find_obj ects(+Obj ect Space, +C assNanme(s), +Conditions, -The(hjects)

The previous form of Conditions was either a single attribute with avalue, or alist of attributes
with values which were evaluated in a conjunctive form. For example:

- sn_find_objects(end of file, height(2.4), X).
.- sn_find objects(end of file, position([1,2,0]), X).

- sn_find objects(end of file, [height(2.4),position([1,2,0])], X).

These queries would return all objects whose attributes matched exactly the given values. The
end_of file value for ClassName signifies that it was not to be included in the query. In these
examples, query one would return both wall and space objects since they both had a height
attribute, while query two and three could only return wall objects.

C.2.4 New Style Queries in Snart

The simple equivalence offered in the old style Snart query language is quite limited and a more
flexible description of the objects to be selected is useful in many applications. In fact for the

235

mapping language it is imperative to have a very flexible and powerful query language, and the
reguirements of the mapping language has driven the functionality offered in this query language.
The call for the new query system isamost identical to previoudly, i.e.,

sn_find_objects(+C assList, +Conditions, -TheCbjectTuples)

sn_find_objects(+Obj ect Space, +C assList, +Conditions, -TheOhjectTuples)

Conditions must be passed as aterm of the individual conditions to be satisfied. There are two
special modes of use of this predicate that users should be aware of. If the ClassList containsalist
of classes and there are no conditions which bind objects from different classes, then theresult isa
list of all objects of the classes defined (rather than the cross-product of the objects of the named
classes). If no classes are specified in the ClassList, but there are conditions, then these conditions
are applied to al objects.

In the previous query language it was only possible to describe queries pertaining to one class
type, in this query language any number of classes can be collected and searched as part of the
query. To this extent, the result of a query will be a set of tuples of objects of each class specified
in the query and which matches the specified conditions. Put in another way, a multi-class query
forms the cross product of all the objects from all the classes and returns only those which match
the specified query. Asthisinitial cross-product could be enormous, we employ severa methods
of reducing the size of tuples which must be examined at any one time (see the later discussion of
the language implementation). The various components of the query language are demonstrated in
the remainder of this section.

Class, Attribute and Method Referencing

To reference a particular attribute of a classin a query the user should specify both the class and
attribute names, though where a query references just one class, or where the attribute name is
unique in the classes referenced, the class name can be omitted (though this is strongly
recommended against). The object identifier of the individual objects being matched can also be
specified in the query through the use of the self keyword. The methods attached to a class can
also be invoked and are expected to be in one of two forms. Either the method is called with al
parameters specified in the condition, in which case the method must succeed or fail; or the last
parameter of the method is not specified in the query and this parameter is used to return the result
of the method invocation. For example:

ClassName@Attribute e.g., wal | @ei ght > 2

Attribute e.g., height = 2.2

ClassName@sel f e.0., space@onnect _space = space@el f
ClassName@M ethod() eg.,wall @alc_ratio > 1.5
ClassName@M ethod() e.g., wal |l @s_exterior

236

Simple Comparisons
At its most fundamental level, a query is concerned with evaluating a condition to be either true or
false. To enable us to make that decision we write a query which evaluates a certain condition
through the use of the comparison operators =, \=, >, <, >=, =< (and also all the other Prolog
comparison operators). For example:

wal | @eight = 2.4

space@rea >= 30

Compound Terms
To enable complex compound queries the user may string together a set of simple comparisons
through the use of both conjunctive (,) and disjunctive (;) operators teamed with brackets. For
example:

wal | @eight > 2.4, wall @idth > 4.5 ; wall @eight > 7.5

wal | @eight > 2.4, (wall@idth > 4.5 ; wall@idth < 2.2)

Arithmetic Expressions
Comparisons need not be based purely on the existing value of an attribute, queries may also
contain arbitrary mathematical expressions which will be evaluated to determine the outcome of the
query. The allowable arithmetic operators are +, -, *, /, // (integer quotient), mod (remainder after
integer division), ~ (to the power of), and several bit operators which can be found in the Prolog
reference manual. For example:

space@rea > space@eight * 5

space@ei ght > space@rea / space@eight * 2.4

Extended Arithmetic Expressions
Along with the standard arithmetic shown above the user can use arithmetic functions in an
expression. The allowable arithmetic functions are abs (absolute value), acos, an (base €), alog
(base 10), asin, atan, cos, deg_rad (change from degrees to radians), exp (e to the power of), fp
(thefractional part of afloat), int (integer equal to or lessthan value), ip (integer part of afloat), In
(base €), log (base 10), max (of two values), min (of two values), rad_deg (change from radians
to degrees), rand (a random number in the given integer range), sign (-1 if negative, O if O, 1 if
positive), sin, sgr, sqrt, tan. For example:

sqgrt(space@rea) > | n(space@eight)

sgr(int(sqgrt(space@rea))) > tan(deg_rad(space@eight))

max(wal | @ei ght, wall @i dth) < 2.4

Prolog Predicates

Queries using standard arithmetic may be extended by using any other standard Prolog predicates
or user defined predicates. These predicates may be of two types, those which either passor fail in
their execution, or those which return their result as the last parameter of the predicate. For

237

example:
i nt eger (wal | @ei ght)
nmenber (wal | @wal | _type, [interior, partition]), wall @eight =< 2

di stance _fromorigi n(wall @osition) < 20

Reference Pointers
As many class definitions in an object-oriented schema are concerned with references to other
objects, it is useful to be able to check values by following referencesin the object structure. We
introduce the operator => to denote an attribute of a referenced object. For example:

wal | @ry_space=>area > 25

wal | @ry_space=>connect space=>hei ght > wal | @ry_space=>hei ght

wal | @ry_space=>(hei ght * area) > wall @ei ght * sqgr(wall @i dth)

wal | @ry_space=>(1 n(height) * area) > wall @eight * sqr(wall @i dth)

Aggregation Functions
In keeping with the relational query language support for aggregation it is also possible to include
aggregation functions in an expression. While these operators are usually used to aggregate values
inatable in arelational system, in an object-oriented system they are normally used to aggregate
over a list of references found in an object. The allowable aggregation functions are sum,
maximum, minimum, count and average. For example:

maxi mum(space@wal | s=>hei ght) > 2.4

aver age(space@wal | s=>(hei ght * width)) > 12

count (space@wal | s) >= 4

List or Array Indexing
As the type of attributes can be alist of values, or alist of lists, etc., it can be useful to have a
method of accessing individua itemsin thelist or if we treat lists as an-dimensiona array then any
point in that array. To achieve thisthereisalist index operator ~ to specify which item to retrieve
from the list, or ~[] if the user wishes to reference an item in a multi-dimensional array (eg
toy_array~[4, 19, 28]). For example:

wal | @osition~[1] > 50

wal | @y_space=>wal | s~[1] = wal | @el f

Multiple Class References in a Single Condition
Though all the examples thus far have shown individual conditions dealing with just one class
type, it is quite possible to reference severa classtypesin acondition. Thisis extremely useful in
associ ating two objects which otherwise have no connection between them (or limiting the number
of combinations of classesthat get returned from a multi-class query). For example:

wal | @eight * wall @i dth = space@rea

wal | @ry_space = space@onnect _space

238

C.2.5 Implementation of the Query Language in Snart

As may be obvious from the examples shown above, the query system built on top of Snart takes
full advantage of many of the features present in Prolog to manage the evaluation of a particular
query. For example, the and and or conditions are handled directly using , and ; from Prolog.
Also, the order of the query evaluation is determined through the precedence of the various
operatorsin Prolog. At the lowest level of the evaluation all attribute references are replaced by
their value and all arithmetic terms replaced with the result of their evaluation. Therefore at the top
level of the evaluation a conditional term either fails or succeeds, thereby determining whether an
object should be added to the list of objects which satisfy the query.

To improve the efficiency of aquery evaluation there is some juggling of the queries separated by
the conjunctive operator (,). Initially each part of the query is classified as to whether it references
asingle class, or whether it references multiple classes. When processing the query, the object
ID’s for all objects of the named classes are grouped by class. Then all conditions acting on a
single class are evaluated on the objects belonging to that class. With the reduced lists of objects
the cross-product of objects from all classesisbuilt up. Thisis achieved by starting from the first

class specified in the class list and creating a cross-product with the next class from the class list.
This cross-product is reduced by applying all conditions which apply purely to these two classes.
The result of thisis used to create a cross-product with the third class from the class list, and all

conditions which apply to these three classes are applied to reduce the number of tuples to
consider, and so on, until we have covered all the classes in the class list, and al conditions have
been applied.

C.3 Object Spaces

This sub-appendix discusses the method used in the Snart language (Grundy 1993) to allow
multiple object spaces to exist in the Snart model space. Multiple object spaces provide a
mechanism for having several distinct class name spaces working in the same environment. This
allows schemas with the same class names to be used without conflict in the same environment.
For example, as the name wall is common to aimost all schemas dealing with buildings, it would
be inconvenient and user unfriendly to be required to have separate class names for awall in each
schema. The modifications required to implement multiple object spaces on top of the existing
Snart system are discussed, as are the various predicates provided for creating and manipulating
various object spaces. The object space additions described here were added to the original Snart.
The newest versions of Snart (Mugridge et al. 1995) incorporate a newer mechanism to handle
object spaces, though the management of name spaces is not addressed. The use of the new Snart
and its object spaces is described in Appendix C.4 in association with persistence and persistent
spaces.

239

C.3.1 Introduction

The provision of multiple object spaces allows new levels of class management and manipulation
to be achieved in the Snart object-oriented environment. They can also lead to better user
interaction with the Snart system by allowing the user to name classes without having undue
worry about name generation and naming conflicts. For example, in amultiple view scenario there
may be severa participants who have a class they wish to call awall, even though the definition of
these classes may all be quite distinct. With multiple object spaces each participant worksin their
own object space and may name classes as they wish. The name they define, however, is mapped
to adistinct name at the Snart class management level.

There are severa levels of management which are imposed by the addition of object spaces. At one
level it is necessary to identify the object space that any defined class belongs to. With this addition
it becomes possible to manipulate a defined set of classes in one operation. One can remove a
subset of the system classes in one go, or identify which classes are in a particular object space,
etc.

At another level it must be possible to distinguish al objects which were created in a particular
object space. With this addition it is possible to manipulate a defined set of objects in one
operation. One can remove a whole model in one operation, map a function over a whole set of
objects in one space, merge two object spaces into one, etc.

C.3.2 Defining an object space in Snart

It is necessary to identify which object space a class definition belongs to when that classis first
seen and again when it is modified. This is due to the term expansion which is used by Snart to
trandate a class definition into a form useable by the Snart system. At this point it is necessary to
map the class name from that defined in the object space to a unique name inside the Snart object
space. At theinitialisation of the Snart system a default user space called base is defined. If there
has been no other object space referenced before a class definition then the class will become a part
of the base object space. To specify the object space that a particular set of classes belongstoitis
necessary to use a predicate call of the form:

:- object_store(+ ObjectSpaceName).

This must appear in each window containing class definitions before the actual class definitions.
All classes parsed after this predicate call will belong to the named object space and it will become
the default object space. At the parsing stage aregister of classes which have been defined in an
object space is constructed. The definition of object spaces is stored through property lists with the
form defined below:

240

(sn_os _current_type, ?ObjectSpaceName)
Defines the current default object space

(sn_os class register, + ObjectSpaceName, ?Register)
Keepstrack of all classes defined in this object space. The register contains alist of objects of the
form:

ClassObjectSpaceName(ClassShartName)

(sn_os_name, +ObjectSpaceName, ?0S Tag)
Defines the atom which is prepended to the class name to give a unigue class name in the Snart
system.

(sn_os _inherit, + ObjectpaceName, ?0ObjectSpaceParent)
Defines a parent object space whose class definitions can be seen from the current object space.

To work with the object spaces there are a number of predicates which have been added to the
Snart system. They are described below.

sn_os_create(+ ObjectSpaceName)
Creates a new object space of the given name, or changes to the named object space if it already
exists.

sn_os_change, sn_os_change(+ ObjectSpaceName)
Changes the default object space to the one named or createsit if it doesn't already exist.

sn_os_del ete(+ ObjectSpaceName)
Deletes an object space from the Snart system. This removes al class definitions and al objectsin
an object space of this name.

sn_os _find_name(+ ObjectSpaceClass, -ShartClassName, -ObjectSoaceName)

Finds the mapped name of aclassin an object space. This search proceeds from the current default
object space and if such aclassis not found there then looks up the object space hierarchy, if there
is one defined for this object space. If the classis still not found then it searches all other object
spacesin no particular order until it finds a matching class name.

sn_os find_name_rev(+ SartClassClass, -ObjectSpaceClass)

The reverse for the predicate above. Given a class name in the Snart class space, it will find the
corresponding name in its object space.

241

sn_os find_all_os(+ Class, -ObjectSpaceNamel.ist)
Returnsalist of all object spaces which contain a class definition matching Class.

It isalso possible to define a default method for a whole object store. If there is a definition of the
form:

object_store(ObjectSoreName):: MethodName: - Body

object_store(ObjectSoreName): : MethodName(Arguments) :- Body

with the class definitions for an object store then this method will be applied to every object in the
named object store when MethodName is called for an object. Uses for this form of definition are
a create method which can specify special conditions for the creation of any object in a given
object-store, and similarly for a delete method.

C.3.3 Working with an object space model in Snart

Currently the creation of objects works in a similar method to classes in an object space in the
sense that any object created must be created in an object space model of the same type asthe class
from which it isbeing created. Extrainformation required to manage models of an object spaceis
kept in property lists of the following form. This extends to the persistency system in Snart (Amor
1993b) which must also keep track of which model a particular object was created in.

ObjectSpaces. Class@cr eate([Parameters, | ObjectI D)
Allows an object to be created in the named object space and for the specified class.

(sn_os_current_model, ?0bjectSpaceNumber)
Defines the current object space model being worked with.

(sn_os_model, + ObjectSpaceNumber, ?0bjectSpaceName)
Defines the type of object space that a particular model was created for.

(sn_os_object_register, + ObjectSpaceNumber, ?Register)
Holds the list of objects which were created in the object space model. The register will hold
information about all objects and isin the form:

[1p(12)",'p(15)",6,27,'p(2)']

(sn_os _def_model, +ObjectSpaceName, ?ObjectSpaceNumber)

Defines the model which was last used when working with an object space of agiven type. Thisis
used to ascertain which object space an object should be inserted into.

To work with objects in the object space model there are a set of predicates which have been added
to the Snart system. They are described below.

242

sn_create_og(+ ObjectSpaceName, -ObjectSpaceModel Number)
Creates a new object space model of the given type and returns the unique number associated with
that model.

sn_os _model_change(+ ObjectSpaceModel Number)
Allows the user to change the default object space model to the named one.

sn_find_os_name(+ Objectl D, -ObjectSpaceName)
Finds the object space type that a given object was created in.

sn_find_os_number(+ ObjectI D, -ObjectSpaceModel Number)
Finds the object space number that a given object was created in.

sn_os _delete_model (+ Model)
Deletes a model space and all the objects defined in that model. It then updates all properties to
reference another valid model. If the base model isbeing cleared it isleft as an empty model space.

sn_os_merge(+FromModel, + ToModel)
Merges two object space models, and then deletes all references to the FromMode.

sn_os_map(+ ObjectFpaceModel Number, +Call)
Sends a method call defined by Call to all objectsin a given object space mode.

C.4 Persistency

This sub-appendix discusses two methods used in different versions of the Snart language to
allow objects to be persistent. Both methods are introduced as some modules in this thesis are
written in the old Snart (e.g., EPE and Cerno-Il extensions). The mechanisms involved in
declaring and checking persistent classes are discussed, as are the methods used to load and save
datato a persistent store.

C.4.1 Introduction

Persistency isrequired in amost all programs which manage and manipulate quantities of data. In
this thesis amost every component has a requirement to manage and manipul ate large amounts of
data, whether they be the schema models, mappings, process specifications, or even the data in
models being used by the various design tools. This requirement led to a very early decision to
extend the capabilities of Snart to include persistency in some form. The two resulting systems are
described further below.

243

There has recently been a discussion on the Internet in the comp.databases.object newsgroup
about persistency and its implementation in object-oriented languages. The conclusions of this
discussion are definitions of the various models of persistency which are presented below.

OO-DBM S theory says there are 4 models of persistence. Either classes are persistent or individual
objects of classes are persistent. Persistent objects may be stored implicitly without any explicit
store operation, or they may be stored explicitly. In the net discussion one further model of
persistence was suggested which is based on a notion of reachability. This yields the following
models:

Implicit class level persistence
Your class declaration says that this class is persistent. Any object belonging to this class is
automatically stored in the database.

Implicit object level persistence
Individual objects are declared to be persistent when they are allocated. These persistent objects are
automatically stored in the database.

Explicit class level persistence
Y our class declaration says that this class is persistent. Any object belonging to this class can be
stored in the database with a store operation.

Explicit object level persistence
Individual objects are declared to be persistent when they are allocated. These persistent objects
can be stored in the database with a store operation.

Persistency by reachability

Any object reachable from a persistent root(s) at commit time becomes persistent. The programmer
never says anything about persistence; persistence isimplicit in the structure of the object graph.
Persistence by reachability was the model used in the Argus distributed persistent programming
language (Atkinson et al. 1983), and was retained in the design for the Thor distributed object-
oriented database. Persistence by reachability (based on garbage collection) was also the model
used by PS-Algol (Atkinson et al. 1983) and Napier (Morrison et al. 1988). PS-Algol is not,
however, based on an object-oriented data model.

C.4.2 Persistency in the old Snart

The model of persistency used in previous implementations of the Snart programming language
(Grundy 1993) was that of explicit class level persistence. In this form a persistent class was
described through a variation of the normal class definition syntax of Snart. This previous genera
form of a persistent class definition in Snart, as opposed to the normal class definition, is detailed

244

below:
persistent_class(ClassName, ClassVersion, ClassParents, ClassFeatures).
class(ClassName, ClassParents, ClassFeatures).

The current version of Snart has been changed to explicit object level persistence, where persistent
stores are created and only objects explicitly created in this store are saved when the store is
instructed to save itself. With potentially multiple types of object spaces available, a persistent
object space keeps track of the object ID’s in its store. This enables persistent models to be kept
distinct from other modelsin the system.

C.4.3 Manipulating persistent objects in the old Snart

Once created, persistent objects in Snart are accessed in exactly the same way as any other type of
Snart object. Where a persistent object is referenced and it hasn’t been loaded from the object store
then the object will be loaded automatically. Any change to an feature of a persistent object marks
that object as modified and a candidate for saving back to the persistent object store upon the store
closure or aforced update. The only visible difference between the persistent object and a normal
object is the index number which is generated for the object. A normal object has integer values
generated during object creation while a persistent object has an index value of the form
p(IndexNumber) indicating to the Snart system that the object is persistent.

The management and access methods for a persistent store are fairly rudimentary, stores can be
created, opened or closed, and the objectsin the store can be manually loaded or saved. The major
access methods are described below:

sn_create object_store(File, Path) or sn_create object_store
Creates and initialises a new object store in the specified location.

sn_open_object_store(File, Path) or sn_open_object_store

Opens a previously saved object store and sets the new object index above the maximum index
used in the object store. Upon opening the object spaces existing in the store are loaded and new
object spaces are defined in the Snart system for each of the object spaces in the persistent store.

sn_close object_store(File) or sn_close object_store
Closes an object store after saving all modified objects. A register of al object spaces which

contain persistent objectsis aso saved to the object store at this point.

sn_load_object_store
Loads all objects from the object store, unless they have already been previously loaded.

245

sn_load _object_store(ClassName)
Loads all objects of the type ClassName from the object store, unless they have already been
previously loaded.

sn_write_objects
Saves all modified objects back to the object store. A register of all object spaces which contain
persistent objectsis also saved to the object store at this point.

sn_merge object_store(File, Path) or sn_merge object store
Merges all objects from the named persistent store into the current persistent store. Duplicate or
clashing object ID’ s are mapped to a new 1D so they can be saved in the current store.

C.4.4 Persistency in the new Snart

The model of persistency used in the newer implementations of the Snart programming language
(Mugridge et a. 1995) isthat of explicit object level persistence. In thisform an object is created in
anamed space. If this space happens to be a persistent space then when the space is instructed to
save itself it will save al objects created inside itself. The basic structure of object spaces and the
persistent space is detailed in the Snart definitions below:

cl ass(obj ect _space,

met as(
obj ect _spaces:|i st (object_space), % Al but default, called 'o0'
create(+id, args),
renove_obj ect _space(+obj ect Space),
al | _obj ect _spaces(-1ist(object)),
| oad_obj ect (+obj ect),
trace_objects

)

features(
| ocat e_obj ect (+obj ect),
| oad_obj ect (+obj ect),
di spose
new_obj ect (+obj ect),
del et ed_obj ect (+obj ect),
all _objects(-1ist(object))

).

cl ass(smal | _persi stent_space,
i nherits(object_space),
features(
file : atom
kind : atom
creat e(+at ony,
create(+atom +atom,
open,
cl ose,
save,
delete

246

This small persistent space is implemented by an ASCII file containing all objects created in the
object space. This is a very simple implementation suitable for small amounts of data. The
complete object space is written to the file every timeiit is saved, and loaded in its entirety when the
space is opened. The only optimising feature implemented (by John Grundy) was the addition of a
line size at the start of each lineto alow the remainder of the line to be read in one go, rather than
byte by byte. The basic structure of a persistent file is shown in the file below (note: thisis
formatted to show what would appear on one line as an indented piece of text):

traced_persi stent _space.

96.

data store_ 1.

239. obj(data_store 1, [('#traced' , false), (file, 'Trebor:Desktop Fol der: VM. Test:idmdb'),
(kind, traced_persistent_space), ('#class', ns_traced_persistent_space), (tracer,
data_store_1_1), ('#original_class', ns_traced_persistent_space)]).

180. obj ('data _store_1(nms_db _controller', [('#original _class', neta ns_db _controller),
("#facets', []), ('#traced', false), ('#triggered , false), ('#class',
meta_nms_db_controller)]).

168. obj ('data_store_1(idm3d point', [('#original _class', neta_idm3d point), ('#facets',

[1), (‘#traced', false), ('#triggered , false), ('#class', neta_idm3d point)]).

159. obj ('data_store_1(idmspace', [('#class', neta_idmspace), ('#original_class',

neta_i dmspace), ('#facets', []), ('#traced', false), ('#triggered , false)]).

The mgjor functionality available for the persistent object space is described below:

sn_init_persistent_space(+Name, -Space, -File)

Creates a persistent space with the specified Name. The user is prompted to specify afilename for
the space and thisfileis used to save al objects into. The returned Space atom is the name of the
space which was created. This atom is required to name the space when an object is created as
with persistent spacesin the old versions of Snart.

small_persstent_space::create(+File[, +Kind])

Creates a persistent space with a specified filename and if requested with a specified type. The type
enables specialised forms of persistent spaces to be recognised. For example, in the example
shown above the space typeisatraced persistent space.

small_persistent_space:: open

Opens the space and loads all objects in the file into main memory. If the name of the space in the
file being loaded from is different from the one it is being loaded into all object referencesin the
file are renamed to suit the new space name.

247

small_persstent_space::save
Determines all objects which exist in the space and then writes them all to file. In the process of
doing thisthe old file is overwritten and all objects rewritten.

small_persstent_space::close
Closes a persistent space, without saving, and removes all the object definitions from the main
working memory.

small_persstent_space::delete
Performs a close as defined above and then physically removes the file from the file system.

C.5 ObjectViewer

While LPA Prolog provides a debugging system, and Snart objects al have a print method
associated with them, this does not provide the ideal interface for interactive development and
testing of Snart programs. What is often required is a dynamic view of the changing state of
specific objects as a program runs. The ObjectViewer provides a general purpose debugging tool

for the Snart language as well as a data model viewing and navigation tool. The basic premise of
the ObjectViewer isthat it spies upon an object, and always reflects the current state of the object.

It is more powerful than that, asit also alows attributes to be modified, and methods of the class
to be invoked, from the object view window.

data_store_1_18 : idm_hip_roof

abutting [[data_store_1_7]

|
apexi [data_store_1_21 |
apex? [data_store_1_22 |
material ['?No Dalue?’ |
max [data_store_1_28 |
min [data_store_1_19 |
name ['#No Dalue?' |
normal | ?No Dalue? v |
type classify | idm_hip_roof w |
Window: | Popup Menu |

L -

Figure C.2 ObjectViewer interface

The ObjectViewer is built into Snart and can be invoked either through an extended menu item in
the LPA Prolog environment, or through a hot-key. Whichever way it isinvoked the ObjectViewer
collects the highlighted text in the current window and parses thisto extract all object identifiers.

248

For each identifier found in the highlighted text it will create an ObjectViewer window for them.
To beinformed of the state of the named object, the ObjectViewer places a trace on the object and
is then informed of all modifications made to the object through the Snart system (e.g., attribute
assignment, re-classification, deletion). For each class of object the ObjectViewer spies upon, it
creates a new class definition which provides the mechanism to display an object and manage
messages passed back from the viewing window. The window created for an object allows values
for attributes to be modified, and then set for the underlying object. Attribute valuesin a window
change at the same time that they are set in the underlying object.

By default the ObjectViewer uses the set of attributes of a class to determine the layout of a
window representing that object. The resulting layout is as seen in Figure C.2.

This default layout displays all attributes in al phabetic order, followed by a set of functionsin the
Window Popup Menu line at the bottom. This default layout can be modified by specifying a
layout template for objects of a given class. This layout comprises a list of four types of
component which will be rendered in the display window in the order they are named. This
provides away of ordering and reducing the attributes which are displayed, of changing the style
of layout of the window specific functions, and of allowing method calls of the object to be
invoked. The four components are described below:

Attribute: names an attribute of the class to be displayed in the window. Attributes are displayed
according to their type. As shown in the diagram above, classifiers are shown as a popup
item which allows the object to be reclassified. Attributes of enumerated types will also be
shown as a popup where any of the enumeration can be selected.

Button: defines a button to be displayed in the window. Buttons declared in sequence are strung
side-by-side, up to three across a window. Button specifications take the form
Buttonl D(ButtonLabel), where ButtonID is the name of the method invoked when the
button is pressed. ButtonLabel provides the name that will be seen in the button.

Popup: defines a popup menu which can contain several items. When the popup menu is accessed,
the item selected when the mouse button is released is the method which isinvoked. Popup
specifications take the form PopuplD(PopupLabel, [ItemID1(ltemLabell),
ItemlD2(ItemLabel2), ...]), where PopupLabel is the name given to the popup in the
window (e.g., Window in the figure above) and ItemI D is the name of the method invoked
when the popup item is selected. ItemLabel provides the name that will be seen in the
popup. A special form of popup item is allowed called nop(+Char). This allows a
separating item to be placed in alist which performs no operation. Char is used as the
character used to create the separating line and is drawn across the maximum width of the
popup.

Window Functions: this is a keyword of either '$popup_system$' or '$button_system$' which
defines where the window system functions are placed and in what form they appear.
Window functions can be placed as a popup, as shown in the diagram above, or as a set of

249

buttons in the window. If the window function keyword is not included in the layout
specification then it will be added automatically at the end as a popup.

The set of window functions which are supplied for every object are asfollows:

update(' Apply Modifications’)
Modifies the object to reflect the values which have been set in the ObjectViewer window. If this
includes a reclassification then the object type is reclassified.

view_all('View All Objects)

Runs the ObjectViewer over everything in the attribute that the cursor residesin. Thisisthe same
as caling ObjectViewer with highlighted text, except in this case the text does not need to be
highlighted.

view_selected('View Selected’)
Runs the ObjectViewer over everything highlighted in the attribute that the cursor residesin. This
isthe same as calling ObjectViewer with highlighted text.

print_object('Print Object’)
Invokes the print method of the underlying object.

dispose('Discard View')
Removes the window and tracers on the object from the system. Thisisin contrast to clicking the
go-away box in the window title-bar which merely hides the window.

redraw('Re-Draw’)
Redraws the window to take account of the newly specified window size or font specifications.

restructure('Re-Sructure’)
Totally redraws the window to take into account a new layout specification for the class the object
represents.

There are also a set of global parameters which can be set for the ObjectViewer. These are
described below:

sn_ov_set_width

sn_ov_set width(+Width)

Sets the maximum width of the window. This is then used to calculate the size required for
attribute names and the remainder is used for displaying the attribute values. Without a parameter
sn_ov_set_width sets the value back to its default. This call only affects windows which are

250

created after the call is made, not existing windows. There are constraints upon the maximum and
minimum window width based on screen size and the font specification described below.

sn_ov_set_font

sn_ov_set_font(+ Font)

sn_ov_set_font(+Font, + Sze)

sn_ov_set_font(+Font, + yle, + Sze)

Sets the display font, style and size. By default this is Courier 10 point. This call only affects
windows which are created after the call is made, not existing windows.

251

Appendix D

Small Examples Models and Mappings

These twenty small examples are taken from examples in papers describing other mapping
languages (Clark 1992, Bailey 1994, Hardwick 1994) as well as the author’s own work. While
there is some considerable overlap between some of the following examples, the author feelsit is
useful to provide VML definitions of each example for comparison purposes. The layout of the
following examplesis a definition of the schemas used for the IDM model in the left column and
the view schema in the right column. The required mapping definition for the two schemasis
given below the schema definitions.

252

1) Example from Clark (1992).

This example shows the mapping between a single entity in one schema and multiple classified
entities in the second schema. The invariant gender = male ensures that only entities describing a
male in the idm are mapped to the male entity in viewl. The entity reference of male for viewlin
the inter_class definition ensures that only male entities get mapped to person entities in the idm
schemawith gender being set to male.

Note: In this example the entity person in viewl can not be mapped to person in the idm as the
gender attribute of person in theidm is not optional.

1) 2)
SCHEMA i dm SCHEMA vi ewl;
TYPE sex_type = ENUMERATI ON OF ENTI TY person
(male, female); SUPERTYPE OF (ONEOF (nal e,
END TYPE; femal e));
name : STRI NG
ENTI TY person; age : | NTEGER;
name : STRI NG END_ENTI TY;
age : | NTEGER
gender : sex_type; ENTI TY nal e
inity : | NTECER; SUBTYPE OF (person);
END_ENTI TY; mascul inity : | NTEGER
END_ENTI TY;
END_SCHEMA;

ENTITY femal e
SUBTYPE OF (person);
femninity : | NTEGER,
END_ENTI TY;

END_SCHEMA;

Mappi ng
inter viewm(idm integrated, viewl, read wite, conplete).

i nter_class([person],[nale],

i nvari ants(gender = 'nmale'),
equi val ences(nane = nane,
age = age,

inity = masculinity)

).

i nter_class([person],[femal e],

i nvari ants(gender = 'female'),
equi val ences(nane = nane,
age = age,

inity = femninity)

253

2) Example from Clark (1992).

This example shows the mapping between schemas whose inheritance hierarchies have a different
distribution of attributes. This mapping shows how mappings may be defined for parent entities
and seen by children entities when they need to perform their mappings.

Note: the attribute size for entity person in schema viewl will be required when mapping from the
idm to viewl. However, this does not force a reclassification as would be the case in the previous
example, so a mapping between person and person is possible in this case.

1) 2)
SCHEMA i dm SCHEMA vi ewl;
ENTI TY person ENTI TY person
SUPERTYPE OF (ONECF (man, SUPERTYPE OF (ONECF (nan,
woman)) ; woman)) ;
name @ STRI NG name : STRI NG
age : | NTEGER, age : | NTEGER;
END_ENTI TY; size : | NTEGER;
END_ENTI TY;
ENTI TY man
SUBTYPE OF (person); ENTI TY nan
mascul inity : | NTEGER, SUBTYPE OF (person);
size : | NTEGER; mascul inity : | NTEGER;
END_ENTI TY; END_ENTI TY;
ENTI TY woman ENTI TY wonman
SUBTYPE OF (person); SUBTYPE OF (person);
femninity : | NTEGER, femninity : | NTEGER,
size : | NTEGER; END_ENTI TV
END_ENTI TY;
END_SCHEMA;
END_SCHEMA;
Mappi ng

inter view(idm integrated, viewl, read wite, conplete).

i nter_cl ass([person],[person],
equi val ences(nanme = nane,
age = age)
).

inter_class([man],[man],
i nherits(inter_class([person],[person])),
equi val ences(si ze = size
mascul inity = masculinity)
).

i nter_cl ass([wonan], [wonan],
i nherits(inter_class([person],[person])),
equi val ences(si ze = size
femninity = femninity)
).

254

3) Example from Clark (1992).

This example is an extension of the previous example which shows a derived entity in viewl. In
Clark (1992) there is an explicit mapping to generate this derived entity. We believe that thisis an
erroneous schema and that defining a mapping in thiscaseisinvalid. Thisis a derived entity and
as such should be described so in the schema definition, and implemented as one in the database

system (i.e., a database view).

1)
SCHEMA i dm

ENTI TY person

SUPERTYPE OF (ONECF (man
women)) ;

name : STRI NG

age : | NTEGER
END_ENTI TY;

ENTI TY man
SUBTYPE OF (person);
mascul i nity : | NTEGER
size : | NTEGER
END_ENTI TY;

ENTI TY woman
SUBTYPE OF (person);
femninity : | NTEGER
size : | NTEGER
END_ENTI TY;

END_SCHEMA;

Mappi ng

inter view(idm integrated, viewl,

i nter_class([person],[person],
equi val ences(nane = nane,
age = age)
).

2)
SCHEMA vi ewd;

ENTI TY person

SUPERTYPE OF (ONECF (man,
women)) ;

name : STRI NG

age : | NTEGER

size : | NTEGER
END_ENTI TY;

ENTI TY man
SUBTYPE OF (person);
mascul inity : | NTEGER
END_ENTI TY;

ENTI TY woman
SUBTYPE OF (person);
femninity : | NTEGER
END_ENTI TY;

ENTI TY coupl €;
him: man;
her : woman;
conpatibility : | NTEGER
END _ENTI TY;

END_SCHEMA;

read write, conplete).

inter_class(inherits([man],[man],

i nter_cl ass([person],[person])),
equi val ences(si ze = si ze,

mascul inity = masculinity)
).

i nter_class(inherits([woman], [woman],

i nter_cl ass([person],[person])),
equi val ences(si ze = si ze,

femninity = femninity)
).

255

4) Example from Clark (1992).

This example shows the mapping definition between two conceptually different representations of
a point on a plane. The idm represents a point using an angle and radius, viewl by absolute
geometrical coordinates.

1) 2)
SCHEMA i dm SCHEMA vi ewl;
ENTI TY poi nt; ENTI TY poi nt;
r : REAL; x_coord : REAL;
theta : REAL; y _coord : REAL;
END_ENTI TY; END_ENTI TY;
END_SCHEMA; END_SCHEMA;
Mappi ng

inter view(idm integrated, viewl, read wite, conplete).

inter_class([point],[point],
equi val ences(r * cos(theta) = x_coord,
r * sin(theta) = y_coord,
r = sqgrt(sqr(x_coord) + sqr(y_coord)),
theta = tan_1(y_coord / x_coord))

256

5) Example from Bailey (1994).

This example shows a simple mapping between two structurally similar representations of acircle.
Note: If comparing to Bailey (1994) notice that we define the mapping between references to other
entities explicitly (e.g., circle.centre and circ.centre). Bailey (1994) assumes that this can be
handled automatically.

1) 2)
SCHEMA i dm SCHEMA vi ewd;
ENTITY circle; ENTITY circ;
centre : point; centre : point;
radi us : REAL; di ameter : REAL;
END_ENTI TY; END_ENTI TY;
ENTI TY point; ENTI TY point;
X, Y, z : REAL; x_coord, y coord, z coord
END_ENTI TY; REAL;
END_ENTI TY;
END_SCHEMA;
END_SCHEMA,
Mappi ng

inter viewm(idm integrated, viewl, read wite, conplete).
inter_class([circle],[circ],

equi val ences(radius * 2 = di aneter,
centre = centre)
).

inter_class([point],[point],
equi val ences(x = x_coord,

257

6) Example from Bailey (1994).

This example shows how the mapping between two structurally dissimilar representations of a
circle can be described. The invariant provides the requisite information to create a point for each
circle when mapping from the idm to view1 and gives the selection strategy when creating idm
circles from view1 objects.

1) 2)
SCHEMA i dm SCHEMA vi ewl;
ENTITY circle; ENTITY circ
radi us : REAL; centre : point;
centre X, centre_y, centre_z di ameter : REAL;
. REAL; END_ENTI TY;
END_ENTI TY;
ENTI TY poi nt;
END_SCHEMA; x_coord, y coord, z_coord :
REAL;
END_ENTI TY;
END_SCHEMA;
Mappi ng

inter view(idm integrated, viewl, read wite, conplete).

inter_class([circle],[circ],
equi val ences(radius * 2 = dianeter,

centre_x = centre=>x_coord,
centre_y = centre=>y_coord,
centre_z = centre=>z_coord)

258

7) Example from Bailey (1994).

This example is structurally identical to the previous example and is included for comparison to

Bailey (1994).

1)
SCHEMA i dm

ENTITY | ocation
point : cartesian_point;
END_ENTI TY;

ENTI TY cartesian_point;
X, VY, z . REAL;
END_ENTI TY;

END_SCHEMA;

Mappi ng
inter view(idm integrated, viewl,

inter_class([location],[location],
equi val ences(point=>x = p
poi nt=>y = g,
poi nt =>z r)

2)
SCHEMA vi ewd;

ENTITY | ocati on;
p, g, r : REAL;
END _ENTI TY;

END_SCHEMA;

read write, conplete).

259

8) Example from Bailey (1994).

This example shows the mappings required for a classification problem.

1)
SCHEMA i drm

ENTITY circle;

centre : cartesian_point;
OPTI ONAL REAL;
radi us : OPTI ONAL REAL;
OPTI ONAL

di anet er

pl, p2, p3:
cartesian_point;
END_ENTI TY;

ENTI TY cartesi an_poi nt;
X, VY, z . REAL

2)
SCHEMA vi ewl;

ENTI TY poi nt;
X, VY, z . REAL;
END ENTI TY;

ENTI TY radi us_circle;
centre : point;
radi us : REAL;

END_ENTI TY;

ENTITY diamcircle;

inter view(idm integrated, viewl, read wite,

inter_class([cartesian_point],[point],

equi val ences(x = X,
y =Y,
z z

).

inter _class([circle],[radius_circle],

i nvariants(exists(circle.radius)),
equi val ences(centre = centre
radi us = radi us)

inter _class([circle],[diamcircle],

i nvari ants(exists(circle.dianeter)),
equi val ences(centre = centre

di aneter = dianeter)
).

inter_class([circle],[three_p circle],
i nvari ant s(exi sts(pl), exi sts(p2), exi sts(p3)),

equi val ences(pl = p_1,
p2
p3

p_2,
p_3)

260

END _ENTI TY; centre : point;
di ameter : REAL;
END_SCHEMA; END_ENTI TY;
ENTITY three_p_circle;
p_1, p_2, p_3:
END_ENTI TY;
END_SCHEMA;
Mappi ng

conpl ete).

poi nt;

9) Example from Bailey (1994).
This example shows the mapping for two structurally different representations of an arc.

1) 2)
SCHEMA i dm SCHEMA vi ewl;
ENTI TY t hree_point_arc; ENTI TY angl e_arc;
pntl, pnt2, pnt3: point; centre : point;
END_ENTI TY; radi us : REAL;
theta : REAL;
ENTI TY point; phi : REAL;
X, Yy : REAL; END_ENTI TY;
END_ENTI TY;
ENTI TY point;
END_SCHEMA; X, Yy : REAL;
END_ENTI TY;
END_SCHEMA;
Mappi ng

inter viewm(idm integrated, viewl, read wite, conplete).

inter_class([three_point_arc],[angle_arc],
equi val ences(pnt 2=>x = centre=>X,

pnt 2=>y = centre=>y,

pnt 1=>x = centre=>x - radius * cos(theta),
pnt1=>y = centre=>y + radius * sin(theta),
pnt3=>x = centre=>x - radius * cos(phi),
pnt3=>y = centre=>y - radius * sin(phi))

261

10) Example from Amor (1994).

This example shows the merging of two entities in view1 to one entity in the idm, or vice versa.
The creation of trombe_type entities is regulated by the unigque clause on name which guarantees
that only one of any trombe_type existsin the system.

Note: The matching of trombe_wall and trombe_type is done by equivalence of the name field to
the trombe_type.

1) 2)
SCHEMA i dm SCHEMA vi ewdl;
ENTI TY tronbe_wal | ; ENTI TY tronbe_wal | ;
height, width : REAL; hei ght, width : REAL;
gl azing _area : REAL; gl azing _area : REAL;
vent _area : REAL,; vent _area : REAL;
tronbe _type : STRI NG tronbe_type : STRING
perf _ratio : REAL; END ENTI TY;
END_ENTI TY;
ENTI TY tronbe_type;
END_SCHEMA; name : STRI NG
perf_ratio : REAL;
UNI QUE nane;
END_ENTI TY;
END_SCHEMA;
Mappi ng

inter view(idm integrated, viewl, read wite, conplete).

inter_class([tronbe wall],[tronbe wall, tronbe type],

invariants(tronbe _wall.tronbe type = tronbe_type. nane),
equi val ences(hei ght = hei ght,

wi dth = width,

gl azi ng_area = gl azi ng_area,

vent _area = vent_area,

tronbe_type = tronbe_type,

perf _ratio = perf_ratio)

262

11) Example from Amor (1994).
This example is the same as the previous example except the link between trombe wall and

trombe_type is made through a pointer to an object of trombe_type.

1)
SCHEMA i dm

ENTITY tronbe_wall;
hei ght, width : REAL;
gl azing_area : REAL;

2)
SCHEMA vi ewd;

ENTITY tronbe_wall;
hei ght, width : REAL;
gl azing _area : REAL;

vent _area : REAL; vent _area : REAL;

tronbe _type : STRING tronbe _type : tronbe_type;
perf _ratio : REAL; END _ENTI TY;
END_ENTI TY;
ENTI TY tronbe_type;
END_SCHEMA; name : STRI NG
perf_ratio : REAL;
UNI QUE nane,
END_ENTI TY;
END_SCHEMA;
Mappi ng

inter viewm(idm integrated, viewl, read wite, conplete).

inter _class([tronbe wall],[trombe wall],
equi val ences(hei ght = hei ght,
wi dth = width,
gl azing_area = gl azing_area,
vent _area = vent_area,
tronbe_type = tronbe_type=>nane,
perf ratio = tronbe_type=>perf_ratio)

263

12) Example from Amor (1994).

This example shows the merging of several entities based on akey into one entity in theidm.

1)
SCHEMA i drm

ENTI TY wal | ;
results :
END_ENTI TY;

ENTI TY perf _result;

al, a2, a3 : REAL,
bl, b2, b3 : | NTEGER
cl, c2, c¢3 : BOOLEAN

END_ENTI TY;

END_SCHEMA;

Mappi ng

inter_view(idm integrated,

inter_class([wall],[wall,

perf _result;

vie

2)
SCHEMA vi ewl;

ENTITY wal | ;
id: | NTEGER
UNI QUE i d;
END_ENTI TY;

ENTI TY wperf1;

wal | _I D : | NTEGER,
al, a2, a3 : REAL,
UNI QUE wal | _I D ;

END_ENTI TY;

ENTI TY wperf 2;
wal | _I D : | NTEGER,
bl, b2, b3 : | NTEGER
UNI QUE wal | _I D ;

END_ENTI TY;

ENTI TY wper f 3;
wal | _I D : | NTEGER,
cl, c2, c3 : BOOLEAN
UNI QUE wal | _I D ;

END_ENTI TY;

END_SCHEMA;

wl, read wite, conplete).

wperfl, wperf2, wperf3],

invariants(viewl:wall.id = wperfl.wall _ID,
viewl:wall.id = wperf2.wall | D
viewl:wall.id = wperf3.wall _ID),

equi val ences(results=>al = al
results=>a2 = a2,
results=>a3 = a3,
resul ts=>bl = bl,
resul ts=>b2 = b2,
resul t s=>b3 = b3,
results=>cl = cl,
results=>c2 = c2,
results=>c3 = ¢c3)

264

13) Example from Amor (1994).

This example shows the definition of an equivalence which can not be mapped automatically in
two directions. Trying to create the idm wall from aview1 wall will result in a constraint being
imposed on height and width without it being possible to calculate their exact values.

1) 2)
SCHEMA i dm SCHEMA vi ewl;
ENTITY wal | ; ENTITY wal | ;
construction : LIST OF construction : LIST OF
mat eri al ; mat eri al ;
hei ght : REAL; area : REAL;
wi dth : REAL; END _ENTI TY;
END_ENTI TY;
END_SCHEMA,;
END_SCHEMA;
Mappi ng

inter viewm(idm integrated, viewl, read wite, conplete).

inter _class([wall],[wall],
equi val ences(wi dth * hei ght = area,
construction = construction)

).

265

14) Example from Amor (1994).

This example shows the mapping required for aviewl entity which contains summary information
rather than explicit representations of component entities. It is obviousin this example that thereis
no way to generate idm windows directly from the viewl wall entity. However, mapping from
view1l to the idm will impose severa constraints on the properties of the windows list.

1) 2)
SCHEMA i dm SCHEMA vi ewl;
ENTITY wal | ; ENTITY wal | ;
materials : LIST OF materi al ; materials : LIST OF materi al ;
wi ndows : LI ST OF wi ndow, wal | _area : REAL;
hei ght : REAL; gl azing _area : REAL;
width : REAL; END_ENTI TY;
END_ENTI TY;
END_SCHEMA;

ENTI TY wi ndow;,

of fset : position;

hei ght : REAL;

wi dth : REAL;

mat eri al s : LI ST OF
wi ndow_nmat ;
END_ENTI TY;

END_SCHEMA;
Mappi ng
inter view(idm integrated, viewl, read wite, conplete).
inter _class([wall],[wall],
equi val ences(wal | . materials = nateri al s,

sumwal | . wi ndows=>(hei ght * width)) = glazing_area,
wal | . height * wall.width = wall _area + gl azing _area)

266

15) Example from Amor (1994).
Thisexampleis similar to the previous example except that there is more information which can be
gleaned from the idm objects.

1) 2)
SCHEMA i dm SCHEMA vi ewd;
ENTI TY wi ndow; ENTI TY wi ndow;
panes : LIST OF pane; of fset : position;
of fset : position; hei ght : REAL;
fram ng : frane; wi dth : REAL;
END_ENTI TY; material : LIST OF
gl azi ng_mat ;
ENTI TY pane; END_ENTI TY;
of fset : position;
hei ght : REAL; END_SCHEMA,
wi dth : REAL;

material : LIST OF
gl azi ng_mat ;
END_ENTI TY;

END_SCHEMA;

Mappi ng
inter viewm(idm integrated, viewl, read wite, conplete).

i nter_class([w ndow], [w ndow] ,
equi val ences(of fset = offset,
panes[1] =>material = naterial,
maxi mum(panes=>(of f set =>y + hei ght))- m ni mun{ panes=>of f set =>y) =
hei ght
maxi mun(panes=>(of fset =>x + wi dth))- m ni num panes=>of f set =>x) =
wi dt h)
).

267

16) Example from Amor (1994).
This example shows the relative complexity required to manage the mapping between a general
schedule representation in the idm, and a more specific representation in view1 (where schedule
information is grouped into bunches of three in each entity). This example comes from
representations found in SUNCODE and DOE-2. In this example it is useful to introduce a
temporary entity which capturesalist of lists comprising up to threetime_val entities as a half way
point between the two schema entities. This temporary entity has an implied schema as follows:
ENTITY _temp_schedule;

name : STRING;

splitvals : LIST OF LIST [1:3] OF time_val;
END_ENTITY;
Also note the use of a variable parameter | in the inter_class definition, this provides the
mechanism for determining how to merge the multiple schedule objects into a single
_temp_schedule object with the list being constructed in the correct order.

1) 2)
SCHEMA i dm SCHEMNA vi ewl;
ENTI TY schedul e; ENTI TY schedul e;
nane : STRI NG nane : STRI NG
vals : LIST OF tinme_val; position : | NTEGER,
UNI QUE nane; schedl : tinme_val;
END_ENTI TY; sched2 : OPTIONAL time_val;
sched3 : OPTIONAL tinme_val;
ENTITY tinme_val; UNI QUE nane, position;
time : | NTEGER, END ENTI TY;
val : REAL;
END _ENTI TY; ENTITY tinme_val;
time : | NTEGER,
END_SCHEMA, val : REAL;
END_ENTI TY;
END SCHEMA;
Mappi ng

inter_viewmidm integrated, viewl, read wite, conplete).

inter class([tine_val],[time_val],
equi val ences(time = tine,

val = val)
).
inter _class([schedul e],[_tenp_schedul e],
equi val ences(name = _tenp_schedul e. nane,

list splitter(vals, _tenp_schedule.splitvals))

).

268

inter _class([_tenp_schedul e], [schedul e],
i nvari ant s(group(schedul e. nane)),
equi val ences(nane = nane ,

splitval s[schedul e. position, 1] =
splitval s[schedul e. position, 2] =
splitval s[schedul e. position, 3] =

)

list splitter([], []

list splitter([A]l, [[A]).

list splitter([A B, [[A B]]).

list_splitter([A, B, CJRest], [[A B, C|SplitRest) :-
list splitter(Rest, SplitRest).

).
[

269

schedl,
sched2,
sched3)

17) Example from Amor (1994).

This example shows the mapping required to provide representations of a wall as a positioned
rectangle in the idm and as a stretched and rotated column in view1.

Note: The definition of the mapping for lists of equivalent types can be performed without
recourse to individual elements in the list. However, in the next example we have a case where
accessing the individual elements of alist is necessary for the specification of the mappings.

1) 2)
SCHEMA i dm SCHEMA vi ewl;
ENTITY wal | ; ENTI TY col um;
name . STRI NG name . STRI NG
hei ght : REAL; hei ght : REAL;
width : REAL; radi us : REAL;
azimuth : REAL; azimuth : REAL;
position : LIST [3:3] OF position : LIST [3:3] OF
REAL; REAL;
UNI QUE nane; UNI QUE nane;
END _ENTI TY; END ENTI TY;
END_SCHEMA; END SCHEMA;
Mappi ng

inter view(idm integrated, viewl, read wite, conplete).

inter_class([wall],[colum],
equi val ences(nanme = nane,
hei ght = hei ght,
width = radius * 2,
azimuth = azimut h,

position[1] = position[1l] - cos(azinmuth) * radius,
position[2] = position[2] - sin(azimuth) * radius,
position[3] = position][3])

270

18) Example from Amor (1994).
This example shows the mapping required to provide representations of a wall as a positioned
rectanglein the idm and as a set of four 3D pointsin view1.

1) 2)

SCHEMA i dm SCHEMA vi ewl;

ENTITY wal | ; ENTITY wal | ;
name : STRI NG name @ STRI NG
hei ght : REAL; corners : LIST [4:4] OF LIST
wi dth : REAL; [3:3] OF REAL;
azimuth : REAL; UNI QUE narre;
position : LIST [3:3] OF END_ENTI TY;

REAL;
UNI QUE nane; END_SCHEMA;

END_ENTI TY;

END_SCHEMA;

Mappi ng

inter viewm(idm integrated, viewl, read wite, conplete).

inter _class([wall],[wall],
equi val ences(nane = nane

position[1] = corners[1, 1],

position[1] = corners[4, 1],

position[2] = corners[1, 2],

position[2] = corners[4, 2],

position[3] = corners[1, 3],

position[3] = corners[2, 3],

position[3] + height = corners[3, 3],

position[3] + height = corners[4, 3],

position[1l] + width * cos(azinmuth) = corners[2, 1],
position[1l] + width * cos(azinmuth) = corners[3, 1],
position[2] + width * sin(azinmuth) = corners[2, 2],
position[2] + width * sin(azinmuth) = corners[3, 2])

271

19) Example from Amor (1994).

This example shows the mapping between a global coordinate system and an offset coordinate
system. This example is rather contrived as it is more likely that there would be a space entity
above the wall of the idm which would also be in global coordinates, and hence the cal culation of
the wall location would be considerably easier. The use of variables greatly simplifies the size of

the expressions that would otherwise need to be written in this mapping.

1)

SCHEMA i dm

ENTITY wal | ;
name @ STRI NG
X_pos : REAL;
y_pos : REAL;
z_pos : REAL,;
hei ght : REAL;
wi dth : REAL;
azimuth : REAL;
UNI QUE nane;

END_ENTI TY;

END_SCHEMA;

Mappi ng

2)
SCHEMA vi ewl;

ENTI TY bui | di ng;
X_pos : REAL;
y_pos : REAL;
z_pos . REAL,

azimuth : REAL;
END_ENTI TY;
ENTI TY space;
x_of fset REAL;
y_of fset REAL;
z_of fset REAL;
azimuth : REAL;
frombuilding : building;
END_ENTI TY;
ENTITY wal | ;
name @ STRI NG
x_of fset REAL;
y_of fset REAL;
hei ght REAL;
wi dth : REAL;
azimuth : REAL;
from space : space;
UNI QUE nane;
END_ENTI TY;
END_SCHEMA;

inter view(idm integrated, viewl, read wite, conplete).

inter _class([wall],[wall],
equi val ences(nanme = nane,
hei ght = hei ght,
wi dth = width,

Wal | Theta = tan_1(y_offset / x_offset),
Wal | Dist = sqrt(sqr(x_offset) + sqr(y_offset)),
Wal | X = wal Il Dist * cos(Wall Theta + azi nmuth),
wallYy = wall Dist * sin(Wall Theta + azi nuth),

Spacelocal X
Spacelocal Y

wal | X + from space=>x_of f set,
wallY + from space=>y offset,

SpaceTheta = tan_1(SpacelLocal Y / SpacelLocal X),

SpaceDi st = sqrt(sqr(SpacelLocal X)

+ sqr (SpacelLocal Y)),

SpaceX = SpaceDi st * cos(SpaceTheta + from space=>azi muth),
SpaceY = SpaceDi st * sin(SpaceTheta + from space=>azi muth),

272

Bui | di ngLocal X = SpaceX + from space=>from bui | di ng=>x_pos,

Bui | di ngLocal Y = SpaceY + from space=>from bui |l di ng=>y_pos,

Bui | di ngTheta = tan_1(Buil di ngLocal Y / Buil di ngLocal X),

Bui | di ngDi st = sqrt(sqr(Buil dingLocal X) + sqr(Buil di ngLocal Y)),

X_pos = Buil di nghi st *cos(Bui |l di ngThet a
+ from space=>from bui | di ng=>azi mut h),
y_pos = Buil di ngDi st *si n(Bui | di ngThet a
+ from space=>from bui | di ng=>azi mut h),
z _pos = fromspace=>from buil di ng=>z _pos + from space=>z_of fset,

azi muth = Buil di ngThet a)

273

20) Example from Hardwick (1994).

This example shows the mapping required to provide a representation of ablock as defined in AP

203 from STEP in aless complex form (i.e., collapsing the structure).

1) 2)
SCHEMA easy_203; SCHEMA ap_203
ENTI TY cube; ENTI TY bl ock
X : REAL; position : axis2 placenent;
y : REAL; X : REAL;
z . REAL; y : REAL;
size : REAL; z . REAL;
END_ENTI TY; END_ENTI TY;
END_SCHEMA; ENTI TY axi s2_pl acenent;
axis : direction;
ref _direction : direction
| ocation : cartesian_point;
END_ENTI TY;
ENTITY direction;
vect or LI ST [3:3] OF REAL;
END_ENTI TY;
ENTI TY cartesi an_poi nt;
coordinates : LIST [3:3] OF
REAL ;
END_ENTI TY;
END_SCHEMA;
Mappi ng
inter_view(easy 203, read wite, ap_ 203, integrated, conplete).

i nter_cl ass([cube], [bl ock],
i nvari ant s(bl ock. x = bl ock.y,
bl ock.y = bl ock. z),
equi val ences(si ze = X,

X = position=>l ocation=>coordi nates[1],

y = position=>l ocation=>coordi nates|[2],

Zz = position=>| ocation=>coordi nates[3]),
initialisers([0,0,1] = position=>axi s=>vector,

[0,0,1] = position=>ref _direction=>vector)

).

274

Appendix E

L arge Example Models and Mappings

To provide an example of the use of the type of integrated design system and hence amore redlistic
example than those shown in Appendix D, the work performed in previous BRANZ contractsis
highlighted (Hosking et al. 1995 and Mugridge et a. 1996). As part of these contracts arange of
small tools were connected through an integrated data model (see Figure E.1). Several screen-
dumps of the use of this system are shown in the following section, followed by descriptions of
the tools and their schemas. The mappings for each tool are listed as well as a project window to
show how the use of these tools could be managed in a project. Much of the description below is
drawn from Hosking et a. (1995) and Mugridge et al. (1996).

PlanEntry Vision-3D

N
"

FaceEditor WallBrace

IDM ThermalDesigner

Figure E.1 Integration of toolsin example

E.1 Description of Large Example

In this section we describe an example of the integrated system in action. Figure E.2 shows a
building design for asimple L shaped building constructed using PlanEntry. Having constructed

275

this model, the user is currently in the process of mapping the design (as awhole, in this case) to
the IDM and then on to the other tools. The additional windows provide information about the
transactions involved in the various mappings, and allow the user to instigate the mapping

process.

Uiew 1 Plan

Mapping Manager

@ 4 View 4 Left [stop system | [connect Transaction Mapping | [Sever Mapping |

View

Connected

[foanest futomatic Mapping]

idm[1] - vision3d[1]
idm[1] - faceeditor[1]
idm[1] - planentryl[1]

[&

View 3 Plan

Interliew Manager for: idm[1] - faceeditor[1]

Interliew Manager for: idm[1] - vision3d[1]

”
@ 4&1@ View 4 Left
-

idm[1] transactions

Interliew Manager for: idm[1] - planentryl1]

[Apply to other view]

fi

planentryl1] transactions

i

=

Initial Design: planentry[1]0(2, SysBoot:Deskto|{p

€l

Figure E.2 Building design in PlanEntry with mapping controlers

View 1 Plan

Plane ? =icF=—"="7"——

@ 0| oo \
—

1 B4

[E Tools =
+

A
z

2
¢

Figure E.3 Result of mapping to VISION-3D and FaceEditor

276

Figure E.3 shows the result of mapping the model through to VISION-3D (at rear) and mapping
one of the faces through to the face editor to allow addition of materials.

Figure E.4 shows another design represented in three of the tools.

View 1 Plan =——— lliew 2 Front g_l

WView 2 Front

Plane 3

Figure E.4 Building design after mapping to three tools

A layout change for this design is shown in Figure E.5, where one of the spaces is moved so that
the building changes from being an L-shape to being a T-shape.

UView 1 Plan =—————— liew 2 Front

j:t :] Yiew 1 Plan

View 2 Iront

Figure E.5 Layout change to building in Figure E.4

277

The result of propagating this change to the other toolsis shown in Figure E.6.

UView 1 Plan =————— lliew 2 Front %l

Plane 3

/g
T

®

Figure E.6 Result of propagating changes shown in Figure E.5

E.2 Schemas for the Large Example

Detailed below are the schemas for the IDM, PlanEntry, FaceEditor, VISION-3D, and
Thermal Designer. The schemas are described utilising a combination of SPE diagrams and the full
code of some of the schemas. The code for PlanEntry and FaceEditor is not presented, as the class
definitions are tied very closely to the implementation, giving unnecessary complexity for this
appendix.

E.2.1 IDM schema

The schema description for the IDM is shown below. This incorporates el ements from PlanEntry
and the FaceEditor, as well as including building attributes that are relevant to Thermal Designer
and WallBrace. Following the approach taken in (Mugridge and Hosking 1995) the IDM is
composed of several views of the building components. A geometric or space oriented view
specifies the geometric properties of the building components. A materials view specifies
thermally-oriented materials characteristics. A bracing view specifies bracing-related
characteristics.

278

Redundancy is managed from outside the IDM, consequently, any tool that changes space
information, for example, must ensure that plane and face information that is dependent on that

change is aso changed to retain consistency.

i dm bui | di ng

num of _occupant s

envi ronment face Vi ews
— T spaces
i dm envi r onnment (idmface .
degr ee_days ace property (i dm abst r act _space)
exposur e_cl ass nax rrax
infiltration_zone i n mn
| ocation hor nal hane
sei snmc_area bl ane nor nal
wi nd_ar ea ype_of face
wi nd_speed
abutting
(i dm abstract _space
C (i dm r oof)
i dm space face
—

materi al

(idmroof _material)
s ————

| ocation
orientation

‘i dm braci ng_f ace’

idnnaterial face
J

, . i i i dm dut ch_roof) (i
mat eri al opent ngs i dm hip roof) [i dm |) (i dm mansard roof)

3 oAl - apex1 ri dgel
([dm face) |a i
= pex2 ri dge2

type_of _material
|
N

ﬁldm_” oor_nat ertl al) (fdmwal | _naterial| (i dm wi ndow mat eri al |
E oor_covering_typ col our type_of _Wi ndow J

ype_of _fl oor ype_of val |
h i dmsingle)
(i dm suspended_f | oor) (i dmwal 1 1) Wi ndow_subtypel
| oor _i nsul ati on cavity_ventil ated
cl addi ng_t ype
(i dm ot her _wi ndow t ype)
r_val ue

e
(idminter floor_material)
C v/

[i dmroof material)
| S

oundat i on_hei ght
subf | oor _prot ection sof t boar d_12mm
wal | _insul ation

\.

(i dm sl ab_f1 oor Y dm ot her f1 oor)
[5| ab_dept h [_val ue_ot her J (i dm ot her _wal | _type)

t_val ue J

Figure E.7 IDM schema

class(idmbuilding, inherits(idmcuboid), features(

nane : text

addr ess T text,

nass_t ype . [spp, sppb, other],
num of _occupants : integer,

spaces : list(idmabstract_space),
face_vi ews : list(idmface),

envi r onnent ;i dm_envi r onment

)

279

cl ass(i dmenvironnent, features(
W nd_ar ea : [low, medium high],
seismc_area : [a, b, c],
w nd_speed : float, % affects wind_ area
exposur e_cl ass : [shel tered, medium sheltered, nedi um exposed, exposed],
% Sone rel ati on between exposure_cl ass and wi nd_area/ |ocal _accel eration
| ocation . [auckland, hanilton, napier, new plynouth, wellington,
christchurch, dunedin, invercargill, other],
infiltration_zone: [a, b, ¢, d], %uses location if it's <> other
degr ee_days : integer % uses location if it's <> other

)

class(idm2d_point, features(
X . float,
y . float

))-

class(idm3d_point, features(
X : float,
y . float,
z : float

)

class(idmline, features(
pl : 1dm_3d_poi nt,
p2 : i dm_3d_poi nt
))-

class(idmrectangl e, features(
nor mal Xy, Z],
mn : idm2d_point,
nmax : i dm2d_poi nt

)

cl ass(i dm cuboi d, features(
nor nal D%y, Z],
mn : idm_3d_point,
nmax : i dm 3d_poi nt

).

cl ass(idmpl ane, features(
nane : text,
axi s DXy, z],
offset : float,
vi ew_pl ane

))-
idmplane::viewplane :- true. %so we can pass nessages about pl anes

cl ass(idm abstract _space, inherits(idmcuboid), features(

nare . text,
abutting : |ist(idmabstract_space)
))-
class(idmspace, inherits(idmabstract_space), features(
))-
class(idmface, inherits(idmrectangle), features(
type_of _face : [wall, floor, inter_floor, opening],
face property : classifier(idmbracing face, idmnaterial _face, idmspace face),
pl ane : idmpl ane

).

cl ass(idmbraci ng_face, inherits(idmface), features(

)

280

class(idmmaterial _face, inherits(idmface), features(

material : idmnmaterial
))-
cl ass(idm space_face, inherits(idmface), features(
| ocation : [int, ext],
orientation: [n, ne, e, se, s, sw W nhw up, down],
openi ngs : list(idmface) %I ncludes wi ndows, doors, sky-lights, etc

)

class(idmmaterial, features(
type_of _nmaterial : classifier(idmfloor_material, idminter_floor_material,
idmroof _material, idmwall_naterial, idmw ndow naterial)

))-
class(idmfloor_material, inherits(idmnaterial), features(
floor_covering_type : ['carpet and underlay', 'cork tile', 'other covering],
type_of _fl oor : classifier(idmsuspended_floor, idmslab_floor, idmother_floor)
))-
cl ass(i dm suspended_fl oor, inherits(idmfloor_naterial), features(
f oundat i on_hei ght : float,
subfl oor _protection : [a, b,],
floor_insul ation : Juninsulated, 'perforated foil 25m, "l'ined 75mm bl anket ']

).

class(idmslab floor, inherits(idmfloor_naterial), features(
sl ab_depth . float

)

class(idmother_floor, inherits(idmfloor_material), features(
r_val ue_other : float

)

class(idmroof, inherits(idmabstract_space), features(

nmaterial : idmroof _naterial,
type : classifier(idmhip_roof, idmdutch_roof, idmnansard_roof)
))-
class(idmhip_roof, inherits(idmroof), features(
apex1 : idm3d_point,
apex2 : idm.3d_poi nt
))-
class(idmdutch_roof, inherits(idmroof), features(
ridgel ; idmline,
ridge2 ; idmline
))-
cl ass(i dm mansard_roof, inherits(idmroof), features(
ridgel ; idmline,
hi p ;. idmline,
ridge2 ; idmline
))-
class(idmroof _material, inherits(idmmaterial), features(
col our : [dark, light],
type_of _r oof : classifier(idmroofl material, idmother_roof _material)

).

281

class(idmroofl material, inherits(idmroof naterial), features(

bui | di ng_paper . bool ean,

cladding_primed : bool ean,

roof insulation : [nil, 'fibre 75, 'fibre 100", 'fibre 150', 'paper 150'],
softboard 12mm : bool ean

).

class(idmother_roof _material, inherits(idmroof_material), features(
r_value : float

)

class(idminter floor_material, inherits(idmmaterial), features(
type_of inter_floor : classifier(idminter_floorl naterial,
idmother_inter_floor_naterial)

))-

class(idminter_floorl nmaterial, inherits(idminter_floor_material), features(
cei ling_type : ['panel ceiling', 'slab ceiling', '"other ceiling],
inter_floor_insulation : [nil, 'fibre 75, 'fibre 100", 'fibre 150', 'paper 150'],
sof t boar d_12nmm . bool ean

))-

class(idmother_inter_floor_material, inherits(idminter_floor_material), features(
r value : float

))-

class(idmwal |l _material, inherits(idmnaterial), features(
col our : [dark, light],
type_of _wall : classifier(idmwall1, idmother_wall _type)

).

class(idmwall1, inherits(idmwall _material), features(
cavity ventilated : bool ean,

cladding_type : ['bevel back tinmber', 'lightweight ventilated PVC,
"fibre reinforced planks'],
sof t boar d_12mm . bool ean,

wal | _insulation : [nil, foil, '"fibre 75", 'fibre 94', ' paper 94']
))-

class(idmother_wall_type, inherits(idmwall _naterial), features(
r value : float

).

class(idmw ndow material, inherits(idmnaterial), features(
type_of _wi ndow : cl assifier(idmsingle, idmother_w ndow type)

))-
class(idmsingle, inherits(idmw ndow naterial), features(
wi ndow subtype : [clear, 'clear with eaves', tinted, reflective, 'emt 0.6,
‘emit 0.2']

)

cl ass(idm ot her_w ndow type, inherits(idmw ndow material), features(
r value : float

).

E.2.2 PlanEntry schema

PlanEntry is a constraint-based CAD tool for constructing and manipulating three-dimensional
building models from multiple two-dimensional projections. It was developed as part of

Uniservices project 4376.01 (Hosking and Mugridge, 1994), using the Snart object-oriented
congtraint language.

282

Figure E.8 (from Hosking et al, 1994) shows PlanEntry in use. Four views of a building are
shown: two plan views, at different heights, and front and side elevations. Each view has a tool
pal ette for manipulating and extending the building model viaits two-dimensional projection.

View 1 Plan UDiew 2 Rear '
@ <iLT.:® View 4 Left V:ew 4 Left
View 2 Rear
View 3 Plan
View 1 Plan
lDiew 4 Left
View 3 Plan E———————"| View 2 Rear
View 4 Left
View 3 Plan
View 1 Plan

Uiew 1 Plan

Plane 7 Plonz 1 EI‘lane 2

Figure E.9 Planes calculated for a building

283

For the purposes of the BRANZ project, the PlanEntry tool was extended with planes. Each plane
is coincident with one or more faces of spaces of the building. Planes are made visible by the user
selecting the plane tool (see Figure E.9).

Clicking on a plane using the PlanEntry face tool causes the FaceEditor to provide a view of the
faces of the building that lie on that plane, ready for specifying or modifying additional
information about those faces (as shown in Figure E.11).

—
bui | di ng
roofs
—
pe roof x1
X yl
y PE€_SpPacel orientation
z X of f set
X1 y i nternal
z
1 —
Zl x1
plx yi
ply z
p2x
p2y
openi ngs wal | s
—_ —_
pe_openi ng pe wal |
X X
y y
z z
x1 x1
yl yl
z1 z1
— ;|_z
openi ngs
—_
. J

Figure E.10 PlanEntry schema

284

The FaceEditor requires geometric information concerning the faces of a building that lie on a
plane. As these planes and faces are completely determined by the juxtaposition of spaces in
PlanEntry, the PlanEntry model has been extended to include this plane and face information.
Consistency between the spaces, planes and faces is maintained by PlanEntry.

Each space has six or more associated faces. Where spaces abut, the partially overlapping faces are
divided according to whether they are internal or external. For example, in the figures above, a
wall of the larger space partially abuts another space so it is divided in two; one faceis an internal
wall while the other is exterior. Faces have no rendered representation in PlanEntry; they are
constructed for use by other tools, viathe IDM.

The resulting schema for the PlanEntry building model, including all features of interest to the
integrated data model, is shown in below. While spaces, faces, and planes are represented
independently and redundantly in the schema, Plan Entry is responsible for maintaining their
consistency. Thereis afunctional dependency from the set of spaces to the set of faces and to the
set of planes. When the set of spaces is altered (such as through adding or deleting a space, or
through moving or resizing an existing space), PlanEntry ensures that the set of planes and facesis
updated appropriately. Additional user-supplied information may be associated with the original
faces, as they were before the change. Thus any updates to the faces (and planes) have to be
managed carefully to avoid loss of such information.

|§‘ Plane 2

oL

— B3

-1 B

Figure E.11 FaceEditor in use

285

E.2.3 FaceEditor schema

The FaceEditor tool was developed specifically for the BRANZ project. When a plane is selected
by the PlanEntry face tool, geometric information about the plane is passed through to the
FaceEditor. The FaceEditor allows materials and bracing information to be overlaid on faces that
lie on the selected plane, including the material of openings (such as windows). This permits, for
example, asingle wall material to be specified for the faces of several spacesthat lie together on a
plane (e.g., several storeys) as well as for several different wall materials to be specified for
different parts of asingle face.

Figure E.11 shows an example of the FaceEditor in operation, specifying materials and bracing for
one face of abuilding.

To alow for the later integration of the Thermal Designer and WallBrace tools, the FaceEditor can
be used to specify wall materials both in terms of their thermal properties or their bracing
properties. For example, the user may specify a timber framed weatherboard/plasterboard wall
which has diagonal braces. However, at this stage the FaceEditor does not ensure that overlapping
thermal and bracing properties are consistent; this will be the subject of future work.

The FaceEditor allows multiple planes to be selected and edited. Plane views may be hidden when
not needed.

(fe application)
faces
(fe face wi ndoﬂ
wval s openi ngs br aci ng naterials
PP T ~ —
fe face fe_openi ng (fe braci ng) (fe face material)
x0 x0 X0 x0
yo yo yO0 yo
x1 x1 x1 x1
yl yl yl yl
ki nd nmat eri al nateri al
ki nd ki nd
N— . J

Figure E.12 FaceEditor schema

The schema for the FaceEditor model, including all features of interest to the integrated data
model, is shown in the figure below. Geometric information of walls and openings that lie on a
plane are provided to the FaceEditor from PlanEntry, viathe IDM. These may not be atered in the
FaceEditor.

286

In this schema, both fe_opening and fe_face material entities have an associated materia attribute.
This is a string specifying the material type, and is associated in the mapping with an object
defining the material attributes in the IDM. The kind attributes are used to specify the type of
rendering to be associated with the various FaceEditor components.

E.2.4 VISION-3D schema

VISION-3D isa 3D model creation, editing, and rendering system for the Macintosh, developed
by staff at the University of Auckland School of Architecture (Bourke, 1989). It can be supplied
with avariety of scene description formats, which can be rendered in several different ways (wire
frame, hidden line, coloured, shaded, etc). It is possible to observe the scene from any angle, and
to create fly-through animations.

For the purposes of this project, VISION-3D is only used to provide a three dimensional rendering
of abuilding model. An example of such arendering is shown in Figure E.13. Data entry for this
application is viaaformatted file, which is constructed according to the mapping defined between
the VISION-3D and IDM schemeas.

||§D§ Untitled oc"———-—-—)

Figure E.13 VISION-3D in use

(de_poI ygon)

v3d nodel obj ect_id

nmodel nane diffuse_reflection
- specul ar _refl ection

gl oss_factor

poi nt's col our
r

g
b

Figure E.14 VISION-3D schema

287

A schemafor VISION-3D, corresponding to the descriptors in the file, is shown in Figure E.14
and below. A small application has been written which takes models in the form of this schema
and generates the formatted file representation (see dump_to file).

/**

* © Copyright Robert W Amor 1995

Departnent of Conputer Science
Uni versity of Auckl and

Private Bag 92019

Auckl and

New Zeal and

This software nay be duplicated and used for research
pur poses as long as this copyright message renains.

* 0k Xk ok %k X * X

*
***/
/**
* Purpose: Collate information on the whol e nodel
***/
cl ass(v3d_nodel ,
feat ures(
nodel _name : string,
create,
dunp_to file

/**

* Purpose: Print out info on create
***/
v3d_rnodel : :create : -

cat([self, ' @unp_to file'], Meth,),

witeseqnl ([' To dunp the Vision3D nodel to file type: ', Meth]).

/**

* Purpose: Al ow the whol e nmodel to be dunped to disk for use
* in Vision 3D
***/
v3d_nodel : :dunp_to file :-
newWFile, "Vision-3Dfile to create?', '*.v3d'),
open(File, wite),
sel f @#space' (Space),
Space@l | _obj ects(hj s),
findall (P, (menber(P, Cbjs), P@l ass(v3d_polygon)), Polygons),
foral | (menber (Poly, Polygons), Poly@unp to file(File)),
close(File).

/**

* Purpose: Collate informati on on a single polygon in an object.
* The object is deternined by the object_id
***/
cl ass(v3d_pol ygon,
feat ures(
object_id: int,
diffuse reflection : float,
specul ar _reflection : float,
gloss_factor : float,
points : list(v3d_point),
col our : v3d_rgb,
dunmp_to_file(+file)

288

/**

* Purpose: Qutput all information on a polygon in the correct
* format and order to the named file
***/
v3d_pol ygon: : dunp_to_file(File) :-
sel f @bject_id(AD),
sel f@iffuse _reflection(DR),
sel f @pecul ar _refl ection(SR),
sel f @l oss_fact or (GF),
sel f @oi nt s(Poi nts),
sel f @ol our (Col our),
| engt h(Poi nts, NunPoi nts),
witeseqnl ([NunPoints, AD DR SR G]) ~> File,
foral | (menber (Point, Points), Point@unp_to file(File)),
Col our @unp_to_file(File).

/**

* Purpose: Definition of a point in 3D space
***l
cl ass(v3d_poi nt,

f eat ures(

x : float,
y : float,
z : float,
dunp_to file(+file)
)
).

/**

* Purpose: Wite the points location to the naned file
***/
v3d_point::dunp_to_file(File) :-

sel f@(X),

sel f@(Y),

self@(2,
witeseqgnl ([X, Y, Z]) ~> File.

/**

* Purpose: Definition of a colour in REB vector
***/
cl ass(v3d_rgb,

f eat ures(

r ;. float,
g : float,
b : float,
durmp_to_file(+file)
)
).

/**

* Purpose: Wite the col our vector to the naned file

***/
v3d_rgb: :dunp_to file(File) :-

self@(R),

sel f@(Q,

sel f @(B),
witesegnl ([R G B]) ~> File.

E.2.5 ThermalDesigner schema

ThermalDesigner (Amor et al, 1992) helps a designer to check that a building design meets the
requirements of the New Zealand thermal insulation standard for residential buildings, NZS4218P
(SANZ, 1977). It is based on an approach developed by the Building Research Association of

289

New Zealand (BRANZ) as a paper design guide (Bassett et al, 1990). Figure E.15 shows the
forms-based interface to the application.

Figure E.15 ThermalDesigner in use

/*
File: Ther mal Desi gner. sn
Pur pose: Prototype of the ALF thernal design system
Fi rst Devel oped in Kea by:
Robert Amor
Departnent of Conputer Science, University of Auckl and
Dat e: April 1991

Then redevel oped in Snart by:
R ck Mugridge
Departnent of Conputer Science, University of Auckland
Dat e: July 1995
Copyright (Q 1991, 1995 Buil di ng Research Associ ation of New Zeal and

*/
% dinmate

class(td_clinate,
f eat ur es(%Al Defined fromI|DM
exposure_cl ass: [shel tered, medi umsheltered, nedi umexposed, exposed],
infiltration_zone: [a, b, c, d],
degree_days: int,
create % Set up the local dialog for Aimate

).

td climate::create :-
set_prop(td,climate, self),
climate_dial og.

% Space

cl ass(td_space,
f eat ur es(
floor: list(td_floor), % Defined fromI|DM
roof: list(td_roof), % Defined from| DM

wal I's: list(td wall)), %Defined from|DM
constrai nt s(

space_volume: float := sum(collect(f in floor, f@rea)) * max(collect(w in walls,
w@ei ght)),

wal | s_heat | oss: float ;= sun{collect(win walls, weat_|oss)),

floor_heat | oss: float := sun{collect(f in floor, f@eat_loss)),

roof _heat | oss: fl oat := sun{collect(r in roof, r@eat_|oss)),

w ndows_heat | oss: float := sun{collect(win walls, w@olar_loss_total)),

wi ndows_heat _gain: float := sun{collect(win walls, w@olar_gain_total)),

290

sol ar_gl azing_area: float

= sun(collect(win walls, wan ndow area_total where (W@rientation in [n,

joint_length: float

;= sun{collect(win walls, w@oint_length)) + sunm{collect(f in floor, f@oint_|length))

+ sunfcol lect(r in roof, r@oint_|ength))

).

% Fl oor

class(td_fl oor(degree_days: int),
features(%Al defined fromIDVM except r_val ue

construction_type: classifier(td_suspended_floor, td concrete_floor),

I ength: float,

width: float,

floor_covering_r_val ue: float,

r_value: float), %Calculated in subcl asses
constrai nt s(

area: float :=length * width,
perinmeter_length: float := 2.0 * (length + width),
area_perinmeter_ratio: float := area / perinmeter_| ength,
alf: float := 3.5343 + 0.045608 * degree_days - 1.100le-5 * degree_days * degree_days,
heat loss: float := area * alf / r_val ue,
joint_length: float :=1length + width
).
% Suspended Fl oor

cl ass(td_suspended_fl oor, inherits(td_floor),
features(%A fromI|DM
subfl oor_protection: [a,b,c],
foundati on_hei ght: float,
floor_insulation_r_value: float),
constrai nt s(

ne,

nw))),

perimeter_wall_area: float := area * foundation_height,
area_perimeter_wall_area ratio: float := area / perimeter_wall_area,
r_value := subfloorR(subfloor_protection,area_perinmeter_wall _area_ratio)

floor_insulation_r_value + floor_covering_r_val ue

).

subfl oorR(a, _, 0.01).
subfl oorR(b, Ratio,V) :- Vis 0.05714 * Ratio.
subfloorR(_,Ratio,V) :- Vis 0.1 * Ratio.

% Concrete Fl oor

class(td_concrete_floor, inherits(td_floor),
features(%Defined fromI|DM
i nsul ation_depth: float),
constrai nt s(

slab_r_value: float := 0.4 + 0.2 * insulation_depth + area_perimeter_ratio *

(0.464 + 0.052 * insul ation_depth),
% Formul a derived fromthe graphs given on ALF pl6.
% Extrapol ati on beyond insul ation depth = Imis unw se
r value := slab_r_value + floor_covering_r_val ue

).

% Roof

cl ass(td_roof (degree_days: int),
features(%Defined fromI|DM
I ength: float,
width: float,
r_val ue: float,
colour: [light, dark]),

291

+

const rai nt s(

area: float :=length * width,

alf: float := roof_al fR(col our, degree_days),
heat loss : float := area * alf / r_val ue,
joint_length : float :=length + width

).

roof _al f R{(dark, Days, V) :-

Vis -9.7212 + 0.065364 * Days - 1.9697e-5 * Days * Days.
roof _al fR(light,Days,V) :-

Vis -2.8380 + 0.063549 * Days - 1.9522e-5 * Days * Days.

% Vel |

class(td_wal | (degree_days: int),

features(%Al from|DM
wi dth: float,
hei ght: float,
orientation : [n, ne, nw, w, e, sw, se, §],
colour: [dark, light],
wi ndows: list(td w ndow,
r_value: float),

const rai nt s(

alf: float := alfR(colour, orientation, degree _days),

heat |oss: float :=area * alf / r_val ue,

wi ndow area_total : float := sun{collect(j in windows, j@rea)),
area: float := width * height - w ndow area_total,
solar_gain_total: float := sun{collect(win w ndows, wdeat_gain)),
solar_loss_total: float := sun{collect(win w ndows, wdeat | 0ss)),

%a hack for joint length, presune that it is half the joint length of a wall
%as each wall joint touches the wall joint of another wall or ceiling or floor.
joint_length: float := width + hei ght

))-

alfR(light, O, Days, V) :-

nenber (O, [n, ne, nW),

Vis -5.9841 + 0.060934 * Days - 1.8473e-5 * Days * Days.
alfR(light, O, Days, V) :-

menber (O, [e, W),

Vis -3.9841 + 0.060934 * Days - 1.8473e-5 * Days * Days.
alfR(light, O, Days, V) :-

nenber (O, [s, se, swW),

Vis -2.6186 + 0.060696 * Days - 1.8240e-5 * Days * Days.
al fR(dark, n, Days, V) :-

Vis -16.875 + 0.065122 * Days - 1.963%-5 * Days * Days.
al fR(dark, O, Days, V) :-

menber (O, [ne, nw),

Vis -13.005 + 0.063322 * Days - 1.8765e-5 * Days * Days.
al fR(dark, O, Days, V) :-

menber (O, [e, W),

Vis -11.529 + 0.067010 * Days - 2.0688e-5 * Days * Days.
al fR(dark, O, Days, V) :-

menber (O, [s, se, swW),

Vis -7.0047 + 0.063322 * Days - 1.8765e-5 * Days * Days.

% W ndow

class(td_w ndow(facing: orientation_type, degree_days: int),
f eat ur es(
r_val ue: float,
shadi ng_coef: float,
height: float,
width: float),

292

constrai nt s(
area: float := height * width,
alf: float := 12.0 + 0.02143 * degree_days,
heat |oss: float := area * alf / r_val ue,
heat _gain: float := area * shadi ng_coef * agf R(facing, degree_days)

).

agf R(n, Days, V) :- Vis 429.41 - 0.241220 * Days + 4.1833e-5 * Days * Days.

agf R(Or, Days, V) :- menber(Or,[ne,nwW), Vis 354.59 - 0.234590 * Days + 5.8192e-5 * Days *
Days.

agf RRCr, Days,V) :- nenber(C,[e,W), Vis 221.18 - 0.158000 * Days + 4.1833e-5 * Days * Days.
agf R(Qr, Days, V) :- nenber(Q,[se,sw,s]), Vis 99.468 - 0.071612 * Days + 2.4488e-5 * Days *
Days.

% Bui | di ng
class(td_buil ding,
f eat ur es(
bui | di ng_nane: text, % Defined from| DM
num of _occupants: int, % Defined from| DM

effective_thermal _nmass: float, % Defined fromI|DM
spaces: |ist(td_space), % Defined from| DM
climate: td clinate, % Defined fromI| DM
create), % Used to set up local dialogs
constrai nt s(
floor_area_total: float := sun{collect(s in spaces, sun{collect(f in s@l|oor, f@rea)))),
bui I di ng_vol urme_total : float := sun{collect(r in spaces, r@pace_volune)),
joint_length: float := sun(collect(s in spaces, s@oint_|length)),
joint_volunme_ratio: float := joint_length / building volune_total,
air_leak_tenp: float := air_leak(climate@nfiltration_zone) * joint_volune_ratio,
air_leakage rate: float := air_leak_rate(clinate@xposure_class) * air_|eak_tenp,
air_leakage_alf: float := -3.3678 + 0.022838 * clinate@legree_days
- 6.7557e-6 * clinate@egree_days * clinate@egree_days,
air_heat | oss: float := building_volume_total * air_|eakage alf * air_| eakage rate,
total seasonal heat | osses: fl oat
;= air_heat_loss
+ sun{col l ect(s in spaces, s@I| oor_heat | oss + s@oof _heat | oss
+ s@wal | s_heat _| oss + s@i ndows_heat _| 0ss)),
internal _heat_gain: float := 900.0 + 150.0 * num of _occupants,
total _seasonal _gain: float
= internal _heat_gain + sun{collect(s in spaces, s@i ndows_heat _gain)),
gain_loss _ratio: float := total _seasonal _gain / total _seasonal _heat_ | osses,
glr: float := gain_loss_ratio,
% Equations for the graphs in ALF. use the closest graph for finding
%a point instead of a trickier interpolation to the correct value -
%things are so vague anyway that this slight inaccuracy won't matter

%a damm
useful _fraction: float := useful _fract(effective_thernal nass,glr),
useful _heat _gain: float := total _seasonal _gain * useful _fraction,
net _heating_EU float := total _seasonal _heat_| osses - useful _heat_gai n,
sol ar_glazing_area: float := sun{collect(s in spaces, s@ol ar_gl azing_area)),
sol ar_glazing_floor_area_ratio: float := solar_glazing_area / floor_area_total,

est _max_wi nter_indoor_tenp: float
0= 20.0 + 142.857 * (1.0 - 0.38333 * effective_thernal _nmass)
* sol ar_gl azing_floor_area ratio,

bpi: float := net_heating_EU/ (climate@legree days * floor_area_total),
wi ndow N gai n: fl oat
;= sun{collect(s in spaces, sun{collect(win s@alls, wa&olar_gain_total where
(w@rientation = n))))),
wi ndow_NE_NWgai n: fl oat
:= sunfcol l ect (s in spaces, sun{collect(win s@alls, w@olar_gain_total where
(w@rientation in[ne, nW))))),

293

wi ndow E Wgain: float
;= sun{col l ect(s in spaces, sun{collect(win s@alls, waolar_gain_total where
(w@rientationin[e, w))))),
w ndow SE SWS gain: float
:= sun{col l ect(s in spaces, sun{collect(win s@alls, w@ol ar_gain_total where
(w@rientation in [se, sw s]))))),
slab_heat | oss: float
:= sun{col l ect (s in spaces, sun(collect(f in s@loor, f@eat_|oss where
(f@onstruction_type = td_suspended_floor))))),
suspended_heat _| oss: fl oat
:= sun{col l ect(s in spaces, sun{collect(f in s@I|oor, f@eat_|oss where
(f@onstruction_type = td_concrete_floor))))),
wal | _N heat |l oss: float
:= sun{col l ect (s in spaces, sun(collect(win s@alls, wdeat_| oss where
(w@rientation = n))))),
wal | _NE NWheat _| oss: fl oat
:= sun{col l ect(s in spaces, sun{collect(win s@alls, weat_| oss where
(w@rientation in[ne, nwW))))),
wal | _E Wheat | oss: float
:= sun{col l ect (s in spaces, sun(collect(win s@alls, wdeat_| oss where
(w@rientationin[e, wW))))),
wal | _SE SWS heat | oss: float
:= sun{col l ect(s in spaces, sun{collect(win s@alls, weat_| oss where
(w@rientation in [se, sw, s]))))),
roof _heat | oss: fl oat
;= sun{col | ect(s in spaces, s@oof _heat | 0ss)),
wi ndow_heat _| oss : fl oat
:= sun{col l ect(s in spaces, sun{collect(win s@alls, waolar_|loss_total))))),
denons(
cw set _iten(' Thermal Designer', bpi Text, nunber _at on{bpi))
))-

air_| eak(a, 15.00000). air_Ileak(b, 13.33333).
air_| eak(c, 11.81818). air_I| eak(d, 10.43478).

air_| eak_rat e(exposed, 0. 09091). ai r _| eak_rat e(nmedi um exposed, 0. 07857) .

air_| eak_rate(nedi umshel tered, 0.06666). air_| eak_rate(sheltered, 0.05714).

useful _fract(ETM AR V) :- ETM =< 0. 15, uf(1.07870, 0.42465, 0.0518650, 0.0043706, AR V).
useful _fract(ETM AR V) :- ETM =< 0.45, uf(1.10220, 0.38544, 0.0075756, 0.0147310, G.R V).
useful _fract(ETM AR V) :- ETM =< 0.80, uf(1.11800, 0.36126,-0.0059524, 0.0113678, AR V).
useful _fract(ETM AR V) :- ETM =< 1.25, uf(1.06130, 0.12136,-0.2161800, 0.0673400, AR V).
useful _fract(ETM AR V) :- ETM =< 1.75, uf(0.97333, 0.23106,-0.5170500, 0.1420500, AR V).
useful _fract(ETM AR V) :- ETM > 1.75, uf(0.95071,-0. 33541, -0. 5955100, 0.1578300, AR V).

uf(ABCDGAR V) :- VisA- B* AR+C* QAR* AR+ D* AR * AR * AR

td _building::create :-
set _prop(td, building,self),
td_dialog. % Set up the top-level TD dial og

E.3 Mappings for the Large Example

Listed below are the VML specifications for the mappings between the IDM and PlanEntry,
FaceEditor, VISION-3D, and ThermalDesigner.

294

E.3.1 IDM <-> PlanEntry mapping

Only asmall range of classes need to be mapped between the IDM and PlanEntry as shown below.
When first creating a mapping to PlanEntry it isimportant that ape_proto_plan object gets created
to manage the running of PlanEntry. Building objects map straight across, though there is a
mismatch between the objectsin sets for both of those classes requiring a bijection to split out the
right objects. The mapping of planes utilises method mappings to ensure that object select methods
in PlanEntry get mapped through to connected applications (e.g., the FaceEditor to allow
specification of materials for the selected face). All mappings with geometry flip the y-axis
between the two systems as a different axis setup is utilised in both systems.

inter_viewidm integrated, planentry, read_wite, conplete).

inter_class([], [pe_proto_plan]

).

inter_class([idmbuilding], [pe_building],
equi val ences(
bi j ection(idm buil di ng. spaces[] @! ass('i dm space'), spaces=>list[]),
bi j ection(idmbuil ding. spaces[] @l ass('idmroof'), roofs=>list[]),
bi j ecti on(i dmbuil di ng. face_vi ews[] @l ass(' i dm space_face'), faces[])
),
initialisers(
name = 'PlanEntry building',
pe_bui I di ng. pl an=>bui | di ng = pe_bui | di ng
)
).

inter_class([idmplane], [pf_plane_object],
equi val ences(
nane = pl anenane,
axis = axi s,
of fset = offset,
@i ew pl ane = @el ect
)
).

inter_class([idmspace], [pe_space],
equi val ences(

m n=>X = X,
nmn=>y =0 - v,
mn=>z = z,
max=>x = x1,
mx=>y = 0 - yl,

max=>z = z1,
bijection(abutting[], faces=>list[]=>spaces[] \= pe_space) % ly works fromPE to | DM
)
).

inter_class([idmhip_roof], [pe_roof],
equi val ences(
mn=>x = X,
m n=>y
m n=>z
Nax=>x
nax=>y
nax=>z
apex1=>x
apex1=>y
apex1=>z
apex2=>x

1
o
'
<

[N
-

I 1mnmnnNOXN
<
[AnN

p1x,
- ply,

o

O N
N -
..>< M

295

apex2=>y = 0 - p2y,
apex2=>z = z1,
bijection(abutting[], faces=>list[]=>spaces[] \= pe_roof) % ly works fromPE to | DM

)
).
inter_class([idmspace_face], [pe_face, pf_plane_object, group(pe_opening)],
i nvari ant s(
type_of _face \= "opening',
nenber (pe_face.orientation, ['up', 'down']),

pe_f ace. of fset = pf_pl ane_obj ect. of f set,
nmap_orientation_axi s(pe_face.orientation, pf_plane_object.axis),
contai ned_i n_face(pe_face, pe_openi ng)

)
equi val ences(
m n=>x = pe_face. X,
mn=>y =0 - pe_face.y,
nmax=>x = pe_face. x1,
nmax=>y = 0 - pe_face.yl,
pl ane=>nanme = pf_pl ane_obj ect . pl anenane,
nmap_orientati on_axi s(pe_face.orientation, idmspace_face.pl ane=>axis),
pl ane=>of f set = pe_face. of f set,
| ocation = internal,
orientation = orientation,
nmap_face type fromorientation(type of _face, pe face.orientation, pe_face, spaces),
openi ngs = pe_openi ng
)

).

inter_class([idmspace _face], [pe_face, pf_plane_object, group(pe_opening)],
i nvari ant s(
type_of _face \= "opening',
nmenber (pe_face.orientation, ['n', 's']),
pe_f ace. of fset = pf_pl ane_obj ect. of f set,
map_orientati on_axi s(pe_face. orientation, pf_plane_object.axis),
contai ned_i n_face(pe_face, pe_opening)

)
equi val ences(
m n=>x = pe_face. X,
m n=>y = pe_face.y,
max=>x = pe_face. x1,
nax=>y = pe_face.yl,
pl ane=>nane = pf_pl ane_obj ect . pl anenane,
nap_orientati on_axi s(pe_face.orientation, idmspace_face.pl ane=>axis),
pl ane=>of fset = 0 - pe_face. of f set,
| ocation = internal,
orientation = orientation,
nmap_face type fromorientation(type of face, pe face.orientation, pe_face, spaces),
openi ngs = pe_openi ng
)

).

inter_class([idmspace_face], [pe_face, pf_plane_object, group(pe_opening)],
i nvari ant s(
type_of _face \= 'opening',
nenber (pe_face.orientation, ['e', "wW]),
pe_face. of fset = pf_pl ane_obj ect. of f set,
nmap_orientati on_axi s(pe_face. orientation, pf_plane_object.axis),
cont ai ned_i n_f ace(pe_f ace, pe_openi ng)
)

equi val ences(

mn=>x = 0 - pe_face.x,
mn=>y = pe_face.y,
max=>x = 0 - pe_face. x1,
max=>y = pe_face.yl,

296

pl ane=>nane = pf_pl ane_obj ect. pl anenane,

map_orientati on_axi s(pe_face. orientation, idmspace_face. pl ane=>axi s),

pl ane=>of f set = pe_face. of f set,

| ocation = internal,

orientation = orientation,

nmap_face_type_fromorientation(type_of _face, pe_face.orientation, pe_face, spaces),
openi ngs = pe_openi ng

).
inter_class([idmspace_face], [pe_wall],
i nvari ant s(
location = 'int',

type_of _face = "wall’
)
equi val ences(
map_to_from(nmap_pol ar_to 3D rect(mn, nax, plane, pe_wall),
map_3D rect_to polar(x, y, z, x1, y1, z1, mn, nax, plane)),
openi ngs = openi ngs=>l i st

).

inter_class([idmspace_face], [pe_opening],
i nvari ant s(
type_of _face = 'opening'
),
equi val ences(
map_to_from(nmap_pol ar_to_3D rect(nmn, nax, plane, pe_opening),
map_3D rect _to polar(x, y, z, x1, y1, z1, mn, max, plane))

).

% Auxiliary functions

map_face_type_fromorientation(wall, Oientation, _,) :-
nenber (CGrientation, [n, s, e, W).

map_face_type fromorientation(floor, down, FronOD [FronQOD).

map_face_type_fromorientation(inter_floor, Gientation, _,) :-
menber (Orientation, [up, down]).

map_orientation_axi s(n, y).
map_orientation_axi s(s, V).
map_orientati on_axi s(e, x).
map_orientation_axi s(w, X).
map_orientation_axi s(up, z).
map_ori entati on_axi s(down, z).

map_axis_orientation(y, Cient) :-
nenber (Gient, [n, s]).

map_axis_orientation(x, Qient) :-
nenber (Gient, [e, W).

map_axis_orientation(z, Cient) :-
nmenber (i ent, [up, down]).

map_3D rect _to polar(X Y, Z X1, Yi, Z1, Mn, M, Plane) :-

Fyis 0 -Y,
FYlis 0 - Vi,
(z=21 ->

Plane@xis : = z,

Pl ane@f f set Z,

concat (' Plane z-', Z P aneNane),
Pl ane@ane : = Pl aneNane,
Mn@& := X
Mn@ := FY,
Max@ : = Xi,
Max@ : = FY1

297

(Y=Y1L ->
Pl ane@xis : =y,
Pl ane@f f set : = FY,
concat (' Pl ane y-', FY, H aneNane),

Pl ane@ane : = Pl aneNaneg,
Mn@& := X
Mn@ := Z
Max@ = X1,
Max@ := Z1
;Plane@xi s : = x,

Pl ane@f fset := X
concat (' Plane x-', X, P aneNane),
Pl ane@ane : = Pl aneNane,

Mn@& := FY,
Mn@ := Z
Max@ : = FY1,
Max@ := Z1

).

map_pol ar_to_3D rect(Mn, Max, Plane, Rect) :-
P ane@xi s(Axi s),
P ane@f fset (O f set),
M n@(M nX),
Mn@(Mny),
Max @(MaxX) ,
Max @ (MaxY),
(AXis =z ->
Rect @ := M nX
FMnYis 0 - MnY,

Rect @ := FMnY,

Rect@ := Ofset,

Rect @1 : = MaxX,

FMaxY is 0 - Maxy,

Rect @1 : = FMaxy,

Rect @1 := O fset
i (AXis =y ->

FOffset is 0 - Offset,
Rect @ := M nX
Rect @ : = FOf set,
Rect@ := MnY,

Rect @1 : = MaxX,
Rect @1 := FOif set,
Rect @1 : = MaxY

Rect@ = Ofset,
FMnXis 0 - MnX
Rect @ := FM nX,

Rect@ := MnY,
Rect @1 := Of set,
FMaxX is 0 - MaxX,
Rect @1 : = FMaxX
Rect @1 : = MaxY

).

cont ai ned_i n_f ace(Face, (pening) :-
Face@rientation(Qient),
peni ng@xi s(Axi s),
map_orientation_axis(Oient, AXis),
Face@®f f set (Radi us),
Face@(BX),
Face@(BY),
Face@1(BX1),
Face@1(BY1),
Qpeni ng@(X),

298

Qpeni ng@(Y),

Qoeni ng@(2),

Qpeni ng@1(X1),

peni ng@1(Y1),

peni ng@1(21),

((AXis =z, Z=12Z1, Z = Radius) ->

contained_in_rect(X Y, X1, Y1, BX BY, BXl1, BYl)
i ((AXis =y, Y=Y1, Y = Radius) ->
contained_in_rect(X Z X, Z1, BX BY, BXl1, BYl)

AXI S = X,
X=X,
X = Radi us,

contained_in_rect(Y, Z Y1, Z1, BX BY, BXl1, BYl)
)
).

contained_in_rect(X Y, X1, Y1, BX BY, BXl, BYl) :-
val ue_between(X, BX, BX1),
val ue_bet ween(Y, BY, BY1l),
val ue_bet ween(X1, BX, BX1),
val ue_bet ween(Y1, BY, BY1).

val ue_between(Val, P1, P2) :-
(PL<P2->
Pl =< Val,
Val =< P2
;P2 =< Val,
Val =< P1
).

E.3.2 IDM <-> FaceEditor mapping

The mapping between the IDM and FaceEditor is more complicated than that for PlanEntry as
more work is required in identifying the right objects for a mapping. Every plane has a one-to-one
correspondence, but there is a requirement for data from associated objects in the model when
mapping. FaceEditor has complicated create methods for most of its objects, so requires create
methods to be specified in the initialisers of most mappings. Again the y-axis is measured
differently from the IDM and must be swapped around during mapping of geometry.

inter_viewidm integrated, faceeditor, read_ wite, conplete).
inter_class([idmbuilding], [fe_application]).

inter_class([idmplane, idmbuilding, group(idmspace face), group(idmnaterial_face),
group(idmbracing_face)], [fe_face_w ndow, fe_application],
i nvari ant s(
pl ane_equi val ence(i dm pl ane, idm space_f ace. pl ane),
pl ane_equi val ence(i dm pl ane, idmnaterial _face. pl ane),
pl ane_equi val ence(i dm pl ane, idm braci ng_f ace. pl ane)
),
equi val ences(
bij ection(idmspace face[].type_ of _face \= "opening , walls[]),
bi j ecti on(i dm space_face[].type_of _face = 'opening', openings[]),
idmmaterial _face = materials,
i dm braci ng_face = bracing,
i dm pl ane. nane = nane,
i dm pl ane@i ew pl ane = fe_applicati on@reate_view _, idmplane. nare)
),
initialisers(
fe_face_wi ndow@r eat e(i dmbuil di ng, idmplane. nare, idmplane.axis, 0, "+, [])
)
).

299

inter_class([idmspace_face], [fe_face, fe_face w ndow,
i nvari ant s(
type_of _face \= "opening',
nmenber (fe_face, fe_face_ w ndow wal | s)
),
equi val ences(
m n=>x = x0,
nmn=>y =0 - yo0,
max=>x = X1,
mx=>y =0 - yl
)

initialisers(

face_property = 'idmspace face',
fe_face@reate(i dm space_face. pl ane, i dm space_face. pl ane, 'space', 0, O,
i dm space_face.m n=>x, 0 - idmspace_face. nin=>y,
i dm space_face. max=>x, 0 - idmspace_face. max=>y)
)
).
inter_class([idmspace_face, idmnaterial _face], [fe_opening, fe_face_w ndow,
i nvari ant s(
i dm space_face.type_of _face = 'opening',
idnmaterial _face.type_of _face = 'opening',

poi nt _equi val ence(i dm space_face.mn, idmnaterial _face.mn),

poi nt _equi val ence(i dm space_face. nax, i dmnaterial _face. max),

pl ane_equi val ence(i dm space_f ace. pl ane, idmnaterial _face. pl ane),

nenber (f e_openi ng, fe_face_w ndow openi ngs)
)
equi val ences(

i dm space_f ace. ni n=>x = x0,

i dm space_face.nin=>y =0 - yO0,

i dm space_f ace. max=>x = x1,

i dm space_face.nax=>y = 0 - yl,

i dm space_face. pl ane = fe_face_wi ndow,

idmnaterial face. mn=>x = x0,

idmmaterial _face.nin=>y =0 - y0,

idm material _face. max=>x = x1,

idmmaterial _face.max=>y = 0 - y1,

idmmaterial _face. material =>r_val ue = material =>r_val ue,

idmmaterial _face. material =>shadi ng_coefficient = material =>shadi ng_coef,

idmnaterial face. material =>constructi on_nane = nateri al =>nane

)

initialisers(

i dm space_face.face_property = 'idmspace_face',
idmmaterial _face.face_property = 'idmnmaterial _face',
idnmaterial _face. material =>type_of _material = "'idmw ndow naterial',

fe_openi ng@r eat e(i dm space_f ace. pl ane, idmspace_face. pl ane, 'space', 0, O,
i dm space_face.mn=>x, 0 - idmspace_face.nin=>y,
i dm space_face. max=>x, 0 - idmspace_face. nax=>y,
i dmmaterial _face. material =>const ructi on_nane)

)
).
inter_class([idmnaterial face], [fe face material, fe_face_wi ndow,
i nvari ant s(
type_of face = "wall"',
kind = "wall",

nmenber (fe_face material, fe_face_w ndow material s)
)
equi val ences(

m n=>x = x0,

mn=>y =0 - y0,

max=>x = X1,

mx=>y = 0 - yl,

pl ane = fe_face_w ndow,

300

mat eri al =>r_val ue = material =>r_val ue,
mat eri al =>col our = materi al =>col our,
mat eri al =>construction_nane = fe_face_naterial.naterial =>nane

)

initialisers(

face property = '"idmmaterial _face',
idmmaterial _face.material =>type_of material ='idmwall_naterial"',
idnnmaterial _face. material =>col our = 'dark',
fe face material @reate(idmmaterial _face.plane, idmnaterial _face.plane, 'wall',
idmmaterial _face.nn=>x, 0 - idmnaterial _face.nin=>y,
idnmaterial _face.max=>x, 0 - idmmaterial face. nax=>y,

idmmaterial _face. material =>constructi on_nane)

)
).

inter_class([idmnaterial _face], [fe _face material, fe_face_w ndow,
i nvari ant s(
type_of face = 'floor',
kind = 'floor',
nmenber (fe_face_material, fe_face_w ndow material s)
),
equi val ences(
m n=>x = X0,
mn=>y =0 - y0,
max=>x = x1,
max=>y =0 - yl,
pl ane = fe_face_w ndow,
mat eri al =>r_val ue = naterial =>r_val ue,
mat eri al =>constructi on_nanme = materi al =>nane
)

initialisers(

face_property = 'idmmaterial _face',
nmaterial =>type_of _material = 'idmfloor_naterial',
mat eri al =>type_of _floor = "'idmsuspended fl oor',

fe face material @reate(idmmaterial _face.plane, idmmaterial face.plane, 'floor',

0, idmmaterial _face.mn=>x, 0 - idmnaterial face.mn=>y,
idnnmaterial _face.max=>x, 0 - idmmaterial _face. nax=>y,
idmnaterial _face. material =>constructi on_nane)

)

inter_class([idmnaterial _face], [fe face material, fe_face_w ndow,

i nvari ant s(
type_of _face = 'inter_floor',
kind = "inter_floor',

nenber (fe_face_material, fe_face_w ndow naterial s)
),
equi val ences(

m n=>x = x0,

mn=>y =0 - y0,

max=>X x1,

max=>y = 0 - yil,

pl ane = fe_face_w ndow,

mat eri al =>r_val ue = material =>r_val ue,

mat eri al =>constructi on_nane = nateri al =>nane

)

initialisers(

face_property = 'idmmaterial _face',
material =>type_of _material = 'idminter_floor_material',
material =>type_of _inter_floor = 'idminter_floorl material',

fe face material @reate(idmnaterial face.plane, idmmaterial face. pl ane,
"inter_floor', 0, O, idmmaterial _face.mn=>x, 0 - idmnaterial _face. m n=>y,
idnmaterial _face.max=>x, 0 - idmmaterial face. nax=>y,
idmnaterial _face. material =>constructi on_nane)
)
).

301

0,

0,

0,

inter_class([idmbracing face], [fe_bracing, fe face w ndow,
i nvari ant s(
nmenber (fe_bracing, fe_face_w ndow braci ng)

)

equi val ences(
m n=>x = x0,
mn=>y =0 - yO0,
max=>x = X1,

max=>y = 0 - yl,

pl ane = fe_face_w ndow
),
initialisers(

face_property = 'idmbracing_face',

fe_braci ng@reat e(i dm braci ng_face. pl ane, idmbracing_face. plane, 'bracing', 0, O,
i dm braci ng_face. mn=>x, 0 - idmbracing_face. m n=>y,

i dm braci ng_face. nax=>x, 0 - idmbracing_face. max=>y)

)

).

Auxiliary functions
poi nt _equi val ence(Poi nt, Point).
poi nt _equi val ence(Poi nt1, Point2) :-
Poi nt 1@(X,
Poi nt 2@ (X) ,
Poi nt 1@(Y),
Poi nt 2@ (),
!

pl ane_equi val ence(Pl ane, Pl ane).

pl ane_equi val ence(Pl anel, Pl ane2) :-
Pl anel@xi s(A),
P ane2@xi s(A),
M anel@ffset (O,

P ane2@f fset (O,
I,

E.3.3 IDM <-> VISION-3D mapping

The mapping to VISION-3D is only maintained in a single direction as VISION-3D is utilised
purely as aviewer and navigation system. Only geometry needs to be mapped through to VISION-
3D from the IDM objects, though default material types are set for objects with little material
information in the IDM.

inter_viewidm integrated, vision3d, read_only, conplete).

inter_class([idmbuilding],[v3d_nodel],
equi val ences(
name = rodel _nane
)
).

i nter_cl ass([idmspace_face], [v3d_pol ygon],
i nvari ant s(
type_of face = 'opening'
)
equi val ences(
map_i d_t o_nun(i dm space_face, object_id),
nmap_pol ar_rect _to_pol ygon(m n=>x, mn=>y, nax=>X, max=>y, plane=>axis, plane=>of fset,
poi nts[1], points[2], points[3], points[4])
)
initialisers(
diffuse reflection = 0.1,
specul ar_reflection = 0.1,

302

gl oss_factor = 90.0,

colour=>r = 0.88
col our=>g = 0. 88
col our=>b = 0. 88
)
).
inter_class([idmspace_face],[v3d_pol ygon],
i nvari ant s(
type_of _face \= 'opening' % Coul d check for inter_floor,
material types
)
equi val ences(
map_i d_t o_nun{i dm space_face, object _id),
map_pol ar_rect _to_pol ygon(m n=>x, mn=>y, max=>X, max=>y,
poi nts[1], points[2], points[3], points[4])

)
initialisers(
di ffuse_reflection = 0.8,
specul ar _reflection = 0.5,
gloss_factor = 2.0

colour=>r = 0.6
col our=>g = 0. 6,
colour=>b = 0.6
)
)
inter_class([idmhip_roof],[group(v3d_pol ygon)],
i nvari ant s(
apex1=>Xx = apex2=>X,
apex1l=>y = apex2=>y

),
equi val ences(
map_i d_t o_nun{i dm hi p_roof, v3d_pol ygon[1].object_id),
nmap_triangl e_to_pol ygon(m n=>x, mn=>y, mn=>z, mn=>X,
apex1l=>y, apexl=>z, v3d_polygon[1].points[1], v3d_pol ygon[1].
v3d_pol ygon[1] . poi nts[3]),
map_i d_t o_nun{i dm hi p_roof, v3d_pol ygon[2] . object_id),
map_triangl e_to_pol ygon(m n=>x, mn=>y, nin=>z, max=>X,
apex1=>y, apexl=>z, v3d_polygon[2].points[1], v3d_polygon[?2].
v3d_pol ygon[2] . poi nts[3]),
map_i d_to_nun{idmhi p_roof, v3d_pol ygon[3]. object_id),
map_triangl e_to_pol ygon(max=>x, mn=>y, mn=>z, nax=>X,
apex1=>y, apexl=>z, v3d_polygon[3].points[1], v3d_pol ygon[3].
v3d_pol ygon[3] . poi nts[3]),
map_i d_to_nun{idm hi p_roof, v3d_pol ygon[4].object_id),
nmap_triangl e_to_pol ygon(max=>x, max=>y, nmn=>z, m n=>X,
apex1l=>y, apexl=>z, v3d_polygon[4].points[1], v3d_pol ygon[4].
v3d_pol ygon[4] . poi nt s[3])
),
initialisers(
diffuse reflection = 0.8,
specul ar _reflection = 0.5,
gloss_factor = 2.0
col our =>r
col our=>g
col our =>b

nonon
coo
ww o

).

inter_class([idmhip_roof],[group(v3d_pol ygon)],
i nvari ant s(
apex1=>x \= apex2=>X,
apex1l=>y = apex2=>y

)

303

floor, wal

pl ane=>axi s

nmax=>y, mn=>z,
poi nts[2],

m n=>y, mn=>z,
poi nt s[2],

nmax=>y, mn=>z,
poi nts[2],

max=>y, mn=>z,
poi nts[2],

to set different

pl ane=>of f set ,

apex1=>x,

apex1=>x,

apex1=>x,

apex1=>x,

equi val ences(

nmap_i d_to_nun{i dm hi p_roof, v3d_pol ygon[1]. object_id),

map_triangl e_to_pol ygon(m n=>x, mn=>y, nin=>z, mn=>X, nax=>y, mn=>z, apex1l=>x,
apex1=>y, apexl=>z, v3d_polygon[1].points[1], v3d_polygon[1].points[2],
v3d_pol ygon[1] . poi nts[3]),

map_i d_t o_nun{i dm hi p_roof, v3d_pol ygon[2]. object_id),

nmap_quad_to_pol ygon(m n=>x, mn=>y, mn=>z, max=>X, MN=>y, mn=>z, apex2=>X, apex2=>y,
apex2=>z, apexl=>x, apexl=>y, apexl=>z, v3d_polygon[2].points[1], v3d_pol ygon[2].points[2],
v3d_pol ygon[2] . poi nts[3], v3d_pol ygon[2]. points[4]),

map_i d_to_nun(i dm hi p_roof, v3d_pol ygon[3]. object_id),

map_triangl e_to_pol ygon(max=>x, mn=>y, mn=>z, nax=>X, max=>y, nin=>z, apex2=>X,
apex2=>y, apex2=>z, v3d_pol ygon[3].points[1], v3d_pol ygon[3]. points[2],
v3d_pol ygon[3] . poi nts[3]),

nmap_i d_to_nun{i dm hi p_roof, v3d_pol ygon[4]. object_id),

map_quad_t o_pol ygon(max=>X, nax=>y, mn=>z, nmn=>X, nmax=>y, mn=>z, apex1l=>X, apexl=>y,
apex1=>z, apex2=>X, apex2=>y, apex2=>z, v3d_polygon[4].points[1], v3d_pol ygon[4].points[2],
v3d_pol ygon[4] . poi nt s[3], v3d_pol ygon[4] . poi nt s[4])

initialisers(
diffuse_reflection = 0.8,
specul ar_reflection = 0.5,
gloss_factor = 2.0,
col our =>r
col our =>g
col our =>b

noa
ceo
wwo

)
).

inter_class([idmhip_roof],[group(v3d_pol ygon)],
i nvari ant s(
apex1=>x = apex2=>X
apex1=>y \ = apex2=>y
)
equi val ences(
map_i d_to_nun(i dm hi p_roof, v3d_pol ygon[1]. object_id),
map_quad_to_pol ygon(m n=>x, mn=>y, mn=>z, mnN=>X, nax=>y, MmMN=>z, apex2=>X, apex2=>y,
apex2=>z, apexl=>x, apexl=>y, apexl=>z, v3d_polygon[1].points[1], v3d_pol ygon[1].points[2],
v3d_pol ygon[1] . poi nt s[3], v3d_pol ygon[1] . points[4]),
map_i d_to_nun(i dm hi p_roof, v3d_pol ygon[2]. object_id),
map_triangl e_to_pol ygon(m n=>x, mn=>y, mn=>z, nax=>X, mn=>y, nin=>z, apexl=>X,
apex1=>y, apexl=>z, v3d_polygon[2].points[1], v3d_polygon[2].points[2],
v3d_pol ygon[2] . poi nts[3]),
nmap_i d_to_nun{i dm hi p_roof, v3d_pol ygon[3]. object_id),
nmap_quad_t o_pol ygon(max=>x, m n=>y, mn=>z, max=>X, nMax=>y, mnN=>z, apex2=>X, apex2=>y,
apex2=>z, apexl=>x, apexl=>y, apexl=>z, v3d_polygon[3].points[1], v3d_pol ygon[3].points[2],
v3d_pol ygon[3] . poi nt s[3], v3d_pol ygon[3] . poi nts[4]),
map_i d_to_nun(i dm hi p_roof, v3d_pol ygon[4]. object_id),
map_triangl e_to_pol ygon(max=>x, max=>y, nmn=>z, mn=>X, nax=>y, mn=>z, apex2=>Xx,
apex2=>y, apex2=>z, v3d_polygon[4].points[1], v3d_polygon[4].points[2],
v3d_pol ygon[4] . poi nt s[3])
initialisers(
diffuse reflection = 0.8,
specul ar_reflection = 0.5,
gloss_factor = 2.0,
col our =>r
col our=>g
col our=>b

non
eco
wwo

304

Auxi liary fun

ctions

map_quad_t o_pol ygon(P1x, Ply, Plz, P2x, P2y, P2z, P3x, P3y, P3z, P4x,
Poi nts2, Points3, Points4) :-

Poi nts1@ : = Plx,

Poi nts1@ : = Ply,

Poi ntsi@ := Plz,

Poi nts2@ : = P2x,

Poi nts2@ : = P2y,

Poi nts2@ := P2z,

Poi nt s3@ : = P3x,

Poi nt s3@ : = P3y,

Poi nts3@ : = P3z,

Poi nt s4@ : = P4x,

Poi nts4@ : = P4y,

Poi ntsd@ := P4z.
map_triangl e_to_pol ygon(P1x, Ply, Plz, P2x, P2y, P2z, P3x, P3y, P3z,
Poi nts3) : -

Poi nts1@ : = P1x,

Poi nts1@ : = Ply,

Poi ntsl@ := Plz,

Poi nt s2@ : = P2x,

Poi nts2@ : = P2y,

Poi nts2@ : = P2z,

Poi nt s3@ : = P3x,

Poi nt s3@ : = P3y,

Poi nts3@ : = P3z.
map_pol ar_rect_to_polygon(X, Y, X1, Y1, Cientation, Radius, Pointsl,
Poi nts4) : -

((Oientation = up ; Oientation = down) ->

Poi ntsi@ := X
Pointsl@ : =Y,

Poi ntsl@ : = Radi us,
Points2@ := X1,
Points2@ : =Y,

Poi nt s2@ : = Radi us,
Poi nt s3@ : = Xi,

Poi nts3@ : = VY1,

Poi nt s3@ : = Radi us,
Poi ntsd@ : = X

Poi nts4@ : = Y1,

Poi nts4@ : = Radi us

;((Oientation = w; Cientation =€) ->

Poi nt s1@ : = Radi us,

Pointsl@ := X

Pointsl@ :=Y,

Poi nt s2@ : = Radi us,

Points2@ : = X

Poi nts2@ : = Vi,

Poi nt s3@ : = Radi us,

Points3@ : = Xi,

Points3@ := VY1,

Poi nt s4@ : = Radi us,

Points4@ : = Xi,

Pointsd@ := Y
;Pointsl@ := X

Poi nts1@ : = Radi us,

Pointsl@ :=Y,

Poi nts2@ : = Xi,

Poi nt s2@ : = Radi us,

Points2@ : =Y,

Poi nt s3@ : = X1,

Poi nt s3@ : = Radi us,

Points3@ := VY1,

305

P4y, P4z, Pointsl,

Poi nts1, Points2,

Poi nt s2, Poi nts3,

Poi nts4@ : = X
Poi nt s4@ : = Radi us,
Pointsd4d@ := VY1

)
).

map_rect _to_polygon(X, Y, Z Xl, Y1, Z1, Pointsl, Points2, Points3, Points4) :-
(z=21 ->
Poi nt s1@ :
Points1@ :
Pointsl@ :
Poi nts2@ :
Points2@ :
Poi nts2@
Poi nt s3@ :
Poi nt s3@ :
Poi nt s3@ :
Poi nt s4@ :
Poi nts4@ :
Poi nts4@
(Y=v1 ->
Poi nts1@ :
Poi nts1@ :
Poi ntsi@ :
Poi nts2@ :
Poi nt s2@ :
Poi nts2@ :
Poi nt s3@ :
Poi nt s3@ :
Poi nts3@ :
Poi nt s4@ :
Poi nt s4@ :
Poi ntsd4@ :
;Pointsl@ :
Poi nts1@ :
Poi ntsi@ :
Poi nts2@ :
Poi nt s2@ :
Poi nts2@ :
Poi nt s3@ :
Poi nt s3@ :
Poi nts3@ :
Poi nt s4@ :
Poi nt s4@ :
Poi ntsd4@ :
)
).

map_id_to nun(ID, Nun) :-
| D@ #space' (Space),
nane(Space, Spacelist),
| engt h(SpacelLi st, LenSpace),
LenDi vi der is LenSpace + 1,
cat(Bits, ID [LenDvider]),
Bits =[_, NumAtoni,
pname(Num Nurt on) .

N;XN:&?NK?NK%

,N:<.><_[§:,§P<.N:,§.><.N:<P< ,N:<.><_,'§:<_§.N:<_§.N:<P<

E.3.4 IDM <-> ThermalDesigner mapping

The mapping between the IDM and Thermal Designer is again fairly complicated, mostly due to the
need to associate related objects together in a mapping to provide enough information for the
mapping. Thereis aso much information in Thermal Designer which can not be found in the IDM
and is asserted through as defaults in the initialisers section of the mappings. The mappings here

306

require complex invariants to ensure that the right plane and material definitions are associated
together to enable the mapping to take place.

inter_viewidm integrated, thernal designer, read wite, conplete).

inter_class([idmbuilding], [td_building],
equi val ences(
name = bui | di ng_nare,
num of _occupants = num of _occupants,
effective_thernal _nass = effective_thernal _nass,
spaces = spaces,
environnent = clinate
)
initialisers(
td_buil di ng. bui | di ng_nane = ' *BU LD NG NAME*' ,
td_bui | di ng. num of _occupants = 4,
td_building.effective_thermal _nass = 0.5

).

inter_class([idmenvironnment], [td_climate],

equi val ences(
exposure_cl ass = exposure_cl ass,
infiltration_zone = infiltration_zone,
degr ee_days = degree_days

),

initialisers(
td_climate. exposure_cl ass = ' nedi um exposed',
td_climate.infiltration_zone ="
td_climate. degree_days = 369

))-

c,

inter_class([group(i dmspace_face), group(idmroof)], [td_space],

i nvari ant s(
i dm space_face.location = 'ext'

),

equi val ences(
bi j ection(idmspace _face[].type_of _face
bi j ection(idmspace face[].type of face
i dm roof = roof

).

‘wall', walls[]),
"floor', floor[]),

inter_class([idmspace face, idmnaterial _face, idmbuilding], [td wall],

i nvari ant s(
i dm space _face.type of face = "wall',
i dm space_face.location = "ext',
idmmaterial _face.type_of face = "wall"',
pl ane_equi val ence(i dm space_f ace. pl ane, idmnaterial _face. pl ane),
poi nt _equi val ence(i dm space_face.nin, idmmaterial _face.mn),
poi nt _equi val ence(i dm space_f ace. max, idmnaterial _face. max)

),

equi val ences(
i dm space_face. max=>x - idmspace_face. m n=>x
i dm space_face. max=>y - idm space_face. m n=>y
i dm space_face.orientation = orientation,
bi j ecti on(i dm space_f ace. openi ngs[] @l ass(i dm space_face), w ndows[]),
idmnmaterial _face. material =>col our = col our,
idmnmaterial _face. material =>r_value = r_val ue

wi dt h,
hei ght ,

)
initialisers(
td_wall.colour = "light',
td wall.r _value = 1.7,
td_wal | @reat e(i dm bui | di ng. envi ronnent =>degr ee_days)

).

307

inter_class([idmspace_face, idmnaterial _face, idmbuilding], [td w ndow,

i nvari ant s(
i dm space_face.type_of _face = 'opening',
i dm space_face.location = "ext',
idnmaterial _face.type_of _face = 'opening',

pl ane_equi val ence(i dm space_face. pl ane, idmnaterial _face. pl ane),
poi nt _equi val ence(i dm space_face.mn, idmnaterial_face.mn),
poi nt _equi val ence(i dm space_f ace. nax, idmnaterial _face. max)

)

equi val ences(
i dm space_face. max=>x - idmspace_face. mn=>x = w dth,
i dm space_face. nax=>y - idmspace_face. m n=>y = hei ght,
idmnaterial_face. materi al =>shadi ng_coeffici ent = shadi ng_coef,
idmmaterial _face. material =>r_value = r_val ue

)

initialisers(
t d_wi ndow shadi ng_coef = 1.0,
td_wi ndow r_val ue = 0. 23,
t d_wi ndow@r eat e(i dm space_f ace. ori entati on, idmbuil di ng. environnent =>degr ee_days)

).

inter_class([idmroof, idmbuilding], [td_roof],
equi val ences(
i dmroof. max=>x - idmroof.mn=>x = width,
i dmroof.max=>y - idmroof.mn=>y = |ength,
i dm roof . materi al =>col our = col our,
idmroof.material =>r value = r_val ue
)
initialisers(
td_roof.colour = "light',
td_roof.r_value = 3.6,
t d_r oof @r eat e(i dm bui | di ng. envi r onnent =>degr ee_days)

)
).
inter_class([idmspace_face, idmnaterial _face, idmbuilding], [td suspended floor],
i nvari ant s(
i dm space_face.type_of _face = 'floor',
i dm space_face.location = "ext',
idnmaterial _face.type_of _face = 'floor',

idnmaterial _face. material @l ass('i dm suspended_fl oor'),
pl ane_equi val ence(i dm space_face. pl ane, idmmaterial _face. pl ane),
poi nt _equi val ence(i dm space_face.mn, idmnaterial _face.mn),
poi nt _equi val ence(i dm space_face. nax, idmnaterial _face. max)
)
equi val ences(
i dm space_face. rax=>x - idmspace_face. m n=>x = width,
i dm space_face. mrax=>y - idmspace_face.mn=>y = | ength,
idmmaterial_face. material =>fl oor_covering_r_val ue = fl oor _coveri ng_r_val ue,
i dmmaterial _face. material =>subf| oor_protection = subfl oor_protection,
idmmaterial _face. material =>f oundati on_hei ght = foundati on_hei ght,
idmnaterial face.material =>floor_insulation r value = floor _insulation_r_val ue
),
initialisers(
td_suspended_fl oor. fl oor _covering_r_val ue = 0. 4,
t d_suspended_f I oor. subfl oor_protection ="'c¢',
t d_suspended_f | oor. f oundati on_hei ght = 1,
td_suspended_fl oor. fl oor _i nsul ation_r_val ue = 0. 3,
td_suspended_f | oor @r eat e(i dm bui | di ng. envi r onnent =>degr ee_days)

308

inter_class([idmspace face, idmnaterial _face, idmbuilding], [td _concrete_floor],

i nvari ant s(
i dm space_face.type_of _face = "'floor',
i dm space _face.location = "ext',
idmmaterial _face.type_of _face = 'floor',

idmmaterial _face. material @l ass('idmslab floor'),
pl ane_equi val ence(i dm space_f ace. pl ane, idmnaterial face. pl ane),
poi nt _equi val ence(i dm space_face.nin, idmmaterial _face. mn),
poi nt _equi val ence(i dm space_face. max, i dmmaterial _face. nax)
),
equi val ences(
i dm space_face. max=>x - idmspace_face. m n=>x = width,
i dm space_face. max=>y - idmspace_face. mn=>y = |ength,
idnmaterial _face.material =>fl oor _covering_r_value = fl oor_covering_r_val ue,
idmnaterial _face. material =>i nsul ati on_depth = insul ati on_depth
),
initialisers(
td_concrete floor.floor_covering r_value = 0.4,
td_concrete_floor @reate(i dmbuil di ng. envi ronnent =>degr ee_days)
)
).

Auxiliary functions
poi nt _equi val ence(Poi nt, Point).
poi nt _equi val ence(Point1, Point2) :-
Poi nt 1@ (X),
Poi nt 2@ (X,
Poi nt 1@(Y),
Poi nt 2@ (YY),
|

pl ane_equi val ence(Pl ane, Pl ane).
pl ane_equi val ence(Pl anel, Pl ane2) :-
Pl anel@xi s(A),
Pl ane2@xi s(A),
Pl anel@ffset (O,
Pl ane2@f fset (O,
|

E.4 Project Window for the Large Example

The following set of diagrams shows a project window devised as the main example for this
thesis. The diagrams are broken into two sections, those concerned with the user and function
specification, followed by those concerned with flow of control specification.

E.4.1 User and function specification

Though originally there was a single diagram showing all actors, design roles, and design
functions, this could not be read reproduced on a single sheet. The following diagrams are
extracted views from the original highlighting the roles of individual actors.

E.4.1.1 Client

The client has two roles in this project window (see Figure E.16), the initial specification of
requirements and then the final acceptance of the building design. Defining the building
requirements can be performed by a single design function, that of specifying requirements. This

309

design function is associated with a design tool called WordPerfect, in this case thereis no input to
WordPerfect from the IDM, and no output from WordPerfect to the IDM, hence no schemas are
specified for the design function. The role of final acceptance can be achieved through two design
functions, those of viewing the plans and viewing the model (in 3D). Both of these design
functions have associated design tools with input from the IDM. However, there is no output from
VISION-3D, meaning that no changes can be made in that design function and passed through to
the IDM.

pecify_
equiremenys

ordPerfect

efine_building_
equirements

I_in.xps |_out.xps

elo_out.xps

inal_acceptance

Figure E.16 Client and design roles

E.4.1.2 Architect

The architect plays three main roles in this project window (see Figure E.17), those of layout
design, specifying building properties, and evaluation of the design. Each of these roles is
supported by arange of design functions, including a documentation function for all roles.

E.4.1.3 Structural consultant

While the architect plays afairly broad role in the project window (see Figure E.18), the structural
consultant has very specialised design roles. These comprise the design of the structural system
and ensuring the building’ s structural integrity.

E.4.1.4 Daylighting consultant

The daylighting consultant also plays a very specialised role in the project window (see Figure
E.19). They can specify glazing for the building (note the overlap with the architect’ s design role
of specifying glazing properties) and must ensure that there is no serious overheating in the

310

building due to the glazing specified.

valuate
eneral_
hermal_
ropertie

esign_evaluation

hermalDesigner

esign_
uilding_

ision3D

rchitect 4 ayout_design
rch_in.xps rch_out.xps

ela_out.xps

lazing_
roperties

/ lazing_

ayout

uilding_property_
pecification

hermal_
roperties

ordPerfect

ema_in.xps ema_out.xps
aterialSEditor

Figure E.17 Architect and design roles

evaluate
structural_
code_
omplian
whb_in.xps b_out.xps
WallBrace

ensure_structural_
integrity

efine_wal
tructures

structural_consultant

str_in.xps str_out.xps

specify_
bracing

structural_system_
design

@

WordPerfect

Figure E.18 Structural consultant and design roles

311

pecify_
lazing_

roperties

ewi_in.xp ewi_out.xps
aterialsEditor

pecify_glazing
aylight_consultant
ay_in.xps ay_out.xps

valuate_
verheatin
isk

nsure_no_ dhe_in.xps dhe_out.xps

verheating hermalDesigner

ocumentati

ordPerfect

Figure E.19 Daylighting consultant and design roles

E.4.1.5 Thermal consultant

The thermal engineering consultant also has a very specialised role (see Figure E.20). They can
specify materials for the building (note the overlap with the architect’ s design function to specify
thermal properties) and must ensure that the proposed building meets the code on thermal

compliance.

pecify_
hermal_
roperties

ema_out.xps

pecify_materials

aterialsEditor

hermal_consultant

her_in.xps her_out.xps

ocumentati

ordPerfect

nsure_thermal_
ode_compliance

hermalDesigner

Figure E.20 Thermal consultant and design roles

312

E.4.2 Flow of control specification
The following set of diagrams show the flow of control for the example project window, starting
from the top level CombiNet.

21/9/95
Robert Amor

GombiNet:-| Trebor House
1

Version:
Date:
Author.

J

design_and_update

>

3
| architect

{ building_design

design_building_layout

client

Figure E.21 Top-level CombiNet

E.4.2.1 Top-level CombiNet
The top level CombiNet (see Figure E.21) provides a high-level view of the flow in this project
window. Work starts with the client specifying requirements, followed by the architect performing

313

an initial building design layout. Following these two sequential stages is an iterative stage of
designing and updating looping with building design and acceptance CombiNets until the designis
accepted and the project window terminates.

architect

1.0
21/9/85
Robert Amor

CombiNet: | design_and_update

Version:

Date:
Author:

10

hermal_properties

evaluate_general
design_building_layout

Ko
°
<]
E
1
2
2
>

specify_glazing_properties
. specify_thermal_properties

Figure E.22 Design and update CombiNet

E.4.2.2 Design and update CombiNet

The design and update CombiNet (see Figure E.22) allows the architect to specify a range of
properties of the building. There is alooping between the specification of thermal properties and
evaluating their impact on the building. When the architect is happy with the properties, or with the

314

bracing, or having navigated the model, they may exit the CombiNet. Note that designing the
building layout may be entered at any stage in this CombiNet.

=
5
(n -
> o
nl <E(
o))
& 8*5
_— S~
2lal2| e
= | 2
o~ ||
=
% ..
Pl .
E’ S| 3
& et
Slo|®|5
Ql>|O<«
w
I
| Ge)
O]
2
[y+]
k=]
a
:\
o
c
ml
o b 4
o N
7]
@
k=]
= x
Q o
31 =
— |
—_ o] =
3 =
I3 >
© > 1]
0 £ o
»
c
L
=
<
S
=
@
£
3
o
o
©

Figure E.23 Building design CombiNet

E.4.2.3 Building design CombiNet

The building design CombiNet (see Figure E.23) allows the various consultants to be drawn into
the project with iterations between structural, daylighting and thermal work being supported.
Documentation may be performed at any time, and the architect can be called in to perform design

315

and update work at any time by any of the consultants.

21/6/95
Robert Amor

CombiNet: | structural_work

Version:

Date:
Author:

| structural_consultant

evaluate_structural
code_compiiance

define_wall_structures

Figure E.24 Structural work CombiNet

E.4.2.4 Structural work CombiNet

This CombiNet allows the structural consultant to specify bracing and structural walls in an
iterative manner until they complete their work by evaluating against structural code compliance
(see Figure E.24). Note this structuring forces code compliance checks before the structura
consultant can complete their task.

316

E.4.2.5 Daylight work CombiNet

This CombiNet allows the daylighting consultant to specify glazing in an iterative manner until
they complete their work by evaluating the overheating risk of their specification (see Figure
E.25). Note this structuring forces a check on overheating implications before the daylighting
consultant can complete their task.

Robert Amor

21/9/95

CombiNet: | daylight_work

Version:
Date:
Author:

| daylighting_consultant

g_risk

evaluate_overheatin

glazing_layout

specify_glazing_properties

Figure E.25 Daylight work CombiNet

317

E.4.2.6 Thermal work CombiNet

This CombiNet allows the thermal consultant to specify thermal and glazing properties in an
iterative manner until they complete their work by evaluating against thermal code compliance (see
Figure E.26). Note this structuring forces code compliance checks before the thermal consultant
can complete their task.

-

c

<

=

2

c||= -

S o Q

a3 §:

© = 0|

g E -1 @

5 = S|a
[0 =l

= —

=& =
e

| % ..

Z | = .
a|lSt..|5
E|212|E
Slelw|S
Q>0

evaluate_thermal
code_compliance

specify_thermal_properties
glazing_layout
specify_glazing_properties

Figure E.26 Therma work CombiNet

318

E.4.2.7 Acceptance CombiNet

The acceptance CombiNet (see Figure E.27) is the final work section in the project window and
must be completed before the project window can complete. In this CombiNet the client reviews
the plans and 3D model before giving approval, at which point the project window terminates
(likely to lead to another project window for the construction phase); or rejection, in which case
another round of design and update is performed by the architect.

o
@
Q £
= <
< Yol It
o 2l &
[0 S| &
3] =g
© o
I
%..
ey .-
B2l sl 8
-
= S|l dl=| S
2 O|l>|al<
o

©
-
G
El
4
4
S

Figure E.27 Acceptance CombiNet

319

Appendix F

The Parsers

This appendix briefly describes the parsers and language translators which were written as part of
thisthesis. A range of methods were used to implement the parsers, ranging from DCGs through
to ahand-coded parser.

F.1 1SO-10303:11 EXPRESS Par ser

The vast mgority of schemas developed for domains in the construction industry are written in the
EXPRESS modelling language (1SO/TC184 1992) which is part of the ISO-STEP standards. To
be able to utilise models developed in the industry, and to remain compatible with efforts
underway, it was felt necessary to be able to accept schema definitions in this language. The
EXPRESS standard document contains a BNF grammar (Wirth 1977) for the language. The
standard is available in electronic format and the grammar could be extracted from this document
without rekeying. Starting with a BNF grammar, it is an easy task to create a DCG form, which
returns a parse tree of the schema being handled. This is what was implemented for this parser.
The parser reads the whole schema into memory (for ease of programming, though a buffered
approach would be more capable for very large schemas) and then passesit to the DCG grammar
to return a parse tree for the schema. The main predicates developed in the EXPRESS parser are
presented below:

exp_schema_block(-Schema, +Chars, [])

Thisisthe top level DCG predicate which takes a set of characters (Chars) and returns a parse tree
in Schema. The [] denote that the whole set of characters must be used when parsing. As many
existing schemas were found to have incorrect syntax, the DCG provides status messages in the
standard output window indicating which entity, type definition, procedure, etc it is attempting to

320

parse. Thisaidsin identifying the point in a schemawhere a syntax error has been encountered.

express2par se(-Par sed)

This top level predicate prompts the user for the file(s) containing the EXPRESS schemato be
parsed, and reads the file before passing it through to the exp_schema_block predicate to return the
parse tree in Parsed.

express_checker
To check an EXPRESS schema’ s syntax prior to use, this predicate loads in the file(s) and ensures
that it can be processed by the DCG.

An example of the syntax tree returned for a ssmple schema definition is shown below:

An EXPRESS schema
SCHEMA i dm

ENTITY wal |
name : STRI NG
hei ght : REAL;
wi dth : REAL;
azimuth : REAL;
position : LIST [3:3] OF REAL;
UNI QUE nane,
END_ENTI TY;
END_SCHEMA;

Parsed representation of an EXPRESS schema

Parsed = schena_bl ock(i dm
schema_body([], nil,
[
entity_ bl ock(
entity head(wal |, subsuper(nil, nil)),
entity body(

explicit_attribute([nane], nil, sinple_type(' STRING (nil))),
explicit_attribute([height], nil, sinple_type('REAL' (nil))),
explicit _attribute([width], nil, sinple_type(' REAL' (nil))),

explicit _attribute([azimuth], nil, sinple_type(' REAL' (nil))),

explicit_attribute([position], nil, list_type(bound specification(
sinpl e_expression([tern([factor(sinple factor(literal (3)), nil)])]),
sinpl e_expression([tern([factor(sinple factor(literal (3)), nil)])])),
nil, sinple_type('REAL' (nil))))

],

1,

uni que_cl ause(' UNNFQUE', [labelled attribute list(nil
[referenced attribute(nane)])]),

ni

321

Initial tests with this parser produced many failed attempts at parsing existing schemas which
caused some concern. However, investigations showed that this was not due to the parser, but due
to the tested schemas being incorrectly specified according to the EXPRESS standard. This
appears to be a hold-over from draft versions of the EXPRESS standard whose syntax were more
flexible than the final version (e.g., allowing any order of SUBTYPE and SUPERTY PE
specification in earlier definitions). Parsers developed from the time of the draft specification
always allowed these more flexible syntax specifications and hence a strict checker failed on
schemas which were being passed through to SO for evaluation as draft standards.

Being able to parse a schema specification is an initial step, to be used in the environments
developed in this thesis the parsed schema has to be translated into an implementable language.
Two such trandators are described below.

F.1.1 EXPRESS to Snart translator

The Snart language is the implementation language for this thesis. Therefore, to be able to utilise
EXPRESS schemasin thisthesis it was necessary to trandlate the parsed EXPRESS definition into
Snart class definitions. At the time that this translator was written a conscious decision was taken
to limit the amount of EXPRESS which was trandated into Snart. This was to limit the amount of
time required to produce the translator, and in recognition of the fact that al schemas produced to
date do not use the mgjority of the EXPRESS language. The portions of EXPRESS which are not
tranglated are the procedure definitions and some complicated where conditions. All inheritance
structures, type definitions, attribute specifications, uniqueness constraints, and many simple
where conditions are translated into Snart form. The main predicate available to perform this
trandation is described below:

express2snart

Prompts the user for the file(s) containing the EXPRESS schema to be translated to Snart. The
files are passed through the parser described above and the resultant parse trees passed to a pretty
printer which creates afile of Snart class definitions.

The trandated Snart equivaent of the EXPRESS code above is shown below:

% Snart class definitions created fromthe EXPRESS file for the schema: idm
class(wal |,
i nherits([]),

features([
nane: facets([type(string), relationship(values), relationship(key)]),
hei ght: facets([type(real), relationship(values)]),
wi dth: facets([type(real), relationship(values)]),
azimuth: facets([type(real), relationship(values)]),
position: facets([type(list(real)), attribute_cardinality([3, 3]),
rel ati onshi p(val ues)])

1)

322

F.1.2 Snart to EXPRESS translator

While Snart is the implementation language of this thesis, it has previously been stated that
EXPRESS is the specification language used by modellers in this domain. Therefore, it was felt
necessary to provide a mechanism to translate Snart-based schemas through to EXPRESS form.
Thistranglator provides alimited trandation ability as EXPRESS has no ability to record method
definitions as exist in Snart. Therefore, what gets translated is restricted to class specifications
with inheritance and attribute definitions. The predicate that provides this trandation is described
below:

snart2express

Prompts the user for the file(s) containing the Snart schema definition. These files are loaded into
the Snart system (if not already loaded) and al class definitions extracted. A pretty printer isthen
invoked to write a new file containing the EXPRESS representation of the Snart definitions.

F.1.3 Snart to Reflex translator

The Reflex CAD tool provides alanguage to specify new objects which can be placed in the CAD
environment. To take advantage of its use as a model specification tool, as described in Section
9.2.4, it was necessary to be able to translate schema specifications into its object definition
language. The object definition language of Reflex is very simple, utilising a single inheritance
model and with an associated form definition language to enable attributes of an object to be
specified when the object is laid down using the CAD tool. However, what was not possible to
specify directly in the translation was the graphical form of the object. This has to be hand-edited
into the object specification. In most cases, existing object definitions from the Reflex library can
be used and the parameters of these library objects tied to the attributes specified for the trandated
objects. The predicate provided to trandate schemasinto Reflex form is described below:

snart2reflex

Prompts the user for the file(s) containing the Snart schema definition. These files are loaded into
the Snart system (if not already loaded) and all class definitions extracted. A pretty printer isthen
invoked to write a new file containing the Reflex representation of the Snart definitions.

The Reflex object and form definitions for the EXPRESS schema above are shown below (prior
to the hand-editing to insert existing library object definitions):

323

A Reflex object specification
FEEEETEEE bbb rri b rrrrrnn

/1
/1l El enment Nane: wal |
/1
/1 Li brary Nane: | DM
/1

/1 Witten by: Robert Anmor - Buil di ng Research Establishnent

/1

/1 Dat e: 1997-5-24

/1

11 Ver si on No: 1.0

/1

11 Version Date: 1997-5-24

/1

/1

/1 Descri ption:

/1

/1 (c) Copyright 1997 Robert Anmor and the Buil di ng Research Establi shrment
/1
N NN NN NN NN

#i ncl ude "objlib.vel"
#i ncl ude "wal | _draw. vel "

el enrent wal |

{

saved
float azinuth
fl oat hei ght
string nane
float position[3]
float width

private
void OnEdit()
voi d OnSave()
voi d draw _shape(i nt eger)

Vi ews
pl an
Vi ew3d

di al og
wal | Dl g
}

link wal I D g

{
azi muth Tazi nuth
hei ght Thei ght
name Tnanme
position Tposition
width Twi dth

324

voi d OnEdi t ()

{

}

voi d OnSave()

i

vi ew pl an

; dr aw_shape(0)
vi ew Vi en3d

; draw_shape(1)

A Reflex dialogue specification
FHETEEEEPEE bbb rrrirrnry

/1

/1 Dial og Nane:

/1

/1 Li brary Nane:
/1

/1 Witten by:
/1

/1 Dat e:

/1

/1 Ver si on No:
/1

/1 Ver si on Dat e:
/1

/1

/1 Descri pti on:
/1

/1 (c) Copyright

/1

wal | D g

| DM

Robert Anmor - Buil di ng Research Establishnent
1997-5-24

1.0

1997-5-24

1997 Robert Anor and the Buil di ng Research Establishnent

FEEEEEEEEE i rrrrrrrrry

dialog wal I Dl g
{

Help "I DM wal |’
| DV

Title "wall -

Wrid GRgrid
{

Di mension 5 2

Wabel Lazinuth { XY 1 1; Label "azimuth" }
Wext Tazinmuth { Wdth 150 ; XY 1 2 }

W abel Lheight { XY 2 1; Label "height" }
W ext Theight { Wdth 150 ; XY 2 2}

W abel Lname { XY 3 1; Label "nane" }
W ext Tnanme { Wdth 150 ; XY 3 2 }

325

W abel Lposition { XY 4 1; Label "position" }
W ext Tposition[3] { Wdth 150 ; XY 4 2}

Wabel Lwidth { XY 5 1; Label "width" }
Wext Twidth { Wdth 150 ; XY 5 2 }

F.2 1SO-10303:21 STEP data-file Parser

Aswell as being able to handle schema definitions in the EXPRESS specification language, it was
necessary to be able to handle data associated with these schema definitions. 1SO-STEP have
defined a simple data-file representation to enable models to be transported (1SO/TC184 1994).
The STEP Part 21 standard document contains a BNF grammar (Wirth 1977) for the language.
The standard is available in electronic format and the grammar could be extracted from this
document without rekeying. Starting with aBNF grammar it is an easy task to create a DCG form,
which returns a parse tree of the schema being handled. Thisis what was implemented for this
parser. The parser reads the whole data-file into memory (for ease of programming, though a
buffered approach would be more capable for very large files) and then passes it to the DCG
grammar to return a parse tree for the data-file. The main predicates developed in the STEP data-
file parser are presented below:

step_exchange file(-Schema, +Chars, [])

Thisisthetop level DCG predicate which takes a set of characters (Chars) and returns a parse tree
in Schema. The [] denote that the whole set of characters must be used when parsing. The DCG
prints out the record number being processed at any stage as an aid to identifying syntax errorsin
data-files being parsed.

step2par se(-Parsed)

Thistop level predicate prompts the user for the file containing the STEP data-file to be parsed and
reads the file before passing it through to the step_exchange file predicate to return the parse tree
in Parsed.

step_read(+ FName, -Schema)

This programming level predicate provides a silent way of performing the function offered by
step2parse. This predicate is used inside other predicates to import a STEP data-file for further
processing, without having to involve the user.

326

step _checker
To check a STEP data-file's syntax prior to use this predicate |oads in the file and ensures that it
can be processed by the DCG.

An example of the syntax tree returned for asimple STEP data-file (based on the wall schema of
Appendix F.1) is shown below:

A STEP data-file

| SO- 10303- 21;

HEADER

FI LE DESCRI PTION((' This file contains a sinple set of wall exanples'),'idm);
FI LE_NAME($, ' 1997-04-20 17:05:23', (" RWA'), (' Comp Sci, University of

Auckl and'), ' Hand-coded' ,'idm , $);

FI LE_SCHEMA(('idm));

ENDSEC;

DATA;

#1 = WALL(' North ground-floor', 2.4, 6.5, 0.0, (0.0, 0.0, 0.0));
#2 = WALL(' East ground-floor', 2.4, 4.5, 90.0, (6.5, 0.0, 0.0));
#3 = WALL(' South ground-floor', 2.4, 6.5, 180.0, (6.5, 4.5, 0.0));
#4 = WALL(' West ground-floor', 2.4, 4.5, 270.0, (0.0, 4.5, 0.0));
ENDSEC;

END- | SO- 10303- 21;

Parsed representation of a STEP data-file

Parsed = exchange_fil e(
header _secti on(
[
header _entity(standard _keyword(' FI LE DESCRI PTI ON),
[untyped paraneter(list([untyped paraneter(
string('This file contains a sinple wall exanple'))])),
untyped_paraneter(string(idm)]),
header _entity(standard_keyword(' FILE_ NAVE), [untyped_paraneter(m ssing),
unt yped_paraneter(string('1997-04-20 17:05:23")),
untyped_paraneter(list([untyped paraneter(string(' RWA'))])),
untyped_paraneter(list([untyped paraneter(string(' Conp Sci, University of
Auckland'))])), untyped_paraneter(string(' Hand-coded')),
untyped_paraneter(string(idm), untyped paraneter(m ssing)]),
header _entity(standard_keyword(' FI LE_SCHEMA'),
[untyped paraneter(list([untyped paraneter(string(idm)]))])
]
),
dat a_section(
[
entity_instance(entity_name(1l), nil
si npl e_record(standard_keyword(' WALL'),
[
unt yped_paraneter (string('North ground-floor')),
unt yped_paraneter(real (2.4)),
unt yped_paraneter(real (6.5)),
unt yped_par aneter (real (0)),
unt yped_paraneter (list([untyped_paraneter(real (0)),
unt yped_paraneter(real (0)), untyped_paranmeter(real (0))]))

]
),

327

entity instance(entity name(2), nil,
si mpl e_record(standard_keyword(' WALL'),
[
unt yped_paraneter(string(' East ground-floor')),
untyped_paraneter(real (2.4)),
untyped_paraneter(real (4.5)),
unt yped_par aneter (real (90)),
untyped_paraneter(list([untyped paraneter(real (6.5)),
untyped_paraneter(real (0)), untyped paraneter(real (0))]))
]
),
entity instance(entity name(3), nil,
simpl e_record(standard_keyword(' WALL'),
[
unt yped_paraneter(string(' South ground-floor')),
untyped_paraneter(real (2.4)),
untyped_paraneter(real (6.5)),
unt yped_par aneter(real (180)),
untyped_paraneter(list([untyped paraneter(real (6.5)),
untyped_paraneter(real (4.5)), untyped paraneter(real (0))]))
]
),
entity instance(entity name(4), nil,
simpl e_record(standard_keyword(' WALL'),
[
untyped_paraneter(string(' West ground-floor')),
untyped_paraneter(real (2.4)),
untyped_paraneter(real (4.5)),
unt yped_paraneter(real (270)),
untyped_paraneter(list([untyped paraneter(real (0)),
untyped_paraneter(real (4.5)), untyped paraneter(real (0))]))

]
))
]
)
)

F.2.1 STEP data-file to Snart translator

The Snart language is the implementation language for this thesis. Therefore, to be ableto utilise
data associated with EXPRESS schemas in this thesis it was necessary to translate the parsed
STEP data-file definition into Snart objects. The objects are created in the current object space, and
if this space happens to be persistent then the created objects will be saved when the persistent
store is saved. The main predicate available to perform this trandation is described below:

step2snart

Prompts the user for the file containing the STEP data-file to be trandated to Snart objects. Thefile
is passed through the parser described above and the resultant parse tree passed to an instantiator
which will create objects as required and assert the specified values for the object’s attributes.
STEP data-file style object references are changed to Snart style object references to ensure that
rel ationships between objects are still maintained.

328

F.2.2 Snart to STEP data-file translator

While Snart is the implementation language of thisthesisit has previously been stated that STEPis
the environment used by modellers in this domain. Therefore, it was felt necessary to provide a
mechanism to translate Snart-based models through to STEP data-file form. The predicate that
provides this trandation is described below:

snart2step(+ OSNum)

All objects in the space specified by OSNum are identified and the user prompted for a STEP data-
fileto create. Each object iswritten directly to the file with Snart style object references modified to
STEP data-file references.

F.3 CGE Parser

To allow modelled processes to be used to drive the workflow of an integrated design system, as
described in Chapter 7, it was necessary to extract relevant process information from the files
created by the CGE modelling tool (Vogel 1991). The CGE program uses a single directory for a
set of files representing one model. Each diagram in amodel hasits own filein this directory. The
file representing a diagram is stored in plain ASCII format (see the example below) and is named
according to the formalism used in the diagram. Thereforeit isrelatively simple to identify all files
associated with a project window, and using the file-name it is possible to identify the top level

diagram which describes actors and their design roles as well as identifying the top level

CombiNet.

Due to the simple fixed-format, attribute per line syntax of CGE files it was felt unnecessary to
develop a CGE parser for this formalism. Instead a simpler hand-coded parser was written which
processes the file line-by-line. Based on the object types that are found in the file, the parser
extracts only those attributes which are named as necessary for that object type (e.g., the tmp, X,
and y variablesin the DesignFunction objects shown below are not required).

A portion of a CGE data-file
Nane_of st _def used : "PW

Di agram nane

. "Trebor _house"

Diagramtitle : "No_Title"
Nane_of creator . "marcel "

Dat e_of creation . September 19 1995
Ti me_of creation : 13:04: 40

Dat e | ast _updated . September 21 1995
Ti me_l ast _updat ed : 10:12:16

Modi fi ed_by . "marcel "

Rel ease_nunber . 0

Ver si on_nunber 7

329

Di agram " Tr ebor _house"

Begi n
d ass
C ass
C ass

d ass

d ass

d ass

"Actor" Wth

"Desi gnRol e" Wth
"Desi gnFunction" Wth
"Connector” Wth

Var "show ant" = 0
"brpnt" Wth

"Legend" Wth

Var "x" = 300

Var "y" = -1000

Var "w' = 2900

Var "h" = 2700

Var "version" = "1.0"
Var "date" = "21/9/95"
Var "author"” = "Robert Anor"

bj ect <14> Is_of class "DesignFunction" Wth

braci ng"

Var
Var
Var

Var
Var
Var
Var

"x" = 880

"y" = -680

"design_function" = "specify_
"tmp" = 42

"input_tool" = "nest_in.xps"
"out put _tool" = "nest_out.xps"
"tool _nanme" = "Material sEditor"

bj ect <13> Is_of class "DesignFunction" Wth

gl azi ng_
properties"

There isasingle predicate provided in the CGE parser to translate CGE projects, this is described

below:
pw_read

This predicate prompts the user for the directory in which the project window files are stored. The
set of filesin this directory are collated and the top level project window description identified.
Thisfileis parsed to identify the top level CombiNet as well as actors, design roles, and design
functions with their associated design tools. The CGE parser then processes al of the flow of
control diagrams and builds up a single consistent name space for al workflow items in these
diagrams. The parsed CGE project window is then written out into a STEP data-file representation
of the whole project window. An example for the CGE file above is shown below:

Var
Var
Var

Var
Var
Var
Var

"x" = 1180

"y" = -1200

"design_function" = "specify_
"tmp" = 36

"input _tool" = "nmew _in.xps"
"output _tool" = "nmew _out.xps"
"tool _nanme" = "MaterialsEditor"

330

A portion of a STEP data-file representing a CGE project window

|SO-10303-21;

HEADER;

FILE_DESCRIPTION(('Thisfile contains a PW mode translated from CGE'), PW";
FILE_NAME($,'1997-04-20 17:05:23 ,('(RWA"),('Comp Sci, University of Auckland'),'CGE to STEP,'PW'",$);

FILE_SCHEMA((PW"));
ENDSEC;

DATA;

#1 = PROJECT_WINDOW('Trebor_house', (#11, #28, #29, #30, #31), #32);

#2 = DESIGN_FUNCTION('specify_bracing', 'MaterialsEditor’, 'mest_in.xps, 'mest_out.xps);

#3 = DESIGN_FUNCTION('specify_glazing_properties, 'Material sEditor', 'mewi_in.xps, 'mewi_out.xps);

F.4 VML Parser

VML has a syntax very similar to that of Prolog, as much of its expressive capability is based on
that of Prolog. However, there are some syntactic constructs which make VML specifications not
directly parsable by the Prolog system. Therefore, a DCG was constructed based on the BNF
grammar shown in Appendix A.1l. The parser reads the whole data-file into memory (for ease of
programming, though a buffered approach would be more capable for very large files) and then
passes it to the DCG grammar to return a parse tree for the mapping. The main predicates
developed in the VML parser are presented below:

map_mapping(-Schema, +Chars, [])
Thisisthetop level DCG predicate which takes a set of characters (Chars) and returns a parse tree

in Schema. The [] denote that the whole set of characters must be used when parsing. The DCG
prints out the mapping header being processed at any stage as an aid to identifying syntax errorsin
data-files being parsed.

map2par se(-Par sed)

Thistop level predicate prompts the user for the file containing the VML specification to be parsed
and reads the file before passing it through to the map_mapping predicate to return the parse tree in
Parsed.

map_read(+ FName, -Schema)

This programming level predicate provides a silent way of performing the function offered by
map2parse. This predicate is used inside other predicatesto import aVML specification for further
processing, without having to involve the user.

map_checker

To check aVML file' s syntax prior to use this predicate loads in the file and ensures that it can be
processed by the DCG.

331

Appendix G

Generalised Schema Representation Notation

This notation allows the definition of general schemas from awide range of modelling languages
in both relational and object-oriented forms. The notation allows for versioning control in schema
specification and holds redundant data to allow easy application or undoing of modifications.

The definitions below use a notation derived from the Prolog specification of the representation.
L ower-case symbols are terminal tokensin the definition. Upper-case symbols represent variables
which are to be specified for each record. The use of square brackets [] denotes a list of zero or
more of the object defined between the brackets.

G.1 Version Tree

The version tree is defined as a directed acyclic graph with a single root node, denoted by an
empty list in the ParentVersion definition. Version information is stated as shown in Table G.1.

|ver si on(Ver si onNunber, [ParentVersion], DateStarted, ReasonStarted, MdSequenceNunber) |
Table G.1 Specification of a schema version

The variables in this definition are used for the following information: VersionNumber is the
unique identifier for the version; ParentVersion isalist of all VersionNumbers that this version
builds upon; DateStarted is the date this version was started; ModSequenceNumber is the highest
specified sequence number of the modifications that have been made in this version; ReasonSarted
provides further information about the reason for the versions creation. The range of allowable
valuesfor ReasonSarted is shown in Table G.2.

332

new_schema(SchemaFi | eNarre)

user _nodi fi cation(User Narme, Descri ption)

mer gi ng(User Narre, Descri pti on)

mappi ng_dependant (MapNarre, MapFi | eNane)

Table G.2 Specification of version creation reasons

The four values for ReasonStarted are used in the following cases: new_schema defines the
initialisation of the version tree and schema from an existing file of schema definition;
user_modification describes a user initiated modification to a schema (including starting a schema);
merging allows for the merging of two or more versions with no other reason than the bringing
together of modifications in the merged versions; mapping_dependant describes a new version
which is created due to specifications in a mapping definition which extend the schema version the
mapping is defined upon.

G.2 Schema

The schema definition has two parts. a definition of the schema represented in the model; followed
by a set of sequential modifications which describe the construction of the schema definitionin a
particular version. The form of these two specificationsis shown in Table G.3.

schema(SchemaNarre, Ver si onTreeRoot, Ver si onSequenceNunber)
schema_nod(Ver si on, SequenceNunber, Mbdification)

Table G.3 Specification of schema information

The variables in the definitions are used for the following information: SchemaName is a unique
descriptive identifier of the schema; VersionTreeRoot specifies the starting version number for the
schema (usually number one); VersionSequenceNumber represents the highest specified version
number in the schema definition; Version is the schema version that the specified modification is
applied to; SequenceNumber isthe position in the list of modifications which make up the version
that this modification occurred in; Modification describes the atomic change that was applied to the
schema during this modification. The Modification specification can take the values shown in
Table G.4.

The variables in the definitions shown in Table G.4 are used for the following information:
EntityName is the name of an entity in a schema, thisis unique to each schema; EntityType defines
whether the entity is abstract or normal (for object-oriented schemas); Position allows the
specification of aposition in alist of inherited entities, position may affect the methods which will
be called in an object-oriented schema; AttributeName is the name of a unique attribute in an entity
definition; Facet specifies an associated piece of information describing an attribute (e.g., attribute
type, uniqueness constraints, range constraints); Value specifies the current value of the Facet it is
defined in; Method is a method interface specification (for object-oriented schemas).

333

add_entity(EntityName, EntityType)

rename_entity(d dName, NewNarre)

delete_entity(EntityName, [Parent], [Attribute], [Method])
add_par ent (Par ent Nane, EntityNane)

add_parent (Parent Nane, Position, EntityNane)
rename_par ent (A dNanme, NewNarre, EntityNane)

del et e_par ent (Parent Nane, Position, EntityNane)
re_order_parents(d dOder, NewOrder, EntityName)
add_attribute(AttributeName, EntityNane)
add_attribute(AttributeNane, [Facet(Value)], EntityNane)
renane_attribute(d dNane, NewNane, EntityNane)
delete_attribute(AttributeNane, [Facet(Value)], EntityNare)
change_attribute_type(AttributeNane, d dType, NewType, EntityName)
add_facet (Attri buteName, Facet(Val ue), EntityName)
rename_f acet (Attri buteNarme, A dNane, NewNane, EntityNane)
del ete _facet (AttributeNane, Facet(Value), EntityNane)

nodi fy_facet _val ue(AttributeNanme, Facet, d dValue, Newval ue, EntityNane)
add_rret hod(Met hod, EntityNane)

rename_net hod(A dName, NewNarre, EntityName)

del et e_net hod(Met hod, EntityNarre)

change_net hod_body(QA dMet hod, NewMet hod, EntityNane)

retract _nmod(Versi on, SequenceNunber)

Table G.4 Specification of modification types

334

Appendix H

Generalised Mapping Representation Notation

This notation allows the definition of a mapping between two schemas in a pre-processed form
that can be loaded by any implementation of a mapping system and used to determine the
mappings that are required between entitiesin the schemas. Asthe mappings are tied to a particular
version of a schema definition, a compacted form of the schema's entity definitions is also
included in the definition.

The definitions below use a notation derived from the Prolog specification of the representation.
Lower-case symbols are terminal tokensin the definition. Upper-case symbols represent variables
which are to be specified for each record. The use of square brackets [] denotes a list of zero or
more of the object defined between the brackets.

H.1 Schema

A schema definition has two parts: a definition of the schema and version being represented
followed by the definition of al entities from the schema that are used in the mapping to be
described, as shown in Table H.1.

view(M eM D, Vi ewNane, ViewFi | eNamre, Vi ewMersion, ViewersionType, Vi ewType)
entity(d assNane, View D, [Parent], [Attribute], [Method], Type, [CeateAttr], [Msc])

Table H.1 Specification of schema entities

The variables in these definitions are used for the following information: ViewlD is the unique
identifier of a particular schema, in the entity definition it can take the value temporary to describe a
temporary entity; ViewName is the human readable name or description of a schema;

ViewFileName points to the generic schema representation database of the schema; ViewVersion

335

represents the version of the schema in the version tree described in Appendix G;
ViewVersionType describes the reason for the creation of the version being used; ViewType
defines whether the schema is to be treated as read_only, read_write or integrated (see Section
5.3.1 for adefinition of the meaning of these types); ClassName is the name of the entity; Parent is
the name of a parent class of the current class; Attribute is an attribute of the entity, described as
the attribute name and a set of facets describing the attribute type, units, constraints, etc.; Method
is the interface definition of a method defined in the entity; Type specifies whether the class is
abstract or not; CreateAttr specifies create parameters of an entity in the same form as an Attribute
definition; Misc allows a set of extraneous class definitions which do not affect the mapping to be
described in the entity definition (e.g., demonsin Snart).

H.2 Mapping

The mapping definition is broken down into sections which represent the major components of
VML mapsasshownin TableH.2.

inter_view(View D, View D, Type, MaxMapNunber, MaxlnvNum MaxEqui vNum MaxI ni t Num

i nter_cl ass(MapNunber, [d assNane], [d assNane], [I|nheritMpNunber], [Invariant Nurber],
[Equi val enceNunber], [InitialiserNunber])

i nvariant (1 nvari ant Nunber, Code, [ReferencedAttribute], [TypeFl ag])

equi val ence(Equi val enceNunber, Code, [ReferencedAttribute], [TypeF ag])

initialiser(InitialiserNunber, Code, [ReferencedAttribute], [TypeFl ag])

Table H.2 Specification of atomic mapping components

The variablesin these definitions are used for the following information: ViewlD in the inter_view
defines the ID of the left and right schema in a mapping; Type describes whether partial or
complete mappings will be required (see Section 5.3.1); MaxMapNumber records the maximum
inter_class ID that has been allocated; MaxinvNum, MaxEquivNum, and MaxInitNum record the
maximum ID that has been allocated to invariants, equivalences and initialisers respectively;
MapNumber isthe unique identifier of an inter_class definition in this mapping; ClassName is the
full reference of aclass from either the left or right schemas in a mapping; InheritMapNumber is
the ID of an inter_class definition which is inherited by this inter_class; InvariantNumber,
EquivalenceNumber, and InitialiserNumber are the unique identifiers of individual invariants,
equivalences, and initidlisers, Code is the parse tree representation of the mapping which is being
represented; ReferencedAttribute is the full reference of an entity, attribute or method from the
Code; TypeFlag is aflag which indicates the type of mapping being represented (current values
are: list_ref or no_list_ref depending upon whether there is a list reference in the equation;
pointer_equivalence if the equation is purely between pointers to other objects or calculation
otherwise).

336

H.3 Inverted Index

The inverted indices provide summary information about the complete mapping between the
schemas. At the current time the information which is collated is for two purposes. One is for
determining which inter_class definitions are purely class initialisers for a mapping systems
initialisation (i.e., only reference classes from one schema). The other is to provide fast access
from a given entity, attribute or method to the code segments which utilise that reference. Table
H.3 shows the summary information structures in the generalised mapping representation.

class_initialisers([MapNurber])

cl ass_maps(d assNane, View D, [MapNunber])

attribute_maps(AttributeName, d assNarme, View D, [Invariant Nunber], [Equival enceNunber],
[InitialiserNunber])

net hod_naps(Met hodNane, O assNane, Viewl D, [InvariantNunber], [Equival enceNunber],
[InitialiserNunber])

Table H.3 Specification of inverted indices into mappings

The variables in these definitions are used for the following information: MapNumber isthe ID of
an inter_class mapping in this database; ClassName is the full reference of aclass; ViewlD isthe
ID of aschemain the mapping; AttributeName or MethodName is the full reference of a particular
attribute or method referenced in a mapping; InvariantNumber, EquivalenceNumber, and
InitialiserNumber are the IDs of invariants, equivalences, and initialisers which reference a
particular attribute or method.

337

Glossary

Actor

A/EIC
ALF

AP
ARPA
Aspect model

ATLAS

AVL
BRANZ
CAD
CGE
Cernol|
CIME
CiMgted

COMBI
COMBINE
CombiNet
CORBA

CSCW
DCG

A person who plays a set role in a project, for example an architect or
structural engineer or project manager

Architecture, Engineering and Construction

Annual Loss Factor method, developed by BRANZ to encourage energy
efficient building design

Application Protocol, a name used in ISO-STEP for domain schema
Advanced Research Projects Agency

Defines the various views of actors, design functions and project windows.
Usually a schema definition which is a subset of the IDM, but with extra
constraints specified on the model

Architecture, methodology and Tools for computer integrated LArge Scale
engineering, an EU funded project

Adelson, Velskii and Landistree, a partially balanced tree structure
Building Research Association of New Zealand

Computer Aided Draughting

Configurable Graphical Editor

A model visuaisation tool used and speciaised in thisthesis

Computer Integrated Manufacturing and Engineering

Computer Integrated Manufacturing for constructional steelwork, an EU
funded project

Computer-integrated Object-oriented product Model for the Building
Industry, an EU funded project

Computer Models for the Building Industry in Europe, an EU funded
project

Project modelling methodology developed in thisthesis

Common Object Reference Brokering Architecture

Computer Supported Collaborative Working

Definite Clause Grammar

338

DF
DFD
DML
DT
DTF
EDM-2
EER
Entity

EPE

ER

ESPRIT

EU

ExEX
EXPRESS
EXPRESS-C
EXPRESS-G
EXPRESS-M
EXPRESS-V
FaceEditor
GIS

GUI

HVAC

IBDS

ID

IDEFO
IDEF1X
IDEF3

IDL

IDM

[IBDS
Instance

Design Function

Data Flow Diagram

Design Modédlling Language

Design Tool

Design Tool Function

Engineering Data Modd

Extended Entity Relationship

The container which holds the attributes and relationships used to model a
particular red life artifact

EXPRESS Programming Environment. A modelling environment for the
EXPRESS and EXPRESS-G notations

Entity Relationship

The EU Information Technology Programme

European Union, a mgjor funding source for large projects

Exchange Executive, workflow management tool developed in thisthesis

A schema specification language developed for | SO-STEP

A proposed extension to EXPRESS with some mapping capability

A graphical version of EXPRESS with greatly reduced functionality

A mapping language proposed for 1ISO-STEP

A mapping/view language proposed for ISO-STEP

A materia specification tool used in thisthesis

Geographic Information System

Graphical User Interface

Heating, Ventilating and Air Conditioning

Integrated Building Design System

Identifier, used in the context of objects

A function modelling method

A data modelling method

Process flow and object state modelling method

Interface Description Language, associated with the CORBA standard
Integrated Data M odel

Intelligent Integrated Building Design System

A set of data values which describe a particular building. The data values
are structured as specified in the model definition for the particular tool or
actor that requires the data

Integrated Software Devel opment Environment

International Standards Organisation/Technical Committee

Information Technology, synonymous with computers

Knowledge-Based System

Knowledge Interchange Format

339

Mode

MSE
MViews
MViewsER
NIAM
Object

00
OOA/D
PDT

PlanEntry
Project

RDBMS
SANZ
Schema

SDAI
Snart
SPE

STAR

STEP
SUMM

A conceptual model of a particular domain. In many cases it reflects the
structures and attributes of individual tools or actors. A model which has
values inserted to describe a particular building is called an instance
Modelling Support Environment

Multiple Views, aframework for developing ISDEs

MViews specialised to support ER modelling

Nijssen Information Analysis Method

A set of data values which describe a particular artefact. The datavalues are
structured as specified in the entity definition

Object Oriented

Object Oriented Analysisg/Design

Product Data Technology, denotes the body of available tools,
methodologies and standards in the area of integrated CAD systems,
dealing with product data interchange, product models, data modelling,
integrated software architectures, etc.

A building plan specification tool used in thisthesis

The process of designing and constructing a building. A project starts with
the initial ideas on a building and is finished at the time the building is
completed

Project Window. Thisis awindow on a project, detailing some small part
of the total project. A PW includes the actors responsible for individual
tasks, the tools they utilise and the tasks they need to complete

Relational DataBase Management System

Standards Association of New Zealand

A data model (or models) representing a distinct domain, or sub-domain, in
the A/E/C area. Examples of a schema include models for the building
skeleton, HVAC components, or structural steel components. A full model
of a building could be thought of as a schema, though it is unlikely that a
homogeneous model can be specified for a whole building over al life-
cycles, and all actors. Each of these schema may comprise several,
potentially duplicate, sub-schema, for example to describe materials,
geometry, etc.

Standard Data Access Interface, part of the 1SO-STEP standard

An object-oriented language built on top of Prolog

Snart Programming Environment. A modelling environment for the Snart
language

A Finnish research programme at VTT for construction process
improvement and re-engineering

Standard for the Exchange of Product model data (1SO 10303)

Semantic Unification Meta-Model

340

Superviews
TES
ToCEE
Transformr
VEGA

VISION-3D
VML
VML-G

VPE

A RDBMS integration technique

Tool Encapsulation Specification

Towards a Concurrent Engineering Environment, an EU funded project

A mapping specification language

Virtual Enterprises using Groupware tools and distributed Architecture, an
EU funded project

A 3D modelling and visualisation tool used in thisthesis

View Mapping Language. A textua mapping specification language

View Mapping Language - Graphical form. A subset of the VML textual
language

VML Programming Environment. A modelling environment for the VML
language

341

Refer ences

Ainsworth, M., Riddle, S. and Wallis, J.L. (1996) Formal validation of viewpoint specifications,
Software Engineering Journal, 11(1), January, pp. 58-66.

Ambler, A. and Burnett, M. (1989) Influence of Visual Technology on the Evolution of Language
Environments, IEEE Computer, 22, pp. 9-22.

Amor, RW. (1991) ICAtect: Integrating Design Tools for Preliminary Architectural Design, MSc thesis,
Victoria University of Wellington, Wellington, New Zealand.

Amor, RW. (1993) QBE like queries in Snart, unpublished report, Computer Science Department,
University of Auckland, Auckland, New Zeaand.

Amor, RW. (1994) A Mapping Language for Views, unpublished report, Computer Science
Department, University of Auckland, Auckland, New Zealand.

Amor, R. and Clift, M. (1997) Documents as an Enabling Mechanism for Concurrent Engineering in the
Construction Industry, accepted for presentation at the 1st international conference on Concurrent
Engineering in Construction, CEC’ 97, London, UK, 3-4 July.

Amor, R.W. and Hosking, J.G. (1993) Multi-Disciplinary Views for Integrated and Concurrent Design,
The Management of Information Technology for Construction, First International Conference,
Mathur, K.S., Betts, M.P. and Tham, K.W. (eds), Selected (refereed) papers, Singapore, 17-20
August, pp. 255-268.

Amor, R. and Hosking, J. (1995) Mappings. The Glue in an Integrated System, The First European
Conference on Product and Process Modelling in the Building Industry, Dresden, Germany, 5-7
October 1994, Scherer, R. (ed), Balkema, Rotterdam, pp. 117-124.

Amor, R. and TU Delft COMBINE Team (1993) A Set Theoretic Exchange Executive, COMBINE 2
report COMB2-93-34, 10pp.

Amor, R., Augenbroe, G., Hosking, J., Rombouts, W. and Grundy, J. (1995) Directions in Modelling
Environments, Automation in Construction, 4, pp. 173-187.

342

Amor, R.W., Hosking, J.G., Mugridge, W.B., Hamer, J. and Williams, M. (1992) ThermalDesigner:
an application of an object-oriented code conformance architecture, Vanier, D. and Thomas, R.
(eds), Joint CIB Workshops on Computers and Information in Construction, International
Council for Building Research Studies and Documentation (CIB), Publication 165, Montreal,
Canada, 12-15 May, pp. 1-11.

ASTA (1996) PowerProject: Graphical Project Management Software, ASTA Development Corporation,
Thame, Oxfordshire, UK.

Atkinson, M., Bailey, P., Chisolm, K., Cockshott, W., and Morrison, R. (1983) An Approach to
Persistent Programming, Computer Journal, vol. 26, pp. 360-365.

ATLAS (1993) ATLAS: Architecture, methodology and Tools for computer integrated LArge Scale
engineering, ESPRIT 7280, 37pp.

Augenbroe, G. (1993) COMBINE Fina Report, CEC-DGXII, Brussels.

Augenbroe, G. (1994) Integrated Building Design Systems in the Context of Product Data Technology,
ASCE Journal of Computing in Civil Engineering, 8(4), October, pp. 420-535.

Augenbroe, G. (1994b) Privileged communication.

Augenbroe, G. (1995a) COMBINE-2 Fina Report, CEC-DGXII, Brussels.

Augenbroe, G. (1995b) An overview of the COMBINE project, The First European Conference on
Product and Process Modelling in the Building Industry, Dresden, Germany, 5-7 October 1994,
Scherer, R. (ed), Balkema, Rotterdam, pp. 547-554.

Augenbroe, G. and Laret, L. (1989) COMBINE pilot study report, CEC-JOULE Report, Brussels.

Bailey, I. (1994) EXPRESS-M Reference Manual, Product Data Representation and Exchange, 1SO
TC184/SC4/WG5 N51, January.

Bancilhon, F. and Spyratos, N. (1981) Update Semantics of Relational Views, ACM Transactions on
Database Systems, 6(4), December, pp. 557-575.

Bassett, M.R., Bishop, R.C. and van der Werff, 1.S. (1990) ALF Manual, Annual Loss Factor Design
Manual, An aid to thermal design of buildings, Building Research Association of New Zealand,
Judgeford, New Zealand.

Batini, C. and Lenzerini, M. (1984) A Methodology for Data Schema Integration in the Entity
Relationship Model, |IEEE Transactions on Software Engineering, 10(6), November, pp. 650-
664.

Batini, C., Lenzerini, M. and Navathe, S.B. (1986) A Comparative Analysis of Methodologies for
Database Schema Integration, ACM Computing Surveys, 18(4), December, pp. 323-364.
Bijnen, A. (1994) Operation Mapping or How to get the right data? Presented at 1st European
Conference on Product and Process Modelling in the Building Industry (EC-PPM), Dresden,

Germany, 5-7 October.

Bourke, P.D. (1989) VISION-3D User Manual, School of Architecture, University of Auckland,
Auckland, New Zeaand.

Bowen, J. and Bahler, D. (1991) Supporting Cooperation between Multiple Perspectives in a
Constraint-based Approach to Concurrent Engineering, Technical report TR-91-17, North
Carolina State University, USA.

Bowen, J. and Bahler, D. (1992) Negotiation in Concurrent Engineering, Technical report TR-92-10,
North Carolina State University, USA.

Boyle, A. and Watson, A. (1993) STEP Tools Review: Phase 2, Computer-Aided Engineering Group,
Department of Civil Engineering, University of Leeds, UK, February, 26pp.

Bright, M.W., Hurson, A.R. and Pakzad, S.H. (1992) A Taxonomy and Current Issues in
Multidatabase Systems, IEEE Computer, 25(3), March, pp. 50-60.

Chen, P.P. (1976) The Entity-Relationship Model - Toward a Unified View of Data, ACM Transactions
on Database Systems, 1(1), pp. 9-14.

ClMsteel (1995) Computer Integrated Manufacturing for constructional steelwork, Eureka project 130,
Brussels.

Clarke, J.A., Rutherford, J.H. and MacRandal, D. (1989) An intelligent front-end for computer-aided
building design, University of Strathclyde, Scotland.

Clark, S.N. (1992) Transformr: A Prototype STEP Exchange File Migration Tool, National PDES
Testbed Report Series, NISTIR 4944, US Department of Commerce, National Institute of
Standards and Technology, October, 14pp.

COMBI (1995) Computer-integrated Object-oriented product Model for the Building Industry, ESPRIT
CIME, Brussels.

Curtis, B., Kellner, M.l. and Over, J. (1992) Process Modeling, Communications of the ACM, 35(9),
September, pp. 75-90.

Dayal, U. and Bernstein, P. (1982) On the Correct Translation of Update Operations on Relational
Views, ACM Transactions on Database Systems, 8(3), September, pp. 381-416.

Dubois, A.M. (1993) COMBINE IDM conceptual development task, COMBINE-Report, CSTB, Nice,
France.

Eastman, C., Jeng, T-S., Assal, H., Cho, M. and Chase, S. (1995) EDM-2 Reference Manual, Center
for Design and Computation, UCLA, Los Angeles, USA, 50pp.

Fenwick, S., Hosking, J.G. and Mugridge, W.B. (1994) Cerno-11: A program visualisation system,
Department of Computer Science, University of Auckland, New Zealand, Report No 87,
February.

Flynn, J. (1994) COMBINE Project Window 2 specification, Restricted COMBINE-Report, University
College Galway, Ireland.

Fulton, JA., Zimmerman, J., Eirich, P., Tyler, J., Burkhart, R., Lake, G.F., Law, M.H., Menzel, C.,
Speyer, B., Stumps, R. and Williams, A. (1992) Technical Report on the Semantic Unification
Meta-Model (SUMM), Volume 1: Semantic Unification of Static Models, 1SO TC184/SC4/WG3
N175.

Garlan, D. (1986) Viewsfor Toolsin Integrated Environments, Advanced Programming Environments -
L ecture Notes in Computer Science No. 244, pp. 314-343.

General Electric (1985) Integrated Information Support System (11SS), Volume 5, Common Data M odel
Subsystem, Part 4, Information Modeling Manual, IDEF1 Extended, DTIC-A181952,
December.

344

Genesereth, M.G. and Fikes, R.E. (1992) Knowledge Interchange Format Version 3, Reference
Manual, Computer Science Department, Stanford University, USA.

Gielingh, W. (1988) General AEC Reference Model (GARM), 1SO TC184/SC4, Document 3.2.2.1,
October, 35pp.

Gielingh, W. and Suhm, A. (1992) IMPPACT Reference Model: An approach for integrated product and
process modelling of discrete parts manufacturing, Springer Verlag.

Gogolla, M. (1994) An Extended Entity-Relationship Model: Fundamentals and Pragmatics, Springer-
Verlag, 136pp.

Gosling, J. and McGilton, H. (1995) The Java Language Environment: A White Paper, Sun
Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100, USA.
Greening, R. and Edwards, M. (1995) ATLAS implementation scenario, The First European Conference
on Product and Process Modelling in the Building Industry, Dresden, Germany, 5-7 October

1994, Scherer, R. (ed), Bakema, Rotterdam, pp. 467-472.

Grundy, J.C. (1993) Multiple Textual and Graphical Views for Interactive Software Development
Environments, PhD thesis, University of Auckland, New Zealand.

Grundy, J. (1994) MViews User Manual, Department of Computer Science, University of Waikato,
Hamilton, New Zealand, November.

Grundy, J.C. (1996) Serendipity: integrated environment support for process modelling, enactment and
improvement, Working paper, Department of Computer Science, University of Waikato,
Hamilton, New Zealand.

Grundy, J.C. and Hosking, J.G. (1993a) Integrated software development in SPE, Proc. 13th New
Zealand Computer Society Conference, New Zealand Computer Society, August.

Grundy, J.C. and Hosking, J.G. (1993b) Constructing multi-view editing environments using MViews,
Proc. 1993 IEEE Symposium on Visual Languages, |IEEE Computer Society Press, Los
Alamitos, CA, USA, pp. 220-224.

Grundy, J.C. and Hosking, J.G. (1994) Constructing integrated software development environments
with dependency graphs, Department of Computer Science, University of Waikato, Hamilton,
New Zeaand, Report No 94/4.

Grundy, J.C. and Venable, J. (1995) Providing Integrated Support for Multiple Development Notations,
Proceedings of CAISE’95, Finland, June, Lecture Notes in Computer Science No. 932,
Springer-Verlag, pp. 255-268.

Grundy, J.C., Hosking, J.G., Fenwick, S. and Mugridge, W.B. (1993) Connecting the pieces.
integrated development of object-oriented systems using multiple views, Information Engineering
Report No 93/4, Information Engineering Section, Department of Electrical Engineering,
Imperia College of Science, Technology and Medicine, London, November, 16pp.

Grundy, J.C., Hosking, J.G., Fenwick, S. and Mugridge, W.B. (1994) Chapter 11, Visual Object-
Oriented Programming, M. Burnett, A. Goldberg, T. Lewis Eds, Manning/Prentice-Hall.
Grundy, J.C., Mugridge, W.B., Hosking, J.G. and Apperley, M.D. (1995) Coordinating, capturing
and presenting work contexts in CSCW systems, in proceedings OZCHI’ 95, Wollongong,

Australia, November.

Grundy, J.C., Hosking, J.G. and Mugridge, W.B. (1996) Low-level and High-level CSCW support in
the Serendipity process modelling environment, in proceedings OZCHI'96, Hamilton, New
Zealand, 24-27 November.

Hailpern, B. and Ossher, H. (1990) Extending Objects to Support Multiple Interfaces and Access
Control, |EEE Transaction on Software Engineering, 16(11), November, pp. 1247-1257.
Hardwick, M. (1994) Towards Integrated Product Databases Using Views, Technical Report 94003,

Rensselaer Polytechnic Institute, Troy, New Y ork, USA.

Hardwick, M., Spooner, D., Kilty, M. and Jiang, Z. (1994) Mapping EXPRESS AIM's to ARM's
Using Database Views. A Comparison of Three Approaches, Technical Report 94041,
Rensselaer Polytechnic Institute, Troy, New Y ork, USA.

Harrison, J.V. and Dietrich, SW. (1994) Incremental View Maintenance, Department of Computer
Science, University of Queensland, Brisbane, Australia, pp. 45-63.

Hosking J.G. and Mugridge W.B. (1994) A constraint based building model editor, Auckland
UniServices Ltd, Ref. 4376.01, Auckland, New Zealand, June, 28pp.

Hosking, J., Mugridge, R. and Amor, R. (1995) An Integrated Building Design Environment, Auckland
UniServices Ltd, Ref. 4376.02, Auckland, New Zealand, June, 16pp.

Hosking, J.G., Mugridge, W.B., and Blackmore, S. (1994) Objects and constraints. a constraint based
approach to plan drawing, Mingins, C. and Meyer, B. (eds), Technology of object-oriented
languages and systems, TOOL S 15, Prentice Hall, Sydney, pp. 9-19.

Huovila, P. and Seren, K-J. (1995) Customer-Oriented Design Methods, 10th International Conference
on Engineering Design, 22-24 August, 6 pp.

IDEFine (1995) Design/IDEF User’s manual v3.5, IDEFine Ltd, 10 Salamanca, Wellington Park,
Crowthorne RG45 6AP, UK.

I1C Consulting and Cimtech Limited (1996) 1996 Engineering Document Management and Product Data
Management Guide, An Introduction to EDMS and PDM and the Suppliers of Products and
Services, ISBN 0-900458-71-2.

ISO/TC184 (1992) Part 11: The EXPRESS Language Reference Manual in Industrial automation
systems and integration - Product data representation and exchange, Draft International Standard,
ISO-1EC, Geneva, Switzerland, |SO DIS 10303-11.

ISO/TC184 (1993) Part 1: Overview and fundamental principlesin Industrial automation systems and
integration - Product data representation and exchange, Draft International Standard, |SO-1EC,
Geneva, Switzerland, 1SO DIS 10303-1.

ISO/TC184 (1994) Part 21: Implementation methods: Clear text encoding of the exchange structure -
Product data representation and exchange, Draft International Standard, 1SO-IEC, Geneva,
Switzerland, SO DIS 10303-21.

|SO/TC184 (1995) Application Protocol 228, Building Services: HVAC, Working Draft v0.1, CSTB,
Nice, France, 79pp.

|SO/TC184 (1996) Application Protocol 106, Building Construction Core Model, Working Draft, 1SO-
|EC, Geneva, Switzerland, 1SO DIS 10303-106.

346

Jensen, K. (1990) Coloured Petri Nets. A High Level Language for System Design and Analysis,
Advancesin Petri Nets 1990, Rozenberg, G. (ed), Lecture Notesin Computer Science No. 483.

Katranuschkov, P., Scherer, R.J., Clift, M. and Amor, R. (1996) EU-ESPRIT 1V, Project 20587,
ToCEE - Deliverable J.1, Migration Perspectives, Public Report, EU/CEC, Directorate Generale
[11, Brussels.

Kay, A.C. (1977) Microelectronics and the Personal Computer, Scientific American, September, pp.
230-244.

KBSl (1995) ProSim: Automated Process Modeling for Windows, KBSI, College Station, Texas,
USA, 37pp.

Khedro, T., Genesereth, M.R. and Teicholz, P.M. (1994) Concurrent Engineering Through
Interoperable Software Agents, First conference on Concurrent Engineering: Research and
Applications, Pittsburgh, USA.

Kim, W. and Seo, J. (1991) Classifying Schematic and Data Heterogeneity in Multidatabase Systems,
|EEE Computer, 24(12), December, pp. 12-18.

Lamb, D.A. (1987) IDL: Sharing Intermediate Representations, ACM Transactions on Programming
Languages and Systems, 9(3), July, pp. 297-318.

Lee, J. and Malone, T.W. (1990) Partially Shared Views: A Scheme for Communicating among Groups
that Use Different Type Hierarchies, ACM Transactions on Information Systems, 8(1), January,
pp. 1-26.

LPA (1995) LPA Prolog Technical Reference, Logic Programming Associates Ltd., Trinity Road,
London, UK.

Luijten, B. (1992) A collection of PMShell papers, Report B1-92-087, TNO Building and Construction
Research, Delft, The Netherlands.

Luiten, B. and Tolman F. (1992) Computer Aided DfC (Design for Construction) in the Building and
Construction Industries, CIB W78, Computer and Building Standards Workshop, Montreal,
Canada, 11-15 May, pp. 318-329.

Mayer, R.J. (1990) IDEFO Function Modelling: A Reconstruction of the Original Air Force Report,
Mayer, R.J. (ed), Knowledge Based Systems Inc., College Station, Texas, USA.

Mayer, R.J., Painter, M.K. and deWitte, P.S. (1994) IDEF Family of Methods for Concurrent
Engineering and Business Re-engineering Applications, Knowledge Based Systems Inc.,
College Station, Texas, USA.

Mayer, R.J., Cullinane, T.P., deWitte, P.S., Knappenberger, W.B., Perakath, B. and Wells, M.S.
(1992) Information Integration for Concurrent Engineering (11CE) IDEF3 Process Description
Capture Method Report, Technical Report AL-TR-1992-0057, Armstrong Laboratory, College
Station, Texas, USA, 136pp.

Meyers, S. (1991) Difficulties in Integrating Multiview Development Systems, |EEE Software, January,
pp. 49-57.

347

Morrison, R., Brown, A., Carrick, R., Conner, R., and Dearle, A. (1988) On the Integration of Object-
Oriented and Process-Oriented Computation in Persistent Environments, in: Advances in Object-
Oriented Database Systems, Dittrich, K. (ed), Lecture Notes in Computer Science No. 334,
Springer-Verlag, Ebernburg, West Germany, pp. 334-339.

Motro, A. (1987) Superviews: Virtua Integration of Multiple Databases, | EEE Transactions on Software
Engineering, 13(7), July, pp. 785-798.

Mugridge, W. (1994) Snart: A Mixed-Paradigm Programming Language, Department of Computer
Science University of Auckland, Auckland, NZ, Working Report.

Mugridge, W.B. and J.G. Hosking (1988) The development of an expert system for wall bracing
design, Proceedings of NZES88 The Third New Zealand Expert Systems Conference,
Wellington, New Zealand, May, pp. 10-27.

Mugridge W.B. and Hosking J.G. (1995) Towards a lazy evolutionary common building model,
Building and Environment, 30, (1), pp. 99-114.

Mugridge, W.B., Grundy, J.C., Hosking, J.G. and Amor, R. (1995) Snart94 Reference/User Manual,
Department of Computer Science, University of Auckland, Auckland, New Zealand.

Mugridge, R., Hosking, J. and Amor, R. (1996) Adding a code conformance tool to an integrated
building design environment, Auckland UniServices Ltd, Ref. 4376.04, May, 26pp.

Navathe, S., Elmasri, R. and Larson, J. (1986) Integrating User Views in Database Design, |EEE
Computer, 19(1), January, pp. 50-62.

Nijssen, G.M. and Halpin, T.A. (1989) Conceptual Schema and Relational Database Design: A Fact
Oriented Approach, Prentice-Hall, Englewood Cliffs, NJ, USA.

Otte, R., Patrick, P. and Roy, M. (1996) Understanding CORBA: the Common Object Request Broker
Architecture, Prentice Hall Inc.

Pascoe, R.T. (1994) Construction of interfaces for the transfer of data between geographical information
systems, PhD thesis, Department of Computer Science, University of Canterbury, New Zealand.

Papamichael, K.M. and Selkowitz, S.E. (1991) A Computer-Based Building Design Support
Environment, proceedings of Building Systems Automation - Integration ‘91, Madison,
Wisconsin, USA, 2-8 June, pp. 417-438.

PDIT (1993) FirstSTEP XG User’s Manual v1.0, Product Data Integration Technologies Inc, 3780
Kilroy Airport Way, Suite 430, Long Beach CA 90806, USA.

Pena-Mora, F., Sriram, D. and Logcher, R. (1993) SHARED-DRIMS:. SHARED Design
Recommendation-Intent Management System, MIT technical report, MIT, Massachusetts, USA.

Petri, C.A. (1976) Interpretation of Net Theory.

Popkin (1996) System Architect, Popkin Software & Systems Ltd., Leamington Spa, Warwickshire,
UK.

Poyet, P., Dubois, A-M. and Delcambre, B. (1990) Artificial Intelligence Software Engineering in
Building Engineering, Microcomputersin Civil Engineering, 5, pp. 167-205.

348

Poyet, P., Besse, G., Brisson, E., Debras, P., Zarli, A. and Monceyron, J. L. (1995) STEP Software
Architectures for the Integration of Knowledge Based Systems, in proceedings of the CIB
Workshop on Computers and Information in Construction, W78 and TC10, Modeling of
Buildings Through their Life-cycle, CIB 180, Stanford University, Stanford, USA, 21-23
August, pp. 172-183.

Price, C. (1995) Guidelines for Implementing VML (view mapping language) Multi-schema Mapping
Specificationsin C++, BRANZ internal report, BRANZ, Porirua, New Zealand.

Qutaishat, M.A., Fiddian, N.J. and Gray, W.A. (1992) Association Merging in a Schema Meta-
Integration System for Heterogeneous Object-Oriented Database Environment, University of
Wales College of Cardiff, Cardiff, UK, pp. 209-226.

Ratcliff, M., Wang, C., Gautier, R.J. and Whittle, B.R. (1992) Dora - a structure oriented environment
generator, Software Engineering Journal, 7(3), pp. 184-190.

Reflex (1996) Reflex: Building models to reflect reality, Reflex Systems Headquarters, Kitsbury
House, Kitsbury Road, Berkhamsted, Hertfordshire HP4 3EA, England.

Reiss, S.P. (1985) PECAN: Program Development Systems that Support Multiple Views, |[EEE
Transactions on Software Engineering, 11(3), March, pp. 267-285.

Sahlin, P., Bring, A. and Kolsaker, K. (1995) Future Trends of the Neutral Model Format (NMF),
Building Simulation '95, Fourth International Conference Proceedings, Madison, Wisconsin,
USA, 14-16 August, pp. 537-544.

SANZ (1977) Standards Association of New Zealand, NZS 4218P 1977: Minimum thermal insulation
requirements for residential buildings, Standards Association of New Zealand, Wellington, New
Zealand.

SANZ (1990) Standards Association of New Zealand, NZS 3604 1990: Code of practice for light timber
frame buildings not requiring specific design, Standards Association of New Zealand,
Wellington, New Zealand.

Scherer, R.J. (1995) EU-project COMBI: Objectives and overview, The First European Conference on
Product and Process Modelling in the Building Industry, Dresden, Germany, 5-7 October 1994,
Scherer, R. (ed), Balkema, Rotterdam, pp. 503-510.

Scitor (1995) Process Charter, Scitor Corporation, USA.

Staub, G., Nieva, A. and Schonefeld, F. (1994) PISA Information Modelling Language: EXPRESS-C,
SO TC184/SC4/WG5 working draft.

Stevens, W., Myers, G. and Constantine, L. (1974) Structured Design, IBM Systems Journal, 13(2).

Subrahmanian, E. and Westerberg, A. and Podnar, G. (1989) Towards a Shared Computational
Environment for Engineering Design, Lecture Notes in Computer Science No. 492, pp. 200-
228.

Swenson, K.D. (1993) A Visual Language to Describe Collaborative Work, Proceedings of the 1993
IEEE Symposium on Visual Languages, |EEE CS Press, pp. 298-303.

TES (1995) Tool Encapsulation Specification, Draft Standard, version 2.0.-2-103085, CAD Framework
Initiative, Austin, Texas, USA.

349

TU Delft COMBINE Team and Amor, R. (1993) COMBINE Project Windows Modelling Approach,
COMBINE 2 report COMB2-93-32, 26pp.

Ullman, D.U. (1982) Principles of Database Systems, Computer Science Press.

van der Lans, R.F. (1988) Introduction to SQL, Addison-Wesley Publishing Company.

van Horssen, J.J., Behage, B. and Mooij, M. (1994) Conversion, ESPRIT 7280 - ATLAS,
Confidential report.

VEGA (1996) Virtual Enterprises using Groupware tools and distributed Architecture, VEGA project,
ESPRIT, EP 20408, Brussels.

Venable, JR. (1993) CoCoA: A Conceptual Data Modelling Approach for Complex Problem Domains,
Ph.D. dissertation, Thomas J. Watson School of Engineering and Applied Science, State
University of New Y ork at Binghamton.

Venable, J.R. and Grundy, J.C. (1995) Integrating and Supporting Entity Relationship and Object Role
Models, to appear in 14th International Object-oriented and Entity-Relationship Modelling
Conference, Gold Coast (to be published in Lecture Notesin Computer Science).

Verhoef, M., Liebich, T. and Amor, R. (1995) A Multi-Paradigm Mapping Method Survey, Fischer,
M.A., Law, K.H. and Luiten, B. (eds), CIB Workshop on Computers and Information in
Construction, W78 and TC10, Modeling of Buildings Through their Life-cycle, Stanford
University, Stanford, USA, 21-23 August, pp. 233-247.

Vogel, T. (1991) Configurable Graphical Editor: Users Guide, TNO Institute for Applied Computer
Science, Delft, The Netherlands, 91-1T1-382, February.

Watson, A. and Crowley, A. (1995) CIMstedl integration standards, The First European Conference on
Product and Process Modelling in the Building Industry, Dresden, Germany, 5-7 October 1994,
Scherer, R. (ed), Balkema, Rotterdam, pp. 491-494.

Wen, J., Hardwick, M., Spooner, D.L., Schlenoff, C., Valois, J. and Bailey, |. (1996) EXPRESS-X
Reference Manual, 1SO TC184/SC4/WG5 Working Report, Rensselaer Polytechnic Institute,
Troy, New York, USA.

Willems, P. (1988) A Meta-Topology for Product Modelling, CIB Meeting, Lund, Sweden, October,
TNO-IBBC, PU-88-10-11.

Williams, M. (1990) Interfacing Building Design Tools with a Knowledge Base System, Honours
Report, Victoria University of Wellington, New Zealand.

Wirth, N. (1977) What Can We Do about the Unnecessary Diversity of Notation for Syntactic
Definitions?, Communications of the ACM, 20(11), November, pp. 822-823.

Wong, A., Sriram, D. and Logcher, R. (1992) SHARED: An Information Model for Cooperative
Product Development, submitted to IEEE Computer.

Zarli, A. (1995) XP-RULE: A Language for the Representation of Knowledge, CSTB, Sophia
Antipolis, France.

350

