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Abstract

The building industry employs a significant percentage of the workforce of any country, and

encompasses a considerable proportion of a country’s GDP. Despite that, IT tools used in the

design and management of a building project are still fairly crude. Many projects have been

undertaken to develop IT-based solutions to support the architecture, engineering, and

construction domains (A/E/C), but little effort has gone into the tools required to support these

development activities. This is the area in which this thesis concentrates.

To develop a schema representing some subsystem of a building it is necessary to have support

tools which enhance the modeller’s environment. The current state of the art, a replicated paper

based approach, is ineffective at guaranteeing the consistency and validity of large schemas. In this

thesis, a more appropriate environment  is developed and demonstrated. This provides multiple

overlapping views of the developing schema, with guaranteed consistency between all views, the

ability for many modellers to work on the schema, and links to related aspects.

The array of schemas being developed for the A/E/C domains contain overlaps of information,

though often in different representations. To enable the full use and correct transfer of information

between schemas, mappings between their representations need to be defined. This thesis

develops a comprehensive mapping language which describes bidirectional mappings between

schemas. An automated system has been constructed which can take a mapping specification and

manage the updates and consistency of data in models corresponding to the mapped schemas.
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To manage the development of environments described above, as well as the finished integrated

environments proposed, it is necessary to manage and control the supported processes. A notation

is developed to allow this control to be defined, and an implementation is provided to demonstrate

how a project can be managed.

The end result of the thesis is a set of notations and associated tools which support all aspects of

the development and implementation of integrated design environments. The resultant development

environment greatly raises the level of support for developers over that offered by current tools,

for all aspects of specification, consistency, testing, validation, implementation, and coordination

between developers.
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Chapter 1

Introduction

1.1 The Problem Domain

In the fields of architecture and building engineering there is continued dissatisfaction with the

state that computerised design has reached. The majority of the claims made for computerisation in

these fields have never been achieved. For architects there are few, if any, tools which are useful

for initial or sketch design and in many architectural firms the only use of computers during the

design process is for detailing the building plans with a draughting tool (CAD). In the engineering

domain there are similar problems. Even with a computerised plan of the building it is unlikely that

building information can be extracted from this plan for use in other design tools. Many

practitioners re-enter building information into their design tools by hand, taking measurements off

the printed plans. Despite the existence of a wide range of excellent design tools, such tools are

seldom used because of the difficulty and time required to enter building information in order to

invoke the tool.

Examining the state of computing in these domains it is clear that the majority of the problems lie

with the conceptual models of a building. In a wide range of CAD tools there is no underlying

model of a building. That a plan defines a building can only be ascertained by human perception.

To the computer a plan is a set of 3D graphical entities. Until computers can mimic the human

ability to perceive building structure from a plan, it is impossible to extract useful building

information from a traditional CAD system. There is also a problem with the wide range of design

tools that model buildings. Each of these design tools has a schema of a building most suited to the

type of computation it performs on the building, and in most cases this is a minimal schema to ease

1



the burden of data entry for the user. As can be imagined, this means that schemas of buildings for

tools such as thermal simulation, structural simulation, lighting analysis, fire-code compliance,

quantity surveying, etc. have very different structures. As a result, detailing a building for use

with two different design tools is like trying to explain exactly the same thing in two totally

different languages.

Another important problem is that of consistency and coordination. In a building project there are

often several design professionals responsible for different parts of the design. A project manager

has the task of coordinating the various designers, and in a manual design practice a range of

procedures are used to ensure that the design is kept consistent between all designers. In a

computerised design environment it has become no easier to perform this task, and in many cases

much more difficult, as the number of plan portions which can be generated with computerised

tools is much greater than with manual design.

One obvious solution to the problems outlined above is to find some way to integrate the design

tools with a comprehensive conceptual building schema used to transfer building data between the

different design tools. There have been several approaches to integrated systems which offer

various benefits to the designers working with them. One approach is an integrated design

assistant in which it is envisaged that the integrated system would offer a single designer the ability

to design utilising any of the various design tools as assistants to check various portions or stages

of the design. The integrated assistant would manage the transfer of data to and from the design

tools and maintain the consistency of the global model of the designed artifact. Another approach

is an integrated design system in which it is envisaged that the system would connect multiple

designers working on the same artifact, maintaining the global consistency of the design as it

evolves over time. This system would still allow designers to experiment with design solutions

independently from other designers (as in the integrated design assistant), but maintain the global

model with respect to solutions exported by the various designers. This system would also

manage process control to ensure that all design functions were completed during the design and to

control the time line of the design process.

The increasing demand for intelligent integrated computerised working environments in

architectural and building engineering domains has spawned a multitude of research projects

tackling portions of the problem. The main benefits these systems claim to offer their users are:

• Access to all the pertinent information for their portion of the design task

• Access to a range of appropriate design tools which can be utilised in the design process

• Project control management to direct the project development and ensure timely completion

• Automated maintenance of the consistency of the design amongst all designers in a project

• Ability to experiment with design modifications independently before submitting a suitable

modification to the global model
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• Notification of changes to the global model which affect the design tasks of a particular

user

• Management and notification of conflicts between the work of various users

While the benefits noted above exist in current managed projects there are several other flow on

benefits possible from an integrated system:

• Final design is likely to be more correct as all designers have been working on the same

global model of the artefact

• Final design may be more innovative as designers have the ability to examine and test

multiple design solutions to a particular problem through connected design tools

• Possibilities for better performance of the completed artefact as designers have many

design tools available to check the properties of the artefact being designed and to evaluate

design options quantitatively

There is much prior research in this area of integrated design systems, as will become clear in the

next section. The next section will also detail the many other areas of computer science research

which are applicable to an integrated design system. To help illustrate the place of the research

encompassed in this thesis the author has chosen one of the EU funded projects (COMBINE) as

an example of an evolving integrated design system. The framework of the COMBINE system is

similar to most other integration projects and is used due to the author’s familiarity with the project

from a six month period of work in Europe.

1.2 Related Research

Whilst this thesis examines an overall framework to allow the development and testing of an

integrated design system, the majority of research to date has concentrated on problems associated

with the individual components of this framework. These components include developing data

models, defining mapping languages, managing model development, etc., and the work in these

areas is considered in Chapters 2 and 8 of this thesis. What little work that has looked at over-

arching development frameworks is considered below.

In the architecture, engineering and construction (A/E/C) domains there has been intense European

Union work on the development of integrated design systems since the late 1980s. This has

culminated in a range of projects for various subdomains of A/E/C, for example, COMBINE

(Augenbroe 1995a; Augenbroe 1995b), ATLAS (1993; Greening and Edwards 1995), COMBI

(1995; Scherer 1995), CIMsteel (1995; Watson and Crowley 1995) and more recently ToCEE

(Katranuschkov et al. 1996), STAR (Huovila and Seren 1995) and VEGA (1996). These projects

started out examining frameworks purely for data integration, but over the years recognised the

need for other project aspects, and broadened their scope to process, documents, legality, etc.
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Despite their current wide scope very little work has been done in these projects to consider the

framework required to ease the development of integrated design systems. Very simple tools to

specify data models, or process models, all quite independent of each other are as far as any

project has gone. The COMBINE project has developed the greatest number of support tools, and

some of these are described in Section 1.3 below and highlighted throughout this thesis as

examples of current state of the art.

Research projects undertaken by individual academic institutions have often taken a wider view

than the more result-oriented European Union research, with the result that they have developed a

more comprehensive framework than many European projects (Papamichael and Selkowitz 1991;

Lamb 1987; Subrahmanian 1989; Pena-Mora et al. 1993). Once again the majority of these

projects develop small prototype integrated systems with models crafted by hand in text-editing

tools, rather than developing their own support tools. The projects which do develop support tools

for framework development provide very useful and tightly coupled tools, but for very narrow

domains (Poyet et al. 1995; Grundy 1993). In the majority of cases these domains are restricted to

the data aspects of the integrated design system, ignoring requirements of support for mapping

between data aspects, or incorporating process and project aspects into the framework.

1.3 COMBINE Project

Throughout this thesis I will draw upon several examples and use nomenclature which have

originated in the COMBINE project. I will also use COMBINE to help illustrate the place of the

various systems that are developed and to highlight their utility in such a project.

COMBINE (COmputer Models for the Building INdustry in Europe) is an EU-funded project

which started in 1990 (Augenbroe and Laret 1989). The first phase ended in late 1992 with a

seminar and workshop at which the first phase deliverables were demonstrated (Augenbroe 1993).

The project, which has now completed its second phase (1992-1995), spans a total effort of 70

man-years spread over 12 partners from 7 European countries.

COMBINE worked towards the practical development of IIBDS's (Intelligent Integrated Building

Design Systems) through which energy, services, functional and other performance characteristics

in planned buildings can be modelled and integrated. The modelling of information has been one

of the greatest concerns in this project, with the first phase of the project concentrating on the

integration of data to provide the necessary information for a group of actors. COMBINE's efforts

have been concentrated on establishing a data infrastructure and tools for managing the information

exchange amongst design actors, i.e., members of a collaborative design team. The project thus

represents a good example of international research in product data technology and of the

development of an integrated design system.
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COMBINE is one of many international projects with a similar aim of integrating the information

requirements of a given domain to provide an enhanced working environment to users of that

domain. A number of parallel projects in the European ESPRIT-CIME (a full list of acronyms

used here can be found in the glossary) program are engaged in similar research and development

to that of COMBINE. In time all of these projects may have input into the ISO-STEP standard

which has the stated aim of covering the information requirements for all architecture, engineering

and construction domains (ISO/TC184 1993). In recognition of the importance of STEP, and the

practicalities of interchange of results, most projects have chosen the modelling formalisms

specified for the STEP standard as the formalisms for their efforts. These include the EXPRESS

language, with EXPRESS-G, NIAM, IDEF1X and IDEF0 diagramming techniques, the STEP

neutral file format, for exchange of data, and SDAI, the data access specification. This is the case

in COMBINE where all modelling is done with these formalisms (Augenbroe 1994).

COMBINE's first phase was concerned primarily with data integration based upon the concept of

a set of actors connected to a central common data repository (Figure 1.1). Its deliverables

comprised the first large conceptual integrated data model (IDM) for buildings and a number of

interfaced design tools (DT). These results formed the base line technology on which the present

second phase builds. The second phase was concerned with developing an operational IIBDS

according to functional specifications of particular building projects in practice. In doing this, the

number of interacting design tools was expanded to cover existing design applications in the area

of costing, HVAC-CAD (Heating, Ventilating and Air Conditioning), architectural CAD,

component databases, daylighting and building regulations.

DM

esign
Task

esign Tool

ctor 1 ctor 2 ctor 3

sp. Model
  View 1

sp. Model
  View 2

sp. Model
  View 3

BDS Conceptual Architecture 

nterface nterface nterface

onceptual Building Model
DM

DM = Integrated Data Model

BDS = Integrated Building Design System

nterface IDM <--> Aspect Model mapping

spect Model iew Model specific to 
        design tool

Figure 1.1 COMBINE structure

In the first phase of COMBINE the types of actors considered were limited to those in the fields of

energy and HVAC performance in the early design stages of building design. However, even

limiting the domain to this small set of actor types, the IDM developed for this project consisted of

some 400 entities and 600 relationships between them. The development of this conceptual schema
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was a complicated task. The final schema had to incorporate the data requirements of the seven

design tools which were used in this first phase, which had very different data requirements to

model a building for their simulation needs. The IDM was developed by first modelling the

schemas of the various design tools, and then, through schema analysis and use of integration

techniques, various portions of the schemas were brought together to help form the final IDM.

This was a very time consuming and difficult task. In particular, the developers in the project

found it impossible to verify the consistency of the IDM without the aid of computer tools (Dubois

1993).

The second phase of COMBINE involved integration of several more design tools, widening the

scope of the IDM. This required a redesign of the IDM to extend the domains supported. Again,

the process of development involved comparison of the IDM with the schemas of the various

design tools being supported, and incorporation of portions of the design tool schemas into the

IDM. The resulting iterative process of schema analysis, integration, and prototyping continued

until the various design tool support teams were satisfied that the data requirements necessary for

their tools could be met by the IDM.

The modelling support presently offered to partners in COMBINE comes through the use of the

Configurable Graphical Editor (CGE, see Vogel 1991). CGE can be configured to support a

number of diagramming techniques, among which are those mentioned at the start of this section.

It also supports a customised version of NIAM called ATLIAM (Vogel 1991) which is capable of

exporting an EXPRESS schema of a NIAM diagram and of exporting and importing NIAM

diagrams by way of STEP files.

1.4 Underlying Framework

The creation of an integrated design system requires an enormous amount of work constructing

specialised modules in a framework of great complexity. The development of a complete

framework by one person is obviously unobtainable in a lifetime. However, the general structure

of integrated design systems appears fairly stable and it is particular portions of the framework

which require research and development to find optimal solutions. In virtually all integrated

systems there are a set of common fundamental systems as illustrated in Figure 1.2.

When an integrated design system is in use its schemas and design tools are likely to vary from

project to project. This is because a building design project is usually involved with a one-off

design and: the group of designers involved; the aspects of the design each designer works on; the

design tools required; and the flow of control for the project, are likely to change between each

project. This produces a requirement that the integrated system is easily configured for a varying

set of designers and design tools. Of more significance is the recognition that to properly cope
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with this situation it will be necessary to modify and add schemas to the system. The designer’s

schemas will have to be changed to reflect the designer’s roles in the current project, a new flow of

control (project) model will be required for each project, and perhaps new design tool schemas

will have to be introduced to cover checking of unusual aspects of the current design (which could

in turn affect the scope of the IDM). This leads to the requirement that the final integrated system

must contain the modelling tools used in the design of the initial system to enable the system to be

configured for individual projects.

IDM DT model

DT model

DT model

Integrated Design System

Inter
Model
Mapping

Design
Tool
Interface

DTDT files

DT

DTDT files

Project manager
Control
System

Users

Project
model

Figure 1.2 Structure of an integrated design system

The integrated design system can be implemented in a variety of ways from a monolithic system

with all modules tightly coupled through to a completely modular system with links to relational or

object-oriented databases and where many of the modules operate as independent systems utilising

a brokering architecture to communicate data between modules. However the system is

implemented the same conceptual major subsystems exist in the integrated design system. These

are detailed further to give some idea of the scope of the task each must handle.

IDM: this is the very general schema of the domain which must cover the information

requirements of the designers and design tools which interact with the system. The schema

required for buildings is probably the largest and most complex information model

developed in the world to date. The ISO 10303 standards committee (STEP) has laboured

for over 10 years to define the underlying schemas for graphical, draughting and material

representations. Only recently have they moved to create definitions of higher level entities

for buildings, ships, etc. Numerous projects have used schemas based around those

required for design tools, but expanded to cover requirements of other design tools.

Recently several collaborative projects have worked on general schemas of buildings based

on the STEP fundamentals for restricted aspects of buildings. Each of these projects has

invested in the order of 10 person years of effort in their restricted schemas. The

development of the IDM requires the input of domain experts for all the sub-domains being

modelled as well as the help of modelling experts to structure the schema. The IDM

remains as a fairly static schema, although the introduction of new design tools,

construction techniques and building constructs may require modifications to the schema.
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The development of an environment to specify the IDM draws upon work in data

modelling languages, modelling environments, collaborative work systems and schema

integration techniques.

Project model: this is a project specific model defining the designers who will be working on a

project, the design functions they will need to perform and the design tools that will be

utilised during the design process. The project model can also be used to define the flow of

control in a project, specifying hand-over points between various designers and sequences

of specification that must be followed to help guarantee an optimal design at the termination

of the design process. As the design process is not a fully understood process it can not

always be completely described at the start of a project. Therefore, it is likely that during

the course of the design, new designers may need to be involved in the design or new

design tools used for difficult aspects of the design. To enable this flexibility the project

model must be modifiable during the project to be able to take into account changes in

personnel and new flows of control. The development of an environment to specify the

project model draws upon work in process modelling languages, modelling environments

and collaborative work systems.

DT schemas:  each of these schemas defines the structures and data requirements of a design

tool. The type of design tool and its capabilities will determine the number of schemas that

are required for each tool. In most cases two schemas are used, one to specify the data

input to the design tool, the second to specify the data output from the design tool. The

creation of these schemas is a task undertaken by modellers who have great familiarity with

the particular design tool being modelled. This is because the schema must capture not only

the data structures explicitly defined by the tool and the data constraints specified by the

design tool (e.g., ranges on attribute values, cardinality constraints on lists, etc.), it must

also contain the constraints defined implicitly by the design tool (e.g., that all walls are

vertical). A fully specified DT schema allows the system to determine whether there is

enough data to create the input file for the DT to execute and to determine whether a

semantically correct description of the building can be created from the data available. The

DT schema remains static throughout the use of the same version of the DT. The

development of an environment to specify the DT schemas draws upon work in data

modelling languages, modelling environments and collaborative work systems.

Control system:  this directs both the inter-model mapping and design tool interface modules to

perform their tasks as required by the designers or directed by the project manager. This

module simulates the flow of control defined in the project model determining what design

functions are able to be performed at any particular time. It also interfaces with designers to

let them specify the tasks that they wish to perform next and interfaces with the project

manager for decisions upon which designers should be involved in new phases of the

project. This system directs the inter-model mapping module to map data between different

models, or to ascertain whether it is possible to perform the mapping. It also directs the

design tool interface to invoke a design tool with appropriate data and to collect results
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upon termination. 

Inter-model mapping: this module performs the translation of data between the IDM and the

DT models. It must determine whether it is possible to create a consistent model from the

IDM for any one of the DT models based upon the constraints in that DT schema, and it

must ensure that the IDM remains consistent upon update from a design tool’s output. It

must detect conflicts between various sets of data and must be able to invoke processes to

enable negotiation over conflicting data from different design tools and users. Traditionally

this module is implemented by hand coding the mappings required between the IDM and

each new DT schema. In future integrated design systems it is expected that this module

will be realised by modelling the mappings required between the IDM and each new design

tool schema. The development of the inter-model mapping module draws upon work in

mapping modelling languages and modelling environments.

Design tool interface: this module provides the connection between the design tools utilised in

the system and their data models. For an off-line DT this module must be able to create the

input files required for the DT (from the DT schema in the system), it must then be able to

invoke the DT to perform its work and finally retrieve the output from the DT into the DT

model in the system. For interactive DT’s it must perform the same task but driven by the

demands of the design tool. Traditionally this module is implemented by hand-coding the

parsing and pretty-printing for each new design tool. In future integrated design systems,

and for some classes of design tools, it is expected that this module will be realised by

modelling the interaction required by each design tool (for example the data-file structures)

and using this model to drive the interaction with the DT. The development of the design

tool interface draws upon work in parsing, pretty-printing, interaction and structure

modelling languages and modelling environments.

DTs: these tools exist outside of the integrated design system. The types of design tools that can

be found here include the interface a designer has to the system, off-line and interactive

simulation tools, interactive knowledge-based systems, CAD systems, etc.

1.5 Research Objectives

Although the basic framework of an integrated design system as described above is fairly

universally applied in integrated projects and although many hundreds of man years have been put

into these projects there are many aspects of the framework which are poorly understood and not

well modelled. To date the majority of the structured effort in integrated projects has been put into

the development of the IDM by the domain experts in the project. Systematic modelling of other

facets of the integrated system has been bypassed in favour of hand-coded modules which work

for particular design tools under particular situations. I believe that it is crucial to model all aspects

of the components in an integrated system to guarantee the correct behaviour of the finished

system. To enable these models to be developed it is also necessary to have powerful modelling
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tools which enable the modellers to describe and manage the enormous models that are being

created. The exploration of these objectives forms a major component of the work described in this

thesis along with an implemented framework which demonstrates how all the modelled systems

can be drawn together into an implemented system. An overview of the major objectives which are

examined in this thesis follows:

1.5.1 Formalism to specify mappings
To define the correspondence between two schemas it is necessary to use a formalism which

allows the specification of mappings in an easy and intuitive manner. This formalism must closely

match the problem domain and have a clear syntax and semantics. In current projects this module

has received little attention and only recently has any effort been put into the examination of

possible formalisms for this task.

1.5.2 Formalism to specify project and flow of control
As a new project specification is required for every project undertaken with an integrated design

system it is essential to have a formalism that will allow the easy description of the participants and

their roles in the project. In current projects this module has received little attention and only

recently has any effort been put into the examination of possible formalisms for this task. This

formalism must offer easy specification of the designers and their roles in the project. It must also

be able to specify the flow of control during the project and the hand-over points for the various

participants.

1.5.3 Comprehensive tool set to support schema specification
With the enormous schemas which are being specified in these projects more sophisticated

modelling environments are required to manage the complexity of the schemas. New environments

must be able to support schema specification at many levels of abstraction and with many different

formalisms. Multiple views of the schema must be available in any of the formalisms with

consistency between the views maintained under modification. There must also be the ability to

provide annotation of the schema with documentation. Collaborative modelling must be supported

to encompass the range of input from modellers who have input to the schema. Version

management for the evolving schema must be supported along with version merging and conflict

resolution for the versions of various modellers. 

1.5.4 Inter-model mapping utilising mapping specifications
With definitions of the mapping required between two schemas it is necessary to show how they

can be used to map whole models back and forth, ensuring the consistency of the models as they

are worked upon. The inter-model mapping must be able to create new models from an existing

model and it must be able to propagate changes between linked models. When both models have
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changed it must be able to arbitrate the merging of changes between the models and when there are

conflicts in the modifications being propagated it must be able to manage the resolution of those

conflicts between the affected parties.

1.5.5 Control system utilising project and flow of control

specification
The control system needs to maintain contact with the project manager and the designers involved

with the project. The control system must be able to determine what the allowable tasks are at any

time and inform the designers of the options that they have available. When a designer chooses to

perform a task the control system determines whether it is possible at the given time, if it is the

control system invokes the inter-model mapping to get data into the design tool’s model and then

invokes the design tool interface to run the design tool and extract results which will be fed back

into the IDM.

1.6 Description of Example

Throughout this thesis a single example set will be referenced, as required to illustrate points

pertaining to the workings of an integrated system. This is distinct from, and in contrast to, the

COMBINE example which illustrates the requirements for the framework. This example set is

drawn from a contract completed between the Building Research Association of New Zealand

(BRANZ) and the computer science department at the University of Auckland (Hosking et al.

1995). The problem domain of the example is the development of an integrated design

environment where several disparate design tools are required to work together to provide enough

information for knowledge-based systems. The knowledge-based system demonstrated is

ThermalDesigner (Amor et al. 1992) which checks a building using the Annual Loss Factor (ALF)

method (Bassett et al. 1990, an empirical estimator of the thermal design code (SANZ 1977)). The

building layout and materials information required for this knowledge-based system to operate can

be supplied from two stand-alone tools which allow for basic layout design and materials

definition. A third program is used to visualise a full 3D model of the building with fly-throughs

and shaded images.

The use of this integrated system in a working design situation would involve several design

professionals each charged with different aspects of the design. In this thesis we will envisage a

design team consisting of four professionals, an architect, a thermal engineer, a daylighting

engineer, and a structural engineer along with a client. The architect would be involved with the

initial design of a building after liaison with the client and coordination of the three engineers

leading to final design approved by the client. The thermal engineer would select and test various

materials for elements of the building to ensure compliance with the thermal code. The structural
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engineer would design and approve the structural elements of the design and ensure compliance

with the structural code. The daylighting engineer would choose appropriate glazing materials and

layout to ensure adequate daylighting whilst checking for potential overheating problems.

The three tools from the example are introduced in the following sections, along with the

integrated data model (IDM) through which they will communicate. Following the tool

descriptions there is a small analysis of the correspondences between the various design tool

schemas and the IDM to give the reader an understanding of the type of information that needs to

be mapped between the tools. The full schemas of the tools, the full mappings and the design team

interaction specification can be found in Appendix E.

1.6.1 The Snart language
All of the development work presented in this thesis has been written in the Snart language

(Grundy 1993) and LPA Prolog (LPA 1995). Snart is an object-oriented language, built on top of

LPA Prolog, providing notions of abstract and instantiable classes, along with typed attributes and

relationships, and class methods. Multiple inheritance is supported, as well as dynamic object

classification. The Snart language has a graphical notation in addition to its textual form, and

diagrams in this notation are used to illustrate work in this thesis both in this chapter and

throughout the rest of the thesis. To allow those unfamiliar with Snart to understand these

diagrams, a brief introduction to the Snart graphical notation is provided here using the diagram of

Figure 1.3.

Figure 1.3 An example of the Snart graphical notation
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Figure 1.3 shows four classes. A class is represented by a rounded-rectangle. The class name

appears at the top of the rounded-rectangle, separated from attribute and method names by a single

horizontal line. Figure 1.3 shows an abstract class (a class not able to be instantiated), through the

use of a grey edged rounded-rectangle, here named abstract_parent. All other classes can be

instantiated and are shown with a solid edged rounded-rectangle. Attribute and method names of a

class are shown in the lower portion of the rounded-rectangle. No distinction is made between the

representation of attributes and methods in the graphical notation. Inheritance between classes is

shown through the use of a thick line with an arrow pointing to the parent class. Figure 1.3 shows

child1 and child2 both inheriting from abstract_parent. Relationships between classes are shown

through a thin line connecting two classes. The line is labelled with the relationship name closest to

the class which is being referred to. In Figure 1.3, child2 has a relationship named rel_name with

the class related_class.

1.6.2 PlanEntry
PlanEntry (Hosking and Mugridge 1994) is a CAD-like tool to define building layouts. PlanEntry

allows multiple 2D views of a base 3D model of a building (see Figure 1.4 for a snapshot of

PlanEntry in use). Buildings which can be described in PlanEntry comprise: spaces; internal walls;

openings; and roofs. View lines, as shown in Figure 1.4, can cut through any section of the

building being described to provide a cross-section of the building. PlanEntry is a constraint-based

system, allowing correspondences to be described between spaces, spaces and roofs as well as

roof lines (e.g., the connection of the roof sections to form an L shaped roofline in Figure 1.4).

Figure 1.4 A building described in PlanEntry 
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The internal model utilised in PlanEntry is simple. A building is described as a set of spaces and

roofs. Spaces can have openings and internal walls. PlanEntry includes a face generating

mechanism which takes a building design and identifies all planes along which a wall lies. Using

these planes all homogeneous faces for the spaces and roofs of the building are generated. A

homogeneous face is a rectangular face which either wholly belongs to one space, or is the

interface between two spaces (e.g., an internal wall). The main classes in PlanEntry are shown in

Figure 1.5 (note that in this diagram the thin lines with an arrow represent components, e.g., a

pf_set containing pe_roof elements, rather than inheritance as in Figure 1.3 with the thick lines).
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Figure 1.5 The PlanEntry schema main classes
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1.6.3 FaceEditor
The FaceEditor enables material properties to be assigned to portions of walls and windows which

lie along a single plane (see Figure 1.6). A plane in the FaceEditor equates exactly with a 2D

plane-line which can be described in PlanEntry. The FaceEditor also allows the specification of

bracing materials and bracing properties of walls in a plane. FaceEditor is a constraint-based

system, allowing correspondences to be described between sections of material as well as

windows and bracing lines.

Figure 1.6 Wall and window materials being defined in the FaceEditor

The internal model utilised in FaceEditor is very simple. A plane being manipulated in a window

consists of wall and window objects which are parallel to the plane (although they need not be on

the plane) and rectangular sections of materials and bracing. The main classes in PlanEntry are

shown in Figure 1.7.
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Figure 1.7 The FaceEditor schema main classes
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1.6.4 VISION-3D
VISION-3D (Bourke 1989) enables a 3D representation of a model to be visualised in a wide

range of formats. Models may be navigated through static camera placement, or by describing a

path for a fly-through of a model. Models may be rendered in formats ranging from wire-frame

through to fully shaded. Figure 1.8 shows a wire-frame representation of a model as in Figure

1.4. This tool is used in an off-line manner by importing a data-file containing a geometric

description of a building to be rendered.

Figure 1.8 A wire-frame representation of Figure 1.3 in VISION-3D

The external model utilised by VISION-3D (see Figure 1.9) has a very simple format consisting

only of polygons with some visual properties. Polygons may be grouped together to form more

complex objects by specifying the same object_id for each polygon. This feature is used when

describing roofs to VISION-3D. 

v3d_model

model_name

v3d_polygon

gloss_factor

specular_reflection

diffuse_reflection

object_id

v3d_point

z

y

x

points

v3d_rgb

b

g

r

colour

Figure 1.9 The VISION-3D schema classes

1.6.5 ThermalDesigner
ThermalDesigner (Amor et al, 1992) helps a designer to check that a building design meets the

requirements of the New Zealand thermal insulation standard for residential buildings, NZS4218P

(SANZ, 1977). It is based on an approach developed by the Building Research Association of
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New Zealand (BRANZ) as a paper design guide (Bassett et al, 1990). The Figure 1.10 shows the

forms based interface to the application. The tool has been designed to be used interactively with

PlanEntry and FaceEditor providing basic information required to perform the ThermalDesigner

analysis.

ThermalDesigner has a very simple model of a building being concerned primarily with the total

building area, and the area of walls and windows facing in various directions. To this extent

building information from external sources is usually aggregated together to provide the

information required by ThermalDesigner.

Figure 1.10 Control windows in ThermalDesigner

1.6.6 IDM
The IDM (see Figure 1.11 for a graphical schema) is adapted from a previous integration project

(Mugridge and Hosking 1995). The adaptation required the expansion of the old IDM to handle

the data requirements of the PlanEntry and FaceEditor packages. The model of a building in the

IDM is based on a very generalised and partially redundant notion of a building. A building can be

viewed as a set of spaces or as a set of faces. The space view of a building provides for

hexahedrons which are placed orthogonally to the major axis. These spaces can be either interior

spaces or roof spaces. The main information provided through the space view of the building is

the easy determination of space abutment, though this information can be calculated from the face

views. The face views break a building into rectangular faces of arbitrary size which have certain

properties. In the current IDM the properties which are modelled are geometric, material and

bracing properties. An IDM face can transcend space boundaries, and in many cases it is

imperative that is does so (e.g., a multi-storey bracing element).

1.6.7 Correspondences between schemas
There are many obvious similarities between the schemas of the tools described in this section,

along with many differences. The correspondence between each of the design tools and the IDM is

further detailed in this section.
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Figure 1.11 The IDM schema classes 

PlanEntry’s model of a building maps almost directly into the IDM. Their notions of a building are

similar and a PlanEntry space is identical to an IDM space. The roofs that may be created in

PlanEntry are hip roofs in the IDM schema. The faces around spaces which are generated in

PlanEntry correspond to the geometric faces in the IDM (idm_space_face) and PlanEntry openings

become openings of an idm_space_face in the IDM.
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The FaceEditor’s model of a plane also maps almost directly into the IDM. The notion of faces

openings, bracing and material in a plane map directly to geometric faces, openings, bracing faces

and material faces in the IDM.

VISION-3D has no model of a building, but geometric elements in the IDM such as geometric

faces, openings and roofs are easily translatable into the polygons required in VISION-3D.

ThermalDesigner has a very simplified model of a building, being concerned with areas of

elements facing certain directions. Therefore, the building structure in the IDM is not found in

ThermalDesigner, however, a plane structure is present in ThermalDesigner to represent walls,

windows, floors and roofs which maps closely to the IDM.

1.7 Outline of Thesis

Chapter 2 examines the development environment required for an integrated design system. The

requirements for such an environment are specified and a possible structure put forward. The

requirements of each individual component of this development environment is detailed, along

with related research in the area. The individual components are discussed in Chapters 3 to 7.

Chapter 3 looks at what is necessary for a schema modelling and development environment along

with the various modelling languages. An implementation of a schema modelling and development

environment is presented with demonstrations of how it meets the previously specified

requirements.

Chapter 4 introduces the problems of mapping between schemas as defined in environments such

as that implemented in Chapter 3. The mapping problem is analysed to provide some measures of

what is required and a range of mapping languages are examined to determine their strengths and

weaknesses. The chapter summary shows the various language trade-offs and shows a need for a

higher-level bidirectional mapping language. Such a language is described in Chapter 5.

Chapter 5 introduces the view mapping language (VML). This language provides a high-level

declarative approach to modelling correspondences between schemas. The main constructs of the

language are described along with a graphical notation for describing mappings. VML is shown to

have a greater expressive power than previous mapping languages.

Chapter 6 details the requirements for a modelling and development environment for mapping

languages. The system requirements are very similar to those detailed in Chapter 3 for schema

modelling, and a similar approach is followed in demonstrating the utility of such an environment.
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Chapter 7 details the requirements for a project specification notation. A developed notation, called

CombiNet, is then presented. This notation allows users and their design functions to be

modelled, along with flow of control for a project.

Chapter 8 examines the testing and implementation environment required for an integrated design

system. The requirements for such an environment are specified and a possible structure put

forward. The requirements of each individual component of this development environment is

detailed, along with related research in the area. The individual components are detailed in

Chapters 9 to 11.

Chapter 9 puts forward the requirements for schema instance management in a design system,

looking especially at the requirements imposed by changing schema definitions. A suite of tools

developed and used in this thesis are presented to highlight the benefits offered by tools meeting

these requirements.

Chapter 10 describes an implementation of an interpreter able to map information between data

stores and applications, through specifications in the view mapping language notation described in

Chapter 5. Difficulties in implementing the high-level, declarative, and bidirectional, VML notation

are identified and addressed throughout the chapter.

Chapter 11 describes an implementation of a control system able to handle a running project

through the CombiNet project specification notation described in Chapter 7. This system provides

functionality to a project manager as well as to the individual actors in a project by simulating the

state of the running project.

Chapter 12 presents the conclusions of the work undertaken, highlighting the advances made in

the understanding of the requirements of integrated design system development. A discussion of

required future work and research concludes the work.
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Chapter 2

The Project Development Environment

Chapter 1 provided an introduction to an area in which integrated design environments are

required. In Figure 1.2 and Section 1.4, one framework for an integrated design system was

discussed, with internal components and connections which are generally agreed upon. However,

even with the framework in place, a large gap still exists between what must be created and how to

create it. The integrated design system shown in Figure 1.2 can be implemented in a variety of

system with links to relational and object-oriented databases, where many of the modules operate

as independent systems utilising a brokering architecture to communicate data between modules.

However the system is implemented, the same major conceptual sub-systems exist in the

integrated design system. In this chapter, the environment required to develop, implement, and test

the sub-systems of an integrated design environment is specified. These environment requirements

form the basis for the work presented in this thesis.

The development of an integrated design system involves a number of actors playing various

roles. These actors may belong to different organisations. For example, the developers of DT

schemas and mappings are usually from the organisation which developed the design tool. The

developer(s) of the IDM may be from the organisation implementing the integrated design system,

or, as in the ISO-STEP development, from many companies and research institutes throughout the

world. The project coordinator is usually from the organisation utilising the integrated design

system. It is clear that whatever environment is chosen for the modelling of aspects of the

integrated design system, there needs to be open communication links between all actors involved

in the specification.

Considering only the modelling and specification components of the integrated design system

outlined Section 1.4, the models which need to be developed are: the IDM schema; the schemas
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for the DTs; the mapping specification between IDM and each DT; the interface between a DT

schema and its data-files; and the project model. Though there needs to be very close links

between each of the environments used for the development of each of these models, each

modelling aspect and its requirements can be considered independently, as detailed in the

following sub-sections. The structure and requirements section below presents informal

requirements for a project development environment, as do all the sections considering the various

components of such an environment. This approach is taken as the proposed system is very large,

and complex, which makes the use of formal approaches infeasible in their current state.

2.1 Structure and Requirements

The development of an integrated design system is not a linear process. There is a large amount of

interaction between developers of every sub-system of the environment. Examples of the types of

cycles and interactions which occur are detailed below:

• The schema for a DT is developed either by the developers of the DT or by the creators of

the integrated design system, in consultation with the developers of the DT. The DT

schema describes the external interface of the DT as seen by the integrated design system,

along with constraints imposed by the DT which must be taken into account by the

integrated design system. During this process, the modeller must detail the DT schema in

collaboration with those developers responsible for the implementation of different aspects

of the DT. These developers are aware of the implicit constraints imposed by their

implementation methods for these aspects of the DT. During this process the schema must

be reviewed by the DT developers, reasons for constraints imposed on the schema

documented, and fixes to the schema actioned by the modelling coordinator.

• During the IDM development, the requirements of all DTs which are going to be used in

the integrated design system must be taken into account. This requires an iterative process

of development by the IDM modeller(s), and checking by all the DT schema modellers, to

ensure requirements are met. IDM modification requests by the DT modellers must be

actioned and coordinated with possibly conflicting requirements from other DT modellers.

• At the point where the IDM has reached a fairly stable state (few major restructurings

taking place), the specification of what needs to be mapped between the IDM and a

particular DT may be undertaken. This specification lays the groundwork for the

implementation of the mapping between the implemented IDM repository and the DT

interface. This mapping specification is likely to be developed by the DT modeller in

conjunction with one of the IDM modellers. The workers from these two teams need to

coordinate their work and may develop the mappings at the same time as the IDM is being

developed and checked against DT models. The mapping specification needs minor

updates as the IDM changes. This entails coordination and communication between IDM

developers and the affected DT mapping specifiers.
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• The specification of the use of an integrated design system for a particular project can be

undertaken at this stage. Generally, the project manager specifies the actors who will work

on a project and the design roles they will play in the project. Individual actors are likely to

specify the DTs they will use to complete their various design roles, and in collaboration

with the project manager develop a flow of control specification for the project. This

requires negotiation and collaboration between various actors and the project coordinator to

identify exact roles and responsibilities, and to ensure that the resources requested by

actors are available for the design roles they need to complete.

• Though the processes described above appear to flow in a continuous manner from

modelling through to project implementation, this is a major simplification of the actual

process. It is likely that there will be changes at all levels described above, requiring

continuous restructuring of the integrated design system as new DTs appear on the market

which particular actors may wish to utilise. New DTs may force changes in the IDM as

well as new mapping specifications, mapping testing and changes to the project

specification. It is also likely that the needs of the project require adjustment during the

lifetime of the project, adding new actors as unusual problems are encountered, removing

actors who may not be performing as required or become ill, adding new flows of control

to force some aspect of checking that was previously not deemed important, or adding new

paths to speed completion of the project. Thus changes are likely at every point of

development and use of the integrated design system. This requires a close coupling

between the implementation of the integrated design system and the environment used to

specify the structure and requirements of the conceptual integrated design system.

The types of interaction detailed above indicate that the development environment for an integrated

design system requires a diverse mix of modelling tools and implementation tools. However, to

analyse the requirements of the development environment, and in the presentation of solutions to

these requirements, the problems are specified in two categories: the modelling and specification

tools required; and the implementation and testing tools required (see Chapter 8). Though this is an

unnatural split, given the interactions specified above, it does enable the issues for each of these

sections of the environment to be considered independent of competing and distracting issues from

the other category of requirement.

2.2 Schema Modelling and Development

In all integrated design systems to date, the development of schemas has consumed a large

proportion of the development time of the system. The amount of time expended in this phase is

likely to change over the next decade as the schemas of the most commonly used design tools

become available for general use. It is envisioned that these schemas will be offered, though

perhaps not developed, in a common schema language (e.g., EXPRESS in the A/E/C community)
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as part of the distribution of the design tool. Hopefully also in the next decade, a standard IDM

will be developed for use in individual design areas (e.g., major APs from ISO 10303 for the

A/E/C community). However, until this development occurs, and probably for some time after

that, there will be a significant requirement for the specification of schemas.

2.2.1 Requirements of a schema modelling environment
A very general and widely applicable schema development environment must satisfy many diverse

requirements. Some of the most important follow:

Modelling languages: a wide range of languages is used by schema specifiers. For example, in the

A/E/C modelling domain, data specification languages such as ER (Chen 1976), EER

(Gogolla 1994), NIAM (Nijssen and Malpin 1989), IDEF1X (General Electric 1985), and

EXPRESS/EXPRESS-G (ISO/TC184 1992) are commonly used. As these languages take

a considerable time to learn and to become proficient with, many specifiers would resist

moving to a new standardised language. These languages have various strengths and

weaknesses (e.g., ER has a direct mapping to relational database specifications making ER

models very useful when a relational database is required to implement the system).

Hence, using one language to the exclusion of all others can limit the comprehensiveness

of the developed system. Schemas are not usually initially developed as pure data models.

Most are developed in association with activity and process models which detail related

aspects of the domain being modelled. In some A/E/C projects, models are developed

detailing aspects of the domain such as activities, data definitions, process, and ontologies

using interlinked modelling methods (see Mayer 1994 for the IDEF family). For example,

AP 228 (the HVAC model in STEP; ISO/TC184 1995) is being written in EXPRESS in

association with an IDEF0 activity model (Mayer 1990). Therefore, some link between the

data specification environment and other associated specification environments needs to be

supported. The schemas currently being developed consist of hundreds of object types

requiring a structured approach to their development. This often means that the modelling

environment needs to offer graphical and textual notations of the languages to allow views

of varying levels of complexity and generality to be specified (Meyers 1991).

Consistency and negotiation: the development of a large schema can involve experts from many

institutions, and, especially with ISO standards, from several countries. To enable schema

development with multiple developers, a strategy needs to be adopted to ensure the

consistency of the final schema. This strategy must be capable of ensuring that all

modellers are aware of recent changes to the schema and can be certain that they are

working on the most up-to-date version. In situations where modellers are geographically

dispersed, or where the modellers are not working in close collaboration, large numbers of

changes to the schema may need to be notified to modellers when they come to co-

ordinate. With several experts involved, conflicts between the modellers are certain to

arise. The modelling environment needs to facilitate negotiated settlements to conflicts, and

to document the settlement process.
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Documentation and navigation: decisions affecting the development of a schema are made

throughout its specification, by individuals, institutions, and by consensus at meetings.

The reason for, and reasoning behind, these decisions is important when resolving

conflicts, as well as allowing for later validation of the schema. This creates a requirement

to collate documentation regarding these decisions during the schema development.

Though documentation at this level can be unpopular, especially where there is very little

justification for a decision (e.g., the committee wanted to go home early), its collation is

vital to ensure a schema which can be further developed as well as being trusted. During

the development of a large schema the specifiers will need to navigate and evaluate current

versions of the schema at various levels of generality. With documentation associated with

the schema there are many new ways of indexing, and therefore accessing, schema

information which need to be made available through the modelling environment (e.g.,

viewing all modifications by a particular specifier).

The different types of schemas which need to be developed in an integrated design system are

described in the sub-sections below. Chapter 3 provides a more detailed description of the

requirements of a modelling environment and presents a new modelling environment (EPE) which

supports many of the requirements specified both here and elaborated in Chapter 3.

2.2.2 IDM schema
As described in Section 1.4 the IDM schema is the central schema through which all information is

communicated. It provides structures to satisfy the requirements of all DTs and actors who will

use the integrated design system. The development of the IDM is an arduous process requiring

collaboration and communication between the various domain experts as well as between the

integrators of the design tools. Computerised modelling systems currently in use provide little

high-level modelling support to the developers of the schema. Often these systems can provide

only one view of the entities being modelled using only one modelling paradigm, or very limited

consistency maintenance between multiple views of the same entity.

2.2.3 DT schemas
As described in Section 1.4 the DT schemas reflect the information requirements of design tools,

both their input and their output. The DT schemas contain many constraints upon their data

structures to reflect the capabilities of the design tool which utilises the data from the schema. In

most cases this equates to a very restricted subset of what can be described in the IDM. However,

with all DT constraints described these schemas allow an integrated system to perform checks to

ensure that valid models are passed through to the DT to manipulate.
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2.2.4 Actor schemas
In many integrated design systems it is necessary to model the allowable roles of the actors. This

task, usually undertaken by the project manager for each new project, allows the specification of

an actor’s frame of reference in a project. Actor schemas are defined inside the integrated design

system and are defined in terms of the IDM in use. There are two schemas associated with every

actor. One schema specifies the subset of the IDM which is viewable by the actor, the other

specifies the subset of the IDM that the actor has the authority to create or update. The actor

schemas provide a limiting boundary for an actor. Their implementation ensures that no actor can

modify a portion of a design outside their area of responsibility or expertise. Actor schemas can

also be used in conjunction with DT schemas to regulate the updating of a central model with

results from the DT to those that are within the scope of the actor. Actor schemas are likely to

change from project to project to reflect the actors’ responsibilities in each project. They are also

likely to be modified within a project to cope with changed responsibilities due to changing

requirements during the project.

2.2.5 Related schema modelling environment research
There are a number of commercial tools used for schema development in the A/E/C world. Some

of the most widely used include Design/IDEF (IDEFine 1995) and FirstSTEP (PDIT 1993). Boyle

and Watson (1993) review a wider selection. There are also many tools developed at research

institutes, many of which are available commercially. Some of the most common are CGE (Vogel

1991), PMShell (Luijten 1992), XP-IDEF and XP-EXPRESS-G (Poyet et al. 1990). Boyle and

Watson (1993) also cover a range of the research environment tools. Almost without exception

these tools provide very simple environments for defining schemas, mostly supporting only the

graphical notation of a language (e.g., EXPRESS-G rather than EXPRESS). This often means

only simple schemas can be developed in the tool (e.g., EXPRESS-G does not allow for

constraints, functions, and procedures to be defined though they exist in EXPRESS). None of the

tools allow overlapping views of a schema to be defined, and the majority only allow a single view

to be used to define all attributes of an entity.

In the main, these drawbacks are due to the perceived market of the tools, which is the

development of a published schema. With a paper copy of a schema, navigation amongst multiple

views of a single entity is much more difficult to achieve. Though all the tools allow EXPRESS to

be generated from the graphical notation (e.g., EXPRESS-G or NIAM), no connection is

maintained between the graphical schema definition and the textual equivalent. This hinders a

cyclic design process, as any additional specification in the textual form is lost when a new version

is generated from the graphical representation. The XP-IDEF and XP-XPRESS tools from CSTB

in France are the only tools in this area which maintain correspondences between textual and

graphical definitions. This is achieved by generating the graphical views from the textual

definition. However, this limits all graphical views to hierarchical decompositions of the textual
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schema, rather than allowing predefined views of portions of the schema.

In the integrated software development research community, more sophisticated modelling

environments are being developed. Integrated software development environments (ISDEs) which

allow multiple overlapping graphical and textual views of a program have been available for many

years (PECAN, Reiss 1985; Dora, Ratcliff et al. 1992; MViews, Grundy 1993; Meyers 1991).

However, these tools are usually tied very closely to a particular programming language (e.g.,

Pascal for PECAN or Snart with SPE in MViews). This eases the compilation and testing

requirements of such environments in comparison to abstract modelling languages (e.g.,

EXPRESS which has no direct mapping to any implementation language, and has constructs

which can not be directly implemented in many popular languages, like C++). Recent advances in

these environments (Grundy and Venable 1995) enable multiple modelling notations (e.g., EER

and OOA/D) to be utilised in the same ISDE, and maintains consistency between overlapping areas

modelled by the two different notations as well as between the multiple overlapping views within

each notation.

Figure 2.1 EXPRESS and EXPRESS-G views in the EPE modelling environment

2.2.6 Approach to a schema modelling environment
To be useable in the domain chosen for this thesis (i.e., A/E/C), the proposed schema modelling

environment needs to support the EXPRESS and EXPRESS-G notations which are used in the

development of the majority of schemas, but must provide much greater functionality than current

commercial and research tools in the area, equalling that of ISDEs. This includes support for

multiple overlapping graphical and textual views of the schema along with global consistency

management, documentation procedures and powerful navigation features. The developed
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environment (EPE) achieves all these goals, utilising the MViews system (Grundy 1993) and

specialising it for EXPRESS and EXPRESS-G notations (see Figure 2.1).

Though only the EXPRESS and EXPRESS-G notations were implemented in EPE it is capable of

extension to further modelling languages (e.g., Snart, NIAM, ER, OOA/D) due to the open

architecture of the MViews system (EPE is currently capable of manipulating Snart models, but

not modelling with the Snart formalisms). The full requirements and capabilities of the EPE

system are discussed in Chapter 3.

2.3 Inter-schema Relationship Modelling

Specifying the relationships between entities in a DT schema and the IDM is currently performed

either by actors from the DT development teams who wish to see their DT used in a particular

integrated design system, or by integrated design system developers who want to show the utility

of their system with links to as many design tools as possible. Currently, there is no formal

modelling of this stage of the integrated design system development, and mappings are hand-

coded for particular implementations. There are also no tools available to support the development

of mappings between schemas. This is slowly changing as the benefits of modelling this stage of

the development become more obvious. There are three possible scenarios envisaged for the

specification of relationships between schemas.

• During the development of the IDM, the schema modellers for the IDM work in

collaboration with the schema modellers of individual DT's. In this scenario the DT

modellers specify a mapping from their DT schema to the IDM to help define the structures

and attributes that are required in the IDM. This also guarantees that the IDM provides for

all the data needs of their particular DT.

• After the development of the initial integrated design system a new DT is added, in which

case the DT schema modeller specifies a mapping between the current IDM and their DT

schema. If the IDM schema is comprehensive then no changes should be necessary to the

IDM. If changes are required they can be passed through to the IDM modellers to handle.

• When the integrated design system is being used for a project, a new view of the data in

the IDM may be requested by an actor. In this scenario either the actor, or specialised

support personnel, will define a mapping from the IDM schema to the schema of the view

required by the actor. This type of mapping has no possible effect on the IDM and does not

involve modellers of either the IDM or DT.
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2.3.1 Requirements of an inter-schema relationship definition

language and modelling environment
To be useful in the development of an integrated design system, the language and modelling

environment for the specification of relationships between schemas must offer the following

facilities:

Mapping specification language: no mapping languages exist which allow a general high-level

specification of correspondences between two schemas to be specified. However, in the

same way that schema modelling notations are required which are independent of a final

implementation, mapping modelling notations are required which are independent of their

final implementation. To be easily understood and used by actors involved with IDM and

DT schema development the mapping notation needs to be a high-level declarative language

(i.e., leading to small definitions) rather than a low-level procedural language (i.e., leading

to verbose definitions). Given the range of schema modelling languages used by actors the

mapping notation should not be aimed at complementing a single schema modelling

language. It should instead aim to encompass the generic facilities required in mapping in

general.

Links to schema development environments: there is a close dependency between schemas and the

definition of mappings between them. A mapping modeller needs to be informed of all

changes a schema modeller makes to the schemas referenced in their mapping

specification. Conversely, the schema modeller needs to be informed of all modifications

needed in their schema to meet the requirements of the mapping specification from

individual DT’s which have information requirements not met in the current IDM

structures.

Consistency and negotiation: though the definition of a mapping is only likely to involve one or

two actors conversant with the schemas being mapped between, there is a strong

requirement for them to remain consistent with each other as well as with the schemas the

mappings reference. As new mapping notations are developed, it is likely that mapping

portions will be specified in different languages and in views of varying levels of

generality. These will need to be kept consistent with each other. For similar  reasons to

schema modelling (Section 2.2.1) it is imperative to ensure that all modellers are aware of

recent changes to the mapping specification and that they can be certain that they are

working on the most up-to-date version, and that conflict resolution strategies are

provided.

Documentation and navigation: the mapping specification details the transformation through which

data is moved between models. The reasons for using particular transformations and the

perceived constraints being addressed by each mapping need to be readily accessible by

those debugging or validating the mappings at a later stage. The modelling environment

should help to document all reasons for the mapping being specified, as well as points

where modifications are made to the schemas being mapped between. This includes tracing

the modeller responsible for particular mappings, the reasons for individual or mass
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changes, and offering documentation views to complement the mapping views. The

modelling environment also needs to facilitate navigation through the mapping views, both

to all variants which perform mappings on the same types of objects (e.g., to check for

total coverage of the specified mappings) as well as to schema views for the various

entities in the mapping (e.g., to check the types of attributes being mapped between).

2.3.2 Related inter-schema relationship modelling languages
Until very recently no general purpose mapping notations were available. However, with the

development of the ISO-STEP schemas, the need for mapping specifications has been recognised

and new notations developed. Prior to this, relevant formal work has concentrated on relational

database views and schema integration (which are analogous to the mapping problem). To fit with

the formal grounding of relational databases, these languages have provided very restricted

capabilities, but ones which guarantee various properties of the final system (e.g., that all data can

be mapped in both directions under all conditions). Relational database views (Ullman 1982; van

der Lans 1988) can define arbitrarily complicated mappings as long as they are unidirectional.

Bidirectional views, however, can only be described with a severely restricted set of relational

operators (Banchilhon and Spyratos 1981; Dayal and Bernstein 1982; van der Lans 1988;

Harrison and Dietrich 1994). Schema integration and heterogeneous database systems (Batini and

Lenzerini 1984; Batini et al. 1986; Navathe et al. 1986; Motro 1987; Bright et al. 1990; Kim and

Seo 1991; Qutaishat et al. 1992) implicitly allow bidirectional views between schemas or

databases. However, to achieve this result, they restrict the range of operators allowed to merge

the schemas. This greatly reduces the number of schemas that can be integrated, and entails that

semantic mismatches in schemas have to be resolved (by modifying the original schema) before a

mapping can be attempted. This is not a viable approach where existing tools with fixed schema

structures exist.

Research outside of the database area comes from various sources, mapping being a general

problem in all computer science domains. Garlan (1986) describes a system for integrated

programming environments based on the ability to define a type conversion. Lee and Malone

(1990) describe a scheme for communication among groups with different type hierarchies with

specific reference to a mail/message system. These are similar to the approach taken by Eastman et

al. (1995) in EDM-2, where mappings are assumed to traverse a hierarchy in a type lattice.

However, many mappings can not be achieved by traversing a type lattice, yet may still be

described through functional or procedural code. The following research systems allow

sophisticated views to be defined in their respective domains. However, they only allow

unidirectional mappings from a single specification, and provide no high-level language for the

final specification of the mappings. Views for objects in OO-environments are discussed in

Hailpern and Ossher (1990). The KIF (Knowledge Interchange Format) allows agents to map

between different knowledge representations (Genesereth and Fikes 1992; Khedro et al. 1994).

Views can also be specified in visual programming environments (Ambler and Burnett 1989, and
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see MViews, Grundy and Hosking 1993b). Constraint-based systems are one of the only domains

which provide a notation for bidirectional views of information with automated consistency

(Bowen and Bahler 1991, 1992; Mugridge et al. 1995; Eastman et al. 1995). While these

languages provide most of the structures required to map between different schemas, they were

developed mindful of control structures which are not suitable for a general integrated design

system. Hence they tend to be weak in some specification areas required by integrated design

systems, namely the definition of conditions upon which sets of constraints can be used,  and

default values prior to application of constraints. Constraint systems also tend to assume all data

and tools are present at all times, as well as being constructed in the same development language,

in contrast to an IBDS where whole tools are connected and disconnected over time and exist and

operate independently. Constraint systems therefore tend to model correspondences as though a

single system is in existence.

In the A/E/C domains several integrated design systems have provided for mappings between their

schemas (Gielingh 1988; Willems 1988; ESP, Clarke et al. 1989; Luiten and Tolman 1992; Wong

et al. 1992; ATLAS, Greening and Edwards 1995 and ATLAS 1993; COMBINE, Augenbroe

1995a and 1995b; COMBI, Scherer 1995 and COMBI 1995; CIMsteel, Watson and Crowley

1995 and CIMsteel 1995). However, all of these systems have opted for mappings defined in their

implementation languages without any formal modelling of what is required to be mapped. Only a

single development in STEP has formally examined the unification of models. SUMM (Semantic

Unification of Meta-Models, Fulton et al. 1992) provides a notation for describing the semantics

of schemas so they can be integrated. It does not, however, lead to a methodology to map between

the integrated schemas. As noted previously, the work in ISO-STEP has highlighted a requirement

for mappings between schemas, and a plethora of languages have been proposed to meet this

challenge (Transformr, Clark 1992; EXPRESS-M, Bailey 1994; EXPRESS-V, Hardwick et al.

1994, Hardwick 1994; EXPRESS-C, Staub et al. 1994; Operation Mapping, Bijnen 1994; XP-

RULE, Zarli 1995). The ISO-STEP committees have now decided to create a standard mapping

language for STEP development (EXPRESS-X, Wen et al. 1996) which pulls together the best

(and worst) of the EXPRESS-V and EXPRESS-M languages. These languages range from very

low-level specification (almost at the C++ level) through to partially declarative in style. They are

all unidirectional in their mapping specification (though EXPRESS-V allows both mappings to be

specified in the same definition), which misses the main benefit that these languages could provide

in defining bidirectional mappings between overlapping schemas.

2.3.3 Related inter-schema relationship modelling environments
Incredibly, given the size and complexity of mappings defined with the range of mapping

languages and environments described in Sections 2.3.2 and 2.3.3, there are almost no

environments available to specify mappings. It is assumed that mapping developers will utilise

standard text editors to define the mapping, managing all aspects of consistency by themselves.

The only tools provided are post-processors which check the mapping specification against
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schema definitions when the mapping is compiled into an internal form for the mapping

implementation. The only exception is Operation Mapping (Bijnen 1994) which provides a

hierarchical navigation system to select classes and attributes which are to be utilised in a textually

specified mapping. This is a minimalist environment providing almost no benefit to mappers

except a guarantee that correct names and paths are used in the mapping specification.

2.3.4 Approach to an inter-schema relationship modelling language
A new high-level declarative mapping language, VML (View Mapping Language), was developed

for this project and is described in Chapter 5. A sample mapping can be seen in Figure 2.2. VML

has the full expressive ability found in constraint languages with equational, functional and

procedural specifications of mapping between attributes. However, VML also incorporates

specific notions of the conditions under which a mapping can be applied and initial values for

newly created objects along with the mapping specification. VML is implicitly bidirectional with

explicit definitions of the schemas being mapped between to support independent tool-based

mappings. A unique feature of the language is its ability to specify method-triggered mappings.

This allows mappings between object-oriented systems that can lead to a more interactive

integrated design system, for example, invoking functionality in a second tool based upon a user

specified action in a primary tool.

Figure 2.2 Example VML textual specification

2.3.5 Approach to an inter-schema relationship modelling

environment
With a similar reasoning as for the modelling environment developed in Section 2.2.6 for schema

models, the mapping modelling environment had to provide at least the same functionality as that

found in ISDEs in computer science. It also needed to provide a tight coupling between schemas

and the developing mapping. The VPE (VML Programming Environment), as described in

Chapter 5, provides multiple graphical and textual views of mappings, similar to those described

for EPE. VPE also manages the two schema definitions and verifies mappings being described
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between the two schemas as they are developed. In a graphical view (see Figure 2.3) it provides a

wiring mechanism to specify mapping relationships, whilst in the textual view (Figure 2.2) the full

VML specification is available. Navigation facilities allow similar mappings and partial views to be

identified. Visualisation functions allow the full class and mapping icons to be viewed, to identify

features which have, or have not, been mapped. The developed VPE system utilised the MViews

product (Grundy 1993) specialising it for the requirements of VML.

Figure 2.3 Graphical mapping specification in VPE

2.4 Design Tool Environment Modelling

Though the schemas of Section 2.2.3 define the data structures used by particular design tools and

provide a definition of the constraints on data models which can be used by the design tools, they

do not specify in what form the data is used by the design tool. The inter-schema relationships of

Section 2.3 describe how data from models of differing semantics can be mapped, but not the

syntax utilised by the design tools. It also does not describe how to invoke the design tool with the

required data, or how to recognise when the design tool has completed its tasks. All that can be

assumed about the data derived from the information modelling described in the previous sections

is that correct data is held for the design tool, but this data is still held in some internal format

foreign to the design tool (e.g., an object-oriented database).

To make the final step from internal data models to the form required by the design tools, the

design tool input and output formats must be modelled as well as its invocation requirements and

methods. This task has not been tackled in this thesis. However, it is clear that an ISDE of similar

capacity to those referenced in Sections 2.2 and 2.3 could be developed from a general purpose

development environment (e.g., MViews).

2.4.1 Requirements for design tool environment modelling
To capture the information required to manage individual design tools, the design tool environment

model must be capable of specifying the following aspects of the design tool:
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Input data format: the input of design tools is structured in very specific formats. This has to be

accurately recreated to invoke a design tool with selected data from an IDM. The formats

will include fixed format object per line data-files (from the FORTRAN punch-card era),

data-files with headers before each section of objects, and data-files which allow free

format data specification. The specification of the input data format must also specify the

correspondence between the design tool model, as seen in the schema development

environment, and the location of data in the input data-file. For design tools which require

interactive input, the format must define the format of the data to be passed through, and

also define how to select the requested data from the design tool model (e.g., a query

based on the question being asked by the design tool). Where the design tool input data

schema can change (e.g., a new version of the design tool), changes in the input data

format must be passed through to the schema in the schema development environment and

reflected directly in the model seen in that tool.

Invocation parameters: the majority of design tools need to be invoked with parameters detailing

names of files with input data and often what type of simulation to run. This invocation

data may specify input data-file names, the desired level of accuracy of the final result,

standard library files used when searching for material properties, etc. The source of this

data must be specified, e.g., user specified before invocation of the design tool, or default

values based on the type of design function the tool is being used for.

Invocation method: in most operating systems it is possible to schedule a design tool to start

operating, though the manner of starting tools is very different in various operating

systems. With this specification an integrated design system can automatically operate tools

which require no operator intervention. A model of invocation specifies the environment

the design tool resides in (e.g., unix, VAX, Macintosh, MS-DOS, Windows) and how the

parameters and design tools must be arranged to start the design tool. It must also define

the commands to start the design tool, e.g., the name of the design tool and flags used.

Termination detection: for an integrated design system to schedule and operate a range of design

tools it must be able to determine when they are working and when they have completed

their operations. A model of termination specifies how the integrated design system detects

the termination of a design tool, or the completion of its design function. This specification

must cover cases from those design tools which start to perform a design function and end

when it is done, through to those which are continually running and whose design function

is completed without exiting the design tool.

Output data format: to be able to retrieve results from a design tool the integrated design system

must be able to process the output of design tools. The range of textual output data-files is

the same as those of input data-files (I assume that all graphical outputs will have a

corresponding textual output). This specification must define how the output data is tied to

the data supplied as input to the design tool, and it must define the correspondences to the

output design tool model, as seen in the schema development environment. For design

tools which are interactive the format must identify where the resultant data resides
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amongst the prompts and queries of the interaction. Where the design tool output data

schema can change (e.g., a new version of the design tool), changes in the output data

format must be passed through to the schema in the schema development environment and

reflected directly in the model seen in that tool.

2.4.2 Related design tool environment modelling work
The author has previously defined simple notations for interfacing design tools with very rigidly

structured input and output data-files (Amor 1991). These methods were further augmented to

provide a more flexible data format description based on DCGs (Williams 1990). In Pascoe (1994)

a methodology is presented for representing GIS design tool data states including physical forms

and location along with transformations to move between states. However, while this gives a

method of representing the transformations that must take place to interface between various tools,

it does not address representations necessary for automatic implementation of each transformation.

This implementation is currently performed by hand-coded tools.

The above methods go some of the way towards what is required in the modelling of the design

tool environment, but only for a limited set of design tools. Interactive design tools (e.g.,

knowledge-based systems) can not be handled by any of the methods described above. In Amor

(1991) it was argued that defining an interface to these design tools could require as much effort as

defining the design tool itself. These methods also only define the data requirements, they do not

attempt to define the invocation parameters and methods required to start a design tool or to

determine when the design tool terminates. Definition of these environmental parameters will be

operating-system dependant and may prove to be impossible to define generically. However, the

‘Tool Encapsulation Specification’ project (TES 1995) does provide a standardised notation to

describe tool invocation parameters and methods  so that a TES system on any platform would be

capable of determining how to run a particular tool. TES also provides for descriptions of methods

to suspend tool execution or determine a tool’s completion status.

2.4.3 Approach to a design tool environment modelling system
The modelling of the design tool environment is not attempted in this thesis as there is an emerging

standard (TES) which looks as though it will provide what is required. TES has currently not been

developed enough to provide a modelling system to support it. However, when a design tool

environment modelling system is created as part of the project development environment, it will

have to provide at least the same functionality as that found in ISDEs in computer science. It will

also need to provide a tight coupling between design function specification (which defines the

design tool used to perform the function) in the process model and a design tool’s data

requirements. As with the previous modelling systems, an environment built on top of a system

such as MViews (Grundy 1993) would be able to provide the functionality and integration

required to bring these models into the whole project specification.
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2.5 Project Definition

As described in Section 1.4 the project model defines how an integrated design system will be

used for a project. It provides a method to describe the users of the system, the roles they play,

and the tools they will utilise to fulfil those roles. It also allows the definition of flow of control for

project management purposes, allowing necessary process flows be defined, and enabling the

determination of points at which concurrent design can take place. It also provides a tool to the

actors to manage their design roles to ensure timely completion and hand-over of their work.

2.5.1 Requirements for a project definition notation and development

environment
To be of utility in the development of an integrated design system the modelling environment for

the project definition must offer the following facilities:

Project definition language: project managers need to specify the designers working on a project

and the activities they need to carry out in their contribution to a project. Project managers

also need to keep a constant overview of the activities completed in a project and those

which are next scheduled for completion. To achieve this in a computerised environment

project managers will require a notation to define the actors undertaking a particular

project. The notation will also need to define the roles actors play in a project and the

possible, or necessary, paths between the design functions that need to be completed to

fulfil the design roles.

Links to schema development environments and design tool environment: flow of control

specifications are tied to particular design tools which must be controlled by the

implemented integrated design system. To achieve this it must know about the input and

output schemas for all design tools, and actors, to be able to tie down the responsibilities

of actors in a project. To be able to control the design tools associated with particular

design functions it must also be able to link with the design tool environment which details

the invocation procedure and termination detection for the design tool.

Documentation and navigation: the project control system is the most visible aspect of the

integrated design system. To justify flows of control in the IBDS the project definition

environment should help to document all reasons for the paths between design functions

being specified. This includes tracing the modeller responsible for particular paths or

design function specifications. The modelling environment also needs to facilitate

navigation through the project definition views, to show all places that a particular design

function could be performed, and by whom, and to provide some simulation of the flows

to ensure that particular configurations are useable, or possible to negotiate.
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2.5.2 Related project definition notation work
The majority of the project definition notations used to date have been activity modelling

formalisms which are used in a specific restricted manner. For example, IDEF0 (Mayer 1990)

activity models are used to model process flows by treating the relative horizontal positioning of

activity icons as presupposing a temporal relationship. While this view of activity diagrams allows

some forms of process flow to be defined it is very poor when attempting to handle many types of

flows, e.g., recursive flows, concurrent flows, and those which are conditional on previous flow

states. This is similar to the modelling capability of data flow, state diagrams, and Gantt charts

which are generally linear in nature. Pert charts provide the majority of modelling behaviour

required except that recursive flows are difficult to model and flows are very deterministic, which

is fine for highly structured projects, but not all projects fall into this category. Many notations

have been derived from the Petri Net formalism (Petri 1976, Jensen 1990). These notations range

from IDEF3 (Mayer et al. 1992), which allows process flows to be described with AND and OR

connections between states, through to VPL (Swenson 1993) which additionally allows specified

conditions or constraints to help define paths in the work-flow. IDEF3 allows looping and

recursive behaviour, but the semantics of looping with AND and OR conditions is not specified.

The formalism is also developed independently of the actors involved in the flows which removes

the possibility of defining the links to organisational requirements. In contrast, VPL incorporates

notions of actors associated with process flows. A previous review of process modelling notations

(Curtis et al. 1992) determined that a complete notation needs to specify functional, behavioral,

organizational and informational requirements. This full range of requirements had not, at that

stage, been incorporated into a single notation. However, during the COMBINE2 project

(Augenbroe 1995a and 1995b) a two part modelling notation was developed (CombiNets, TU

Delft and Amor 1993), based around Petri Nets, which models the four requirements of Curtis et

al. (1992) to some extent.

2.5.3 Related project definition environment work
The specification of processes in a project has been part of the project management aspect of

projects well before computers appeared on the scene. Following the paper-based process

management many commercial computer tools have been developed to support the specification of

flows, and in some of these tools to help analyse the practicality of the prescribed flows

(PowerProject, ASTA 1996; Process Charter, Scitor 1995). These tools offer a very simple

interface to define and refine what are basically linear process flows. Associated with the more

sophisticated process modelling formalisms are tools of correspondingly greater sophistication. In

COMBINE a CombiNet tool is offered through the CGE environment (Configurable Graphical

Editor, Vogel 1991), this provides a simple hierarchical view specification of process flows and

utilising design functions and actors. IDEF3 tools (ProSim, KBSI 1995; System Architect,

Popkin 1996) provide simple single view specifications of process flows, but with links to IDEF0

activity and IDEF1X data models. VPL tools (Swenson 1993; Serendipity, Grundy 1996) provide
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more sophisticated multiple view specification environments, but without the links to associated

models.

2.5.4 Approach to a project definition notation
An extension of the CombiNet formalism is used to define process flows in this thesis (CombiNet

was developed by the author whilst a guest at TU Delft for six months). This formalism takes two

parts. The first part allows the specification of actors, their design roles in a project, and the design

functions necessary to complete the various design roles. The second part is based around the Petri

Net formalism (though the semantics are markedly different) and defines the possible flows

between the design functions as specified in the first part of the formalism. The formalism

incorporates aggregate process icons to represent complete sub-flows and incorporates actor

overlays to allow different actors to be responsible for the same design functions in different parts

of the process (see Figure 2.4 for an example of a portion of a process flow specification).

Figure 2.4 Project flow of control definition

2.5.5 Approach to a project definition environment
The CGE tool (Vogel 1991) was utilised in this thesis to implement the environment for defining

process flows in a project. The choice of this tool was initially determined by the requirement in

the COMBINE project for all modelling tools to be developed in CGE, which was available to all

partners. Given the author’s effort in defining the initial formalism in this tool, it was not felt

necessary to re-implement the extended formalism in another environment. The CGE

implementation of the formalism provides links between the actor and role specification, and the

process flow specification. Though only single views of a process flow are supported during the

specification, the tool provides hyper-linking between aggregate flows and their complete

definition, allowing easy navigation around large process flow specifications.
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2.6 Project Development Environment Summary

This chapter has described a range of individual modelling environments and modelling paradigms

required to implement a project development environment. The individual environments have to

model schemas, mappings between schemas, design tool parameters and project definitions. It is

shown that these different models are all inter-related, so the total project development

environment must provide for relevant communication between the different modelling

environments. It is also shown that the individual modelling environments have many

requirements in common. These include the ability to provide multiple views of information both

textually and graphically and being able to maintain the consistency of the global model under

changes in any view. The MViews development environment (Grundy 1993) is introduced and,

through environment implementations, shown to provide the features required to implement the

individual modelling environments as well as providing some of the interaction required between

environments.

Two modelling environments, developed in this thesis for schemas and mappings between

schemas, are described in detail in Chapters 3 and 6. The requirements for a schema mapping

language are developed in Chapter 4, followed by the view mapping language definition in

Chapter 5. The requirements for a project specification notation and an actual notation are

described in Chapter 7. Taken as a whole these environments and modelling paradigms allow a

full project development environment to be constructed.
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Chapter 3

Schema Modelling and Development1

The definition of the schema for a particular domain is vital to the success of computerised projects

in the A/E/C arena, whether it be the smallest application or the largest ISO standard. In all except

the smallest of projects, schema development is carried out by a group of domain experts, each

contributing to the part of the schema representing their areas of expertise. Development of the

schema needs to be coordinated by one or more individuals who must ensure that the current

schema version is passed through to all developers and that all input to the final schema is

considered and acted upon in some systematic manner. This introduces a requirement for

coordinated management and documentation of the schema development.

3.1 Introduction

The whole schema development process, unless closely managed, is open to sources of error and

conflict. The current version of a schema must be propagated to all developers so that they are all

considering the same schema. Modifications that are made from one version of a schema to the

next need to be documented so that differences between versions are easy to identify (especially

for very large schemas). Change requests and additions to schemas sent by developers all need to

be documented and the action taken on them recorded so that developers know that their

suggestions have been heard, and, if rejected, they know the reasoning behind the rejection.

Multiple conflicting requirements between developers need to be negotiated to a final settlement

which satisfies the majority of developers. Electronic management and design tools have the

potential to solve all of these problems.

1 Work presented in this chapter has been published in Amor et al. 1995.
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However, existing software tools to help users through this process are limited in the scope of the

problem that they can tackle (for example, see Vogel 1991; Luijten 1992; Poyet et al. 1990; Boyle

and Watson 1993). Some tools assist in the development of a schema, while others check it for

consistency, translate it to an implementation language, or allow an instance of a model to be

perused. These tools do not tackle the problems introduced by multiple developers, and, where

there are multiple tools to handle the process, they do not allow the use all of the tools together in

an interactive and non-deterministic manner. To solve these problems, the author has designed an

integrated modelling and development environment which provides many functions to users in a

homogenous environment.

In this chapter the requirements for a modelling environment in a large modelling project are

introduced. The EXPRESS Programming Environment (EPE), which tackles these requirements,

is detailed, and its ability to meet the design requirements of a modelling environment is

demonstrated.

3.1.1 Requirements for schema development
While the introduction above concentrates on requirements for the development of an IDM, many

other schemas also need to be modelled in the development of an integrated design system, as

discussed in Section 2.2 of this thesis. The development of DT and user schemas are tasks which

can be of a similar size and complexity to the development of the IDM. They can require a similar

number of domain experts to implement, and produce the same set of problems as discussed for

the IDM schema development. Developing schemas for DTs and users introduces an added

dimension to the management problems specified for the IDM as there is an association between

these schemas and the IDM. Therefore, changes in these schemas (particularly in the user

schemas) must be matched to the portions of the IDM that were influenced by the original schema

specification.

In any large scale multi-partner schema development project there are a number of modelling

support issues which need to be dealt with. For example, COMBINE included the following:

Communication and integration of DT schemas: the development of the building schema in

COMBINE is based on a cyclic development process where DT teams supply the data view

of their DT in the form of an EXPRESS schema (referred to as an aspect model). These

DT schemas are taken as input by the central IDM development team for constructing a

common integrated schema. This process employs a combination of top-down structuring

and bottom-up expansion of the growing IDM. Resulting drafts of the IDM are

subsequently distributed to the DT teams to inspect and refine. This process of iterative

refinement may continue for many months and during this time all partners concerned in

this process must be kept up to date with the changing schemas.
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Documentation: during the schema generation process, the communication of schemas and schema

constraints involves an intensive interaction between various teams in the project. All

decisions and justifications for decisions must be permanently documented as they are

made.

Mapping definitions: it is through the definition of the IDM to DT schema mappings that the

consistency and adequacy of the IDM is totally checked by its clients (those who will use

the data in the IDM). The mappings determined by the DT schema teams need to be defined

formally, as these mappings describe the required interface between the DT and the IDM.

Support for multiple modelling paradigms: the modelling paradigms EXPRESS, EXPRESS-G,

NIAM, IDEF1X and IDEF0 are well suited to different types of modelling. An ideal

environment for COMBINE would support the specification of a schema using multiple

paradigms.

Support for multiple views: the integration process is very hard to accomplish systematically, let

alone automate (the required "meta modelling knowledge" is lacking), so it remains a

tedious and non-deterministic process to combine multiple views into one coherent whole.

To support this integration process the modelling environment should provide methods to

enable views to be integrated into a central schema and to document the source of entities

and structures in the integrated schema.

To support these requirements an ideal modelling support environment (MSE) needs mechanisms

for: easy communication of schemas; generation and manipulation of multiple views of a schema

in a variety of formalisms; annotation of the schema with documentation; and flexible update

management to support iterative updates of the schema. Other important features would be support

for the definition of inter-schema mappings and for integration of schemas, although it is

recognised that, owing to the strong creative element in these tasks, automated tools are not, as

yet, achievable. Another important issue is the ability to rapidly prototype a resulting operational

system. MSEs should provide facilities to allow instantiation of schemas to be tested in a run time

environment, e.g., to test mapping specifications and enhance the understanding of the underlying

schema.

3.1.2 Schema specification languages
There is a plethora of languages available for modelling schemas. While there are overlaps

between the expressive ability of these languages, there are also many differences in what can be

expressed, in some cases due to the domain the language was developed for and in others due to

the structure of the language. In the development of schemas the most commonly used languages

fall into one of the following three categories: relational database schema definition, such as ER

(Chen 1976), NIAM (Nijssen and Halpin 1989), IDEF1X (General Electric 1985); object-oriented

schema definition, such as EER (Gogolla 1994), EXPRESS (ISO/TC184 1992); and data flow

definition, such as DFD (Stevens et al. 1974), IDEF0 (Mayer 1990). All common modelling

languages have graphical notations for defining schemas, and some languages also have a textual
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notation.

In the ISO-STEP development there has been great pressure to use a single language in the

development of schemas for the standard. Existing languages were felt not to be powerful or

complete enough for the requirements of the STEP standard, leading to a decision to develop a

custom modelling language. The resultant language, EXPRESS, and its graphical notation,

EXPRESS-G, provide a similar coverage to that offered by other object-oriented specification

languages, although without all of the standard object-oriented notions, such as class method

definition. This lack is being rectified in the latest version, EXPRESS-V2.

Due to the adoption of EXPRESS as the standard language in the development of STEP many

developers and integrated design system researchers have taken on EXPRESS as their modelling

language to maintain easy compatibility with the results of the STEP standard. The problems they

feel that they avoid through the use of EXPRESS are mainly the difficulties of moving schema

information from one modelling language to another without loss of information in the transfer. In

some cases these problems arise due to a mismatch between the modelling capabilities of the

different languages, but in others the problem is due solely to poorly written translators. Due to

this, EXPRESS is being used in a large number of projects and standardisation efforts faced with

large modelling tasks in domains covered by the STEP standard (for example, ISO/TC184 1993;

Gielingh and Suhm 1992; ATLAS 1993). Environments for modelling schemas, both commercial

and research developments, are discussed in Section 2.2.1.5.

3.1.3 The EXPRESS and EXPRESS-G languages
A brief introduction to the EXPRESS and EXPRESS-G languages is provided here, to allow

readers unfamiliar with the notation to understand the figures presented in this chapter. Many

aspects of the EXPRESS-G notation are not covered in the following example as they do not

appear in any of the diagrams in this chapter. A full specification of EXPRESS and EXPRESS-G

can be found in the ISO standard (ISO/TC184 1992). For those interested in comparisons between

graphical notations, the diagram in Figure 3.1 provides the EXPRESS-G view of the same

example in Snart graphical notation presented in Figure 1.3.

Figure 3.1 shows four classes (abstract_parent, child1, child2, and related_class). A class (called

an ENTITY in EXPRESS) is represented by a solid-lined rectangle with no other graphical

embellishments. The name of the class appears inside the rectangle, and can be preceded by the

keyword (ABS) to denote an abstract class (see the class abstract_parent). Attributes and

relationships of a class are shown by single thickness lines drawn between a class and the type of

the attribute or relationship. These lines are labelled with the attribute or relationship name and a

small circle attaches the line to the type definition. For example, the class child2 has attributes att1,

att2, and att3 of type string, real, and integer respectively. The class child2 also has a relationship

to the class related_class through the named relationship rel_name. EXPRESS-G also allows

43



aggregating types to be denoted in the diagram, as can be seen for the class child1. The attributes

att1, att2, and att3 are of aggregating types set, bag, and list respectively (denoted by a S, B, or L

after the attribute name). As can be seen in Figure 3.1, these aggregated types can also show their

bounds, if they are specified. The attribute att1 has no specified bounds on the set, att2 has a lower

bound of 1 for the bag but no upper bound and the list for att3 is constrained to be between 1 and

10 values. Inheritance between classes is shown with a thick line connecting two classes. This line

terminates with a circle at the connection with the child class. In Figure 3.1 child1 and child2 both

inherit from abstract_parent. Complex inheritance relationships can be defined in EXPRESS

though these are not shown in any of the diagrams in this chapter. However, due to this potential

complexity, the EXPRESS class descriptions always show both supertypes and subtypes for each

class.

Figure 3.1 An example of the EXPRESS-G notation

3.2 Schema Development in the EPE Environment

The EXPRESS Programming Environment (EPE) has been engineered to support the modelling

requirements detailed above for schema evolution and management. In EPE this equates to

multiple graphical and textual views of varying degrees of complexity at different stages of the

project. During analysis, simple graphical views, which embody high level concepts and

relationships between them, are mapped out and manipulated. During early design, these simple

graphical representations are fleshed out: constraints specified; attributes of entities added; and

inheritance hierarchies fully specified. During late design, more detailed information becomes
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available which is often best manipulated in free form textual representations of portions of the

schema. During implementation, the developed schema is compiled, checked for syntax errors,

and detailed models are loaded and checked for consistency. Throughout the iteration of these

stages and during maintenance, modifications can be made at any of the levels described above and

must be propagated to all dependent stages. EPE provides integrated support for each of these

activities, using the MViews consistency mechanism to provide the required inter-view

consistency. 

3.2.1 Functionality offered by the EPE environment
In this section a description is provided of the EPE tools and view types available at each stage of

development, and the methods of keeping views consistent with one another is described. These

are illustrated using an example from the initial IDM of COMBINE. The COMBINE IDM

comprises around 400 entities and 600 relationships; only a small portion, associated with

technical systems, is shown here. The placement of technical systems in relationship to the

building class in the IDM is shown in Figure 3.2.

Figure 3.2 Use of technical_system in the COMBINE IDM

3.2.1.1 Analysis

Figure 3.3 shows the types of graphical views commonly used at the analysis stage. Two analysis

views show portions of the inheritance tree for the technical_system entity (those entities dealing

with ventilation and air conditioning) specified using EXPRESS-G (thick lines represent
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inheritance links in EXPRESS-G). Each view is constructed by direct manipulation using tools

selected from a tool palette, to the left of the view. 

The user is free to create as many views as is desired, and may freely lay out and populate each

view, either with new information or with information entered into other views. The information

in each view is mapped through to the canonical representation of the schema as the view data is

entered, and any similarities or conflicts with the existing data are resolved as it is created. This

ability to construct multiple views permits both general purpose and specialised views to be

constructed. The former may be used to obtain an overview of the system under construction, the

latter to focus on more detailed parts of the system. The proliferation of views means that

navigation tools are needed to quickly access desired information. EPE provides inter-view

navigation using both menu-based search facilities and automatically constructed hypertext links. 

Figure 3.3 Two high-level inheritance specifications for technical_system

3.2.1.2 Design

Attributes are often specified at the design stage, as shown for the technical_system example in

Figure 3.4. This can be done, as shown in this figure, with all entities in one graphical view, or by

using two or more views. For example, the attributes of basic types may be presented in a separate

view to those which define relationships to other entities, thus adding clarity. Again, there is no

limit to the number of design views that can be constructed, and the hypertext navigation facilities

are available to navigate both between design views, and between analysis and design views. As

in the analysis views, all information in the design view of Figure 3.4 is mapped back to the

canonical representation of the schema and all dependent views made consistent with its contents.
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Figure 3.4 Design stage specification of attributes of an entity

3.2.1.3 Late design

At the late design stage more detailed information may need to be entered. This necessitates a

textual representation of the entity in the EXPRESS language, as EXPRESS-G represents only a

subset of what can be modelled in EXPRESS. For example, UNIQUE clauses, WHERE clauses,

rules, and type information have no EXPRESS-G representation. Figure 3.5 shows an EXPRESS

textual view which has been generated from the canonical information on the entity. This view

encompasses all information found in all the graphical views which define the technical_system

entity, such as the information in Figures 3.2 and 3.3. This textual view is editable, with the user

free to make changes to any parts of the textual description in the view. Modified textual views are

parsed and compiled to ensure they represent valid EXPRESS descriptions, and their information

passed back to the canonical representation.

Figure 3.5 Textual view derived from graphical views of an entity
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3.2.1.4 Consistency between views

When changes are made to an EPE view, other views that share information with the updated view

may become inconsistent and must be updated to keep the schema consistent across all views. All

views affected by a change are notified and, in many cases, are automatically modified to reflect

the change. This consistency mechanism works both between views of one phase of development

and between views of different development phases.

As an example, Figure 3.6 shows a modification being made to a graphical design view. The

modification tightens a constraint on an entity's value; the lower bound on the number of values in

the SET definition is now known to be 1 and is entered in the definition. The information entered

in this manner is checked as to whether it is valid EXPRESS syntax before being accepted and

allowed to modify the schema being developed. The change is propagated through to the canonical

form of the schema which is updated, then all dependent views are identified and notified of the

change which has been made.

EPE propagates the change to the other affected views in the form of an update_record (described

in Section 3.2.2). This record provides a complete description of any single change. How views

react upon receipt of an update_record depends on both the view type and the nature of the change.

In the design view the modification updates the graphical representation of the design view

according to the definition of EXPRESS-G syntax, as can be observed in the graphical design

view at the rear of Figure 3.7. The modification is not propagated through to the analysis views,

as the modified attribute is not seen in these high level views. However, the attribute does appear

in the textual late design view and it must be updated to be kept consistent.

 Figure 3.6 Constraining the cardinality of an attribute at late design stage
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 Figure 3.7 The propagation of an update_record to a dependant textual view

In the EPE system update_records propagated to textual views are not applied automatically,

although many of them could be. Instead the update_records are displayed in the view and the user

has control over which updates are applied at which time. As can be seen in Figure 3.7, the

graphical update to the technical_system entity generates an update_record in the entity's textual

view. If the user instructs EPE to apply the update, the resulting view of Figure 3.8 is generated,

where the notification of outstanding updates on this view has been removed, and the attribute

definition has been automatically rewritten.

Figure 3.8 The automatic application of an update in a textual view
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This strategy of allowing the user to apply updates to textual views exists to handle the problems

caused by the specification of a constraint on an attribute or entity in EXPRESS-G. For example,

when the user specifies that an attribute is constrained (see the attribute dialogue box in Figure 3.6)

the user is denoting that the attribute takes part in either a unique clause or in a where rule.

However, there is no way in EXPRESS-G to specify which one the attribute takes part in, or in

what form. Therefore, an update of this form can not be automatically applied to a textual view and

must be manually implemented by the user. The change description thus serves to specify an

inconsistency that requires manual resolution.

3.2.1.5 Documentation

In addition to providing a consistency mechanism between views, update_records are retained in a

persistent form in the EPE system. An update_record browser and editor gives the user the ability

to browse the changes that have occurred to an entity in the evolution of the schema and add

further documentation to each update_record. In this manner a portion of the documentation of the

history of development of the system is automatically built up as work progresses. Having this

update history on-line also allows system developers to trace back through previous design

decisions while entities are further refined.

Figure 3.9 The persistent update_record viewer with documentation facility

Figure 3.9 shows the update_record browser displaying a list of changes that have been made to

the technical_system entity based on the update_records generated by the changes in various

views. They include a renaming of the entity, changing the entity from an abstract supertype to a

normal entity and the cardinality constraint imposed on the SET declaration of an attribute. The full

details of the modification to the attribute are displayed in the top window, highlighting the
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comment field that can be filled in by the system developer.

Other documentation support in EPE includes the ability to create textual documentation views

(accessible via the hypertext navigation facilities) for entities. In such views, the various experts

working on a schema can document the reasoning behind decisions made and other information

relevant to a particular entity and its attributes in a central and managed fashion. A useful feature of

documentation views is that update_records relating to the entity are automatically added as textual

comments to the view as the entity changes (see Figure 3.10 for a documentation view taken at an

early stage of the schema specification).

Figure 3.10 A textual documentation view

Figure 3.11 The view navigator invoked for the technical_system entity

3.2.1.6 View navigation

As can be seen from the preceding example, the EPE modelling environment captures a large

amount of information about a schema. This includes many graphical and textual views specifying

various properties of the schema, entities, and documentation of changes made to the schema. In

large systems this can lead to problems in finding a particular view or detailed information that has
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been entered. In the EPE environment the views and entities themselves act as a navigation and

search facility for the project. Mouse clicks on graphical view components allow rapid access to

other views containing that component. Figure 3.11 shows an example of this process for the

technical_system entity. After clicking on the technical_system icon in the graphical view a list of

all the graphical and textual views that index the technical_system is displayed and the user can

navigate to these views in a hypertext-like fashion.

3.2.2 Using the EPE environment
The EPE system offers two types of display views to its users. The initial type of display view is a

graphic view which can contain any EXPRESS-G specification of a schema (see Figure 3.2 for an

example of a graphical view). In the graphical view the user has a palette of tools available, as seen

on the left hand side of the view. These tools offer the following functionality.

This tool is used to specify an entity in a graphical view. Clicking in an empty portion of

the drawing window after selecting this tool will bring up an entity dialogue requesting the

name of the entity and its type (abstract or normal). If a new entity name is specified it will

be added to the canonical representation of the schema. If the name of an existing entity is

specified then the icon will be connected through to the canonical form of that entity. If an

existing entity icon is selected while this tool is current then the name dialogue is retrieved,

allowing the entity information to be modified (any modification will be seen in all views

which reference the entity).

This tool is used to specify inheritance between entities in a graphical view. To specify an

inheritance link the user clicks on an entity icon which is the super-class and drags to the

entity icon of the entity which inherits from it.

This tool allows the specification of attributes for an entity. To describe an attribute the

user clicks in the entity to which the attribute should be attached, and drags out to the

position the attribute icon should occupy. This invokes an attribute dialogue to specify the

name and type information for the attribute (an example of this dialogue is shown in Figure

3.6). If a new attribute name is specified for the entity then it is added to the canonical

representation of the entity. If the name of an existing attribute is specified then the icon is

connected through to the canonical form of the attribute. If an existing attribute is selected

while this tool is current then the attribute dialogue is retrieved, allowing the attribute

information to be modified (any modification is seen in all views which reference the

attribute).

This tool is used to create a new graphical view of the specified entity. When an entity is

selected the user is asked for the name of the view to create and a new graphical window

with the entity will be created. If several entities and attributes are selected when this tool is

used then the user has the option of copying all selected icons to the new window.
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This tool hides an attribute icon, or an inheritance link, or an entity and all its attachments

(i.e., attributes and inheritance connections). The hidden item is not removed from the

canonical representation of the schema, merely hidden in the current graphical view. 

This tool deletes an attribute, or an inheritance link, or an entity and all its attachments

(i.e., attributes and inheritance connections). The items are removed from the canonical

representation of the schema as well as from all views which contain the item.

This tool allows icons in the graphical view to be selected and repositioned in the current

view. Double clicking on an attribute icon brings up the dialogue for that item. Double

clicking on an entity icon has two functions depending upon where in the icon the double

click occurs. Double clicking on the left hand side of the icon brings up a dialogue listing

all views that this entity is specified in to allow navigation to other views (see Figure

3.11). Double clicking on the right hand side of the icon makes the textual view of the

entity visible (see Figure 3.8).

The second type of view offered is a textual view. Textual views allow free-form textual editing

and manipulation of the canonical definition of entities using EXPRESS notation. Textual views

are re-parsed at the termination of a textual editing stage and all modifications propagated through

to the canonical form of the edited entity.

3.2.3 Implementation of EPE in the MViews framework
EPE is constructed by further specialising SPE, a specialisation of the MViews object-oriented

framework (Grundy 1993; Grundy and Hosking 1993a). This framework provides a set of

abstractions for constructing software development environments that support multiple graphical

and textual views with in-built consistency between views (Grundy and Hosking 1993b). SPE

integrates, in a single environment, tools to assist in systems analysis, design, implementation and

maintenance of programs in Snart, an object-oriented logic language (Grundy et al. 1994). Other

environments developed using MViews include an ER (Entity-Relationship) modeller for the

database domain, and a graphical forms builder for specifying form layout and semantics for GUI

applications (Grundy and Hosking 1994).

MViews utilises a three-layered architecture to present and maintain multiple views of an

underlying entity (see Figure 3.12). The base layer contains the canonical representation of the

schema being developed in the MViews environment. This canonical representation takes the form

of a directed graph of components, representing entities and attributes, connected by some set of

relationships, representing generalisation and containment (in an entity). Views in the view layer

provide a subset of the canonical representation in the base layer. A view represents the

information required for a displayed view. Elements in a view need not have a one-to-one

correspondence to elements in the base layer, rather a view relationship provides the connection
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between view elements and base layer elements. These view relationships handle the mapping of

data from the base layer through to the view layers and vice-versa. View relationships may

aggregate base layer elements to form new elements in a view providing mappings between

elements of any combination of arities. The display layer contains tools which visualise the

elements provided by a single view. The types of tools that can be used in the display layer are:

graphical and textual editing tools which display and allow direct manipulation of elements in a

view; or external tools which utilise a batch mode access to elements provided through a view.

Display/
External
Layers

View
Layers

Base
Layer

class

class

generalisations

window

drawing_window text

text forms

features

class_icon

class_icon

gen_glue
class_text feature_text

text

drawing_window

window

external_class

External Interface
(Data/Event interchange)

External
Tool

...

feature

text forms

view rel. view rel.view rel. view rel. view rel.

Figure 3.12 MViews three-layer multiple view architecture as used in SPE (from Grundy 1994)

In an MViews based system additions, modifications and deletions are initiated from the tools in

the display layer. The actions initiated by these tools result in the creation of an update_record

describing the particular action that was performed. The update_record created for an action is

propagated from the display layer to its view in the view layer and down to the base layer

following the links between the layers. From the base layer the update_record is propagated to all

connected views to handle, as well as to all connected components in the base view and so onto

their connected views, etc. At each stage in the propagation elements in the system can react to the

update_record to modify their status or ignore the update_record. Individual elements can also

propagate the update_record to all connected elements, or stop the propagation. 

Figure 3.13 shows an example of the effect of an update in an MViews based application like

EPE. In this example an action is performed by a tool in the display layer (1), an update_record is
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propagated to all dependents of the class_icon (2), the view relationship translates the

update_record into operations on the class component (3), which in turn generate update_records

(4). These update_records are propagated through to all of the dependents of the class (5), the

view relationships translate the update_records into operations on components in the view layers

(6), and modified view components re-render themselves in the tools in the display layer (7).
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Figure 3.13 Change propagation in an MViews environment (from Grundy 1994)

As EXPRESS is a partially object-oriented language it requires almost the same graphical

modelling capabilities as the object-oriented language Snart requires in its integrated software

development environment SPE. It was therefore a natural step to specialise the SPE environment

(Grundy 1993, Grundy and Hosking 1993a) for use with EXPRESS. This specialisation was able

to use most of the same class and feature representations, along with relationships between

modelled objects. Figure 3.14 shows the inheritance hierarchy for the EPE environment, with all

EPE classes prefixed with an ‘exp_’. This structure is very similar to that of SPE, and in fact the

majority of the SPE code was able to be utilised for the EPE environment. The modifications to the

SPE environment fell into the following categories.

• Rendering modifications: the visual appearance of EXPRESS-G information is quite

different from that of Snart, even though their concepts are closely related. Therefore, all

class and attribute representation code needed to be modified to allow the correct

EXPRESS-G representation. A major part of this change was a set of additions to the SPE

system to allow the EXPRESS-G attributes to be correctly handled. In Snart all attributes,

except relationships, are shown inside the class icon. In EXPRESS-G all attributes are

independent icons and therefore must be modelled through a relationship with the class

representation.
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Figure 3.14 Class inheritance for EPE from MViews

• Environment modifications: though the set of operations which can be performed on an

EXPRESS-G diagram are similar to those in Snart, the language used to describe them,

and the information requested from the user, had to be tailored to EXPRESS terminology.

This required changes to toolbox icons in the graphical views, and rewriting of all class

and attribute dialogues.

• EXPRESS language parsing and generation: the underlying representation of information

in the EPE system was in Snart form, as this allowed for compiling and testing of the

defined schemas. This required all graphical and textual views to be translated into Snart,

and the underlying canonical form to be translated from Snart to EXPRESS for textual and

graphical view updates.

• update_record labelling: the range of update_records used in SPE was examined and

modified to suit the structure and terminology of EXPRESS.
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• Class hierarchy management: since EXPRESS maintains both subclass and superclass

links, as distinct from Snart which only specifies subtype relationships, class hierarchy

management was extended to enable bidirectional tracking of updates to class hierarchies

• Removal of method handling: EXPRESS has no notion of methods associated with classes

so all code for handling methods was stripped from the translated SPE system. Though

EXPRESS allows function and procedure specification these are not handled in EPE.

3.2.4 Internal schema representation in EPE
In the EPE environment, an EXPRESS schema has an internal representation of its canonical

form. EPE is based upon SPE, which utilises Snart as its base representation, so all EXPRESS

constructs are translated into Snart definitions in the canonical form. As Snart is an implemented

language this provides the ability to compile EXPRESS schemas and populate the resultant

compiled schema with data to create models of the domain of the schema.

The amount of the EXPRESS language which is supported in this translation process is limited.

Snart is a full object-oriented language based around Prolog, while EXPRESS is a more

imperative language with a style similar to C. All entities, inheritance structures, attributes, unique

attribute specifications and some forms of WHERE clauses can be translated to Snart. All

procedures and functions, including WHERE clauses which use procedures and functions, are not

translated to Snart. In effect, this restriction means that a translation to Snart reduces the

EXPRESS definitions in EPE to basic class interfaces with uniqueness and range checking on

attribute values. While this is a major reduction in the expressiveness of the original language, this

type of definition forms the major part of the principal IDMs that have been developed to date, and

even covers the majority of schemas that have evolved from the STEP standard.

As EXPRESS is translated into Snart syntax in the canonical form, so must it be translated back

into EXPRESS for use in textual views (see Figure 3.5) or for type definition in the attribute

dialogues (see Figure 3.6). To achieve this the EPE environment contains two translators, one to

translate from Snart to EXPRESS, and the other from EXPRESS to Snart. The EXPRESS to

Snart translator is implemented through the use of the DCG system available in LPA Prolog (LPA

1995) and further described in Appendix F.1. The Snart to EXPRESS translator is totally hand-

coded.

The development of the EXPRESS parser was based on the EXPRESS grammar in the ISO

standard. However, when the completed parser was being tested, many of the existing ISO and

EU project schemas failed to parse correctly. This is due to the many changes made to the

EXPRESS language before it became a standard. As there were many changes to the syntax, the

parsers developed alongside the EXPRESS language development have allowed for all previous

forms of syntax to be treated as correct. This leads to a situation where, though there is now an

ISO standard for EXPRESS, many modellers write incorrect models due to their recollection of
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past specifications, and these syntax errors are not picked up by current parsers. Though the EPE

parser may fail to read existing schemas, it does guarantee that all schemas developed in its

environment are correct to the ISO standard.

As Snart is the internal language representing EXPRESS schemas, it is clear that any specification

environment which represents its model in Snart form will be able to be incorporated fully into this

framework. To this extent the SPE environment which allows the specification of Snart schemas

can be used to model schemas which can be used interchangeably with the EXPRESS schemas

from EPE described in this section. Modelling environments which do not produce EXPRESS or

Snart schemas are not precluded from use in this framework, but they will not be able to be tested

interactively during development with the schema development and browsing tools highlighted in

Chapter 9.

3.2.5 Summary of EPE functionality
EPE offers a wide range of functionality for a schema designer. In a single environment the

schema designer has the ability to model at many levels of detail, in both graphical and textual

notations and with automated consistency management between all the views. The main

functionality offered by EPE is:

• provision of multiple overlapping views of portions of a schema

• views ranging from high-level design views through to low level implementation views

• support for both graphical and textual notations

• changes to a schema in one view are seen in all other views containing the structures that

were modified

• automatic maintenance of change documentation which can be augmented by the users

• support for schema navigation with hypertext-like links

3.3 Generic Schema Database Definition

Although a modelling environment must produce EXPRESS or Snart schemas to work fully inside

this development framework, the mapping system (described in Chapters 5 and 10) makes no

assumptions about the nature of the modelling environment or language that a schema was

developed in. The only assumption made by the mapping system is that a schema type is of either

relational or object-oriented form. To support schemas of either of these forms a generalised

schema specification language (defined in Appendix G) is used to describe schemas developed at

the modelling stage to the mapping system.

The schema specification language works at the atomic level of a schema description. Single

modifications to a schema are recorded in the order they occur, to be able to reconstruct a schema
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in the same progression as it was developed. The atomic definitions record the previous state of

the schema as well as the change so that individual modifications may be undone to reverse the

effect of a modification. Atomic changes are keyed to a version number for the schema and schema

version information is defined as part of the database. Versions are represented as a directed

acyclic graph with a single root node. Through the in-order application of all modifications that

represent the chain of versions leading to the required version number, the corresponding schema

can be created.

A schema defined in any notation which can be translated into the format used in the schema

database definition can be used with a View Mapping Language (VML) mapping specification.

Schema databases are used during the VML parsing stage to create a checked schema mapping

with all references validated and ready to be used by a mapping system. Schema databases can

also be modified at the VML parsing stage to incorporate modifications (new entities and

attributes) required by the mapping specification (see Chapter 5).

3.4 Appraisal of Schema Modelling

The EPE system and schema database format create an environment which supports the

development, communication and integration of DT and IDM schemas as well as the

documentation requirements of an integrated modelling environment, as detailed in Section 3.1.1

for COMBINE. EPE supports these requirements in the following manner:

Communication and integration of DT schemas: EPE allows the development of a schema of a

particular domain with total consistency from the earliest stages of the project right through

to the implementation. This consistency is maintained by communicating all changes

through to all views which can possibly see the affected entities. Multiple DT schemas are

supported in this environment, allowing the modeller to develop multiple graphical and

textual representations of a domain during analysis and allowing these to be expanded at

the detailed design stage with new or updated views. These developing schemas, and their

views, are available to all who use the EPE system, allowing DT schemas to be easily

shared between the integration team. Many of these developing DT schemas have

overlapping information and need to be merged with the IDM schema. By developing

multiple associated DT views and one canonical, consistent, representation of the IDM

schema the consistency between the DT schemas and IDM can be maintained (by hand).

The schemas are also utilised to provide hypertext-like navigation facilities around the

various views of related information.

Documentation: EPE meets many documentation needs by tracking all updates made to the schema

and recording them against the entities that were modified. These update records can be

annotated by the user to record justifications and decisions, and provide on-line

documentation for the developing schema. One documentation feature which would be
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useful, but is not provided, is the ability to group multiple disperse update records to

represent a single update or documentation record. For example, this would record a

session of changes as a single documented change to the schema.

Mapping definitions: these definitions are not considered in the EPE environment, but an

environment to support mapping definitions has been developed and is described in

Chapter 6.

Support for multiple modelling paradigms: EPE provides multiple paradigms as it supports both

the EXPRESS and EXPRESS-G paradigms. Although one is the subset of the other, they

render their information in different styles. The modelling environments developed and

used in this project also show that through the use of a generic model of a schema (in this

case in Snart format) multiple modelling tools, in this case EPE and SPE can be used to

work on a single schema. Although Snart is not particularly generic as an underlying

model for schemas, a schema representation language such as that used for the database

representation of schemas would provide such a model on which most schema notations

could be based. Other environments developed from the MViews platform have shown

support for more disparate modelling paradigms through the use of an underlying

representation which subsumes the paradigms used in the different display views (Grundy

and Venable 1995 for OOA/D and EER; Venable and Grundy 1995 for ER and NIAM).

Support for multiple views: although the EPE environment can manipulate multiple independent

schemas, there is no direct support for the specification of correspondences between

schemas as an aid to the development of an integrated schema (i.e., schema integration for

IDM development). Schema integration has previously been performed to a small extent

(see Mugridge and Hosking 1995 for an example of DT schema model integration using

SPE), but this does not illustrate the support that could potentially be offered in such an

environment to perform integration. The difficult problem in supporting schema integration

is the ability to define, track and support the specification of mapping definitions between

various DT schemas in a tool like EPE. Chapter 5 details a first step towards an

environment for defining mappings that relate two schemas together. However, this latter

environment is not yet integrated with the environment that manages the schema, leaving a

semantic gap between the maintenance of information in the various environments. This

problem and the ability to manage concurrent schema development in the MViews, SPE

and EPE environment will be an area of continued research (Amor and Hosking 1993;

Amor and Hosking 1995; Grundy and Venable 1995). A similar, though simpler, problem

to that of supporting multiple views is supporting multiple versions of a schema. The

schema database representation allows for the definition of versions of modelled schemas.

Any version defined in the schema can be reconstituted for use by any application utilising

the schema database, which is of particular use when defining a mapping between versions

of a schema. However, the versioning ability of the schema representation is not supported

in the EPE environment which is the point at which this would be best specified and

managed. Extensions to MViews to support versions would be relatively simple, especially
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if the underlying representation was modified to utilise a schema database representation as

described above.

Though EPE meets the majority of the requirements for a schema modelling and development

environment, there are some areas which would benefit from further work. These include:

Collaborative design support: although large modelling projects may have a single coordinator in

charge of schema development, there are likely to be several modellers working on

different aspects of the schema. Coordinating the work of several modellers, and

maintaining the consistency of the underlying schema under change from several sources

concurrently, has to be a goal of any real schema development environment. This is

currently an area of intense research work in the computer-supported collaborative working

(CSCW) area. Recent research results in this area indicates that when these CSCW

environments mature they will be easy to incorporate into existing modelling tools. The

Serendipity system (Grundy et al. 1996) has already been shown with links to MViews-

based environments and commercial Microsoft products, providing collaborative design

between several modellers working through defined process models. Though the mapping

implementation of Chapter 10 provides a transaction-based approach to coordinating

between multiple modellers, this is not supported by version merging and conflict

resolution systems, as can now be found in systems such as Serendipity.

Comprehensive multi-paradigm modelling support: in exactly the same manner that an integrated

building design system requires an IDM to integrate design tools, a multi-paradigm

modelling environment requires an IDM covering schema, mapping and project definitions

in order to manage multiple paradigms in one environment. Though some work has been

done in this area (Venable 1993) there are no IDMs which cover the wide range of schema

modelling paradigms currently in use (e.g., ER, DFD, EER, NIAM, EXPRESS,

EXPRESS-G, OOA/D, IDEF0, IDEF1X), let alone the underlying requirements of

mapping and project definition languages.

Expanded modelling support concepts: the range of support concepts required by modellers when

developing large schemas is not clearly understood, and hence, not well supported.

Currently documentation of schema modification and construction is made at the atomic

level. Methods allowing for grouping of higher level concepts are imperative (including

multiple viewpoints of change sets). The manner of notification of modifications in a

collaborative environment needs attention to provide efficient methods of expressing these

changes to other designers (rather than at the atomic change level), an example of

developments in this area can be seen in Grundy et al. 1995. Navigation and summary

features tend to be primitive. In large schemas with hundreds of entities and thousands of

views, the set of views which reference a particular entity could be very large.

Classification of view types, or the relationship particular entities play in a view, could

well help navigation around the schema and guide novice users through the various

conceptual levels of schema specification. Notions of schema versions and private
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workspaces need to be considered in a collaborative environment. This allows the

management of multiple design paths, and for incomplete work to be hidden until fit to be

used by other participants.

In summary, this chapter introduces the requirements for a schema modelling and development

environment, and through the development of EPE and a schema database format, demonstrates

that an environment meeting these requirements is possible. The development of individual

schemas is, however, a small part in the development of an integrated design system. Schemas for

design tools need to be integrated to form an IDM, or checked that they map into an existing IDM.

This process of schema integration, or checking, through the definition of mappings between

schemas is described in Chapter 5. Schemas which represent design tools and actors are also

required to define flows of control in a real project. The use of these schemas in project definition

is described in Chapter 7.
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Chapter 4

Inter-Schema Relationship Modelling

The mapping of data between models is a vital process in an integrated design system. To enable

the correct specification of a mapping between schemas, a mapping language and specification

support environment is required. In a similar manner to the schema specification languages, a

mapping language provides an abstract specification of a portion of the problem domain. The

definition of a mapping between two schemas is likely to be a very large piece of work, often

involving several domain experts for both models. These experts must maintain the consistency of

the mapping specification. Because of this necessary involvement of domain experts, it is clear that

a high-level specification language is needed to provide a specification close in semantics to the

problem domain and well removed from the implementation. The mapping language should also

support multiple levels of specification in a similar manner to schema modelling languages.

As well as providing the basis for mapping of data between them, a specification of the mapping

between two schemas provides modelling benefits over those that are usually obtained just from

the schema definition. For example, the specification of an inter-schema mapping makes explicit

those constraints that are implicit in a design tool (e.g., a design tool which assumes vertical walls

needs to explicitly model this requirement when specifying a mapping with a schema that does not

have this assumption).

If a formal mapping language is used to specify the mappings, mapping specification

environments offering consistency management between various modellers are possible. Tools can

then be created to: check statically whether the mapping references valid schema properties; check

types in the conversion; check units in the conversion; identify affected mappings when

components in the schema are modified; and ensure that all attributes of entities are mapped

between the two schemas.
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However, until recently, the mapping between the IDM and a design tool schema has not been

modelled in any way in integration projects. All mappings for design tool schemas have typically

been hand-coded in the programming language of the project. This approach is now changing as

several projects have reached the stage of development where they recognise the utility of having

mapping languages to formally model mappings between schemas (ATLAS 1993; Staub et al.

1994). To satisfy the demand for mapping languages a number of new languages have been

developed.

In this chapter the types of mappings which are required to describe correspondences between

schemas are examined. Languages for specifying mappings are surveyed, including formalisms

recently developed for mapping in the ISO-STEP standard. An informal set of requirements for a

mapping language is collated from previous work and from an analysis of mapping requirements

for a range of actual schema. These requirements are then used to measure the power of the

surveyed languages, and enable comparisons between the languages to be performed.

4.1 Mapping Types

Analyses of the problems posed by mappings and integration have previously been conducted in

the database area. To gain an understanding of what is required to map between two schemas, the

analyses performed in the field of database integration are examined and presented here in two

categories. One category investigates the types of structural mapping that can be expected between

two schemas, the other presents a more semantic description of the types of conflict found when

integrating schemas.

4.1.1 Structural mapping types
Structural mapping types provide a key to the complexity of mappings that can be expected in a

particular domain. Two evaluations of these type of mapping are those of van Horssen et al.

(1994), which details a table of mapping types (see Table 4.1), and Bijnen (1994), which provides

a more general specification of mapping types. Both of these evaluations are drawn from

considerations of requirements of a mapping language: in van Horssen’s case as a precursor to

evaluating several mapping languages; and in Bijnen’s case to show what his mapping language

should provide. In Table 4.1 the asterisks denote the requirement for mappings of the specified

type, blank cells indicate no mappings of the specified type are required. The labels on the table

below are slightly misleading, as where they specify entity they actually mean object. For example

an N:1 mapping for Entity->Entity denotes the mapping of N objects of one entity type to a single

object of another entity type.
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Entity->Entity Attr->Attr Entity->Attr Attr->Entity

1:0 * * * *

0:1 * * * *

1:1 * * * *

1:C * * * *

C:1 * * * *

1:N * *

N:1 * *

N:M

Table 4.1 Mapping types from van Horssen et al. 1994, the left axis specifies the cardinality
of mappings which may be required

In Table 4.1 the cardinalities of the various types of mapping are considered with a distinction

being made between zero (0), singular (1), constant (C) and variable numbers (N, M) in the

mapping. The lack of an asterisk for the  many to many mapping for entities in this table is

surprising as some are known to exist (for example some design tools use a set of objects to

represent a schedule, with each object specifying a fixed number of hour-value pairs. Where a

mapping is required between two such tools which have different numbers of hour-value pairs in

each object there can be different numbers of objects in each model, hence an N:M mapping). It is

also surprising that all combinations of constant values (C in Table 4.1) are not included. If the

breakdown includes 1:C, etc. then a rigorous evaluation should also evaluate N:C, etc., though

0:C is not required as it can be constructed through multiple 0:1 mappings.

Object->Object Attr->Attr Object->Attr Attr->Object

1:0 * * * *

0:1 * * * *

1:1 * * * *

1:C * * * *

C:1 * * * *

C:B * * * *

1:N * *

N:1 * *

C:N * *

N:C * *

N:M *

Table 4.2  Full set of structural mapping types
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Following the examination of structural mapping types above, the table in Table 4.1 has been

extended to provide a more rigorous definition of the possible combinations of mapping

cardinalities that can occur. This is shown in Table 4.2, where all combinations of constant to

multiple, and constant to constant (C:B) are provided.

4.1.2 Semantic mapping types
The semantics of individual mappings have also been examined. Tables 4.3 (Batini et al. 1986)

and 4.4 (Kim and Seo 1991) are examples from their analysis of the schema integration process

which examines various categorisations for integration. While these tables display conflict types

found when integrating schemas, most of them hold equally well for mappings. This is because

the definition of a mapping between two schemas can be seen as almost the same task as

specifying the integration of one schema into another. The main difference is that in a mapping the

schemas being mapped between do not have to be completely unified. The mapping need only be

sufficient to create valid instances of a building in either schema.

Naming conflicts
homonyms same name for different concepts
synonyms same concept described by different names

Structural conflicts
type conflicts same concept represented by different modelling constructs
dependency conflicts group of concepts are related with different dependencies in different

schemas, e.g., 1-1 versus n-m
key conflicts different keys assigned to the same concept in different schemas
behavioral conflicts different insertion or deletion policies associated with the same class of

object in different schemas

Conflict categories
identical everything is the same.
equivalent where different but equivalent modelling constructs have been applied

but the perceptions are still the same and are coherent. These are
further subdivided into:
behavioral if the same set of answers to any given query

can be obtained from all representations.
mapping instances can be put on a one-to-one

correspondence.
transformational if a representation can be obtained by applying a

set of atomic transformations that by definition
preserve equivalence.

compatible not identical or equivalent, but modelling constructs, designer
perception and integrity constraints are not contradictory.

incompatible contradictory because of the incoherence of the specification.
Table 4.3  Schema integration conflict types from Batini et al. 1986

Tables 4.3 and 4.4 provide a checklist of problems that could be encountered and a means of

categorising the difficulty of a particular problem. They do not, however, provide many clues as to

what would be required in a mapping language to handle these types of problems. Some of the

interesting points which come out of these two categorisations are: the need to update schemas for

missing attributes and entities; the handling of unit conversion; and the handling of type

conversion.
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Schema conflicts
Table versus table conflicts

one-to-one table conflicts
table name conflicts

different names for equivalent tables
same name for different tables

table structure conflicts
missing attributes
missing but implicit attributes

table constraint conflicts (keys and check conditions)
many-to-many table conflicts (as in one-to-one)

Attribute versus attribute conflicts
one-to-one attribute conflicts

attribute name conflicts
different names for equivalent attributes
same name for different attributes

default value conflicts
attribute constraint conflicts

data type conflicts
attribute integrity-constraint conflicts

many-to-many attribute conflicts (as in one-to-one)
Table versus attribute conflicts

Data conflicts
Wrong data

incorrect-entry data
obsolete data

Different representations for the same data or same representation for different data
different expressions
different units
different precisions

Table 4.4  Schema integration conflict types from Kim and Seo 1991

4.1.3 Mapping language requirements
An examination of the mappings required between the design tool schemas used in this thesis,

based on the classifications in Sections 4.1.1 and 4.1.2, leads to a range of pragmatic

requirements for an ideal mapping language:

Language level: To enable rapid and concise specification, a language’s notation should closely

mirror the domain in which it is being used. A language to describe a mapping needs to be

able to represent relationships between entities, attributes, references, and, in an object-

oriented environment, methods, using a high-level notation. Using low-level notations will

require the mapping specifier to concentrate on the practicalities of how to implement the

mapping rather than on the specification of the actual mapping.

Language notation and modelling environment: The bulk of a mapping specification is concerned

with relationships between attributes. Experience shows that many of these relationships

need to be described in an equational form which is basically textual in nature.This tends to

indicate that mapping languages will be based around a textual notation. However, given

the potentially large size of the schemas involved in a mapping, a graphical notation

allowing high-level views of the mapping will prove of benefit in the early definition of the

mapping. A graphical notation for high-level views is likely to provide faster cognition of
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relationships between entities in the schemas, in contrast to reading a purely textual

specification, as relationships will be explicitly depicted rather than having to be

determined by the user parsing a textual expression. A graphical notation supported by a

modelling environment is also likely to prove a useful checking tool in ensuring that

mappings are completely specified for particular entities. This is because a graphical

notation will show the entities and their attributes in the same view as the mapping,

allowing easy determination of what has or has not been mapped. As some of the class

definitions are large and contain various types of data (attributes, relationships and

methods), it will be useful to allow several views of a mapping specification, with different

views concentrating on different aspects of the mapping. The specification of a mapping is

also likely to require a modelling tool of a similar magnitude to that used for managing

schema definition to maintain consistency between various mapping specifiers as well as

between various views of the mappings.

Language style: A mapping language needs to support many levels of correspondence

specification, from simple equivalences between attributes through to complicated

programs to extract and manipulate data into the required form. The language should not

presuppose a single style of implementation (e.g., batch mode; full model translation; or

automatic incremental mapping). Rather, any implementation style should be able to be

implemented from the specified mapping. This requirement would tend to favour a

declarative style of mapping specification over a procedural style, as a procedural style is

less amenable to many implementation styles (e.g., to an incremental update model). A

declarative notation is likely to provide the highest level of specification and most closely

satisfy the modelling level requirement defined above. This is because declarative

languages do not specify a particular method for performing a certain function, but specify

more what is required. Although a declarative approach may provide the highest level of

definition, it is recognised that not all mappings will be able to be specified in a declarative

manner. A procedural form may also need to be supported.

Bidirectionality: Many connections between tools require the same structures to be mapped in both

directions. Where bidirectional mappings are required, the mapping language should

support their specification without the need to duplicate information on the

correspondences. Where only unidirectional mappings are required this should also be able

to be specified.

Conditional mapping: Dependent upon the state of a model, or portions of a model, the data in the

model may need to be mapped in different ways. To enable this in a mapping, it must be

possible to specify conditions which must be satisfied prior to the application of a

particular type of mapping. Such conditions provide one way of making explicit

assumptions that are only implicitly specified in a schema.

Aggregation: The level of detail used to represent entities in a schema will vary enormously. When

mapping between schemas with very different levels of detail it is necessary to aggregate

information in very detailed schemas to fill higher level (more abstract or less detailed)
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schemas. The reverse process will also be required, but it is often impossible to do this

unambiguously (e.g., given a total glazing area it may be impossible to work out the area

of each individual window). In this case it may be possible to constrain the constituents in

the detailed model to match the values of the aggregated model.

Relationship handling: Similar to the problem of various aggregation levels is the problem of

relationship structures. Different schemas of a domain are likely to choose different

structures to represent the relationship between entities in their schemas. A mapping

language needs to be able to restructure relationships in a schema, compressing long

pointer chains, telescoping down into deep structures, and moving relationships between

entities in different schemas.

Initialisers: During the mapping process new objects must be created and, in some cases, initial

values set for attributes. Having a method to specify initial values independent of

mappings, which may calculate values for these attributes as data becomes available, is

important. This provides another way of making explicit assumptions that are only

implicitly specified in a schema. It also provides a mechanism to ensure that a minimum set

of data is created in a mapping, for example, to ensure that a design tool could run after

any amount of data is transferred through in a mapping.

Unit handling: Attributes in different schemas often use different units to represent their quantities.

Whether due to the country in which the schema was developed (i.e., imperial or metric

units), the equations used, or just the magnitude of the result presented to the user, the

ability to convert attributes between different units is required of a mapping language.

Type handling: Different schemas may use different precisions of types to represent their values,

depending upon the accuracy required or the time and space limitations in the calculations.

Different schemas may also use different structures to represent the same information

(e.g., tree versus list) and a mapping language needs to map between the various types to

ensure the model is in a valid state after a mapping has occurred.

4.2 Mapping Definition Languages

A wide range of languages are being developed (or have been developed over the last few years) to

specify the mapping between schemas, or to enable the integration of schemas, or to provide a

view of a schema. In this section, a representative set of these languages is examined to highlight

the styles available and their expressive power.

To help illustrate the style and form of these languages, an example from a survey of mapping

languages (Verhoef, Liebich and Amor 1995)  will be used. This is one of five example mappings

used in the paper. The mapping is between two schemas drawn from existing applications

requiring data transfer in an integrated environment. The schema fragments for this example are

shown in Table 4.5.
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The schema fragment shown on the left-hand side describes building components which are either

structural (i.e., columns or beams) or a connector between structural components. The relationship

component has two forms, defined by the quality attribute, which are either support or element

connections. The right-hand side schema fragment describes structural components, one

specialisation of which is a structural connector. This structural connector has two specialisations

of either a support or element connector. The mapping problem is to map between the component

relationship in the left-hand side schema and either the support or element connector in the right-

hand side schema. Performing the mapping in this example illustrates: a conditional mapping

between entities; a type conversion (rather contrived) between two attributes; and attribute

mappings which require the results of other mappings between entities.

TYPE connection_type =
  ENUMERATION OF

( support_connection,
  element_connection ) ;

END_TYPE ;

ENTITY building_component
  ABSTRACT SUPERTYPE OF ( ONEOF

( structural_component,
  component_relationship ) ) ;

  id : REAL ;
  UNIQUE u1 : id ;
END_ENTITY ; 

ENTITY structural_component
  ABSTRACT SUPERTYPE OF ( ONEOF

( column, beam ) )
  SUBTYPE OF ( building_component ) ;
  specified_by : SET [1:?] OF

product_characteristic ;
  represented_by :

geometric_representation_item ;
END_ENTITY ; 

ENTITY component_relationship
  SUBTYPE OF ( building_component ) ;
  related : structural_component ;
  relating : structural_component ;
  quality : connection_type ;
END_ENTITY ;

TYPE support_connection = ENUMERATION OF
  ( free_support, restrainted_support,
    un_known ) ;
END_TYPE ;

TYPE element_connection = ENUMERATION OF
  ( joint_connection, rigid_connection,
    un_known ) ;
END_TYPE ;

ENTITY structural_component
  ABSTRACT SUPERTYPE OF ( ONEOF

( structural_assembly, 
  structural_element,
  structural_connector ) ) ;

  identified_by : INTEGER ;
  UNIQUE u1 : identified_by ;
END_ENTITY ; 

ENTITY structural_connector 
  ABSTRACT SUPERTYPE OF ( ONEOF

( support_connector, 
  element_connector ) )

  SUBTYPE OF ( structural_component ) ;
  related, relating : structural_element ;
END_ENTITY ;

ENTITY support_connector
  SUBTYPE OF ( structural_connector ) ;
  type_of : support_connection ;
END_ENTITY;

ENTITY element_connector
  SUBTYPE OF ( structural_connector ) ;
  type_of : element_connection ;
END_ENTITY

Table 4.5 Schema fragments for the two schemas in the mapping example

4.2.1 EXPRESS-M
EXPRESS-M (Bailey 1994) is an evolving language being developed to solve the problem of

application protocol inter-operability in the STEP standard. As the language is intended for use in

STEP it has been designed to look very similar to the EXPRESS language. EXPRESS-M

mappings are unidirectional and map a whole model at a time (no partial updates of models). The
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EXPRESS-M language has the following major components:

SCHEMA_MAP: specifies the EXPRESS schemas which are the source for the mapping and the

schemas which are targets for the mapping. In most cases there is a one-to-one mapping

from a single source schema to a single target schema.

MAP: specifies the mapping between entities in the source schema(s) and entities in the target

schema(s). There can be only one MAP for a particular target entity so all conditional

clauses for a mapping must be handled inside one MAP. The actual mapping of data

between attributes is done through assignment statements with a large range of functions

available to calculate the value to assign. Iteration constructs may be used to specify values

for aggregate attributes, and user defined functions are accessible in the mapping. Type

conversion is specified in the mapping by means of casting from the type of the source

value to that required in the target. All conditional mapping, including determination of

which type of entity to create as well as what equations to apply to calculate a value for an

attribute, must be handled in the single MAP definition.

TYPE_MAP: specifies the mapping required to instantiate an attribute of one type from an attribute

of a second type. This is for non-simple types (simple types have a default casting regime)

and can handle enumerations, lists, sets, bags, and other structures. The TYPE_MAP is

also used to map between attributes of differing units. In EXPRESS there is an overlap

between the unit and type specification of an attribute which can lead to the case of two

attributes in two schemas being of type ‘litre’ with one being a real number while the other

is an integer. TYPE_MAP allows these problems to be tackled, as well as handling more

usual type mapping.

MAP ONEOF(support_connector, element_connector) <- component_relationship;
IF quality = support_connection THEN

MAP support_connector <- component_relationship;
identified_by := {INTEGER}id;
related := {structural_element}related;
relating := {structural_element}relating;
type_of := un_known;

END_MAP;
ELSE

MAP element_connector <- component_relationship;
identified_by := {INTEGER}id;
related := {structural_element}related;
relating := {structural_element}relating;
type_of := un_known;

END_MAP;
END_IF;

END_MAP;

Table 4.6 EXPRESS-M mapping for example problem

PRUNE: specifies entities which might be created twice in a SCHEMA_MAP and which should

be culled to one instance. Multiple instances of an entity occur when there is a MAP for an

entity and a reference to the entity attributes from an associated entity (i.e., the entity is also

created by reference). EXPRESS-M is able to determine what to prune by monitoring

separately those instances created in a MAP and those created by reference.
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Manual entity instantiation: instances of entities can be created without a mapping from source

entities through a simple manual instantiation specification which follows that used in

STEP exchange files.

Table 4.6 shows the EXPRESS-M mapping for the example in Table 4.5, but only from the left-

hand side schema to the right-hand side schema as EXPRESS-M is a unidirectional mapping

language. The top level mapping specification specifies that a component_relationship is mapped

to either a support_connector or an element_connector. The conditions which decide which type of

mapping is performed are specified in the if-then-else statement. Type conversion must be

specified explicitly when required as seen with the casting of id, which is a real, to an integer, as

well as the related and relating object references.

Some of the drawbacks of EXPRESS-M are: 

• mapping specifications are unidirectional, therefore it requires two mapping specifications

to map data in both directions between models. For schemas where a bidirectional mapping

is required, having two separate mappings which are inverses of each other is problematic.

Apart from the extra time required to create the two mappings, it provides more chance for

inconsistencies between the mapping specifications as schemas change and mappings are

refined.

• only one MAP can exist for a particular entity combination. This can make the conditional

mapping specification very convoluted and difficult to decipher. Table 4.6, where there are

two mapping types to choose between, shows this in a small way.

• although parts of the language are declarative there are many procedural components (all

handling of aggregate components) which interfere with the readability of mapping

specifications.

• no graphical formalism is offered with the textual notation, allowing only the very low

level implementation view of any mapping to be manipulated.

• the ordering imposed on evaluation (i.e., as it appears in the mapping) means very careful

consideration of ordering is required when specifying mappings.

4.2.2 EXPRESS-V
EXPRESS-V (Hardwick et al. 1994, Hardwick 1994) is similar to EXPRESS-M in approach but

with a limited ability to support bidirectional mapping between models. EXPRESS-V is intended

to be an extension to EXPRESS to support database views in an ISO-STEP environment.

EXPRESS-V definitions are specified along with EXPRESS definitions for a schema. The major

components of EXPRESS-V are:

VIEW: specifies that an entity or entities are to be viewed as another entity. This can be a

conditional specification using a WHEN clause to specify the conditions under which this

VIEW may hold true. The actual mapping of data between attributes is done either in a

VIEW_ASSIGN section, to map from source to target, or in an UPDATE section, to map
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from target to source. Mappings are performed through an assignment statement with a

large range of functions available to calculate the value to assign.

VIEW_ASSIGN: is defined in the VIEW clause and specifies what attributes in the target schema

need to be updated when source entities are modified. The VIEW_ASSIGN section uses

equations to perform the mapping of attributes in the source entities as described in the

VIEW section. The VIEW_ASSIGN can be conditional through the use of a WHEN

clause. There can be multiple VIEW_ASSIGN clauses in a VIEW specification.

UPDATE: is defined in the VIEW clause and specifies what attributes in the source schema need to

be updated when target entities are modified. The UPDATE section uses equations to

perform the mapping of attributes in the target entities as described in the VIEW section.

The UPDATE can be conditional through the use of a WHEN clause. There can be

multiple UPDATE clauses in a VIEW specification.

CREATE: is defined in the VIEW clause and specifies attribute values for source entities which

have to be created by the creation of target entities. The CREATE can be conditional

through the use of a WHEN clause. There can be multiple CREATE clauses in a VIEW

specification.

DELETE: is defined in the VIEW clause and specifies which attributes and objects need to be

deleted in the source entities upon the deletion of a target object. The DELETE can be

conditional through the use of a WHEN clause. There can be multiple DELETE clauses in

a VIEW specification.

VIEW support_connector
FROM (component_relationship)
WHEN (component_relationship.quality = 'support_connection');
VIEW_ASSIGN

identified_by := component_relationship.id;
type_of := 'un_known';
related := component_relationship.related;
relating := component_relationship.relating;

UPDATE
id := support_connector.identified_by;
related := support_connector.related;
relating := support_connector.relating;
quality := 'support_connection';

END_VIEW;

VIEW element_connector
FROM (component_relationship)
WHEN (component_relationship.quality = 'element_connection');
VIEW_ASSIGN

identified_by := component_relationship.id;
type_of := 'un_known';
related := component_relationship.related;
relating := component_relationship.relating;

UPDATE
id := element_connector.identified_by;
related := element_connector.related;
relating := element_connector.relating;
quality := 'element_connector';

END_VIEW;

Table 4.7 EXPRESS-V mapping for example problem
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Table 4.7 shows the EXPRESS-V mapping for the example in Table 4.5. This example highlights

the relational database approach underlying the language definition. New views must be defined

for each class to be mapped, in this case views of a component_relationship as either a

support_connector or an element_connector. The WHEN statement provides the conditions under

which the view can be supported. The VIEW_ASSIGN statements describe the mappings

required, and include implicit type conversion. The UPDATE section describes what can be

modified in the original model when a view element is modified, this highlights a limitation of the

language as it assumes one of the schemas to be a master schema from which views are created. In

effect this limits views to what can be derived from one schema and does not allow creation of

new objects from the view schema.

Some of the drawbacks of EXPRESS-V are: 

• the mapping specification is associated with a particular schema (as in standard RDBMS

views) and does not directly specify the other schema being accessed (although it is

specified in a USES clause). This could make a schema specification for an IDM very

convoluted as it could contain all mappings to design tools along with the schema

definition. This approach also requires a flat name-space, as all entity definitions in all

views are visible at the same time. This is an unreal expectation in a situation where

existing applications (with predefined entity definitions) are to be integrated with an IDM.

• although the language allows for bidirectional mappings (though this is through separate

VIEW_ASSIGN and UPDATE sections in the VIEW definition), the mapping in each

direction needs to be specified independently, due to the procedural specification of a

mapping. Although this allows the mapping specifications to be described at one point,

having a section for each direction leads to the duplication of information in the mapping

specification.

• the language assumes the source schema is always much more sophisticated than the target

schema as CREATE and DELETE blocks are only available for mappings in one direction.

Although in a generalised integrated design system it is likely that some target schemas

would require CREATE and DELETE blocks as well.

• no graphical formalism is offered with the textual notation, allowing only the very low

level implementation view of any mapping to be manipulated.

4.2.3 EXPRESS-C
EXPRESS-C (Staub et al. 1994) was developed to extend and enhance the capabilities of

EXPRESS by enabling the modelling of both static and dynamic properties of a domain. It is

considered as a first step towards a fully object-oriented version of EXPRESS as was suggested

within the EXPRESS v2.0 development targets. The major mapping component of EXPRESS-C

is:

TRANSACTION: a named transaction can be used to specify a unidirectional mapping between

sets of objects accessed from the current model. As transactions describe a procedural
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mapping between their referenced objects, two transactions would be required to describe a

bidirectional mapping.

TRANSACTION t_map_component_relationship;
LOCAL

socr : SET OF component_relationship;
sosc : SET OF structural_connector := [];

END_LOCAL;
socr := POPULATION('BSSC.COMPONENT_RELATIONSHIP');
REPEAT i := 1 TO HIINDEX(socr);

sosc := sosc + map_component_relationship(socr[i]);
END_REPEAT;

END_TRANSACTION;

FUNCTION map_component_relationship
(cr : component_relationship) : structural_connector;

LOCAL
sc : structural_connector;

END_LOCAL;
IF (cr.quality = support_connection) THEN

sc := compare (support_connector(support_connection.un_known) ||
structural_connector (map_structural_component(cr.related),
map_structural_component(cr.relating)) || structural_component(cr.id));

ELSE
sc := compare (element_connector(element_connection.un_known) ||
structural_connector (map_structural_component(cr.related),
map_structural_component(cr.relating)) || structural_component(cr.id));

END_IF;
make_instances_persistent([sc]);
RETURN(sc);

END_FUNCTION;

Table 4.8 EXPRESS-C mapping for example problem

Table 4.8 shows the EXPRESS-C mapping for the example in Table 4.5, but only from the left-

hand side schema to the right-hand side schema as EXPRESS-C is a unidirectional mapping

language. The transaction specification shows the very low level implementational approach taken

with this language. The transaction definition identifies all component_relationship objects in a

model and creates the corresponding set of mapped objects using the function

map_component_relationship(). This function utilises standard EXPRESS statements to describe a

conditional creation of objects and calls other functions to map the two object references.

EXPRESS-C has the same set of drawbacks as described in EXPRESS-V along with the lack of

explicit support for bidirectional mappings.

4.2.4 Transformr
Transformr (Clark 1992) was designed to be able to propagate instances between different

versions of a model. As with EXPRESS-M and EXPRESS-V, Transformr was developed for use

in the ISO-STEP environment. The major components of Transformr are:

COPY: specifies the copying of an entity to another entity. In its simplest form it simply names an

entity and all attributes of this entity are copied across. COPY can move all objects between

entities with different names, or, through the use of derived attributes, add, or drop

attributes from the new entity.
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BUILD: specifies the creation of a new entity from a set of entities in the source. This is a

conditional creation, where all attributes that need to appear in the target entities must be

described, unlike COPY which maps everything unless the user specifies otherwise.

BUILD support_connector FROM component_relationship
WHERE

component_relationship.quality = support_connection;
DERIVE

identified_by := REAL_TO_INT(component_relationship.id);
related := component_relationship.related;
relating := component_relationship.relating;
type_of := un_known;

BUILD element_connector FROM component_relationship
WHERE

component_relationship.quality = element_connection;
DERIVE

identified_by := REAL_TO_INT(component_relationship.id);
related := component_relationship.related;
relating := component_relationship.relating;
type_of := un_known;

Table 4.9 Transformr mapping for example problem

Table 4.9 shows the Transformr mapping for the example in Table 4.5, but only from the left-

hand side schema to the right-hand side schema as Transformr is a unidirectional mapping

language. Separate BUILD statements are used for each type of object to be created with the

WHERE statement defining the condition under which the BUILD can be used. Mappings in the

DERIVE section are simple statements, though explicit type conversion through user defined

functions is required for simple types, as shown with the mapping of id.

Transformr is a simple language which has an elegant style and appears well suited to the process

of propagating data between versions of the same schema. It is, however, very much a

unidirectional mapping language, with limited functionality in terms of the combinations of entities

which can be clustered and created. Transformr is also limited in the types of equivalences that can

be specified between attributes.

4.2.5 EDM-2
EDM-2 is a novel language, database system and environment developed at UCLA for use in the

A/E/C domains (Eastman et al. 1995). EDM-2 incorporates three major features not found in

traditional database systems, but which are of key importance in the development of an integrated

design environment. These are:

Dynamic schema specification and evolution: a central schema in an integrated environment can be

modified at any time to take account of new applications to be utilised in the system, or to

incorporate new views of the existing schema for specific user needs.

In-built integrity management: through the use of constraints specified in the schema, or defined

“on the fly” as a model is developed, the integrity of a model can be determined at any

stage. Constraints with parameters which have been modified can be rechecked at any
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time, and in this manner the global consistency of a model can be monitored as a design

progresses.

Explicit translation definition: high-level support for translation between applications

(bidirectionally) is incorporated into EDM-2.

CREATE DE bssc_component_relation  KEYNAME
        DESC "BSSC component_relation class";

CREATE DE pss_structural_connector KEYNAME
        DESC "PSS structural_connector class";

CREATE DE gen_part KEYNAME
        ATTR(bssc: bssc_component_relation, pss: pss_structural_connector)
        DESC "Generalized beam class";

CREATE MAP components
        (bssc_component_relation)
        RETURN (pss_structural_connector)
        IMPL $MAP_METHODS/components.so
        DESC "Mapping  from BSSC model to PSS model";

CREATE MAPCALL component_mapping
        MAP components
        (bssc)
        RETURN (pss)
        REF gen_part
        DESC "Map call with reference to generalized object";

Table 4.10 EDM-2 mapping for example problem

The definition of mapping is supported by two constructs in the EDM-2 language:

MAP: defines a process through which entities of a particular type can be translated from one type

to the other.

MAPCALL: describes the use of a MAP for particular instances in the model.

Table 4.10 shows the EDM-2 mapping for the example in Table 4.5, but only from the left-hand

side schema to the right-hand side schema. The MAP definition describes the inputs and outputs of

the mapping whose implementation is hidden in the file referenced by the IMPL statement (the C

code of this function is not shown here for brevity). The MAPCALL definition lists the MAP

statements which are to be used when mapping from one schema model to another, in this case

from bssc to pss.

Mapping constructs have only recently been added into EDM-2, so details of their incorporation

are still under review. Currently the maps provide unidirectional mapping between entities, with

the maps associated with the central schema (though separate schemas tend to be merged in the

EDM-2 implementation). Mapping definitions are not seen explicitly in the mapping definition, as

currently the implementation is as C programs which are invisible to the user browsing the

schema.
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4.2.6 KIF
KIF (The Knowledge Interchange Format: Genesereth and Fikes 1992; Khedro et al. 1994) was

originally developed in the ARPA knowledge sharing initiative as a means to exchange information

between applications. KIF provides a mechanism for agents to communicate messages to inter-

operating applications. In KIF each agent has the responsibility of translating messages received

from other agents from their native format to the format required locally. To achieve this, each

agent must define a translation for messages they wish to handle. To use KIF in a standard IDM-

type system would require an IDM where translations for every attached schema are written into

the IDM. Each application would require translations from the IDM structures into their own

internal format. This places the onus of translation on every application working in the integrated

system. However, it also allows for a system where individual modifications can be propagated to

all interested applications as they occur and where incremental consistency of the whole integrated

system can be maintained. The main drawback of KIF is the requirement that each application be

aware of the IDM and be able to translate information from the IDM whilst performing its own

application tasks.

(<= (pss!support_connector ?ent) 
(bssc!component_relationship ?ent)
(= (bssc!component_relationship.quality ?ent) support_connection))

(<= (pss!element_connector ?ent) 
(bssc!component_relationship ?ent)
(= (bssc!component_relationship.quality ?ent) element_connection))

(<= (= (pss!support_connector.identified_by ?ent) ?id)
(= (bssc!component_relationship.id ?ent) ?id)
(= (bssc!component_relationship.quality ?ent) support_connection))

(<= (= (pss!element_connector.identified_by ?ent) ?id)
(= (bssc!component_relationship.id ?ent) ?id)
(= (bssc!component_relationship.quality ?ent) element_connection))

(<= (= (pss!support_connector.type_of ?ent) ?type)
(= (bssc!component_relationship.quality ?ent) ?type)
(= ?type support_connection))

(<= (= (pss!element_connector.type_of ?ent) ?type)
(= (bssc!component_relationship.quality ?ent) ?type)
(= ?type element_connection))

Table 4.11 KIF mapping for example problem

Table 4.11 shows the KIF mapping for the example in Table 4.5, but only from the left-hand side

schema to the right-hand side schema as KIF is a unidirectional mapping language. The mapping

reflects the blackboard architecture that KIF is implemented upon, with every item mapped

individually. The first two definitions create either a support_connector or an element_connector

depending upon the value of the quality attribute. The second two definitions create the

identified_by attribute for the objects and the last two create the type_of attribute for the objects.

The mapping of object references (i.e., related and relating) are not attempted in this mapping.

4.2.7 Superviews
Superviews (Motro 1987) describes a method for the virtual integration of multiple databases. The

method is founded on a set of ten operators with which the integrator defines the requisite

transformations to the base schemas to produce the superview. The product of this method is a
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superview of the base schemas and the set of mappings (reversible) required to move information

back and forth between the superview and base schemas. The ten operations available are:

Meet: produces a common generalisation of two entities. This is only possible when two entities

have a common key. A meet also introduces a consistency constraint, that values in both

entities with the same key must agree on shared attributes.

Join: the resultant type is the union of the types of two entities.

Fold: allows a generalisation to absorb a more specific entity. The system must use a null value for

attribute values of the specific entity that were not in the original generalised entity.

Rename: renames a entity.

Combine: joins two entities which have identical types, and creates a new entity with a new entity

name.

Connect: joins two entities which have identical types, and the new entity has the name of one of

the original entities.

Aggregate: creates an intermediate entity between an existing entity and a subset of its attributes.

Aggregate can be used to normalise the schema to a form where non-key attributes of each

entity are fully dependant on the key. Aggregate allows the relocation of an attribute on the

schema.

Telescope: removes an entity by assigning its attributes directly to its ancestor entity. Telescope

allows the relocation of an attribute on the schema.

Add: allows the addition of implicit attributes to an entity, along with a constant function to assert

the value.

Delete: removes a portion of the database not relevant to the application.

Superviews appears well suited to a specific class of problems, those that can be described with

these ten operators. For this class of mapping, data can be moved between any schema and the

superview with guaranteed consistency. For any schemas which fall outside that which can be

described with these operators it provides no help. Such schemas include those which do not have

simple one-to-one correspondences between attributes in a schema and those in the superview.

Therefore, if attributes are derived from an equation, or aggregated values, Superviews can not be

used. This limits the utility of Superviews in large model mapping systems, as most schemas in

this domain require sophisticated manipulation of attributes as well as manipulation of object

references, which are also not handled in this RDBMS-based integration scheme.

4.2.8 RDBMS views
In relational database systems, views of the conceptual database are a well established concept. A

view provides an abstract schema of a portion of the conceptual database. This notion differs from

the notion of mappings between schemas, in that the mapping may not be to a schema which is a

portion of a conceptual database, the mapping may be to a schema which is a superset of the

conceptual schema. RDBMS views may, under certain conditions, be updateable, thus providing

the effect of a bidirectional mapping as discussed in this thesis. However, views that are
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updateable have severe restrictions on their definition, which limit them to what amounts to a one-

to-one mapping between tables with direct equivalences between attributes (i.e., no equations or

functions in the view definition).

Language

Requirement
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R
D
B
M
S

Language level M M M M M M L L

Declarative / Procedural specification P P P P D D P P

Object-oriented language support L L L - M M - -

Object-oriented method support - - - - - L - -

Bidirectional mapping support - L - - L L - -

Conditional mapping invocation M M M L H H L M

Initial values for attributes and object creation M M M L M L L L

Aggregate detail over objects and attributes M M M L H M M H

Relationship handling (expanding and truncating pointer chains) M M M M M M M M

Class graph-based model (Yes / No) Y Y Y Y Y Y Y Y

Class and attribute graph-based model (Yes / No) N N N N Y Y Y Y

Unit handling is Implicit / Explicit E E E E E I E E

Type handling is Implicit / Explicit E E E E E I E E

Temporary structures (objects and attributes) available (Yes / No) N N N N Y Y Y Y

Graphical notation available (Yes / No) N N N N Y N N N

Table 4.12 Comparison of mapping languages (H=High, M=Medium, L=Low, -=None)

4.3 Summary of Inter-Schema Relationship Modelling

Table 4.12 provides a summary relating the surveyed mapping languages to the requirements

detailed in Section 4.1.3. As shown in the table, none of the surveyed languages provides for the

full range of requirements necessary. Of particular concern is the low level of support for

bidirectional mapping, given that this type of mapping is the norm in the domains of these

languages. There is also a need for object-oriented support, especially as the modelling notations

that many of the mapping languages support are themselves object-oriented. Missing from many

of the EXPRESS-based languages (which are promoted for this domain) are notions of classes

and attributes forming the graph representing a mapping, as well as the ability to define temporary

structures for partial mappings or reusable states. Almost all of the languages have no graphical
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notation, and even EDM-2’s notation does not provide a good overview of what takes place in an

individual mapping.

To address the deficiencies in the existing languages, a new view mapping language (VML) is

proposed in Chapter 5. It has both a textual and graphical notation, and a modelling environment

for VML is described in Chapter 6.
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Chapter 5

The View Mapping Language (VML)

All the work described in the previous section tackles the problem of mapping between schemas to

some extent, but none of the approaches described provide the full range of abilities described in

Section 4.1.3 as being required for a general inter-schema mapping language. In this section the

View Mapping Language (VML) is presented. VML overcomes many of the problems identified in

the languages canvassed in Chapter 4. VML is a high-level, declarative, and bidirectional language

suitable for the description of correspondences between two arbitrary schemas of a domain. VML

dispenses with all notions of target and source schemas in the mapping definition. As far as

practicable, a VML definition treats both schemas as equal partners in a mapping. VML also

removes many distinctions between entities and attributes, to allow mappings between entities and

attributes to be specified in the same way that attribute to attribute mappings are specified.

Throughout this section examples are used to illustrate each construct in the VML language. These

examples are drawn from the large mapping example described in Section 1.6 and are fully

specified in Appendix E. However, to complement the examples in Section 4.2, the VML

specification for the example shown in Table 4.5 can be seen in Table 5.1. All of the components

of this formalism are fully described later in this section, but, a brief description of the mapping in

Table 5.1 is as follows. The example shows separate inter_class definitions for each type of class

to be mapped between, along with invariants specifying the conditions under which the mapping

holds. This combination of classes and invariants must be unique for every inter_class definition,

and will be checked by any mapping implementation. Equivalences specify the mappings to be

undertaken, all with implicit type conversion and implicit object type mapping (i.e., for related and

relating). All inter_class definitions can be used in both directions depending upon where data

resides that requires mapping. Initialisers specify initial values of attributes when they are created

by the application of a mapping.
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inter_class([component_relationship], [support_connector],
invariants(

quality = 'support_connection'
),
equivalences(

id = identified_by,
related = related,
relating = relating

),
initialisers(

type_of = 'un_known'
)

).

inter_class([component_relationship], [element_connector],
invariants(

quality = 'element_connection'
),
equivalences(

id = identified_by,
related = related,
relating = relating

),
initialisers(

type_of = 'un_known'
)

).

Table 5.1 VML mapping for example problem

In a VML environment it is assumed that all mappings are between two schemas. When it is

necessary to map information between several schemas and a single schema each mapping is

specified independently so that the mapping implementation can manage updates to and from each

model independently.

At the top level, considering the complete mapping between schemas, the work from database

views gives two possibilities for the types of mappings which can exist. These are read-only views

and read-write views. This carries over to schema mappings as well: a mapping can operate in one

direction, giving a read-only view; or in both directions giving read-write views.

A VML mapping consists of an introductory specification of the schemas to be mapped between,

and then a set of correspondences between entities and attributes to describe how the mapping is to

be achieved (see Table 5.2). The syntax of VML is similar in style to that of Prolog and Snart, the

implementation languages of this thesis, but it could easily be rewritten to resemble the syntactic

style of EXPRESS or other modelling languages without affecting the semantics of the language.

mapping = inter_view_def { inter_class_def } .

Table 5.2  Top level definition of a VML mapping

83



5.1 Mapping between schemas

A VML mapping definition commences with an inter_view definition, which specifies the two

schemas between which a mapping is to be described, the type of view represented by the schemas

in this mapping, and the completeness of mapping that is required (see Table 5.3).

inter_view_def = 'inter_view(' model_id ',' model_type ',' model_id ',' model_type ','
map_type ')' '.' .

model_id = simple_id [ '{' version '}' ] .
model_type = 'integrated ' | 

'read_only ' | 
'read_write ' .

version = integer_literal | 
real_literal | 
atom_literal | 
string_literal .

map_type = 'complete' | 
'partial' .

For example:
inter_view(idm{0.09}, integrated, planentry, read_write, complete).

Table 5.3  Definition of an inter_view specification

The model_ids specify the names and optional version numbers of the schemas which are being

mapped between in this mapping. The first model_id specified is treated as the left-hand side

schema and the second as the right-hand side schema. The side of the schema is used to determine

which entities and attributes are being referenced in a mapping. If an entity appears on the left-hand

side of a specification then, by default, it belongs to the first schema specified in the inter_view

(though this can be explicitly over-written, as described later).

The optional version number (e.g., idm{0.09} in Table 5.3) associated with a schema enables a

mapping to be specified to a specific version of a schema. The use of version numbers also allows

a mapping to be specified between different versions of the same schema, supporting schema

evolution.

The model_type indicates the role that a schema instance plays in this mapping. As the reason for a

mapping between models varies depending upon the model being connected, the model_type

allows the specification of different roles for a model dependent upon the connection being made.

There are three allowable values for model_type:

read_only: specifies that data can be mapped from that model to the other model, but not vice-

versa. Specifying a read_only role does not restrict the data in either model from being

modified, it just affects a model’s ability to pass changes through to its connected model.

The model_type for both models can not be set to read_only.

read_write: specifies that data can be mapped to this model as well as mapped out of it. Where both

models are depicted as read_write there is no synchronisation when propagating changes

between the models.
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integrated: has almost the same meaning as a read_write model. The exception is that all changes

waiting to be passed on from the integrated model must be accepted before a change is

mapped to this model. The need for this level of synchronisation is discussed in Chapter 2.

Only one of the two model types can be integrated to avoid deadlock situations.

The three model_types cover all the connections that may be required between models. A

read_only model is for the situation where it is necessary to provide information to a participant but

not necessary for them to modify the model it is being passed from. The read_write and integrated

model types are for mappings where changes from the connected model can be accepted. With the

integrated model type it is possible to ensure the consistency of data in a connected model before

allowing modifications to be made by it. Individual models can play different roles in different

mapping specifications which can lead to interesting chains of connections. For example, a model

which has a read_only connection to one model could have an integrated connection to another set

of models. This type of connection could be used to provide a barrier between a central model and

a set of users who wish to experiment with aspects of the data as well as share their modifications

with each other (see Figure 5.1).

IDM
Intermediate
Model

DT Model

User

User

User

User

DT Model

DT Model

DT Model
read_only

read_only

integrated

read_write

read_write

read_write

other models

Figure 5.1  A tree of inter_view mappings

The map_type indicates how complete the movement of data needs to be between the two models.

The two allowable values for map_type are:

complete: all objects of the entities described in the mapping must be mapped to the datastore for

the other model. This is used for models representing the same type of objects (e.g., a

whole building) and where a mapping only makes sense if everything can be moved

across. That is, the derived model is inconsistent if it is not possible to map all objects of

types mentioned in the mapping specification.

partial: is used where one schema describes a much smaller domain than the other (e.g., a room

schema versus a building schema) and where it is not necessary to map all the information

across to the other model (e.g., only a single room is required to be mapped rather than all

the rooms in the building).
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5.2 Mapping between classes

Following the inter_view definition is a set of inter_class definitions which describe the

relationships between entities in the two schemas. An inter_class definition details: the entities

from both schemas that take part in the mapping; an optional set of conditions which must hold to

use the mapping; the actual relationship between data in the two entities; and, optionally, initial

values for attributes when an object is created (see Table 5.4). Table 5.4 also shows an example

inter_class specification. This example describes the mapping between idm_space_face objects in

one schema and v3d_polygon objects in another schema under the condition that the type_of_face

of the idm_space_face is equivalent to the value opening. Where this is the case there are two

functional mappings specified in the equivalences section to map the object identifier and shape

between representations. There are also initial values specified for attributes of the v3d_polygon

object which provide default reflection and colour information.

inter_class_def = 'inter_class(' class_list ',' class_list [ ',' inherits ] 
[ ',' invariants_def ] [ ',' equivalences_def ] [ ',' initialisers_def ] ').' .

class_list = '[' [ class_key_name { ',' class_key_name } ] ']' .
class_key_name = 'group(' class_name ')' | class_name .
inherits = 'inherits(' inherit_list ')' .
invariants_def = 'invariants(' invariant_expr { or_op invariant_expr } ')' .
equivalences_def = 'equivalences(' equivalent { ',' equivalent } ')' .
initialisers_def = 'initialisers(' initialiser { ',' initialiser } ')' .

For example:
inter_class([idm_space_face],[v3d_polygon],

invariants(
type_of_face = 'opening'

),
equivalences(

map_id_to_num(idm_space_face, object_id),
map_polar_rect_to_polygon(min=>x, min=>y, max=>x, max=>y, plane=>axis,

plane=>offset, points[1], points[2], points[3], points[4])
),
initialisers(

diffuse_reflection = 0.1,
colour=>r = 0,
colour=>g = 0,
colour=>b = 0

)
).

Table 5.4  Definition of an inter_class specification

5.2.1 Entity names and keys
The two class lists in an inter_class definition specify the entities which are involved in the

mapping being specified. As detailed in the inter_view definition, the first class_list refers, by

default, to entities from the first schema and the second to the second schema. The union of the

two lists of entity names provides the key for this mapping. There can be any number of mappings

with the same key. However, each specification must be distinguishable from the others by the

conditions specified in the invariants specification. In the example shown in Table 5.4 the key is

[idm_space_face, v3d_polygon] and though there are several inter_class definitions between these
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two classes (see Appendix E) they are all uniquely identified by their invariants, in this case

type_of_face = 'opening '.

In some mappings it is necessary, and in many other mappings very convenient, to be able to

describe a mapping to temporary entities, e.g., where two mappings can reuse a partial mapping in

their transformations. To be able to distinguish mappings to temporary entities from those which

create real objects in a particular view we denote temporary entities by names prefixed either with

an underscore symbol, e.g., _temp1, _temp2, or with a capital letter, e.g., Temp1, Temp2 (see

Table 5.5 for the syntax of allowable class names). Temporary entities provide a mechanism to

specify entities which do not exist in the schemas of the two systems that are being mapped

between.

In Table 5.4 the class_list is defined as consisting of one or more class_key_names. Having more

than one class specified in a class_list allows the mapper to associate objects from a model when

the objects previously had no association. A class_list with multiple class_key_names denotes that

when constructing an instance of this mapping, an object from each class in the class_list is

required. This provides a way of associating objects of classes which may not be  directly

accessible from objects of  the first class defined in the list, creating an effect similar to a join in a

relational database system. The manner in which objects are associated is dependent upon the

invariants specified in the mapping. Where no invariants are specified, the number of mappings

that would be performed is equal to the cross-product of all objects for each of the named classes.

Where invariants are specified, the number of mappings is restricted by application of the

invariants to the cross-product of all objects of all named classes. The following small example

helps illustrate how this works. The example shows five objects, two of class a and three of class

b. Both classes have an attribute called type, and the value of type is shown for all five objects.

Two inter_class definitions are shown. The first has no invariants specified, and as can be seen

from the set of object pairs, displayed after the inter_class, this forces a complete cross-product of

objects from both classes. The second inter_class has an invariant requiring the type attribute of

objects of class a and b to be equivalent. This reduces the object grouping down to three sets of

object pairs, rather than the six for the full cross-product.

Object ID Class Object.type

o1 a 1

o2 a 2

o3 b 1

o4 b 1

o5 b 2

inter_class([a, b], [c], .....).

[[o1, o3], [o1, o4], [o1, o5], [o2, o3], [o2, o4], [o2, o5]]

inter_class([a, b], [c], invariants(a.type = b.type), .....).

[[o1, o3], [o1, o4], [o2, o5]]
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The group() specifier also suppresses creation of the full cross-product. It  allows a collection of

objects of the named class to be grouped together for the purposes of the mapping. This is

commonly used to group multiple objects of a single class into a collection that is not explicitly

supported in the original schema, and then to map the collection to a schema which requires this

grouping. Without invariants, group() selects all objects of the named class; with invariants, the

objects of the class are restricted by application of the invariants to each individual object being

grouped. To illustrate how group() works consider the small example above with modified

inter_class definitions as below. The first inter_class shows that all objects of class b are grouped

with objects of class a in a set rather than a cross-product. The second inter_class shows that the

objects in the grouped set can be restricted through the use of invariants.

inter_class([a, group(b)], [c], .....).

[[o1, [o3, o4, o5]], [o2, [o3, o4, o5]]]

inter_class([a, group(b)], [c], invariants(a.type = b.type), .....).

[[o1, [o3, o4]], [o2, [o5]]]

In an inter_class specification, one of the class_lists can be left empty. This allows the

specification of initial conditions that must be established when a mapping between models is

initiated. In most systems this would be to allow the creation of an object with initial values when a

model is created (e.g., the controller of a design tool, or entities which have no representation in

the schema being mapped from).

Table 5.5 shows the definition of a class name. While the default reading of a mapping is that the

order of schemas in the inter_view definition is the order of classes in an inter_class definition the

ordering can be overridden through the specification of the model_id in the class name. This

allows classes from a schema to be specified in either side of an inter_class, and also allows for

mappings between classes of a schema and temporary entities to be defined (or between temporary

entities and temporary entities) in any order the mapping specifier desires.

class_name = [ model_id ':' ] class_id | 
variable_id .

model_id = simple_id [ '{' version '}' ] .
class_id = simple_id .
variable_id = upper_case { simple_id_char } | 

'_' ( letter | digit ) { simple_id_char } .

For example:
idm_space_face
idm{0.09}:building
_temp

Table 5.5  Definition of a class_name

5.2.2 Inheritance of inter_class definitions
The specification of inherited inter_class definitions allows inter_class specifications to closely

model the structures that are found in object-oriented schemas. Where there are correspondences

between the parent classes of a set of child classes it is more efficient and more maintainable to
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specify inherited correspondences between the parent classes than to re-specify the mappings for

each child class. The type of mapping where this feature will be most commonly utilised is in

version mapping for object-oriented schemas. The specification of an inherited mapping, as shown

in Table 5.6, utilises the key of a mapping to determine which mappings to inherit. Where the

mapping specified has multiple definitions for that key (i.e., with different invariant

specifications), then the combined mapping will be expanded into a set of mappings encompassing

all combinations of invariants from the inherited inter_class definitions.

inherits = 'inherits(' inherit_list ')' .
inherit_list = inherit_map { ',' inherit_map } .
inherit_map = 'inter_class(' class_list ',' class_list ')' .

For example:
inherits(inter_class([person],[person]))

Table 5.6  Definition of inheritance

5.2.3 Invariant specification
Invariants are an optional part of an inter_class definition, and describe the conditions under which

it is possible to use a particular inter_class definition. For example, defining an invariant

invariants(building.type = 'commercial') in an inter_class definition would denote that it was only

possible to use this inter_class definition for buildings which are commercial buildings, and

presumably there would be other inter_class definitions which would specify what to do with other

types of buildings. Thus, invariants are selection criteria to use when deciding which inter_class

definition to apply to any given object. Each individual invariant expression can only reference

objects and attributes from a single schema in the mapping. Invariants are therefore broken into

two sets, those which apply to classes in one schema and those which apply to classes in the other.

When deciding if an inter_class definition is to be used, all invariants which apply to the schema

being mapped from must evaluate to true on the objects being tested.

invariants_def = 'invariants(' invariant_expr { or_op invariant_expr } ')' .
invariant_expr = invariant_simple_expr { and_op invariant_simple_expr } .
invariant_simple_expr = '(' invariant_expr { or_op invariant_expr } ')' | 

expression rel_op expression | 
predicate | 
function |
method |
'group(' attribute_name { ',' attribute_name } ')' .

For example:
invariants(

type_of_face \= 'opening',
pe_face.offset = pf_plane_object.offset,
map_orientation_axis(pe_face.orientation, pf_plane_object.axis),
contained_in_face(pe_face, pe_opening)

)

Table 5.7  Definition of invariants

The invariants also create constraints on the objects that are mapped, which in some cases can be

used to fill in values in an object, or in others to create constraints on an object. In the example

above it can be seen that when an object is mapped back onto the building with invariant
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building.type = 'commercial' then the value of type can be automatically set to 'commercial'

without having to use an equivalence definition to specify this.

Invariants can be thought of as boolean expressions which must equate to true to allow the

mapping to proceed. Invariants (the syntax of which is shown in Table 5.7) can be composed of

functions, predicates or object method calls which succeed or fail, or expressions containing

relational operators (e.g., =, >=, <). Sets of invariant conditions can be joined together through

the use of and operators ',' or or operators ';'. VML offers one special function to be used with

grouped classes in an inter_class definition. The group() function can only be used with a grouped

class (see Section 5.2.1). It can only be used on an attribute of a grouped class which has a finite

domain (usually an enumerated type) and is used to collate all objects of the named class whose

value for the named attribute is identical. For example, specifying inter_class([group(building)],

[aggregation_of_type], invariants(group(building.type)), ...) would ensure that a separate

mapping would be performed for each type of building in the first model, pooling values into a

single object in the model of the second schema for every different value of type found in the

model of the first schema.

The example in Table 5.7 provides a complex set of invariants which must be satisfied to allow a

particular inter_class specification to be used. In this specification the type_of_face attribute must

contain the value 'opening', and the offset object referenced by pe_face and pf_plane_object must

be the same, also the functions map_orientation_axis() and contained_in_face() must evaluate to

true with the supplied parameters.

initialisers_def = 'initialisers(' initialiser { ',' initialiser } ')' .
initialiser = expression '=' expression | 

predicate |
method .

For example:
initialisers(

idm_space_face.face_property = 'idm_space_face',
idm_material_face.face_property = 'idm_material_face',
idm_material_face.material=>type_of_material = 'idm_window_material',
idm_material_face.material=>type_of_window = 'idm_single',
idm_material_face.material=>window_subtype = 'clear',
fe_opening@create(idm_space_face.plane, idm_space_face.plane, 'space', 0, 0,

idm_space_face.min=>x, 0 - idm_space_face.min=>y,
idm_space_face.max=>x, 0 - idm_space_face.max=>y, 
idm_material_face.material=>window_subtype)

)

Table 5.8  Definition of initialisers

5.2.4 Initialiser specification
The optional initialiser section allows the definition of initial values for attributes of objects created

in an inter_class specification. For models that are object-oriented, the initialiser section also

provides a location to specify the create method parameters for objects that may be created during
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the mapping. The initialiser section (the syntax of which is defined in Table 5.8) usually comprises

mainly assignment statements specifying values for attributes, though predicates and procedures

can also be specified.

Any entity attribute, or referenced attribute, of any class specified in the class lists of the

inter_class specification can be initialised in the initialiser section. Initialisers will only be applied

to newly created objects (i.e., not to an existing object which is associated through an invariant

specification) and may cause the creation of other objects (e.g., attribute assignment through

pointer chains).

5.2.5 Equivalence specification
The equivalence section comprises the bulk of most inter_class definitions as it specifies the

correspondences between the attributes of entities defined in the class lists of the inter_class. It is

this section which contains all the equations, functions, and procedures which will need to be

solved or executed to map between models of the schemas in the mapping. The declarative nature

of VML is most evident in this section as equivalences are used to define mappings between

attributes. The ordering of expressions is unimportant as their solution is dependent only on the

state of the model being mapped from. The syntax of the equivalence section is shown in Table

5.9.

equivalences_def = 'equivalences(' equivalent { ',' equivalent } ')' .
equivalent = expression '=' expression | 

'map_to_from(' predicate ',' predicate ')' |
'bijection(' bijection_expr ',' bijection_expr ')' |
predicate .

For example:
equivalences(

bijection(idm_space_face[].type_of_face \= 'opening', walls[]),
bijection(idm_space_face[].type_of_face = 'opening', openings[]),
idm_material_face = materials,
idm_bracing_face = bracing,
idm_plane.name = name,
idm_plane@view_plane = fe_application@create_view(_, idm_plane.name)

)

Table 5.9  Definition of equivalences

5.2.6 Mapping equations
The style of equations that can be used to define the mapping between classes was developed to

meet the mapping types identified in Section 4.1.3. The major abilities of the VML language are

described below. For the full syntax of the language refer to Appendix A.

5.2.6.1 Attribute initialisation or constant value specification

A constant value can be assigned to an attribute by equating the value with the named attribute as

shown in the examples below.

type_of_face = 'opening'
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diffuse_reflection = 0.1

gloss_factor = 90.0

This type of equation can appear in invariants, equivalences and initialisers and has slightly

different semantics in each. When specified in an initialiser these equations provide the initial value

for an attribute which may be modified by other equations in the equivalences section. When

specified in an invariant or equivalence they specify a constant value. If the value is specified in the

invariant it is used either to determine which mapping to apply to the class the attribute belongs to,

or to initialise an attribute for a newly created object. If the value is specified in an equivalence, it

specifies a value for the attribute which may not be modified (i.e., it will always be reset to the

specified value). This specification corresponds to the Attr->Attr mapping of cardinality 0:1.

5.2.6.2 Equality

Direct equality between two attributes of a simple type (e.g., REAL, INTEGER, BOOLEAN), or

named types, can be specified by equating one attribute with the other attribute as shown in the

examples below.

name = planename

axis = axis

offset = offset

This type of equation can appear in invariants, equivalences and initialisers and has slightly

different semantics in each. When specified in an initialiser these equations provide the initial value

for an attribute which may be modified by other equations in the equivalences section. If the

equality is specified in the invariant it specifies attributes of entities on the same side of a schema,

the values of which must match for the inter_class to be used to perform the mapping. If the

equality is specified in an equivalence then it denotes that the attributes of the respective entities

must hold the same value. This specification corresponds to the Attr->Attr mapping of cardinality

1:1.

5.2.6.3 Pointer equality

Equality between pointers to objects of entities in the schemas is specified in the same manner as

for equality between attributes of simple types, e.g.:

plane = fe_face_window

This type of equation can appear in invariants, equivalences and initialisers and has slightly

different semantics in each. When specified in an initialiser these equations provide the initial

object reference for an attribute which may be modified by other equations in the equivalences

section. If the equality is specified in the invariant, then it will be specifying reference attributes of

entities on the same side of a schema whose object references must match for the inter_class to be

used to perform the mapping. If the equality is specified in an equivalence, then it denotes that each

attribute has the object identifier of the object that was created from the inter_class definition

between the entities of the two objects. This specification corresponds to the Attr->Attr mapping of

cardinality 1:1.
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5.2.6.4 Simple equations

Equations can also be used to define relationships between various attributes, as shown in the

examples below. The range of algebraic and transcendental functions available is the set of

functions supported by LPA Prolog.

min=>y = 0 - y0

r * sin(theta) = y_coord

r = sqrt(x_coord * x_coord + y_coord * y_coord)

This type of equation can appear in invariants, equivalences and initialisers and has slightly

different semantics in each. When specified in an initialiser, these equations provide the initial

calculated value for an attribute, which may be modified by other equations in the equivalences

section. If the equation is specified in the invariant, then it specifies attributes of entities on the

same side of a schema, the calculated value of which must match for the inter_class to be used to

perform the mapping. If the equality is specified in an equivalence, then it denotes that the

attributes of the respective entities must hold the value determined by the re-arrangement of the

equation to solve for each particular attribute. This specification corresponds to the Attr->Attr

mapping of cardinalities 0:1, 1:1, 1:C, C:1, C:B. Where there are more than two attributes in an

equation (i.e., cardinalities 1:C, C:1, C:B) it is assumed the implemented mapping system will re-

arrange equations to solve for unknown values, or arrange sets of equations to ensure that values

calculable in other equations can be used to solve more complex equations, the method for

achieving this in an implementation of VML is described in Chapter 9.

5.2.6.5 Pointer references

Following pointer chains to reference attributes of the referenced object is possible with the =>

operator in VML, as shown below. Pointer chains can be followed to any depth and provide a

method for collapsing, or expanding, reference structures in a schema.

apex1=>x = apex2=>x

Pointer references have the same semantics wherever they are used. When solving equations

which contain pointer references, it is sometimes necessary to create objects of the referenced type

to have a full reference for solving the equation. For example, in the equation above, if apex1 had

no value it would be necessary to create an object of type point, the reference to which would

become the value of apex1, so the attribute x could be set to the value of apex2=>x.

5.2.6.6 Functions

Functions in VML are the built-in functions of LPA Prolog, which are predicates which either fail

or succeed along with the special functions exists/1 and var/1 which are used to determine whether

an attribute has a value specified or if it has not been assigned to (see the examples below).

member(fe_face_material, fe_face_window.materials)

exists(end_point=>z)

var(end_point=>z)
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Functions are used in the invariants section of an inter_class definition to determine whether to use

the particular inter_class with the objects currently under consideration.

5.2.6.7 Aggregation functions

In contrast to the functions described above, aggregation functions are not invocable in both

directions, or re-writable as most equations are. The set of aggregation functions (sum, maximum,

minimum, average, count) provide summary details of lists of values or objects, as shown in the

examples below.

sum(wall.windows=>(height * width)) = glazing_area

maximum(panes=>(offset=>y + height)) - minimum(panes=>offset=>y) = height

Aggregation functions can not be solved in both directions (e.g., for the first example, knowing

the glazing_area does not allow the calculation of height and width of all the windows in a wall).

Instead, when performing a mapping to an equation with an aggregation function, the calculated

value from one side of the equation is used to specify a constraint on the values of the schema the

mapping is being applied to. For instance, in the first example above, if the glazing_area is known,

then the sum of height * width for all windows in the wall will be constrained to the value of

glazing_area. Aggregation functions can be used in any part of an inter_class definition. The

implementation of these constraints is assumed to be handled by the implemented mapping system,

Chapter 10 details how this was achieved for one VML implementation.

5.2.6.8 List and array references

Individual elements of a list or an array may be referenced through the indexing operator. The

examples below show equations which reference elements of a list and an element of a 3-

dimensional array.

axes[2] = v_ref

exists(axes[2]=>direction_ratios[3])

vector[2, 2, 3] = iz

 List and array references can be used in any part of an inter_class definition.

5.2.6.9 List and array iteration

A mapping between lists or arrays of the same dimensions and bounds can be specified through

the iterator operator. This operator provides a short-cut notation for the specification of for-loops

over the contents of lists and arrays, as long as the relationship can be specified in an equation.

Mappings between lists and arrays which do not meet these conditions must be specified with

predicates, procedures or methods. The example below shows a mapping between a list of strings

(classified_by) and a list of object references (material) which has an attribute, name, of type

string. The result of a mapping between these two attributes will be that the first item in the

classified_by list is identical to the value of name of the first object reference in material, and so on

for the number of items in classified_by, or in material, depending upon which direction the

mapping is being run.
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classified_by[] = material[].name

Iterators can appear in invariants, equivalences and initialisers and have slightly different semantics

in each. When specified in an initialiser, an iterator provides the initial calculated values for an

attribute of list, set, bag, or array type (within the specified bounds of the aggregate type), which

may be modified by other equations in the equivalences section. If the equation is specified in the

invariant then it specifies a condition which must hold for every value in the aggregate attribute

referenced for the inter_class to be used to perform the mapping. If the equality is specified in an

equivalence, it denotes that each element of the iterated attributes of the respective entities must

hold the value determined by the re-arrangement of the equation to solve for each particular

attribute. This specification corresponds to Attr->Attr mapping of cardinalities 1:1, 1:C, C:1, C:B.

It can also denote Attr->Entity mapping of cardinalities 1:C, C:B, 1:N, or Entity-Attr mapping of

cardinalities C:1, C:B, N:1, or Entity->Entity mapping of cardinality 1:1.

5.2.6.10 Conditional list and array iteration

VML provides bijections to extend the flexibility of the iterator operator. Bijections allow the

specification of conditions to be checked on each element of an aggregate attribute, or grouped set

of objects (formed by a group() specification in a class list), before a mapping can take place. The

examples below show the bijection between lists of object references where the mapping is

conditional on the class type of each object in the list. In the example below the right hand schema

entity has attributes:  spaces, which is a collection object containing a list of references to space

objects; roofs, which is a collection object containing a list of references to roof objects; and faces,

which is a list of references to face objects, which specify face geometry. Entity idm_building

from the left hand schema has attributes: spaces, which is a list of references to abstract spaces

including roofs and spaces; and face_views, which is a list of references to different views

associated with faces and which can include geometry-oriented views, materials-oriented views,

and bracing-oriented views. There is thus a partial overlap between the sets of objects referenced

by the attributes involved in each of the two classes. The first bijection specifies that only

idm_building spaces which are really living spaces (i.e., their type is idm_space) should be

mapped to the spaces=>list, though all spaces in spaces=>list can be mapped to the idm_building

spaces aggregate attribute. The second bijection specifies the same conditions, except this time for

roof objects, and the third bijection performs a similar mapping for geometric faces. The @

operator specifies a method call in the example bijections, in this case to the meta-method class()

which returns the class of the referenced object. The first bijection therefore iterates through all

objects in the spaces list, extracting those whose class is of type idm_space.

bijection(idm_building.spaces[]@class('idm_space'), spaces=>list[]),

bijection(idm_building.spaces[]@class('idm_roof'), roofs=>list[]),

bijection(idm_building.face_views[]@class('idm_space_face'), faces[])

Bijections may only appear in the equivalences section of an inter_class definition. Bijections can

be run in both directions and are taken to mean: iterate over all elements in the specified attribute or

group of objects, but perform a mapping only for those elements which match the conditions
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which are specified. Conditions can be in the form of method calls (as in the example above),

predicate calls, or conditional equations. As multiple bijections can be specified over a single

attribute (e.g., idm_building.spaces[] in the examples above), the result of the conditional

evaluation and the equation solving are unioned with values from the other bijections on the list or

array being mapped to. In the example above this means that in mapping from the right-hand side

to the left-hand side the idm_building.spaces[] will contain the union of spaces and roofs from the

right-hand side schema list attributes being mapped from. This specification corresponds to Attr-

>Attr mapping of cardinalities 1:1, 1:C, C:1, C:B. It can also denote Attr->Entity mapping of

cardinalities 1:C, C:B, 1:N, or Entity-Attr mapping of cardinalities C:1, C:B, N:1, or Entity-

>Entity mapping of cardinalities 1:1, 1:C, C:1, C:B, N:M.

5.2.6.11 Functions

User defined functions extend the set of built-in functions of VML. User defined functions are

broken into two categories: those which reference attributes from a single schema; and those which

reference attributes from both schemas (examples of the latter are shown below, as detailed in

Appendix E). 

list_splitter(vals, _temp_schedule.splitvals)

map_polar_rect_to_polygon(min=>x, min=>y, max=>x, max=>y, plane=>axis,

plane=>offset, points[1], points[2], points[3], points[4])

User defined functions which reference attributes from one schema are used in the invariants and

initialisers sections of the inter_class definition. User defined functions which reference attributes

from both schemas must be invocable with the attributes from either side instantiated (i.e., able to

run in either direction). When used, these functions are called with the values from the schema the

mapping is coming from, and the results are used to instantiate the attributes of the schema the

mapping is being applied to. A function is not invoked unless all function attributes of the schema

the mapping is coming from have values. In general, functions may not manipulate objects (e.g.,

create new objects, delete objects, reference object attributes, call object methods), but allow

structures to be manipulated and values to be computed. Functions correspond to the Attr->Attr

mapping of cardinality 0:1, 1:1, 1:C, C:1, C:B.

5.2.6.12 Procedures

Where a mapping can not be specified bidirectionally using equations or functions, it is necessary

to describe the mapping procedurally. In VML the map_to_from predicate is used to denote two

procedures which perform a mapping. In a map_to_from definition there is a procedure for

mapping in each direction (if the mapping is one-way, i.e., read_only, then one of the procedures

is not necessary and may be replaced with the function true). Dependent upon the direction in

which a mapping is applied, the appropriate procedure will be invoked to perform its mapping.

Procedures assume full control over how to perform a mapping, and as such may create objects,

reference attributes, delete objects, etc. An example of the use of procedures is shown below.
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map_to_from( map_3D_rect_to_polar(x, y, z, x1, y1, z1, min, max, plane),

map_polar_to_3D_rect(min, max, plane, pe_wall))

Where map_3D_rect_to_polar() and map_polar_to_3D_rect() are Prolog predicates that map from

a 3D rectangular representation (given by two points in 3D space) to a polar representation, or vice

versa. As procedures may need to manipulate objects in the stores they may require information

about the current status of the mappings in the system and the store managers handling the objects

in the system. To allow this information to be accessed in a procedure, a special parameter may be

passed to the procedure. This parameter $mapping_system$ is replaced with the object ID of the

mapping system controller when a procedure is invoked. The three most utilised services offered

by the mapping system are: return of the type of mapping being handled (currently just transaction-

based or interactive); return of which pass through the mappings is being executed (for

implemented systems where multiple passes are made during the mapping); and return of the object

ID of an object that was created in a mapping based on another object ID (see describing pointer

equality above). As procedures have full control over what they do in the system, they can perform

mappings between any combination of Attr and Entity in the system, and can describe mappings

between any cardinality of these Attr and Entity maps.

5.2.6.13 Method invocation

As VML is designed to work with OO environments as well as in interactive environments, it is

necessary to handle OO method invocation. Methods are specified as an optional class or attribute

definition, followed by the @ symbol and the name of the method, with parameters if they exist.

Method handling in VML covers two cases: for classes which have creation methods with

parameters, the initial parameters of the create call can be specified in the initialisers section of an

inter_class; in a mapping where method invocation in one model can trigger a method invocation in

the model being mapped to, the parameters of the methods to call can be specified. The examples

below illustrate both these cases. The first example shows a case where whenever the view_plane

method of an idm_plane object is called then the create_view method of the corresponding

fe_application object in the mapped model should be called, or vice versa. The second example

defines the parameters required in a create call for objects of type fe_face_window.

idm_plane@view_plane = fe_application@create_view(_, idm_plane.name)

fe_face_window@create(idm_building, idm_plane.name, idm_plane.axis, 0, '+', [])

Method parameters which return values not required for the mapping can be specified with a _ to

indicate that the parameter should be ignored (as in create_view above). Methods are called if all

parameters from the side being mapped from are known. This needs to be kept in mind when

create methods are specified, as all the parameters from the side being mapped from must be

guaranteed to be bound at the time that the object creation takes place. This also means that object

references in a create method must be resolvable through pointer equality at the time of the object

creation. For example, in the create method above idm_building will be replaced with the object ID

created from the inter_class mapping for idm_building. The level of support for mapping of

methods will be dependant upon the approach taken for the implementation, as methods can have
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side-effects which are only valid if methods and data are mapped in a strict sequence.

5.2.6.14 Type conversion

Simple type conversions are implicit in a mapping definition. Casting of results of equations is not

required in VML, as this is implicitly defined by the type of the attributes specified in the equation.

Pointer equivalence handles the type conversion of object references, as well as lists and arrays of

object references. Procedures are expected to correctly cast results calculated in the procedure

when setting the value of an attribute. Mappings of attributes which have complex types are

expected to explicitly define the type conversion as part of the mapping specification.

5.2.6.15 Unit conversion

Unit conversion is not supported implicitly in the VML language. Any unit conversion which must

be performed between attributes must be modelled explicitly. While it would have been possible to

assume an implicit unit conversion in a mapping there would have been some practical difficulties

in the implementation. One difficulty is that implementing a system to determine the final unit of a

complex equation is no simple task. Another problem is that predicate, procedure and method

definitions provide no meta-information on the units of their outputs, so it would be impossible to

check that the result of a predicate, procedure or method was in the correct units.

5.2.6.16 Temporary attributes

Temporary, or local, attributes can be defined in a VML mapping. These attributes have the same

syntactic definition as a temporary entity, i.e., names prefixed either with an underscore symbol,

e.g., _temp1, _temp2, or with a capital letter, e.g., Temp1, Temp2. Temporary attributes allow

the specification of partial computations which may be used in further equations. To this extent

temporary attributes can reduce the complexity of an equation definition and can be used to

improve calculation performance in an implemented mapping system (as demonstrated in the

example below).

WallTheta = tan_1(y_offset / x_offset),

WallDist = sqrt(x_offset * x_offset + y_offset * y_offset),

wall_x = WallDist * cos(WallTheta + azimuth),

wall_y = WallDist * sin(WallTheta + azimuth)

5.3 A Graphical Notation for VML

To satisfy the modelling notation requirements of Section 4.1.3, and to complement the textual

notation of VML described in Sections 5.1 and 5.2, a graphical notation (VML-G) was developed.

The graphical notation describes a subset of the full VML language and is aimed at high-level

views of the mapping specification.
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As a graphical language provides fast reading and comprehension of the textual equivalent, VML-

G is likely to be of use in large integration projects where the schemas of the IDM and the design

tools can be very large requiring hundreds of inter_class specifications to detail a full mapping. To

manage a mapping specification of this size, the developers of integrated design systems will

require many diagrams showing parts of a mapping, from high-level design views during the

initial specification phase (which can identify entities which must be mapped between), through to

more detailed descriptions of the mapping between attributes heading towards the implementation

stage. Graphical specifications will also provide some benefit where single entities have a large

number of attributes. In these cases the modeller may wish to consider subsets of the entities

attributes when specifying a mapping, requiring multiple views of the mapping between entities.

5.3.1 Graphical icons of VML-G
In VML-G there is a single graphical icon type representing an inter_class definition (see middle

icon in Figure 5.2). This icon has three sections corresponding to the three sections in an

inter_class definition. These three sections allow invariants, equivalences and initialisers to be

grouped into localised areas in the icon and provide a visual separation of these distinct functions.

The other icon type defined in VML-G denotes an entity taking part in the mapping with the

inter_class (see the left and right hand icons in Figure 5.2).

Figure 5.2  Graphical mapping specification in VPE

A graphical view of a mapping between entities from two schemas is specified by drawing an

inter_class icon with icons for the entities on either side of it. By convention we put entity icons

from the left hand schema on the left of the inter_class icon and the others on the right. This is not

strictly necessary as the schema an entity belongs to can usually be ascertained quite simply. Entity

icons specify the name of the entity represented (with optional schema and version information)

and can list any attribute and method (prefixed with a ‘@’) names defined in the entity (see Figure

5.2 for an example of direct attribute and method mappings). When there are multiple entities from

a single schema participating in a mapping, the vertical order of the icons defines the ordering in

the class list of the inter_class definition (Figure 5.3 shows the VML-G for such a mapping along

with the textual equivalent). An entity which is to be grouped in the class list of the mapping
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specification is drawn with a double line around the outside (like a stack of entities), also shown in

Figure 5.3.

In Figure 5.2 we see that the icon for an inter_class definition consists of three parts. At the top is

the invariants section which specifies conditions which must hold for this mapping to take place.

Below that is the equivalences section which contains all mappings between attributes and entities.

At the bottom is the initialisers section which holds the definition of initial values for attributes.

Figure 5.3 Complex VML-G specification with textual equivalent

Each individual equation, function, or procedure is given a single row in the inter_class icon. At

each end of the row is a box to which the attributes and entities involved in the particular equation,
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function, or procedure are connected. In the middle of the row there can be one of four symbols

which are used to define the type of mapping being defined between attributes and entities. The

four symbols are:

= denotes that there is a direct equivalence between the attribute (or entity) in one schema and

the attribute (or entity) in the other. These one-to-one mappings are distinguished as a

special case as they occur frequently in mapping specifications.

eqn denotes that the attributes or entities in one schema are related to attributes or entities in the

other schema through an equation that is not a one-to-one equivalence.

func denotes that the attributes or entities wired together in this row are mapped through the use

of a functional mapping specification.

proc denotes that procedural code is required to map between the specified attributes or entities.

In the textual notation this has to be specified with different procedures to map in each

direction.

5.4 Appraisal of VML

VML and VML-G define notations which are capable of modelling all known types of mappings

between two schemas. They provide the ability to describe high-level views between entities in

schemas, through to low level detailed views of mapping equations. They are supported by an

environment (described in Chapter 6) which provides for multi-view graphical and textual

specification, along with a global consistency mechanism. Mapping checkers and a generic

mapping definition (also described in Chapter 6)  provide a means to describe the required

mappings between schemas for any implementation paradigm. In the remainder of this section, we

review how these new notations meet the requirements laid out in Section 4.1, and what further

work remains. 

VML satisfies the requirements of Sections 4.1.1 and 4.1.2 in the following manner:

Structural mapping types: the class lists of an inter_class definition, along with invariant

specifications, provide the means of describing any of the cardinalities of object to object

mappings that can occur. Equivalence specifications provide a means of describing attribute

to attribute mappings. In most cases, relationships between attributes and objects can also

be defined in the equivalences section. The creation of objects during mapping initialisation

(corresponding to 0:1 mappings) can be handled through an inter_class with one class

defined in one class list and none in the other. Other types of new object or attribute

creations are able to be specified through the initialisers section of the inter_class definition.

VML has no explicit notion of object deletion or attribute value removal, therefore 1:0

mappings are not possible to encode explicitly. However, instead of explicit deletion, a

notion of constrained creation is utilised. For example, if there is a condition under which

an attribute should have no value then this would be specified in an invariant condition and
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the following mapping would not map a value across.

Semantic mapping types: the majority of these conflicts can be resolved through explicit definition

of mappings between attributes in schemas. For example, homonym and synonym

conflicts from Table 4.3 can be resolved by specifying a mapping between the correct

attributes. However, the recognition of these conflicts is the responsibility of the mapper

and is not detected in the VPE support environment. The same is true for most of the

schema and data conflicts of Table 4.4. Equivalences and initialisers provide the

mechanism for resolving the conflicts; their recognition is the responsibility of the mapper.

Structural conflicts of Table 4.3 are resolved through specification of classes in the class

lists and the invariants which tie together objects of these classes only under specified

conditions.

An appraisal of VML with regard to the more mapping-specific requirements of Section 4.1.3,

yields the following:

Language level: the use of VML-G allows rapid and concise specification of which entities and

attributes are related, without having to provide exact details of the connections. The

declarative style of the VML notation allows for simple specification of exact relationships

between entities and attributes, without having to detail specific methods to implement the

relationships, and without having to rewrite the relationships to solve for all referenced

attributes. In VML there is an underlying assumption that the mapping system will

determine how to perform the mapping, and rearrange equations as required. However, it

is recognised that a declarative approach can only be used for a certain set of

correspondences, and in some cases a procedural specification will be necessary. VML

provides for this as well. Some of the surveyed languages provide a more concise notation

than VML for special cases (e.g., a Transformr ‘COPY’ to copy between identical objects

during a version update). VML, however, provides a consistent level of specification for

any type of mapping.

Language notation and modelling environment: VML is supported by a graphical notation (VML-

G) to allow high-level views of mappings, as well as VML’s lower level implementation

views. The VPE environment demonstrates some of the power that can be gained from a

multi-view graphical and textual specification environment with consistency maintained

between all views. For example, select portions of a mapping can be described in different

views, and entity icons can be expanded and contracted to show as much or as little of the

entity interface as required.

Language style: the declarative style of VML ensures that it is easily translated into implementation

environments of many paradigms. For example, translating VML into a procedural, batch

operated mapping system would be possible by transforming VML mappings (re-arranged

to solve for the required attributes) to procedural statements. This approach has been

explored at BRANZ (Price 1995) to tie together several in-house design and analysis tools.

As an example of the other implementation paradigm extreme, an interpreted on-line
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implementation of VML mappings is illustrated in Chapter 10.

Bidirectional: all VML mappings are implicitly bidirectional, though this can be overridden in the

inter_view definition. Any VML mapping is specified with the understanding that the

implementation system will use the mapping specification, re-arranged as necessary to

solve mappings, dependent on the direction in which data is mapped.

Conditional mapping: the invariants section of a VML mapping makes explicit the conditions under

which a particular mapping can be utilised. These conditions are specified independently of

the mapping definition.

Aggregation: functions to perform aggregation are included in the VML language. It is assumed

that the implemented mapping system will determine which aggregate equations can be

solved in both directions, and handle the consistency problems of those that can not.

Relationship handling: VML provides an operator to navigate the various structures found in

different schemas. Through this operator, the compression of complex structures and the

telescoping of simple structures can be defined.

Initialisers: the initialisers section of a VML mapping allows for the specification of initial values

for entities and attributes, as well as specifying parameters for the creation of objects in an

object-oriented environment. VML also allows the specification of an inter_class mapping

with only one entity in one of the class lists as a way of defining objects which must be

created at the start of a mapping process.

Unit handling: VML provides no implicit mapping for attributes of different units. Any unit

conversions required between attributes must be identified by the mapper, and the

conversion detailed as part of the mapping. This decision was made as a result of the

difficulty of determining the resultant unit of the re-arrangement of any arbitrary equation,

and the lack of unit information in the specification of functions, procedures and methods

which can have serious flow-on effects (e.g., if a method returns a result used in a later

calculation).

Type handling: simple type conversion is implicit in VML, so an implementation mapping system

is required to implement type conversion for all simple types (e.g., float to integer). For

simple types, the required conversion can be ascertained from the schema definition.

Conversion of complex types must be detailed as part of the mapping.

VML provides the fundamental mapping representational requirement for schemas that need to

share information with an IDM in an integrated design system. However, there are some aspects of

the VML language which require further work:

Mapping language requirements: the list of mapping types around which the mapping language

analysis is based is not known to be complete. The semantic mapping types are drawn

from a slightly different domain and the mapping language requirements are drawn mainly

from experience with mappings over the course of this project. For example, the

requirement for bijections did not become clear until the large mapping problem illustrated

in Appendix E was attempted. Early work on this thesis attempted to determine mapping
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types from analysis and classification of known mapping problems based around the types

specified in Section 4.1. However, further analysis of combinations of these types to

determine high-level mapping types foundered in the combinatorial explosion of low-level

combinations to be analysed. There appears to be no definitive classification of

requirements in a mapping and further work looking at requirements would provide a

sounder basis to compare mapping languages and evaluate their descriptive ability.

Greater control specification in mappings: the level of control specification in VML is too general.

The inter_view specification is the only place where the level of mapping between schemas

is defined. In the case where there is a partial mapping between the schemas there is no

methodology available to determine how to calculate which part of which schema should be

mapped. The underlying assumption is that a selection tool will be invoked at the start of

the mapping, in order to select the subset of the model which will be mapped. It should be

possible to specify the constraints on partial mappings in a more formal manner. There is

also no control on individual inter_class specifications, so one-way mappings can not be

explicitly defined on an inter_class by inter_class basis. However, this is not a problem for

design tools (e.g., an IDM mapping to the output values of a design tool), as the project

specification of Chapter 7 defines the input and output subschemas for all design tools in

terms of the IDM’s schema.

Greater micro-level control in an inter_class definition: Though the invariants section provides the

conditions under which a mapping may take place, there are mappings which are almost

identical, but which require separate inter_class definitions because a single equation or

method call needs to be different. The main example of this problem is with create methods

for objects, in these calls, where all parameters must be instantiated, it is necessary to

supply a default value if an attribute is uninstantiated. However, with VML this requires

two separate inter_class definitions, one which checks that the attribute is instantiated, and

the other which checks that it isn’t. Simple conditional wrappers around equations would

provide a solution to most of these problems.

Generic function and procedure definition: though the majority of a VML specification is generic,

and able to be mapped to almost any language paradigm, function and procedure

definitions are not. Currently, functions and procedures are defined in Prolog and Snart, as

these are the underlying languages in which the existing mapping implementation is

written. It is unlikely that a totally generic procedure and function definition language could

be defined, but work on the Neutral Model Format (Sahlin et al. 1995) and the Java

language (Gosling and McGilton 1995) would suggest that some degree of generality could

be supported.

Unit converter: VML makes the assumption that there is no equation re-arranger available that can

calculate the final unit of any arbitrarily re-arranged equation. This is mainly due to the lack

of unit information available from function, method and procedure definitions, which may

calculate values for attributes used in later equations. Providing a notation for the

specification of units on all parameters of functions, methods and procedures, and hence to

104



the design of a unit calculator for arbitrary equations, would prove an interesting challenge.

Explicit specification of type conversion: it would be useful to be able to define a mapping between

complex types. This type mapping could be assumed to be used automatically, in the same

way that simple types are assumed to be automatically converted. This functionality is

available in mapping languages such as EXPRESS-M, and syntactic changes to VML to

support the definition of type mappings would be trivial.

Method mapping: the VML specification of method invocation is limited to one-to-one

correspondences. There is currently no way of specifying combinations of method

invocations due to their temporal nature. For example, the set of method calls required to

invoke a method call in the mapped to schema could be spread over several transactions.

While data values are constant over multiple transactions, methods are only seen at the time

that they occur. A more sophisticated conditional language specification would be required

to fully model methods allowing combinations of several method calls to be required to

invoke a mapping and also to enable mappings based on the parameters used when

invoking the method. This would also impact on the type of system required to handle

mappings between schemas as the whole history of the use of the particular schema would

have to be available to be scrutinised.

In summary, this chapter introduces VML, a language that can be used to describe bidirectional

mappings between two schemas. The language is shown to provide the functionality to meet the

requirements for a mapping language. An environment which supports the specification of VML

mappings is described in Chapter 6. The specification of mappings is the penultimate step in the

specification of an integrated design system for a particular project. The final step is to model the

project specification, which utilises the schemas for design functions from Chapter 3, and assumes

that there is a mapping between the schemas for each design function and the IDM for the

integrated design system. Chapter 7 introduces a formalism for project specification which details

the flow of control between design functions to build upon the mappings to the IDM specified in

this chapter.
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Chapter 6

Mapping Modelling and Development

Chapter 5  specifies a mapping language and the type of mapping problems in which it will be

used. It is clear that these problems will involve large schemas (each with several hundred class

definitions), which are not static, and where several modellers will be working on the problem at

any one time. To minimise the amount of work required to develop and maintain these mappings it

is clear that coordinated creation, management and documentation of mapping specifications needs

to be supported. A mapping specification environment supporting the textual and graphical

notations of VML is described in this chapter. This environment provides the user with multiple,

consistently maintained, graphical and textual views of a mapping.

6.1 Introduction

The problems associated with the development of mapping definitions are of a similar nature to

those of schema development, as described in Section 3.1. The current version of a mapping must

be propagated to all developers so that they are all considering the same mapping. Modifications

that are made from one version of a mapping to the next need to be documented so that differences

between versions are easy to identify (especially for very large mappings). Changes required to a

mapping, resulting from modifications to a referenced schema, need to be notified to the

developers and tracked to ensure that their effect on the mapping is properly taken into account.

Although VML-G provides a notation to describe mappings at a high-level, a paper-based

definition of a mapping using VML-G will prove difficult to maintain. Although a mapping may be

easily drawn, a paper-based system cannot detect errors in a mapping specification, nor can it

guarantee that entities and attributes drawn on the paper exist in the schemas they are meant to be

from, and when a large number of mappings are described, navigating through the mapping views
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(especially if there are multiple, partial, and overlapping views) will become cumbersome.

Maintaining the consistency of the drawn views under changes to the schemas will also prove a

difficult task. A computerised mapping modelling and development environment, similar to the

environment described in Chapter 3, can provide many of the solutions to these problems.

Currently, almost no tools exist to help in the definition of mappings using the languages surveyed

in Chapter 4. Developers use a text editor to develop the specification and it is then parsed and

checked against the referenced schemas. Errors in the mapping specification terminate the parsing

process and require modifications to the textual representation and a reparsing. No tool allows a

consistently maintained mapping to be specified by multiple developers, or to be notified of

modifications to referenced schemas. To solve these problems, the author has designed an

integrated modelling and development environment for VML which provides many functions to

users in a homogenous environment.

In this chapter the requirements for a modelling environment in a large modelling project are

introduced. The VML Programming Environment (VPE), which tackles these requirements, is

detailed, and its ability to meet the design requirements of a modelling environment is

demonstrated.

6.1.1 Requirements for mapping development
In any large scale multi-partner mapping development a number of modelling support issues need

to be dealt with, including the following:

Connection with the schema development process: as the mapping is defined wholly between two

schemas it is imperative that any changes to referenced schemas be notified to the mapping

developers. If schema development environments, such as EPE in Chapter 3, are utilised

then the tracked updates to the schema must also be accessible from the mapping

environment. In many cases changes made to a schema can be automatically applied to a

defined mapping (e.g., renaming of an attribute in a schema) and the mapping environment

should offer this time saving service to its users.

Documentation: during the mapping specification process many decisions are made about the

meaning of schema constructs and implied constraints existing in a schema. These

decisions will determine the mappings which are specified as well as compromises which

may be made in the mapping specification. All such decisions, and their justifications, must

be permanently documented as they are made.

Support for multiple views: the mapping specifiers may well be experts on particular aspects of the

schemas being mapped between, and hence will only want to define mappings for these

aspects. When dealing with large schemas with large inheritance hierarchies the lower level

class definitions can hold a wide range of attributes and references spanning many aspects

of the object being defined. Mapping specifiers may well wish to consider specific aspects
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of a class definition when specifying mappings, requiring several partial mapping

specifications for a single class mapping. These multiple partial views must be

synchronised and coordinated by the mapping development environment.

To support these requirements an ideal modelling support environment (MSE) needs mechanisms

for: easy communication of mapping definitions; generation and manipulation of multiple views of

a mapping; annotation of the mapping with documentation; links to external schema MSEs for

change notification; and flexible update management to support iterative updates of the mapping

definition. An important issue is the ability to rapidly prototype a resulting operational system.

MSEs should provide facilities to allow instantiation of mapping definitions to be tested in a run

time environment, e.g., to test against models developed for the schemas being mapped between.

6.2 Mapping Development in VPE

The VML Programming Environment (VPE) has been engineered to support the modelling

requirements detailed above for mapping specification and management. VPE provides multiple

graphical and textual views of varying degrees of complexity useful  at different stages of the

mapping definition. In the initial phases of defining a mapping users typically specify just the

classes which must be mapped between in a graphical manner. Further specification identifies

conditional characteristics of mappings for these classes, which are expressed graphically as

multiple inter-class mappings with invariants. Specifying the full mapping requires all equivalences

and initialisers to be entered in textual form, though likely utilising multiple views of the single

mapping specification. Throughout this development modifications may be made to the referenced

schemas which will need to be propagated to the developing mappings and actioned appropriately.

VPE provides integrated support for each of these activities, using the MViews consistency

mechanism (Grundy 1993)  to provide the required inter-view consistency. Because of the

common implementation framework VPE (deliberately) has much of the “look and feel” of EPE.

6.2.1 Functionality offered by the VPE environment
In the following, a description is provided of VPE’s functionality, illustrated by the VML

specification of part of the large mapping example described in Section 1.6, and fully specified in

Appendix E.

6.2.1.1 Initial connection

Figure 6.1 shows the type of graphical view commonly used when first connecting together two

schema definitions. Here the different sets of classes which have relationships to each other are

identified and clustered together. Though it is not shown in this example it is also likely that

inheritance between mappings would be specified in this level of view. This view shows all the

different sets of classes considered in mapping between the IDM schema and the VISION-3D
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design tool. This view is constructed by direct manipulation, as are all the graphical views, using

tools selected from a tool palette, shown to the left of the view.

Figure 6.1 Initial connections between classes in two schemas

Though only a single view is shown here the user is free to create as many views as is desired, and

may freely lay out and populate each view, either with new information or with information

entered into other views. The information in each view is mapped through to the canonical

representation of the mapping as the view data is entered, and any similarities or conflicts with the

existing data are resolved as it is created. This ability to construct multiple views permits both

general purpose and specialised views to be constructed. The former may be used to obtain an

overview of the mapping under construction, the latter to focus on more detailed parts of the

mapping specification. The proliferation of views means that navigation tools are needed to quickly

access desired information. VPE provides inter-view navigation using both menu-based search

facilities and automatically constructed hypertext links.

6.2.1.2 Multiple mappings for class sets

A second type of view, shown in Figure 6.2, is typically used to commence the specification of

individual mappings between the same set of classes. The individual mappings are distinguished

by the different invariants required. In Figure 6.2 we see three inter_class definitions between the

idm_hip_roof class and the v3d_polygon class, with the distinguishing feature being the line of the

roof (represented by two apex points for each roof segment). Either the roof segment is a pyramid,

or the roof line runs in the x direction or the y direction, with different mappings required for each

case. As in the initial connection view, all information is kept consistent with the canonical

representation of the mapping and hence with other dependent views.
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Figure 6.2 Specifying multiple mappings for a single class set

Figure 6.3 Defining links between all features associated with an inter_class definition

6.2.1.3 Linking of features in a class set

Based on the views of Section 6.2.1.2 the mapping specifier may proceed to define the features

involved in a single mapping. Figure 6.3 shows how features of classes involved in a single

inter_class are “wired together”. This type of graphical view permits a rapid check that everything

is connected and a simple overview of the features involved in each mapping without a full
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specification of the equations and functions involved. This view type is also useful for providing

partial representations of an inter_class definition, focussing on a particular aspect of the mapping

(e.g., all simple attribute mappings, or the initialisers). As in the previous two views, all the

information in this type of view is kept consistent with the canonical representation of the mapping

and hence with other dependent views.

Figure 6.4 A full textual specification of an inter_class definition

6.2.1.4 Full mapping specification

The full specification of a mapping necessitates a textual representation of the mapping using

VML, as VML-G lacks the full representational power of VML. Figure 6.4 shows a fully detailed

VML specification for the graphical representation shown in Figure 6.3. This completely defines
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the mapping between these sets of classes, but takes much more effort to read and to determine

which features are involved in the various functions and equations than does the graphical form.

The textual views are freely editable. Modified textual views are parsed and compiled to ensure

they represent valid VML descriptions, and their information kept consistent with the canonical

representation.

6.2.1.5 Consistency between views

When changes are made to a VPE view, other views that share information with the updated view

may become inconsistent and must be updated to keep the mapping consistent across all views. All

views affected by a change are notified and, in many cases, are automatically modified to reflect

the change. This consistency mechanism works both between views of one phase of development

and between views of different development phases.

Figure 6.5 Modification of a graphical view

As an example, Figure 6.5 shows a modification being made to the graphical view shown in

Figure 6.3, where the number of features associated with a single equivalence is being increased

(adding apex2, from idm_hip_roof, to the last equivalence), allowing a new function to be used to

calculate the equivalence between the two forms of roof specification. This change is propagated

through to the canonical form of the schema which is updated, then all dependent views are

identified and notified of the change which has been made. VPE propagates changes to other

affected views in the form of an MViews update_record (described in detail in Section 3.2.2). This

record provides a complete description of any single change. How views react upon receipt of an

update_record depends on both the view type and the nature of the change.
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Figure 6.6 Receipt of an update_record in a textual view

In the VPE system, like EPE, update_records propagated to textual views are not applied

automatically, although many of them could be. Instead they are displayed in the view and the user

has control over which updates are applied at which time. As can be seen in Figure 6.6, the

graphical update to the inter_class definition generates an update_record in the equivalent textual

view. Many update_records can be directly applied by the system on user request, although this

particular update cannot as the system does not know where the new features should appear in the

function’s parameter list. In this case, the user is tasked with applying the required modification

and informing VPE that it has been applied. Following this, the notification of the outstanding

update is removed from the view leaving the modified textual view as shown in Figure 6.7 (where

the last equivalence now references apex2 for some parts of the function). 
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Figure 6.7 A textual view after manual application of an update specification

6.2.1.6 Documentation

In addition to providing a consistency mechanism between views, update_records are retained in a

persistent form in the VPE system, as they are in EPE. An update_record browser and editor gives

the user the ability to browse the changes that have occurred to an inter_class definition in the

evolution of the mapping specification and to add further documentation to each update_record. In

this manner a portion of the documentation of the history of development of the system is

automatically built up as work progresses. Having this update history on-line also allows system

developers to trace back through previous design decisions while mappings are further refined.
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Figure 6.8 Browsing the change log for an inter_class specification

Figure 6.8 shows the update_record browser displaying a list of changes that have been made to

an inter_class definition based on the update_records generated by changes in various views.

These include a change in the function used to map between features, and changes resulting from

the renaming of a feature in one of the referenced schemas. The full details of the modification to

the inter_class are displayed in the top window, highlighting the comment field that can be filled in

by the system developer.

Figure 6.9 An associated documentation view for an inter_class definition

VPE also provides textual documentation views (accessible via the hypertext navigation facilities)

for inter_class definitions, used to document the reasoning behind decisions made and other

information relevant to a particular inter_class specification in a central and managed fashion. A

useful feature of documentation views is that update_records relating to the inter_class definition
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are automatically added as textual comments to the view as the inter_class changes. Figure 6.9

shows a documentation view taken at an early stage of the mapping specification.

6.2.1.7 View navigation

As can be seen from the preceding example, the VPE modelling environment captures a large

amount of information about a mapping specification, and hence navigation facilities are needed. In

VPE the views and inter_class icons themselves act as a navigation and search facility for the

project, in a similar way to the views and icons of EPE. Mouse clicks on graphical view

components allow rapid access to other views containing that component as shown in Figure 6.10.

Figure 6.10 View navigation for inter_class specifications

6.2.2 Using the VPE environment
The VPE system offers two types of display views to its users. The initial type is a graphic view

which can contain VML-G icons, representing inter_class definitions, tied to icons representing

entities from the two schemas being mapped between (see Figure 6.1 for an example of a graphical

view). In the graphical view the user has a palette of tools available, as seen on the left hand side

of the view. These tools offer the following functionality:
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Used to specify an inter_class definition in a graphical view. Clicking on an empty portion

of the drawing window after selecting this tool will create an empty inter_class icon in the

window.

Allows the attachment of an entity definition to an inter_class. To attach an entity, the user

clicks inside the inter_class, and drags the pointer to an empty portion of the drawing

window, which is where the icon will be placed. This will invoke an entity dialogue to

determine which entity to place in the window, followed by a features dialogue to

determine which attributes and methods will be visible in the icon (the default is all

attributes and methods). If an existing entity icon is selected when this tool is current then

the entity dialogue and features dialogue will be retrieved. During the entity dialogue the

user may specify a new entity, rather than select one from the proffered list. A new entity

can either be a normal entity to be added to one of the schemas, or a temporary entity to be

managed by the mapping system. During the entity dialogue, the user may also specify the

position of the named entity in the class list for the inter_class, or check a box which

defines that the entity is grouped in the class list specification.

Used to specify the inheritance hierarchy between inter_class definitions drawn in a

graphical view. To specify an inheritance link, the user clicks on the parent inter_class icon

and drags to the child inter_class icon.

Used to specify the inclusion of an entity’s attribute or method in an inter_class equation.

The user selects the attribute, method, or entity name shown in the entity icon, and drags to

the inter_class icon. The effect of the drag is dependent on where in the icon the drag

terminates. If the drag terminates in: the connection box of an existing equation, the

attribute or method is attached to the existing equation; if it terminates in one of the three

section headers (invariants, equivalences, initialisers), a new equation is created and a

connection made to that equation. If the user clicks on the line separating the entity name

from the attributes and methods, then a new attribute or method can be described through

an attribute dialogue when the connection has been made to the inter_class icon. A new

attribute or method can either be a normal one which extends the schema definition of the

entity, or a temporary one to be managed by the mapping system.

This function is not implemented in the current modelling environment. It is intended to

allow an inter_class mapping between two versions of an entity to be automatically

specified, with as many one-to-one links between the two entity versions as possible based

on attribute and method names. However, the current Snart language has a single name

space which means that two entity definitions having the same name can not be specified.
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Used to create a new graphical view of the specified inter_class. If several inter_classes

and entities are selected when this tool is used then the user will have the option of copying

all selected icons to the new window.

Hides an entity icon, or an inheritance link, or an inter_class and all its attachments (i.e.,

entities and inheritance connections). The hidden item is not removed from the canonical

representation of the schema, merely hidden in the current graphical view. 

Deletes an inheritance link, or an inter_class and all its attachments (i.e., inheritance

connections). The items are removed from the canonical representation of the schema as

well as from all views which contain the item.

Allows icons in the graphical view to be selected and repositioned in the current view.

Double clicking on an entity icon has two effects, depending upon the area in which the

double click occurs. Double clicking on the entity name brings up the entity dialogue which

allows the position of the entity in the class list to be specified, and whether the entity is to

be grouped or not. Double clicking in the attributes and methods area brings up the attribute

dialogue allowing the set of attributes and methods which are visible in the entity icon to be

modified, or to add new attributes and methods (or delete attributes and methods). Double

clicking on an inter_class icon has three functions depending upon where in the icon the

double click occurs. If the double click occurs in an equation, then the full description of

the equation is displayed in the equation dialogue. In this dialogue the user can manipulate

a textual description of the equation, function or procedure call. After modification the

textual specification is re-parsed to determine what symbol should be shown in the

inter_class icon, and what connections should be made to entities currently in view. Double

clicking on the left hand side of the icon headings (invariants, equivalences or initialisers)

brings up a dialogue listing all views that this inter_class is specified in to allow navigation

to other views. Double clicking on the right hand side of the icon headings (invariants,

equivalences or initialisers) makes the textual view of the inter_class visible.

The second type of view offered is a textual view. Textual views allow free-form textual editing

and manipulation of the canonical definition of VML inter_class definitions (see Figure 6.4 for an

example of a textual view). Textual views are re-parsed at the termination of a textual editing stage

(as signified by the user), and all modifications propagated through to the canonical form of the

edited inter_class and to any graphical views which may be affected.

6.2.3 Implementation of VPE in the MViews framework
VPE is constructed by tailoring MViewsER (Grundy 1993), a specialisation of the MViews object-

oriented framework which is fully described in Section 3.2.3. Though VML and VML-G have

very little relationship to the ER diagramming notation there was quite a similarity between the
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relationships defined between objects in the MViewsER system and those needed in the VPE

system. Therefore MViewsER was used as the starting point for the VPE system and, through

some careful modification, specialised to construct the VPE environment. Figure 6.11 shows the

inheritance hierarchy for the VPE environment, with all VPE classes prefixed with a ‘vpe_’. This

structure is very similar to that of MViewsER, and the majority of the MViewsER code was able to

be utilised for the VPE environment. The modifications to the MViewsER environment fell into the

following categories:

Incorporating class icons: unlike other MViews-based environments, the VPE system requires an

associated modelling notation to be displayed in a graphical view. The associated notation

is for the schema classes that are wired to denote the mapping in a graphical view. The

Snart notation was chosen as all attributes appear in the same icon, making it easy to render

and manage (unlike EXPRESS-G). Extra coding was required to manage the two schemas

being mapped between, and to present the modeller with relevant schema information in the

graphical views.

Figure 6.11 Class inheritance for VPE from MViews

Rendering modifications: VML and ER have a very different appearance and meaning on screen.

All MViewsER display code was changed to reflect the VML appearance, and class names

in MViewsER modified to reflect the functionality of VML icons.
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Environment modifications: The set of functions which can be performed on a VML diagram are

very different from those performed on an ER diagram. Therefore, new function icons had

to be created, and the functionality associated with them fully coded. All dialogues had to

be rewritten to reflect the requirements of a VML environment and to use the correct

terminology for a mapping support environment.

VML language parsing and generation: the underlying representation of information in the VPE

system is VML, which provides for an easy mapping between the canonical representation

and the display views. However, a parser and VML code generator were still required to

parse textual views and determine their syntactic correctness, and to generate VML code

snippets from graphical representations.

update_record labelling: the range of update_records used in MViewsER was examined and

modified to suit the structure and terminology of VML.

6.2.4 Future connections between VPE and EPE
Currently there are no connections between the schema definition environment EPE and the

mapping language environment VPE. However, in the same manner that MViews has been used to

integrate multiple modelling paradigms (Grundy and Venable 1995; Venable and Grundy 1995), it

is possible to connect the EPE and VPE environments. The benefits that this would produce are:

• mapping specifications which add to, or modify, the schemas being mapped between could

be propagated to all affected views in the EPE environment. In this way, the mapping

environment could be used as a schema integration system, allowing an IDM to be

constructed from the requirements of the various design tools being mapped to it.

• schema changes made using EPE could be propagated to all affected mappings definitions

in the VPE environment. Many of these changes could be automatically applied to the VML

specifications (e.g., renaming of entities or attributes, changes to basic attribute types).

Changes which could not be applied automatically (e.g., deletion of attributes, changes to a

method’s parameters) could be tracked and notified in all the mapping views which

reference the affected item.

6.3 Management of Mapping Definitions

VML mappings specified through the graphical views of the VPE system are easily checked

against the schemas being mapped between, as the wiring to entity icons makes explicit the exact

entity, attribute or method involved in the mapping. However, when parsing a textual mapping

specification in VPE, and, to a much greater extent, when utilising a complete VML mapping from

some other source, there is scope for ambiguity in the mappings and a necessity to cope with

schema modifications. Ambiguity in VML specifications occurs when shorthand forms of

attributes and methods are used in a mapping. In many cases it is desirable to allow this shorthand

form, as reading a specification with full references (i.e., schema name and version, then entity
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name, then attribute or method) is fairly cumbersome. In most cases, the side of the attribute

references makes explicit the entity to which an attribute or method belongs. In some, however,

the same attribute or method name can appear in multiple entities from the same schema and

clarification is required. Another problem is that when parsing a mapping it is impossible to

distinguish between a mistyped entity, attribute, or method name and a reference to a new entity,

attribute, or method for a schema.

To cope with these problems, a VML parser and verifier (VML-Check) has been constructed

which checks initially whether a VML mapping is syntactically correct, and then checks it against

the schemas it references, expanding the VML mapping to full references and updating the

schemas where necessary. VML-Check requires three inputs: a VML mapping definition; and two

schema definitions. Schemas that can be loaded are either in the generic schema definition format,

as described in Section 3.3, in EXPRESS format (with the same restrictions as defined in Section

3.2.4), or Snart format. Schemas in either EXPRESS or Snart format are transformed into the

generic schema definition format during the checking process. Schemas in Snart format can be

multi-file schema definitions or even whole applications (in which case only the class interface

information is extracted). VML-Check produces both a fully expanded textual definition of the

original VML mapping, and a generic database representation of the mapping definition (as

described in Section 6.4).

6.3.1 Name resolution
If all schemas had unique entity, attribute and method names, and no typing mistakes were made

during mapping specifications, the process of resolving references in a VML mapping would be a

simple task. However, this is an ideal situation and unlikely to occur, so the following problems

needed to be tackled during the resolution of references:

• determining the entity an attribute or method reference belongs to when there are multiple

entities which have the referenced name in their definition. Handling this problem is broken

into two cases. If the duplicate references are from different schemas and the mapping is

from an equation where a default side can be determined, then the reference defaults to the

entity from the schema associated with that side of the equation. If there are multiple

entities with the name reference for a particular side of an equation, or for a function where

there is no notion of side, the user is presented with a list of possible resolutions for the

mapping and they choose the correct reference.

• determining whether a reference is to an entity or an attribute when both an entity and an

attribute have the same name in a schema. This is treated in a similar fashion to above. If

the side of the equation the reference comes from has only the entity, or the attribute

associated with it then the checker defaults to that reference. Otherwise, the user is

presented with a dialogue to determine the correct reference.

• determining whether an unresolvable reference should be an addition to a schema definition

or if it is a typing mistake by the user. This cannot be handled automatically, so the user is
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presented with a dialogue to direct the checker as to what to do with the reference.

6.3.2 Schema modification
Mapping definitions can include references to entities, attributes and methods of a schema which

do not currently exist. A mapping definition can also reference temporary entities and temporary

attributes of existing entities. All of these constructs need to be recorded against the schemas

utilised for the current mapping.

Where additions are specified for an existing schema, the generic schema definition is modified to

contain a new version, inheriting from the currently specified version, which has a creation reason

of type mapping_dependant (see Appendix G). All modifications to the schema are then specified

in this version, the mapping being checked is updated to be a mapping between the new schema

version and the other schema version. This new version captures not only new entities, attributes

and methods, but also all temporary attributes and methods which are specified in a mapping. The

assumption is made that all temporary attributes and methods belong to a particular entity, that is,

there is an occurrence of a temporary attribute for every occurrence of a particular entity in a

mapping.

Temporary entities, on the other hand, belong to neither schema, and so are recorded separately

from the generic schema definitions. Temporary entities are only recorded in the generic mapping

definition (see Section 6.4) with the assumption that any implementation of VML mapping

specifications will be able to manage their creation.

6.4 Generic Mapping Database Definition

Although VPE provides a multi-view, automated consistency, modelling environment for VML, it

is not assumed that this environment will always be used to specify mappings. Mappings could

well be created in other environments (some of the simple mappings shown in this thesis were

defined utilising a text editor), or even translated from other mapping languages to be utilised in a

particular implementation of a mapping system. To support the range of possible mapping sources

a generic mapping notation (detailed in Appendix H) has been specified. Mappings defined using

this notation act as the input to any implementation environment for VML mappings.

A generic mapping definition contains all the information required for a VML implementation to

perform mappings between instances of two schemas. This includes definitions of all the

referenced entities from the defined versions of the two schemas. These entity definitions define

the complete entity interface, including all attributes and methods added to the schemas by

mappings, as well as temporary attributes and methods, and definitions for temporary entities. The

actual VML inter_class definitions are split into component parts in the generic mapping definition,
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and are all uniquely identified. The component parts of a mapping (i.e., each individual invariant,

equivalence and initialiser) contain a parse tree representation of their definition and are classified

as to the type of equation they represent, as well as listing the set of schema references which are

contained in the equation. Inverted indices (which can be statically determined) are also stored for

every entity, attribute and method referenced in all mappings. This provides quick access to

inter_classes and individual invariants, equivalences and initialisers which reference any particular

entity, attribute or method.

6.5 Appraisal of Mapping Modelling and Development

The VPE system and mapping database format create an environment which supports the

development and communication of inter-schema mappings as well as the documentation

requirements of an integrated modelling environment, as detailed in Section 6.1.1. VPE supports

these requirements in the following manner:

Connection with the schema development process: this is only supported to the extent that schemas

can be loaded into the VPE environment to be attached to inter_class definitions. Though a

user can hand edit a class definition (e.g., rename an attribute) there is no automatic flow of

consistency checks throughout the VPE environment. The VPE environment provides

hooks which will allow the automatic handling of schema modifications at a later date (by

propagating schema update records to and from the VPE environment).

Documentation: VPE meets many documentation needs by tracking all updates made to the

mapping and recording them against the inter_class definitions that were modified. These

update records can be annotated by the user to record justifications and decisions, and

provide on-line documentation for the developing mapping. One documentation feature

which would be useful, but is not provided, is the ability to group multiple disperse update

records to represent a single update or documentation record. For example, this would

record a session of changes as a single documented change to the mapping.

Support for multiple views: multiple views are supported for all inter_class definitions which have

a full invariants specification (providing the key for the inter_class). This allows any

combination of graphical inter_class definitions to be specified and maintained with full

consistency at all times. However, due to the difference in specification level between the

textual and graphical views, there are many graphical updates which can not be

automatically applied to textual views, though all textual updates can be automatically

applied to graphical views.

Though VPE meets the majority of the requirements for a schema modelling and development

environment, there are some areas which would benefit from further work. These areas include:
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Tight coupling between specification environments: though the VPE environment accesses schema

definitions when constructing a mapping view and when checking the correctness of a

mapping specification, there is no formal coupling between the schema modelling

environment EPE and VPE. A tight coupling between these two environments would allow

schema modifications in EPE to be displayed in appropriate VPE views as updates. These

updates could either be automatically applied to the current mapping, or the mapper could

apply them by hand. In a similar fashion, the specification of a mapping which modifies an

existing schema could be propagated through all affected views in EPE, and either be

automatically or manually applied. This would increase the level of consistency between

schema definitions and mappings which are related to them. The experience of Grundy and

Venable (1995) suggests that this integration can be made with little or no modification to

EPE or VPE, by using the inter-repository relationships and multiple-base layers used in

their ISDE integration.

Collaborative design support: although large modelling projects may have a single coordinator in

charge of mapping specification development, there are likely to be several modellers

working on different aspects of the mapping. Coordinating the work of several modellers,

and maintaining the consistency of the underlying mapping under change from several

sources concurrently, has to be a goal of any real mapping development environment (see

Grundy et al. 1995 for an example of developments in this area).

Expanded modelling support concepts: the range of support concepts required by modellers when

developing large mappings is not clearly understood, and hence, not well supported.

Currently, documentation of mapping modification and construction is made at the atomic

level. Methods allowing for grouping of higher level concepts are imperative (including

multiple viewpoints of change sets). The manner of notification of modifications in a

collaborative environment needs attention to provide efficient methods of expressing these

changes to other designers (rather than at the atomic change level), an example of

developments in this area can be seen in Grundy et al. (1995). Navigation and summary

features tend to be primitive. In large mapping definitions with hundreds of inter_class

specifications and thousands of views, the set of views which reference a particular

inter_class could be very large. Classification of view types, or the relationship particular

inter_class definitions play in a view, could well help navigation around the mapping and

guide novice users through the various conceptual levels of mapping specification. Notions

of mapping versions and private workspaces need to be considered in a collaborative

environment. This allows the management of multiple design paths, and for incomplete

work to be hidden until fit to be used by other participants.

In summary, this chapter introduces the requirements for a mapping modelling and development

environment, and through the development of VPE and a mapping database format, demonstrates

that an environment meeting these requirements is possible. This now provides a tie-in between the

schema for an IDM and the schema models for DTs and users. However, to provide the full
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description of a project requires specifying information flows and where particular schemas are

required. This is the problem tackled in Chapter 7, the last of the modelling chapters, before

detailing the implementation of a system which utilises all of the developed models.

125



Chapter 7

Project Modelling

To utilise the types of integrated design system that can be described with the modelling and

mapping specifications described in Chapters 3, 5 and 6, it is also necessary to manage the tasks

and people involved in the projects in which the integrated system is used. This level of modelling

enables an integrated design system to be customised for use in a specific project. Project

modelling is a task that must be undertaken at the start of every project as participants and their

tasks will vary for almost every project. This task is usually assigned to a project manager, though

project models must be checked and accepted by all participants.

The work on project modelling presented here includes and extends work undertaken by the author

during a six-month visit to the COMBINE group at TU Delft in the Netherlands, the results of

which are reported in TU Delft and Amor 1993, and Amor and TU Delft 1993.

7.1 Introduction

A project encompasses all stages of work from inception through to demolition and possible reuse

of a particular artifact. To manage and understand what happens in a project, a model is required

of the various actors involved and the responsibilities and tasks they play in the project. The

development of a project model also provides an understanding of which data models are required

in a project and what data transfer is required between these models. This influences the work

done on schema development and on mappings between schemas. A project model provides a

formal description of the various users who will be involved in the project, and formalises the

roles they will be fulfilling in the design task. The various design roles can be further refined to

individual design functions which can, in turn, be associated with the design tools available to
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perform them. The set of design functions must be able to be scheduled, to allow a project

manager to ensure that design policies are followed, quality assurance conventions are maintained,

handover points between contractors are formalised, and design progress can be monitored.

Without the ability to model and manage these aspects, an integrated design system offers a

meaningless data transfer mechanism unrelated to a real-world project.

A large design and construction project involves many development phases, some of which may

be independent of each other, and, in many cases, need not be specified (and may not even be

known) at the start of the project. To understand and manage the large scale of projects, and their

initial  indeterminacy, they are often conceptualised as happening in stages, though these stages

often overlap. Common stages in a project may include inception, management, design,

construction, maintenance and demolition. Stages may be very broad, or quite specific; for

example, the structural design stage in a particular design office. In COMBINE, the term ‘project

window’ was introduced to describe these coherent portions of a project (see Figure 7.1). This

term is used throughout this thesis. The project windows represent a given time-slice of the

project, or some sub-process. Therefore, a project is considered as being divided into multiple,

conceivably overlapping, project windows which are specified prior to the execution of a new

phase of a project.
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Figure 7.1 Multiple project windows in a project

Even splitting a project into multiple project windows is unlikely to provide enough flexibility for

real projects. A single project window may model weeks of work, over which period the

participants in the design team could change (e.g., bringing in an expert to help with unforeseen

problems) and various flows between design functions may need to be modified (e.g., to ensure

new aspects of the design are checked). To cope with this variability, a previously specified
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project window model must be able to be modified and updated as the design progresses, with

immediate flow-on effects to the running control system.

The modelling of projects and project windows requires many aspects of a project to be captured.

Other research in this area has been examined to provide an understanding of the requirements for

project modelling. The notion of project models outlined above has great similarity to the concepts

of project and process in software engineering. Curtis et al. (1992) provide a review of process

modelling which categorises requirements and various approaches to process modelling. Their

four most commonly utilised perspectives in process representation (functional, behavioral,

organisational and informational) are used to rate previous process models, and are also used to

evaluate the CombiNet model developed here. The meaning of these four perspectives (from

Curtis et al. 1992, page 77) are:

Functional: represents what process elements are being performed, and what flows of

informational entities (e.g., data, artifacts, products) are relevant to these process elements.

Behavioral: represents when process elements are performed (e.g., sequencing), as well as aspects

of how they are performed through feedback loops, iteration, complex decision-making

conditions, entry and exit criteria, and so forth.

Organisational: represents where and by whom (which agents) in the organisation process

elements are performed, the physical communication mechanisms used for transfer of

entities, and the physical media and locations used for stored entities.

Informational: represents the informational entities produced or manipulated by a process; these

entities include data, artifacts, products (intermediate and end), and objects; this

perspective includes both the structure of informational entities and the relationships

between them.

Functional Behavioral Organisational Informational

Procedural programming languages * * *

Systems analysis and design * * *

AI languages and approaches * *

Events and triggers *

State transition and petri-nets * * *

Control flow *

Functional languages *

Formal languages *

Data modeling *

Object modeling * *

Precedence networks *

CombiNet * * * *

Table 7.1 Capabilities of project specification languages (after Curtis et al. 1992)
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Curtis et al. (1992) evaluate different styles of project specification against these perspectives,

summarising their results in tabular form. Table 7.1 replicates this summary (where asterisks

represent the ability of a language to support a perspective) and extends it to include the work

presented here (CombiNet entry). The styles of project specification presented below cover all the

different process notations and tools presented in Sections 2.5.2 and 2.5.3.

7.1.1 Requirements
Considering the four most common perspectives offered by Curtis et al. (1992) led to the

definition of a set of views that must be able to be supported. These views include users, tasks,

data and workflow. The requirements of these views are as follows:

User View: all the actors involved in a project window and the tasks they must undertake to ensure

completion of the project window role. This view must capture the responsibilities of the

various actors and their rights in terms of viewing and modifying information in a project.

Task View: all design functions that can be performed by the design tools within the project

window. The granularity of a design function can vary from atomic changes to a design,

through to a complete design. The level of granularity is determined by the requirements of

individual projects. The only fixed requirement is that each design function must happen

between a starting and ending exchange event of information with respect to the integrated

design system. Everything that goes on between these exchange events is invisible in the

project window model, being the domain of the design function. Thus, design functions

can be both on-line atomic CAD design tool operations and off-line batch mode design tool

runs.

Data View: all schemas concerned with design functions and users. In the project windows

described here this includes:

• The complete IDM schema.

• The IDM subschemas corresponding to the input of design functions.

• The IDM subschemas corresponding to the output of design functions.

• The IDM subschemas corresponding to the input view of actors.

• The IDM subschemas corresponding to the change access of actors.

This offers a purely static view of the project window definition, not addressing aspects of

control over instances (unless it can be modelled in the schema). The subschemas do,

however, define the state that the project must reach before a particular design function

may be utilised, or before an actor can be called into the project.

Workflow View: defines all possible flows from a particular point in a project. It ties the design

functions together and provides the way of describing the handover between various actors

in a project. The workflow defines how tightly managed and controlled a project is going

to be, from highly specified to very open. To enable the workflow view to be used, a

management system will have to be able to determine all states of a design function, the

state of the integrated design system, and control over exchange events according to

control flow constraints. This will include the following aspects:
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• whether a design function is being performed.

• whether a design function is a candidate to be invoked (in view of design functions

that it depends on).

• whether a design function is a candidate to be re-run because the running of another

design function changed its original input.

• the design function state and integrated design system state resulting from previous

exchange events.

The views specified above describe aspects of a project which must be modelled to ensure that

required project perspectives can be supported. However, they do not provide a measure of the

level of control that will be exerted on a project through the views. The level of control could vary

widely, from very rigid and autocratic management through to very free and autonomous

management. Current perspectives on this include:

• No control as typified by current integrated design systems. These systems are merely able

to transfer data around without any in-built process context and purpose of data exchange

events. For such a system to be operational in a particular design project, a project manager

needs to establish work procedures, task scheduling, etc. among the team of users. The

system is an insensible data router which provides no guidance on what should be done

next.

• Shallow control is seen in several of the more recent integrated design system efforts, e.g.,

COMBINE, and ToCEE. This approach uses a scheduler which deals only with the control

over who, or what task, is next, and which monitors the states resulting from exchange

events. At this level of control, a project manager can enforce much rigour in the use of the

system. Although this might suit project windows for parametric (routine) design, it is to

be expected that most project windows will require a more flexible approach, where the

human users may interact with the control layer as well as with each other (outside the

system).

• Deep control is the level that integrated design system developers aspire to and AI

researchers still ruminate over. This type of control deals with much greater complexity

than just scheduling. Deep control must deal with the pre- and post-conditions which are

related to exchange events. It should have the ability to look inside exchange events and

DT interfaces, and propose remedial actions for any failure of a DT invocation or analysis,

or propose and control how the system can recuperate from deadlocks in design

scheduling. Deep control should also deal with declarative knowledge on the meaning and

purpose of design functions and thus support goal-driven design strategies.

A deep control system, while perhaps being the type of control system that should be aimed for in

the future, is out of the scope of this thesis. Deep control, as defined above, requires the solution

of many hard research problems in the artificial intelligence field. As a first step towards

introducing process control into integrated design systems, shallow control has been selected for
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use in all the large EU funded projects and this is the approach implemented by the author and

shown in this chapter.

7.1.2 Structure
To cover the four most commonly utilised perspectives specified in Section 7.1, and meet the

requirements of Section 7.1.1, the CombiNet formalism developed here defines three main types

of information to be modelled for a project window: project window requirements, defining part of

the informational perspective; user requirements, defining most of the functional, organisational

and informational perspectives; and flow of control requirements, defining the behavioral

perspective. Project window requirements allow the specification of starting conditions for entry

into a project window, and exit conditions (e.g., data that is required by the end of the project

window). User requirements allow the specification of the participants and their design functions

in a particular project window. These participants (actors) perform certain design roles in a project

and these design roles can be completed through the application of various design functions. A

design function can be represented as a particular design tool used in a certain manner, e.g., to

perform one type of analysis from the range a design tool offers. Flow of control requirements

allow the specification of the paths that may be followed between various design functions to

complete the design phase encapsulated by the project window.
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Figure 7.2 Example of user and function specification
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The CombiNet formalism utilises two specification notations to model user requirements and flow

of control requirements. Though two notations are described, they are used in an integrated

manner in the specification environment, with explicit links between diagrams in both notations.

7.2 User and Function Modelling

A majority of the functional, organisational and informational perspectives, as introduced in

Section 7.1, can be grouped together and defined in a single formalism. Functional and

informational perspectives can be defined for design functions, actors and the project window

through the definition of input and output models. These schemas specify structures and

constraints of the models used by, and produced through, the use of a particular design function,

actor or project window. Organisational perspectives can be partially defined in the same model

through connections between actors, their design roles, and the design functions required to

complete the design roles.

In Figure 7.2, a graphical specification of user and function, detailed in a CGE (Configurable

Graphical Editor, Vogel 1991) project window formalism (developed by the author), is presented.

There are three main types of icon in this diagram, connected by arrows representing performs and

requires relationships for actors and design roles respectively.

Actor: the oval icons in the left column of the diagram represent actors (users) participating in the

project window being specified. An actor has a name defining either the actor or, as in

Figure 7.2, the type of actor which will be performing particular roles in the project

window. Each actor is associated with a pair of schema defining both the subset of the

IDM that they are able to view, and the subset of the IDM that they are allowed to modify.

These two schemas define the area of responsibility of a particular actor, and are used to

ensure the actor acts within a specified domain. These schemas can also be used to check

that the roles an actor plays are not outside the actor’s area of responsibility. Actor

responsibility can be checked against design role responsibility, as the area of

responsibility of a design role can be determined by the union of the schemas associated

with each design function it utilises. An actor is associated with one or more design roles.

In Figure 7.2 each actor has unique design roles, but this is not mandatory, multiple actors

are allowed to perform the same design role.

Design Role: the rectangular icons in the centre column of the diagram represent the various design

roles which are performed by actors in this project window. Each named design role can

be fulfilled through the application of various design functions (the scheduling of which is

specified at a later stage). Several design roles can utilise the same design function in the

completion of their role. For example, the documentation design function is used by most

of the design roles.
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Design Function: the icons in the right column of the diagram represent the various atomic design

functions which can be carried out in the completion of design roles in the project window.

A design function has a name defining the type of function it performs and directly under

the icon the name of the design tool which will be used to perform the named function.

Each design function is associated with two schemas defining both the subset of the IDM

which will be the input to the design tool, and the portion of the IDM which can be updated

at the completion of the design function. These two schemas define the responsibilities of

the design function. Though not shown in Figure 7.2, several design functions can be

accomplished with the same design tool, but often with different input and output schemas

defining responsibilities for the tool. The definition of the different functions performed by

the same design tool is indicated by the two schemas specified along with the design

function.

In the CGE environment the modeller can navigate from this user and function view to the top

level flow of control view through a menu item in the environment. The CGE environment is not

as sophisticated as the MViews environment utilised in Chapters 3 and 6, limiting the type of

environment that can be offered to the modeller. The main restrictions are that it can only provide a

single view of a model (i.e., one user and function view) and sophisticated navigation facilities are

not available (e.g., it is not possible to navigate from a design function to all flow of control views

which reference that design function).

7.3 Flow of Control Modelling

A Petri net formalism provides much of the behavioral perspective required for project

specification, and, along with the DT schemas for actors and design functions defined in the user

specification detailed in Section 7.2, many properties of a project’s state can be calculated. In this

section the calculable properties of a flow of control specification are defined, along with a

formalism for describing them. This formalism is based around the design functions defined in the

user specification. However, it also overlays actor’s areas of responsibility to provide the link to

organisational perspectives for the project specification.

7.3.1 Set theoretic background for flow of control
The control view states defined in Section 7.1.1 are calculable from analysis of data flows in the

integrated design system based on the schemas associated with each design function (DF). The

basis of the analysis is to assume that the input and output schemas for a design function together

describe a subset of the IDM schema. This is not strictly true, as the schema for a design function

is likely to have cardinality constraints, keys and value constraints which differ from the IDM.

However, these added constraints can be ignored when checking subset relationships and when
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performing intersections of various schemas. What will be used for the set operations will be the

definition of entity names and their inherited entities, and attribute names and types which appear

in the design function schemas and the IDM. In the following conditions and constraints In is used

to denote the input schema to a design function or actor, and Out to denote the output schema of a

design function or actor.

There are two conditions which must hold on the design function and actor schema definitions:

Condition 1: ∀ i 0 (DF c Actor) (IDM ⊇  iIn, IDM ⊇  iOut)

Condition 2: ∀ i 0 Actor ,∀ j 0 DF of Actor i (i In ⊇  j In, i Out ⊇  j Out)

This just states formally that the input and output schemas of all design functions and actors must

be a subset of the IDM, and that the input and output of any design function used by an actor is a

subset of that actor’s schemas. In practice, this means that the input and output schemas must be

defined in terms of the IDM (i.e., using the same entity, relationship, method and attribute names),

as well as being defined by the model structure used in the actual design tool or actor view. Using

these definitions enables a static check of all schemas in the integrated system. The schemas can be

checked against the IDM to determine whether they are valid subsets of the IDM (i.e., whether the

schema has been defined properly. This will mainly pick up typing errors). The allowable

differences in schemas of a design function or actor over that of the IDM are that the former may

define: different uniqueness constraints (keys); different constraint clauses or ones which are

additional to those defined in the IDM; different cardinalities on attributes; and different optional

specifications for attributes.

Given a system which contains the IDM schema and the input and output schemas of the various

design functions used in a particular project window, and the definition of a flow of control for a

given project window, there are various properties which can be calculated. To derive these

properties from the design function schemas two constraints are defined:

Constraint 1: ∀ i 0 running DF, ∃ c 0 DF (i Out ∩ c In = Ø)

This constraint is a concurrency check, or an invocation check, stating that a design function (c) is

a candidate to be invoked if its input schema has no intersection with the output schema of any of

the running design functions (written as running DF in the constraint).

Constraint 2: j = completed DF , ∃ i 0 previously run DF (i In ∩ j Out ≠ Ø)

This constraint is a re-invocation check, stating that if the output schema of a design function

which has just terminated (DFj Out) intersects with the input schema of any other design function

which was previously run (DFi In), then the previously invoked design function (DFi) is a

candidate to be rerun.
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It must be noted at this point, that intersections between design functions are described only at the

schema level (i.e., static determination). Where the design functions require a model of a full

building this will be sufficient to determine the properties detailed above. However, if a design

function models only a small portion of a building (e.g., calculates properties for a single space)

then the properties calculated above could present a design function as a candidate to be rerun in

more cases than necessary. In the implementation of the flow of control system, this is handled by

also tracking the objects which are used by each design function. The intersections between design

function schemas gives a static determination of whether a design function needs to be further

examined at run time to determine the properties defined above.

The working of the two constraints described above is illustrated in the figures below:

 

IDM

DF1 In DF2 In

DF1 Out

DF2 Out

Figure 7.3 Invocable design functions

Figure 7.3 presents the situation where, even though the two design functions share data in their

input schemas, neither of the design function input schemas have an intersection with a design

function output schema. In this case, both design functions may run concurrently, and the result of

either tool will not cause the re-invocation of the other design function.

 

IDM

DF1 In

DF1 Out

DF2 In

DF2 Out

Figure 7.4 Constrained design function
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Figure 7.4 presents an example where there is an intersection between an input and output schema

of two design functions. In this case, if DF1 is running then DF2 may not start. This figure also

illustrates what may happen with Constraint 2. If DF2 was run at some time in the past, and then

DF1 is run, then the output of DF1 may overwrite what was previously supplied to DF2, so DF2

becomes a candidate to be rerun.

 

IDM

DF1 In

DF1 Out

DF2 In

DF2 Out

Figure 7.5 Constraints between two design functions

Figure 7.5 presents a case where the two design functions may not run concurrently, as the input

schema of each design function intersects with the output schema of the opposite design function.

This figure illustrates a situation where the invocation of either of these design functions can cause

the other design function to be a candidate for a rerun, apparently causing a cycle. However, this

is not problematical as the design functions are only candidates to be run. The final decision of

what can be run at any particular time is made via the project window control flow information.

 

IDM

DF1 In

DF1 Out

DF2 In

DF2 Out

Figure 7.6 Design function constraints leading to apparent inconsistencies

Figure 7.6 presents a definition which could apparently lead to inconsistencies. The two design

functions have the same properties as those in Figure 7.5, but with the additional complication that

they overwrite portions of each others output. Again, this is acceptable, as the running of each of

these design functions is determined by the project window definition which by its own definition

gives rights to a design function to place its output in a portion of the resultant data store. The
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termination of either design function will mark the opposing design function as a candidate to be

rerun, making explicit the fact that the output of the design function has been overwritten.

While these examples demonstrate the interaction between just two design functions, the

constraints described earlier are general and the results can be applied over any number of design

functions.

7.3.2 Flow definition
The graphical formalism developed to specify flow of control in a project window is based very

loosely on the Petri net formalism (Jensen 1990). Icons representing places, transitions and tokens

are used in the modified definition, along with new icons to allow further functionality to be

described. Although the new formalism (called a CombiNet) looks very similar to a Petri net, the

semantics are very different. The icons in this formalism and their functionality are described

below, with reference to Figures 7.7 and 7.8.

Figure 7.7 Top level flow of control specification

Place: A place in the CombiNet (the single lined oval icon in Figure 7.7) represents a single design

function. It can be reached from some set of transitions and it will exit to some set of

transitions. Each place represents exactly one design function, but the same design

function can appear many times in a CombiNet.

Aggregate Place: An aggregate place (the double lined oval icon in Figure 7.7), as its name

suggests, represents a set of icons defining an identifiable subset of the process being

modelled, defined here to be all icons drawn in a window. Thus, allowing the modeller to

group complex interactions into logical subnets and reference them through a higher level

mechanism. Aggregate places representing the same CombiNet may be referenced from

any number of CombiNets or many times from a single CombiNet. This allows a common

sequence of events to be represented by a single icon in a CombiNet. It is also used to

distinguish the flow of control of different actors, or different design roles, into separate

definitions which can be linked together appropriately at a higher level CombiNet.
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Figure 7.8 Flow of control with global elements

Global Place: The global place (the single lined rectangular icon in Figure 7.8) represents a single

design function exactly like a place, but it has no connection to the transitions. The global

place denotes a design function that can always be activated when in the current CombiNet

(or in any descendant CombiNets, i.e., those represented by an aggregate place or global

net). Global places allow design functions which can always be invoked (e.g.,

documentation functions) to be specified in the CombiNet without having to draw links

from every single place and aggregate place in the diagram. It also allows a specific flow

semantics to be associated with the global place. This semantics is that after invoking the

design function in a global place the flow of control passes back to the place or aggregate

place which invoked the global place (rather than any place or global place in the diagram,

as would occur if everything was wired back and forth to a single place to achieve this

effect).

Global Net: This is a combination of an aggregate place and a global place. The global net icon (the

double lined rectangular icon in Figure 7.8) represents a complete CombiNet and is

invocable from any place in the current net, and all descendants of the current net. When

inside the global net all other global elements, other than those that are already entered

(i.e., a global net can not call itself recursively), can be seen. The set of visible global nets

reduces as each one is stepped into, and grows as each one is completed. The CombiNet

representation of a global net is the same as a normal net, so it can have its own global
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places and global nets as well as normal place-transition flows and aggregate places. A

global net is used for many of the same reasons as a global place (mainly for functions

which can occur at any time). Its main benefit is that a whole flow of control can be

defined in the global net rather than a single design function. For example, after completing

some set of design functions in a global net it would be possible to force the flow of

control through an evaluation function before returning control back to the original

CombiNet. The semantics of entering and exiting a global net are the same as for a global

place.

Transition: A transition in the CombiNet (the single vertical line icon in Figure 7.7) works as the

choice point between one design function invocation and the next. It can be used to work

out the set of candidate design functions that can be invoked after a running design

function has terminated. There are two special kinds of transition that can be created. A

transition which has no entering arrows (i.e., is not exited to by any place or aggregate

place) is called a start transition and denotes an entry point into a CombiNet. A transition

which has no arrows exiting to other places is called an end transition, and denotes an exit

from a CombiNet. In the current version of the project window definition, a CombiNet is

allowed to have only one start transition, though it may have any number of end

transitions. Having a single start transition in a CombiNet is purely a reading convenience

for a user, as this guarantees that having found one start transition the reader has found the

only entry into the CombiNet (a single CombiNet can be very large and complicated and it

could be easy for the modeller to overlook some starting transitions if more than one was

allowed). A single start transition also eases the computation required when attaching to

aggregate nets. All transitions which invoke an aggregate place are connected to the start

transition of the CombiNet represented by the aggregate place. In a similar manner, the

exits from an aggregate place to a transition are all tied to the set of end transitions in the

CombiNet represented by the aggregate place.

Double Transition: The double transition (the double vertical line icon in Figure 7.7) is a shorthand

notation for a loop between two places, which is represented by two normal transitions,

one in each direction, in a running system. In Figure 7.7 the two double transitions

provide two design function choices when exiting the design_and_update aggregate net,

either building_design or acceptance. If the building_design aggregate place is entered,

there is only one exit, back to design_and_update. If acceptance is entered then there are

two exits, either back to design_and_update or to terminate the CombiNet (and in this case

the whole project window).

Actor: The actor overlay (the large box icon with the actor name in the lower right corner, see

Figure 7.7) defines the actor responsible for a set of places, aggregate places, global places

and global nets in a CombiNet. This allows a clear distinction to be made between areas of

responsibility of various actors, and indicates the point of transfer of control from one

actor to the next. The actor overlay is needed in cases where multiple actors and design

roles utilise the same design function to perform their tasks. In this case, without the
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overlay, there is no way of determining the actor responsible for a design function in the

CombiNet. When implementing the flow of control, moving from the design function of

one actor to that of another is treated as indicating an acceptance and sign off of all

responsibilities for the initial actor. This includes accepting and terminating all outstanding

re-run requests for the actor handing-over control. However, the new actor will see re-run

requests generated by modifications that affected run states of their previous design

function work (if any) since the last time they were involved in the project. New re-run

requests will be added for the new actor as they work through their design functions, as in

the previous definition. Again, at the hand-over to another actor all current re-run requests

for the completing actor are removed. This helps control the proliferation of re-run requests

caused by changes which may impact on every design function which has previously run.

This management of re-run requests is local to a single project window, and will not affect

the same actor’s work in another project window of the same project.

Although tokens are never shown in the CombiNet diagrams, they are used in the implementation

to illustrate the flow of control in the CombiNet. A token represents the actions of one actor

performing their design roles with various design functions. A token in a place represents the

running of a particular design function. When the design function has terminated, the transitions

are used to determine the candidate design functions from the current place. When the next design

function is decided upon, the token crosses the choice point created by the transitions and invokes

that design function. If a design function is unable to start, or terminates unexpectedly, the token is

sent back to the place it previously came from, and transitions available from that place must be re-

evaluated. If a token moves to a global place or global net then after completing that function it will

return to the place from which the global function was invoked. A token enters a CombiNet from a

start transition and leaves on an exit transition. In every flow of control specification there is a top

level CombiNet from which a single token is started. When a token moves across a boundary

between areas of responsibility of different actors then the user the token represents changes, and

this represents a formal hand-over between the two actors.

The differences between the working of a Petri net and a CombiNet are seen most clearly in the

flow of tokens. In a Petri net there must be a token in each place entering a transition before a

token can cross the transition. When a token crosses a transition it places a token in every place

pointed to by the transition. In the CombiNet it is completely different; a token, which represents

an actor, is only constrained from traversing transitions by the state of concurrency constraints as

defined in Section 7.3.1. Transitions provide a choice point between functions in the design. Also,

as a token represents the workflow of an actor, the same number of tokens are passed over a

transition as approach it. Therefore the number of tokens (workflows of actors) in the project

window remains static in the flow of control system unless a new workflow (which would require

a new token) is activated by the project manager (e.g., concurrent design in the project window).

As the project manager is shown the analysed state of a running project window, it always clear
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when multiple workflows can be scheduled concurrently. This is shown by the set of design

functions calculated able to be run at the same time as currently running design functions.

7.4 Appraisal of Project Specification

The two part project specification formalism described above has been used (see Augenbroe 1995a

and the example in Appendix E) to describe, and then implement, a shallow level of control in

integrated design systems. The formalism, although simple, allows the definition of complicated

project models and actor interactions. In relation to the four perspectives of project representation it

meets them in the following manner:

Functional: this perspective is addressed in both notations. The definition of what process

elements are performed can be ascertained from the set of design functions specified in the

flow of control diagrams. The informational entities relevant to each process element are

specified through the input aspect model of each design function in the user and function

diagram.

Behavioral: this perspective is addressed in the flow of control diagrams. The CombiNet allows

specification of all sequencing requirements of design functions as related to the design

roles of individual actors in a project.

Organisational: this perspective is partially addressed in the user and function diagram. This

hierarchical diagram associates actors with specific design roles, and through those design

roles to individual design functions. CombiNet’s actor overlays are used to distinguish

actor responsibilities for particular design functions where multiple actors need to utilise

the same design function. Actor responsibilities are rigidly defined through the use of

aspect models defining an actor’s view of a schema and the schema components they are

allowed to modify. Physical communication mechanisms and physical media are not

addressed in this formalism as this is currently managed independently in integrated design

systems.

Informational: this perspective is addressed in the user and function diagram. The definition of an

output aspect model specifies what is produced by a particular design function, while the

input aspect model defines what is manipulated by a particular design function.

The CombiNet formalism for flow of control specification provides a simple yet powerful notation

to define control flow in a project. The main benefits of the formalism are:

Explicit flow of control: The use of places and transitions allows for the definition of explicit paths

through the design process. There can be iterations in the design process and choice points

in the direction that the design progresses. The flow of control can be tightly constrained to

follow set paths and invoke certain functions in a specified sequence.

Aggregation: The introduction of aggregate places reduces the complexity of individual nets by

allowing subnets to be identified and packaged as individual components. The aggregate
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places allow common tasks or processes to be described once and referenced many times

throughout the design process. Aggregation also allows processes pertaining to individual

actors to be specified separately from all other actors, providing a very visible separation

between actor tasks.

Global icons: These icons provide a simple notation to encode flows of control which can occur at

any time in the design process. Multiple global nets in a CombiNet represent a wiring

structure which would be very intricate and cumbersome to define with other process

models.

Wide range of control: The combination of global components and connected components

provides for a wide range of control strategies to be implemented. These range from totally

unconstrained, through to totally constrained. The various states are characterised by:

Totally unconstrained: all states are defined by global places, so that anything can start at

any time. Flow between various actors in the system is still monitored, but any

actor can do anything at any time.

Partially constrained: some states are defined by global nets, therefore invoking certain

states requires passage through other states in a controlled manner.

Partially unconstrained: most states are described through the usual place-transition flows,

with some global places or global nets to represent states that can occur at any time.

Totally constrained: there are no global places or global nets defined, so all states must be

invoked by following the flows defined in the place-transition flows.

Well defined hand-over points: the hand-over of control between different actors in a project

window is explicitly modelled in the flow of control specification. This provides well

defined and easily distinguishable areas of responsibility in a design project.

There are also certain weaknesses to the formalism as developed, the most important being a poor

handling of complicated boolean conditions between design functions in a CombiNet. For

example, it may be required to inhibit the execution of a particular design function until a set of

other design functions have executed, without consideration for the order in which this other set of

functions is executed. This type of specification will prove hard to code in this formalism due to

the ability to have loops in the flow of control. For example, does satisfying all the conditions for

the first time make these conditions satisfied every other time they are encountered? Although these

types of conditions can not be made explicit in the formalism, a very weak form of these

conditions can be implicitly defined in the input schema definition of a design function. An input

schema can specify a requirement for input which could only be met through the execution of a

given set of design functions (again only useful for the first iteration in the flow of control). An

approach to alleviating this problem would be a formalism for explicitly specifying the set of

conditions that must hold before a design function is invoked. This would allow for both the

semantics of repeat invocation to be specified and for full system-state, and data-state, pre-

conditions to be defined.

The project specification provides a way of describing shallow control in a project with a degree of
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flexibility sufficient for small through to large projects. However, there are aspects of the

specification which could be extended:

Deep control: the shallow control offered in the current project specification should be extended

towards the requirements of a deep control system. Initially this would cover greater

flexibility for specifying constraints on the project model. These could be constraints to be

satisfied before the invocation of particular design functions or constraints which guide the

flow of control based on the results of a design function. A large amount of research

would be required to try to implement a more comprehensive control system based on

design intent and it would have to be carefully crafted so as not to intimidate the users of

such a system.

Greater specification of environment in model: an assumption in the project specification was that

physical communication mechanisms and physical media need not be addressed in the

formalism, as it is currently managed independently in the implemented integrated design

systems. This assumption could be lifted to provide a more general project specification

which can model design tool parameters. For example, the environment in which they

operate, their invocation parameters, the format of input and output data-files (if they use

data-files), etc. Previous research has considered this problem and the papers on TES

(1995), and to some extent by Pascoe (1994), describe notations which allow the majority

of these parameters to be defined.

Flexible specification environment: the CGE environment was used by the author to implement

this formalism as it was the modelling tool used in the COMBINE project. Re-

implementation in an MViews-like environment would provide a more sophisticated

modelling environment, allowing multiple overlapping views of the flow of control

specifications, as well as all the coordination and documentation benefits offered in an

MViews environment. An MViews environment would also offer the possibility of tying

the project specification through to the schema and mapping specification environments

described in Chapters 3 and 6. This type of specification environment has subsequently

been demonstrated in the Serendipity system (Grundy 1996). Serendipity allows the

specification and coordination of process models alongside software development for

multiple developers, with consistency management and developer conflict resolution and

management.

In summary, this chapter presents the requirements for project specification in an integrated design

system as well as a formalism to allow its specification. This formalism allows a shallow level of

control to be specified between actors in a project, the design roles they play, and the flow of

control between design functions used to satisfy particular design roles. The project specification,

along with schemas (from Chapter 3) and mappings (from Chapter 5 and 6), is sufficient to

implement an integrated design system which can be used in a specific project. Chapter 11

describes such a control system and gives examples of its use with the project definition used as
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examples in this chapter, and fully specified in Appendix E.
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Chapter 8

The Project Testing and Implementation Environment

Although the development of an integrated design system requires the development of schemas for

the IDM, design tools, and actors, as well as mappings, design tool environment models, and

project flow definitions, they can not be developed in isolation. After defining the various

schemas, the developer(s) must be able to test what is being created to verify that it fulfils its

required purpose. To achieve this, the schemas must be instantiated with test data from the domain

they will be used in. Mappings between schemas must be tested to ensure that the result of

mapping from a model is equivalent to the original. Design tool environment models must be tested

to ensure that the design tools start and finish as expected and that they find no problem with the

data presented to them.

To make this possible requires testing environments that allow models to be quickly instantiated

and validated to ensure that relationships and dependencies are as expected. To test mappings

requires a system which simulates the functionality of a full mapping system, coupled with model

visualisers to enable the correctness of the mapping to be ascertained. Similar testing is required

for project models and design tool environment models. Though the environment developed for

this testing could be the final integrated design system there are many reasons why it should not

be. The major reason is that integrated design systems can take many forms and assuming that

several are to be developed it is likely that each would vary in implementation to some extent. For

example, the model implementation may be very different in different systems, from a relational

database through to an object-oriented or frame-based system. To test models in each of these

variations would require very different testing environments. However, if a single model

visualisation tool was created for testing all integrated design systems during development, the

final schema could be specified in any paradigm with the developer being sure of the correctness of

the specification. Having a single suite of testing tools also allows closer integration between the

testing tools, with flow-through benefits from the different stages of testing. For example, the
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model visualisation tool can be used to inspect a derived model after performing a mapping

between two models.

In this section, the various testing environments required to test the range of models detailed in

Chapter 2 are described. A testing environment is described for each class of model described in

Chapter 2 and where they can benefit from close links between each other and the modelling

environments this is specified. Some of the environments are major pieces of work completed as

part of this thesis, and described in more detail in subsequent chapters. Others are tools developed

in other projects or are yet to be implemented, and are only described below to provide an idea of

the functionality they can provide in this integrated framework.

8.1 Structure and Requirements

Complementing the non-linear modelling process described in Section 2.1, there is a similar non-

linear implementation and testing process. Examples of the types of cycles and interactions which

occur at this stage are detailed below:

• During any schema development stage a test suite needs to be set up to validate the schema

development. This test suite is likely to be developed incrementally as the schema

progresses, with tests representing normal, as well as unusual, design situations which the

schema should be capable of representing. This evolving suite of tests must be able to be

run against each new schema version to ensure that restructurings have not reduced the

schema’s expressive power. Later in the project whole building models must be able to be

loaded in, not just as a test of the whole schema, but to enable testing of mappings to and

from other design tools.

• During the IDM development, and particularly towards the final stages of its development,

the IDM needs to be tested with an instantiated model. This is a paradoxical problem, as the

IDM is developed to integrate DTs which can create an instance model, but the DTs can not

be integrated until the IDM is developed. Bootstrap tools are thus required to create,

visualise, and manipulate instances of the schema. These tools are used by the IDM

developers to test their model, by the DT modellers to ensure the actual data in the IDM

matches their conceptions of what should be there from the IDM development process, and

by the DT interface developers to test the interfaces as they are developed. The IDM is still

likely to change at this stage, so the instance model needs to be constantly restructured to

take into account all modifications to the IDM. Changes in the instance model must then be

passed through to all DT developers who rely on the instance model for their development.

• When the mapping specifications are being developed they need to be tested with the

instance models of the IDM, to ensure that the mapping is correctly specified (the ‘artwork’

on page v shows the ‘small’ problems that are easily picked up from this type of testing,

this problem originated from an incorrect specification of axes in a building model
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mapping). These tests are run by the mapping developers. Where problems are detected

they require assistance from the schema modellers of the IDM and the DT. Problems in test

mappings may require changes to the mapping specification, or to the schemas of the IDM

and DT, where the problem is one of missing information or constraints in the schemas.

All of these changes have flow-on effects to anyone using the IDM as specified above.

• The specification of a project’s utilisation of an integrated design system is a negotiated

process and, especially in large projects, may need to be simulated to ensure that all

required design roles can be completed in the available time-frame. Results from

simulations may highlight areas of concern in the specified project flow, and lead to further

modifications and re-negotiations between actors in the project.

Modelling tool and integrated environment requirements have already been described in Chapter 2.

Similar requirements exist for the implementation tools and these are described throughout the rest

of this chapter. Again, this chapter looks at implementation environments as if they are

independent from the modelling stage. This is not the case, but this unnatural split does enable the

issues for each of these sections of the implementation to be considered independent of competing

and distracting issues from the other category of requirement.

8.2 Schema instance development

To help reduce the schema development time mentioned in Section 2.2, it is necessary to provide

methods to instantiate sample buildings for the evolving schema and to navigate the resultant

structures to ascertain that they meet their required purpose. There are many tools which can

provide this level of utility. Four which have been used throughout this project are described in

Section 9.2, however, requirements for this type of tool are detailed below. 

8.2.1 Requirements of a schema instance maintenance system
To provide maximum utility to designers these environments must satisfy the following diverse

requirements:

Instance manipulation: developers instantiating or browsing a model need to inspect tailored views

of an instance, to specify values for attributes, and to specify references to other objects.

The views of the data should be able to be presented in forms which are of a similar

semantic level to that in which the developer envisages it (e.g., a graphical view of an

object’s geometry). Attribute values should also be able to be specified at a similar semantic

level (e.g., clicking on an iconic representation of objects to collate identifiers to be

referenced, rather than typing in all the object identifiers).

Correspondence with an evolving schema: as schemas evolve the previous model instances need to

be brought forward into the new representation. While a mapping specification and

mapping system can be used to achieve this syntactic transformation of the data, the model
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maintenance system must be made aware of new schema versions. The system can then

ensure that new objects are created with the correct parameters and attributes.

Multiple views: for model developers, multiple graphical and textual views are useful beyond the

schema development stage. Similar methods for navigation, perusal and checking of the

instances in a model are essential when dealing with a model as complicated as a building.

Thus, the ability to view graphically the physical components of a building and to navigate

through the building structure at either a textual or a graphical level and with the ability to

switch between different representations of a selected instance, is particularly useful. Tools

offering support for viewing and manipulating instances of the model are used by both the

IDM development team and the aspect model teams to check instances of schemas,

determining whether the structure is as they imagined when detailing their schemas and

whether it accurately represents the information requirements of their DT.

Consistency: the development of an instance model can involve many of the schema developers,

especially where a schema covers many domains in a field (e.g., steel structures, concrete

structures, HVAC systems). Where several developers view instance model portions in

varying levels of detail and representation, the various views need to be kept consistent

with each other. This ensures that all modellers are aware of recent changes to the instance

model and can be certain that they are working on the most up to date version.

Navigation: even a relatively simple building model (e.g., a domestic dwelling) from a schema

with a hundred or more classes can contain thousands of objects. Navigating such a model

can be a major task in itself. Methods of overcoming this problem are to provide high-level

navigation mechanisms (e.g., walking down part-of structures utilising a GUI) and the

incorporation of query languages which enable the identification of elements of interest.

For elements which have a graphical representation, graphical navigation methods should

also be provided.

8.2.2 Related schema instance maintenance systems
The majority of the schema modelling tools surveyed in Section 2.2.5 have no associated instance

creation and perusal system. Though this is mainly due to the vendors’ perception of market

requirements, many of the modelling languages lack an ability to translate models into

implementation languages (e.g., multiple conditional inheritance in EXPRESS has no direct

translation into languages such as C++). The majority of development systems assume that the

developed schema can be correctly specified without testing against actual data and can be

transferred to the final implementation of the developed system which will contain the methods for

creation of instances of the model. One modelling system (for software development) which

allows instances to be created against the developing schema is SPE (Grundy and Hosking 1993a)

and the associated development of CernoII (Fenwick et al. 1994) provides for many of the

requirements described above.
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The lack of associated instance manipulation environments in large schema development projects

has proven to be a problem. In COMBINE, COMBI, ATLAS, etc. example buildings were created

for final proof-of-concept demonstrations. These model instances were invariably developed late in

the project and, with no complete tool to create the model, relied upon hand instantiation and

laborious checking to ensure validity. This meant that the models developed were small (10-20

spaces and not always utilising all classes defined in the schema) and required hand-patches as

schemas continued to evolve at the late stages of the project or as missing information was

discovered (Augenbroe 1994b).

8.2.3 Approach to a schema instance maintenance system
To work with the modelling environments described in Section 2.2 the schema instance

maintenance system has to comprehend EXPRESS schema definitions and data models sent in the

associated STEP Part 21 data-file format (ISO/TC184 1994). The tools built for the maintenance

system all operate in the same environment, which provides parsers for these formats and allows

persistent databases to be created and manipulated according to the resultant specifications and

data. The environment in which the maintenance system is built is the same as used to build the

modelling environment, which eases the burden of providing connections between the two

systems. The maintenance system tools provide the majority of requirements in Section 8.2.1,

including instance manipulation and modification in a persistent store, viewing and navigation in

both textual and graphical formats, and guaranteed consistency of the persistent store for data

being manipulated in multiple views. The tools created and used in this project for instance creation

and navigation are described in Chapter 9.

8.3 Mapping handler and controller

This module performs the translation of data between the IDM and the DT models. It must

determine whether it is possible to create a consistent model from the IDM for any one of the DT

models based upon the constraints in that DT model, and it must ensure that the IDM remains

consistent upon update from a design tool’s output. It must detect conflicts between various sets of

data and must be able to invoke processes to enable negotiation over conflicting data from different

design tools and users. An implementation of a mapping controller meeting these requirements is

described in Chapter 10. 

8.3.1 Requirements of a mapping handler and controller
A generalised mapping controller must offer the following facilities:

Consistency of data models: as developers or actors complete design functions with a particular DT

they must be able to move relevant data through to the IDM whilst maintaining global

consistency of the developing model. They must also be able to extract the current IDM
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model for use in a particular design function. Through all of this the data in various data

models must be kept consistent with each other when mapped through different models. In

this way every user of the integrated system knows that they are utilising the same data as

the other users of the system, or if they are out of date they will know of any possible

problems and be provided with methods to become consistent. If consistency of the data

models can not be maintained automatically then the integrated system must provide

negotiation methods to allow the possible conflicts to be resolved.

Traceability of modifications: in any developed model a number of developers and actors will have

been involved in the specification of various parts of the model. Modifications made to a

particular model must be able to be traced to a particular mapping and ultimately to the user

or DT which asserted the values. Tracking the modifications allows complete mappings to

be applied and undone if necessary. It can also provide leverage in determining what

mappings can be applied dependent upon the source of the data, or it allows a negotiation

to be initiated with the specifier of the data to resolve conflicts.

Utilisation with different DT regimes: different developers and actors require different types of

DTs to perform their design functions in a project. The mapping controller must be able to

handle the requirements of various types of DTs. Some of these require all their data at the

start of a simulation or design task, and others have interactive requirements for data based

upon previous data (e.g., knowledge-based systems).

Actor and project manager links: the mapping of data between tools is a small part of the overall

development of a coordinated design in a single project. To allow coordinated and managed

design tasks amongst all participants in a project the mapping controller must be tied

closely to the project management system. With close links to a flow of control system

mappings can be activated to initiate a new design task, or used at the termination of a

design task to capture the output of the task. To this extent the mapping component of most

integrated design systems should be almost invisible to its users, providing many services

in the system but unseen. The only point where it need be visible is to notify its user of

model conflicts and allow a negotiated settlement.

8.3.2 Related mapping handler and controller work
The range of mapping handlers and controllers is as wide as the range of mapping notations

described in Section 2.3.2. However, as none of the notations satisfy the requirements for a

mapping language in that section, their environments can not provide for the requirements in this

section. RDBMS provide the most sophisticated environments of any of the previously referenced

notations, allowing tight management of modifications and their flow through to affected users.

Though they can not perform the types of mappings required in this problem domain many of their

facilities for management of transactions (including roll-back and roll-forward), view updates,

traceability, and view interfaces are utilised in this thesis.
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All of the mapping languages appearing in this domain (e.g., EXPRESS-M, EXPRESS-V,

EXPRESS-X, Transformr, View mapping, etc) are associated with implementations. These

implementations are very limited in their scope as they implement unidirectional mappings from

one data-file of a model to the transformed data-file. Therefore they provide no management of

global consistency of data in a project. Though all mappings in the COMBINE project were hand-

coded their integrated building design system at least managed the mapping of data between tools

(in a very conservative manner) to ensure that the IDM model was globally consistent.

8.3.3 Approach to a mapping handler and controller
The user interface of the mapping controller developed for this thesis is shown in Figure 8.1. This

system implements mappings specified with the VML notation, utilising either a transaction-based,

or individual, update mechanism to move data between related models whilst maintaining the

consistency of the models. The mapping handler allows a VML mapping specification to be used

in either direction to map data bidirectionally between models. Dependent upon the type of

mapping specified, it will ensure that only coordinated updates are performed on an IDM (i.e.,

ensuring consistency of the IDM). It also automatically manages the notification of changes to all

actors in a project who are affected by a particular modification to the IDM. The system allows

both on-line and off-line DTs to be utilised with a mapping and incorporates full tracking of

modifications, down to changes to individual attributes and permissions to change values at this

level. Chapter 10 provides a full description of the implemented mapping handler for VML.

Figure 8.1 Sample mapping controllers
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8.4 Design tool connection

This module provides the connection between design tools and the integrated design system. It

should also be capable of invoking design tools when required, and determining when they have

terminated. In a generic integrated design system it should be capable of performing these tasks

over a range of hardware and software platforms, providing the interface to the integrated design

system for all actors.

8.4.1 Requirements for a design tool connection system
A design tool connection system must offer the following facility:

Interface with IBDS: to lessen the workload on the actors all of the modelled requirements in

Section 8.3.3.1 must be automated. For an off-line DT this module must be able to create

the input files required for the DT (from the DT model in the system). It must then be able

to invoke the DT to perform its work and finally retrieve the output from the DT into the

DT model in the system. For interactive DTs it must perform the same task but driven by

the demands of the design tool.

8.4.2 Related design tool connection systems
Traditionally this module is implemented by hand-coding the parsing and pretty-printing for each

new design tool, and leaving it to the actors to run their particular design tools with the generated

input. This is the approach seen in all of the EU funded projects (COMBINE, ATLAS, COMBI,

CIMsteel, etc.). The systems of Amor (1991) and Pascoe (1994) provide the parsing and pretty-

printing of data-files without the need for hand-coded tools (i.e., created based on the design tool

data-file definitions). However, the design tool invocation still needs to be performed by the actor.

No known system can detect design tool invocation and termination in a general environment

(though TES environments (TES 1995) should, when implemented, provide this ability).

However, it is possible for an IBDS to provide user activated procedures which allow it to be

notified of a design tool’s invocation and termination. Such a system is used in the implemented

project flow of control module described in Chapter 11.

8.5 Flow handling

This module directs both the inter-model mapping and design tool interface modules to perform

their tasks as required by the designers, or as directed by the project manager. This module

simulates the flow of control defined in the project model, determining what design functions are

able to be performed at any particular time. It also interfaces with designers to let them specify the

tasks they wish to perform next, and interfaces with the project manager for decisions about which

designers should be involved in new workflows in the project. The system directs the inter-model
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mapping module to map data between different models, or to ascertain whether it is possible to

perform the mapping. It also directs the design tool interface to invoke a design tool with

appropriate data and to collect results upon termination.

8.5.1 Requirements of a flow of control manager
A flow handling system must offer the following facilities:

Calculation of possible design functions at any time: in a large project, with many design functions

and where actors are working concurrently, it becomes very difficult to determine which

design functions can operate without affecting current work. The flow handler must be able

to simulate the flow of control specified with the tools described in Section 2.5. This initial

simulation indicates design functions which are candidates to be performed at any instant in

time. In a concurrent design environment many of these candidate functions will not be

available due to possible conflicts with the data used by design functions already

underway. Problems in the design are also registered by the flow handler which must

backtrack through the specified flow paths to determine previous design states that can be

worked from.

Visualisation of project state: the project manager must always be able to determine the current state

of the project, and actors need to see what tasks they must still complete. Through

coordinating a project the flow handler holds much information about the state of the

project, both current and past. This information can be utilised to compare against expected

or required deadlines as well as to estimate completion time for the project. Time-lines of

expected versus actual time to completion of design functions can be derived from

information held by the flow handler.

Control interface for actors and the project manager: all users of an IBDS need an interface with the

system. The flow handler is likely to be the only interface the user has with the integrated

design system. It will provide the actor with an interface for initiating design functions and

for signifying the termination of design functions assigned to them. It will also allow the

project manager an overview of the state of the project and the design functions being

undertaken by different actors. This interface will allow the project manager to move and

manage resources as required in the project to ensure its timely completion.

8.5.2 Related flow of control manager work
While Sections 2.5.2 and 2.5.3 describe several notations for describing flow of control in a

project, as well as environments to define project flows in, only one of these systems follows

through to a flow of control manager (TU Delft and Amor 1993). The majority of tools associated

with the standard flow definition notations (IDEF0, IDEF3, Pert charts, state diagrams, etc.) either

provide simulation capabilities or can output the model in a form understandable by stand-alone

simulation tools. These simulations provide as output a likely schedule for a particular project,

often presented in the form of a Gantt chart. Such charts are used by project managers to direct and
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manage design functions on a project. As a paper system, however, they are not useful in

managing design tools and the flow of information to and from them. They also become difficult to

use when a very large number of design functions are specified on the chart(s), as the project

manager needs to be mindful of all running and upcoming tasks and their relationships at the same

time.

The CombiNet (TU Delft and Amor 1993) does have an associated management tool. This tool can

load in a CombiNet definition and uses it to inform actors of their upcoming design functions, as

well as to determine allowable design functions at particular times in the project. An initial

prototype of the management tool was developed by the author for the COMBINE project. This

prototype was later used as the specification for a more robust tool written in ‘C’ which was

demonstrated at the end of the COMBINE project as the top level controller of their whole

integrated building design system.

Figure 8.2 An operating flow of control manager

8.5.3 Approach to a flow of control manager
The flow of control manager, described in Chapter 11, is an extension of the system developed by

the author during his work on the COMBINE project and provides for the majority of requirements

as specified above. As seen in Figure 8.2, the interface provides a visual reference to an actor’s

location in a project flow, as well as the calculation of invocable design functions, those which are
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stalled, and those which may be required to be reinvoked. Though the current project state is

always ascertainable there is no global project state assessment or simulation. There is, however,

enough information held in the flow of control manager to make it possible to output data which

could be used with standard scheduling simulation software to calculate estimated time to

completion. Actors and the project manager are provided with control interfaces of slightly

different functionality. Project managers may investigate and control work over the whole project

flow, whilst actors are restricted to the flows related to their design roles. As design tool

invocation and termination can not be automatically determined by this flow of control manager,

each actor is provided with an interface to specify when a particular design tool is working and

when it has terminated.

8.6 Project Testing and Implementation Environment Summary

This chapter described the tools required to provide for the testing and implementation of the

models developed in the types of environments specified in Chapter 2. The provision of tools and

an environment as described in this chapter compliments the development of models in their

modelling environment by allowing testing and development to be totally inter-connected. The

tools described in this chapter taken as a whole provide an environment which has the majority of

the functionality of an actual implementation of an integrated design system. Thus the validity of

such an environment can be tested with all design tools and users of a final system prior to a

commitment to a large implementation process. The major tools required for this testing and

implementation environment are further described in the rest of this thesis. Chapter 9 describes

schema instance maintenance in the Snart environment along with connections to EXPRESS and

STEP Part 21 data-files, which have instance maintenance systems as well. Chapter 10 describes

an implemented mapping system which can maintain data correspondences between many

participating users, design tools and integrated data models. Chapter 11 describes a project

management tool which controls flows of control between the various users and a project manager,

helping to ensuring that the final designed artifact has been created with the input and attention

desired by the client and project manager.
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Chapter 9

Schema Instance Management

In an integrated design system instances of evolving schemas must be able to be quickly and

correctly created and maintained. This aids in the testing and validation of both the schemas and the

inter-schema mappings, and helps to reduce schema development time. Tools are needed to

instantiate sample building models for evolving schemas, and to navigate the resultant structures to

ascertain that they meet their required purpose. To a large extent this requires tools which mimic

the functionality of the tools (DTs) that will be part of the final integrated system. This leads to a

conflict between the need for tools which can quickly create and maintain complete models for the

developing schemas, versus avoidance of effort spent developing tools specialised for a particular

schema, which is likely to change, and will be discarded at the end of the development phase.

Generic tools are required which are either independent of the developing schemas, or quickly

tailorable for specific schemas where independence is not achievable. A set of requirements for this

type of tool is detailed below. Four tools of this type which have been developed or used in this

project are described in this Chapter.

9.1 Requirements for Instance Management

To enable instance creation and maintenance in the development environment the tools used must

satisfy a diverse range of requirements. The main requirements are covered in Section 8.2.1, two

smaller requirements are described below:

Genericity: instances for a wide range of schemas need to be created, maintained and navigated.

Tools must be independent of the developing schemas, or easily adaptable. Developers will

not wish to spend large amounts of time customising tools for the different schemas, so

tools which adapt to specified schema definitions will be of great benefit.
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Persistence: as the schema instance test set may become very large (e.g., for a complete building),

it is preferable that instance maintenance and navigation tools maintain a persistent

representation of the data independently of the ASCII data transfer format (ISO/TC184

1994) used to communicate between design tools in the final system. This will save a

significant amount of loading, validation, and saving time when working with instances of

a model.

9.2 Instance Management Systems

To work with the modelling environments described in Section 2.2, the schema instance

management system has to comprehend EXPRESS schema definitions and data models sent in the

associated STEP Part 21 data-file format (ISO/TC184 1994). The tools built for the instance

management system in this project all operate in environments which provide parsers for these

formats, and allow persistent databases to be created and manipulated according to the resultant

specifications and data. These instance management tools meet the majority of requirements in

Section 9.1, including instance manipulation and modification in a persistent store, viewing and

navigation in both textual and graphical formats, and guaranteed consistency of the persistent store

for data being manipulated in multiple views. The four tools created or modified for use in this

project for instance creation and navigation are described below.

9.2.1 EPE: an instance construction and browsing system
The EPE system (Amor et al 1995; and as described in Section 3.2), developed to satisfy the

requirements of Section 2.2.1, also supports implementation and maintenance. A schema

developed in EPE can, at any time, be compiled to an underlying object-oriented form (Snart), and

instances of the entities can be created and manipulated. Whole instance models, in the form of

STEP data transfer format files, may be loaded into and transferred out of the system. Figure 9.1

shows an instance view of the ventilation_generation_system entity modelled in a previous

COMBINE IDM. 

Instance views consist of visual renditions of entity instances listing their attributes, each

attribute's value (where one exists), and the links between entity instances. Navigation through the

instance model is via the entity instance links, which are displayed as small boxes in an instance

view. These links can be expanded to view the data contained in the linked instances. The amount

of data seen for each entity instance can be controlled by the user to present views which show, for

example, all instantiated attributes, or all attributes which are references, or all attributes with a

basic type, or some combination of types. In Figure 9.1, all attributes of an instance of a

ventilation_generation_system are shown, including links which are not instantiated (shown as

greyed boxes). This figure also shows the single reference to a building contained in the

is_used_by_building attribute, and all the information in that instance of a building.
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The user also has control over the way in which the information in entity views is laid out. This is

defined through the use of a special purpose display language. This display language allows for

displays which present sets of information in a variety of useful forms, such as bar graphs and

tables, and allows templates of a given layout to be created.

In a similar fashion to the requirements for analysis and design views in the schema modelling

section, multiple instance views with overlapping information can be created. The elements (e.g.,

entity attributes) in instance views are editable, allowing changes to be made to the underlying

model instance. EPE's instance editor is a specialisation of CernoII, a run-time debugger and

visualisation system developed as a companion for SPE (Fenwick et al. 1994; Grundy et al.

1993).

Figure 9.1 Instance viewing and navigation

The original CernoII environment provided most of the functionality initially required for this

project. However, extensions were made to specialise the system for the types of model and

domain the system had to be tested in. The main extension was to allow instances of a model to be

loaded, or saved, in the standard form used in model development in the building domain (i.e.,

STEP Part 21 data-files, ISO/TC184 1994). Another extension was to add the ability to view and

modify facet information for any attribute of an object. This facet information includes the unit of

an attribute’s value, along with where the value was derived from, and constraints on its value. A

direct manipulation tool was also incorporated which allows objects to be created and automatically

linked to an attribute’s value, or into a set, bag or list of object references for an attribute.
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While EPE provides direct manipulation of objects and references, along with multiple views and

consistency, it does not allow for graphical representation of objects which have an underlying

graphical state (e.g., most physical building objects).

9.2.2 InSTEP: a graphical instance browser
The author was not directly involved in the development of InSTEP. It is described here to provide

an understanding of the type of tool used to navigate and modify schemas both in this thesis

project and in the COMBINE project.

InSTEP is one of several tools developed during the first phase of the COMBINE project to enable

participants in the project to manage the developed schemas and instance models. InSTEP enables

textual and graphical browsing, navigating and editing of a STEP file according to a specific

EXPRESS schema. While this is not by itself remarkable, InSTEP is unique in that it provides a

graphical view of any model which is based on a schema which uses graphical entities of known

types. Figure 9.2 shows both the graphical and textual view of a portion of a building. In this case

InSTEP recognises entities that have a predefined geometrical representation, and will render them

in a graphical view which gives the user the ability to navigate through the instance model using

either textual links or graphical links.

Figure 9.2 InSTEP's graphical and textual views
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The textual browsing and editing of the model is performed on an object by object basis, though

the user may follow relationships between objects in a hypertext like fashion. The graphical view

displays a selected portion of the model, and the user can set the level of navigation and selection at

which the tool will operate. In Figure 9.2 the user is navigating through the graphical model at a

wall level, though other object types are displayed for reference.

In COMBINE this tool provides feedback to the conceptual task. Once a conceptual schema has

reached a more or less stable version, DT teams and anyone who has a direct interest in the IDM

are encouraged to browse instances of the schema and suggest modifications. In this thesis

InSTEP was mainly used to ensure the validity of graphical representations in STEP data-files

being developed for demonstration purposes.

9.2.3 SnartQuery and the ObjectViewer
The Snart language and development environment have been extended by the author to provide

query and visualisation tools, as an adjunct to the environments described above. The query

language allows a data model to be searched for objects matching a general query term. The

ObjectViewer allows a dynamically updated view of an object to be created, and includes buttons

for invoking object methods or allowing object modification.

SnartQuery allows a named data store to be searched, and for sets of objects matching several

classes to be returned (i.e., response to a query is not limited to a single class type). The query can

consist of attribute references, object ID references, referenced attributes (i.e., following pointer

chains) and method calls which can be treated in a functional manner (i.e., either true or false or

returning a single value). Compound query terms can be constructed with full arithmetic

calculation, including Prolog predicates and aggregating functions (i.e., sum, count, minimum,

maximum, average). List and array elements can also be accessed individually in the query. The

returned list of object tuples matching the classes specified in the query can be utilised to invoke

the ObjectViewer or the EPE view navigation environment. Invoking SnartQuery can be performed

by accessing a menu item in the LPA Prolog environment or through an equivalent predicate call.

Figure 9.3 shows both a query dialogue and the query result in the working window. A complete

description of the query language can be found in Appendix C.2.

The ObjectViewer provides a general purpose debugging tool for the Snart language as well as a

data model viewing and navigation tool. The basic premise of the ObjectViewer is that it spies

upon an object, and always reflects the current state of the object. It is more powerful than that, as

it also allows attributes to be modified, and methods of the class to be invoked, from the object

view window. The ObjectViewer system allows a layout template for attributes and methods of a

class to be specified when the class is defined, or by default it will create a view with all attributes

and a selected set of methods (see Figure 9.4 for a default view for an idm_hip_roof class).

Buttons and pull-down menus can be specified in the class template, allowing class methods to be
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invoked from the object view independently from the application that created and is manipulating

the object. An object view can be created by accessing an extended menu item in the LPA Prolog

environment, or through a hot-key. By default, the view command searches the currently

highlighted text and creates an object view for every object identifier found in the highlighted text.

A complete description of the ObjectViewer can be found in Appendix C.5.

Figure 9.3 A SnartQuery dialogue and result

Figure 9.4 A default ObjectViewer object layout

While the ObjectViewer provides direct manipulation of objects and references, along with design

tool independent method invocation, it is exactly like EPE in that it does not allow for graphical

representation of objects which have an underlying graphical state. The advantage of this tool over
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EPE is that it is built directly into the Snart language as a very small and efficient sub-system,

unlike the EPE system which is a large system built using Snart, creating a large overhead to have

loaded and operating for many applications. The SnartQuery language is also built into Snart and

the result of a query is in the form required by the ObjectViewer to enable the identified objects to

be viewed.

9.2.4 Reƒlex: an object-oriented CAD system
The commercial OO-CAD system Reƒlex (Reƒlex 1996) only became available at a very late stage

of the project, but was incorporated as it offers many features which make it highly suitable as an

instance creation and manipulation system. Reƒlex provides the majority of features found in

normal CAD systems, with the benefit of a central object-based model. This means that objects

with a graphical representation can be quickly created and assembled with other objects. The

Reƒlex system also provides an object and dialogue specification language. This means that new

libraries of object types can be created easily. Appendix F.1.3 describes the translator built on top

of the EXPRESS parser which allows any schema to be transformed into the required form for a

Reƒlex library. Because Reƒlex’s main domain is buildings, libraries of intelligent object

definitions are a standard part. With a small modification of the translated EXPRESS schema it is

possible for the library of object definitions to inherit the full specification of the existing Reƒlex

objects. This provides objects which have the complete graphical representation and checking

methods as in Reƒlex, but with the attributes defined in the EXPRESS schema. Figure 9.5 shows

a model being developed in Reƒlex with object definitions translated from an EXPRESS schema.

Object definitions can also include default values, which means that complete model definitions can

be defined very quickly simply by placing objects in a 2D or 3D Reƒlex view.

Figure 9.5  Reƒlex’s multiple graphical views, along with an object’s attribute dialogue
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STEP data-file models can be imported into, or exported from, Reƒlex. Importing models with

geometric specifications requires extra coding, as the internal representation of an object’s

geometry in Reƒlex is different from that specified by all other schemas. In the context of this

thesis, Reƒlex is best suited to the initial creation of a model for a particular schema, which can

then be exported for use with the other tools described above. Another difficulty is that the

relationships between objects that Reƒlex maintains are usually different from those required in the

loaded schemas. To handle this, either the Reƒlex object library definitions need to be augmented

with code which maintains relationships as defined in the schema, or these relationships must be

created and maintained in another tool. The latter method was the one used in this project.

9.3 Appraisal of Schema Instance Management

The set of tools described in Section 9.2 meet the majority of requirements defined in Section 9.1.

All of the tools in their standard form can work with any schema definition, requiring no tailoring.

However, most can be enhanced by providing further information about the schema definitions. In

the case of Reƒlex this provides objects with their most suitable graphical representation and

behaviour. With InSTEP it allows a model’s objects to be rendered graphically if the geometric

representation is defined. Multiple views of models are supported, offering geometrical

representations, textual representations and graphical layouts of text using EPE. These views

provide many ways of navigating around instances or through following references, traversing

geometric connections between objects, or direct queries to identify required objects. All tools

reflect the state of the central model in their views, and EPE allows multiple overlapping views of

data to be displayed and manipulated.

The only aspect which is not closely managed by any of these tools is the correspondence with an

evolving schema. All of the tools except InSTEP will allow an internally stored model to be

viewed and manipulated with an updated schema definition. However, they will all disregard data

values in attributes which don’t exist in the new schema, and there will be no checking that

attributes which do transfer across match the type now specified for the attribute. All tools make

the assumption that in order to move data models to a new version of a schema, a mapping is

specified between the two schema versions and the data mapped across before being reloaded into

the instance management tools. An extension to the integrated framework described in this thesis

could alleviate this problem. The EPE tool already tracks all modifications to an evolving schema,

a small extension to this tool would enable it to aggregate these modifications together to form the

bases of a VML mapping between two states of the schema. Though not all mappings could be

captured automatically it would be possible to represent the vast majority of changes with this

extension.
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Chapter 10

Mapping Controller

The development of a generic mapping controller has been a neglected area of research amongst

the components of an integrated building design system. To date, the majority of integrated

building design systems have employed hand-coded translators to move data from their IDM to the

design tools used. This has been due partly to the lack of a language which allows a high-level

specification of mappings between models, though VML, and other mapping languages, have now

partly solved that problem.

Given a mapping specification between two schemas, there can be many implementations which

will achieve the correct movement of data between the models. In many cases the style of

implementation will be dependent upon the type of IBDS being developed. For example, an IBDS

utilising many KBS's could require a very interactive connection between the IDM and each

design tool. There are three levels of control that can be offered by a mapping controller for a

particular mapping. These are:

Complete: the whole database is mapped every time data needs to be passed to or from the IDM,

destructively overwriting the data in the data-store it is being mapped to. For this type of

control no information about previous mappings needs be maintained, as the whole

mapping is re-evaluated every time it is required. This is the scenario put forward in the

ISO-STEP standard, where a single file representing the informational content of an AP is

passed to the design tool requiring information (and the same to pass information back).

While this is the simplest case to implement, it is also the most expensive computationally

as the whole database must be mapped every time a design tool is invoked.

Modified: only the data changed since the previous mapping is passed to or from the IDM, where

it merges with the previously mapped data. This method provides the same result as a

complete mapping, but as only modified data is mapped it requires less computation. This
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level of control assumes that there is a method of determining the changes between the

model at the time of the previous mapping and the current state of the model. Information

about previous mappings may be kept for this type of control to simplify the mapping of

modifications, but is not absolutely necessary.

Interactive: an adaptation of the modified mapping controller where individual changes are mapped

as they are recorded. As with the modified mapping controller, only modified data is

mapped to or from the IDM to merge with the existing data. This level of control allows for

very interactive design tools to be used in an IBDS, especially where the data requirements

may not be ascertainable when starting the design tool (e.g., a KBS whose input is based

on what it has previously seen as well as what its user is asking for). However, this level

of mapping can lead to long periods of inconsistency in the models being mapped to, while

information is entered by the actor using the design tool. The length of time over which

actor changes are made is likely to be orders of magnitude greater than the time taken to

map a set of changes as in the complete or modified scenarios above.

Though the result of a mapping using any of these three strategies would be identical, the time

taken to achieve it, and the structure of the mapping controller required to implement it, will be

very different. In the mapping controller described in this chapter, the second two control

strategies (modified and interactive) are implemented. This is mainly due to the fact that they offer

the greatest range of interactional possibilities for design tools in an IBDS. Implementation of a

partial update mapping controller also allows modes of interaction for collaborative designers to be

examined, as well as investigating strategies for tracking previous data mappings to reduce the

computational workload in mapping data.

The remainder of this chapter details the working of a mapping controller. This starts with a

consideration of what model changes need to be tracked and how this was achieved. The process

of mapping is described, starting with considerations of ensuring the correct state of the data-

stores to perform the mapping, and then the details of matching up objects and solving equations

are defined.

10.1 Data-Store Modification Records

For a mapping controller to be able to handle partial mappings it must be able to determine the

changes to a data-store between any two of its previously published states. When maintaining a

mapping between two data-stores the mapping controller also needs to know when the state of one

of the data-stores has changed. There are many ways that each of these requirements could be

realised. In this section an implementation of persistent data-stores in Snart is detailed which

provides all the information required by a mapping controller.
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All versions of Snart, the implementation language of this system, have had an implementation of

data-stores of varying complexity added to them (Grundy 1993). In its simplest form a data-store

provides a named space inside which objects can be created. The most complex implementation of

a data-store in Snart allows all objects created in a named space to be identified, and provides

hooks to add data-store dependent functionality onto the creation and deletion of objects in the

space.

These data stores have also been specialised to provide persistency. The persistent data-store

developed for this project allows all the objects created in a space to be saved to a file, the name of

which is specified when the space is created. It also allows the reloading of the persistent data-

stores, with object identifier renaming if required, into the running Snart environment (see

Appendix C for a complete description of object spaces and persistent stores).

Figure 10.1 Structure of the traced persistent space in Snart

To provide the functionality required for a mapping controller, this persistent data-store allows all

objects created in a data-store to be traced. This was achieved mainly by utilising the functionality

of a tracer class, provided in Snart, specialised for use as a controller for the data-store (see the

class hierarchies shown in Figure 10.1). Using this arrangement, all object creations are caught by

the ms_traced_persistent_space object which ensures that they are traced by the ms_db_controller

object for that data-store. All attribute value instantiations and method calls are caught by the
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ms_db_controller object and, if necessary, recorded.

In each data-store there is a single ms_db_controller object which catches all events pertaining to

traced objects. The ms_db_controller object collates modifications into a structure named a

transaction, which contains all work performed for a particular task (e.g., specifying the space

layout or completing a change request). The ms_db_controller has a notion of working and

finished transactions. There may be many working transactions open at any time, one of which

will be a default transaction in which modifications are recorded, unless specified otherwise. As

each transaction collates information on a particular task in a project, having several working

transactions allows an actor to manage several tasks at once, moving between them as ideas,

deadlines or project managers dictate.

When the ms_db_controller is notified of an event that should be recorded, a new modification

number is assigned (a monotonically increasing number) and a record of the event is stored in the

default transaction. The raw events which are stored in a transaction are:

create_object: creation of an object, with optional parameters

delete_object: deletion of an object

add_value: initial specification of a value of an attribute

change_value: modification of a value of an attribute

delete_value: deletion of a value of an attribute

invoked_method: calling of a method of an object, with optional parameters

add_facet: initial specification of a value of a facet of an attribute

change_facet: modification of a value of a facet of an attribute

delete_facet: deletion of a value of a facet of an attribute

The record of these events contains previous values, where these are known, so that a

modification can be reversed (undone) or, at the transaction level, a whole transaction may be

reversed. The transaction system also contains a notion of an aggregate transaction, which allows

multiple transactions to be collated together and subsequently treated as a single transaction. These

services are available to all design tools using the persistent traced space, though few have been

developed to make use of them (e.g., implementing an undo/redo function inside a design tool).

When an actor has completed a transaction, a label for the transaction must be supplied. This label

allows the actor to specify, in a human readable form, what work was undertaken during the

course of the transaction. It is this label which will be used, initially by other actors, to deduce

what work was completed in a given transaction. This label is used to form a unique identification

for each transaction (See Figure 10.3 for examples of transaction labels) by appending a unique, to

the data-store, transaction number (a monotonically increasing number) along with the filename of

the data-store. This label is guaranteed to be unique for all data-stores on a system, and with a little

padding out (e.g., written in URL form) could be unique over any number of machines.
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When a transaction is complete, as signalled to the ms_db_controller, the raw event data is

processed until there is at most one record for each object that was modified. In this form, multiple

changes to a single attribute and its facets are stored as one item. Objects which were created,

modified and then deleted inside the transaction have no record in the processed form. This

compaction introduces constraints on the type of method that can be mapped between systems

utilising a transaction-based mapping. Mapped methods are constrained to have no side-effects on

other related objects. This constraint is not enforced, so the system will attempt to map any method

specified in a mapping. Where methods have side-effects this could lead to failed method calls due

to non-existent objects. Three types of processed events are stored:

create: lists the modified attributes and method calls of the object which has

been created

modify: lists the modified attributes and method calls of the object which has

been changed

delete: records that the object has been deleted

Although the processing collates modifications which could be widely dispersed in the transaction,

the initial ordering of object use remains constant. Therefore, the final ordering of processed

modifications reflects the order in which object creation, the first modification of an object, and

object deletion, were encountered.

When the processed form of a completed transaction has been calculated, the ms_db_controller

informs all objects which have registered an interest in the data-store (usually mapping controllers)

that a new transaction has been completed in the data-store. Interactive mapping controllers are

also informed of each modification which occurs in the data-store.

As the description of the modification records might indicate, the number (and space requirements)

of the stored modification records can build up very quickly, especially in an object-oriented

application which requires much computation, and hence many method calls. To manage this

storage requirement in the limited application space of the Prolog development environment a

menu item allows the storage of these method call records to be turned on or off.

This data-store implementation provides the notification of modifications for each design tool and

the IDM used in the IBDS. In this IBDS every design tool must interface through a data-store of

this form to gain, or pass back, information from the IDM. This means that a mapped model of the

IDM exists for every design tool used in the IBDS. In the examples used throughout this thesis

most of the design tools are implemented in the Snart environment (i.e., PlanEntry,

ThermalDesigner, FaceEditor). However, the VISION-3D design tool is a stand-alone tool which

requires a data-file to be read in to supply the information for the tool to operate. Hence, the use of

both independent and tightly coupled design tools is catered for using the described data-store

implementation.
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Figure 10.2 An actor’s mapping controller interface

10.2 The Mapping Controller

The actor interface to the mapping system must allow the actor to manage all mappings between

design tools that they require to perform their design role in a project window. To enable this each

actor has a mapping controller interface as shown in Figure 10.2. This interface allows the actor to

manage a design session where data is to be transferred between the IDM and a range of design

tools. The range of functions available through the interface are:

Start System: initialises the mapping controller and allows the specification of a persistent data-

store for the storage of information about the mappings. If an existing data-store is

specified, the mapping state that was saved in it is restored and actors can continue from

where they left off. If a new data-store is specified no mappings are loaded initially. When

the mapping controller has been initialised the Start System button changes into the Stop

System button as described below.

Stop System: allows the design session to be temporarily suspended. All data pertaining to the

current set of mappings (and any which were previously connected and then severed) are

saved to the persistent data-store.

Connect Transaction Mapping: starts up a transaction-based mapping between two data-stores

which contain data models as specified during the creation of the mapping database as

described in Chapter 6. The actor identifies the two data-stores to be used in the mapping.

These can be existing data-stores or new data-stores, in which case a new file is created for

the data-store. A mapping manager is created for each mapping which is connected into the
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system. See Figure 10.3 for a transaction-based mapping manager interface.

Connect Automatic Mapping: starts up an automatic mapping between two data-stores which

contain data models as specified during the creation of the mapping database as described

in Chapter 6. The actor identifies the two data-stores to be used in the mapping. These can

be existing data-stores or new data-stores, in which case a new file is created for the data-

store. A mapping manager is created for each mapping which is connected into the system.

See Figure 10.4 for an automatic mapping manager.

Sever Mapping: the actor can select one of the mappings which has been started up and remove it

from the set of active mappings. When a mapping is severed the current mapping state is

stored in the mapping controller data-store in case the mapping is ever required again.

When a mapping manager is established it informs the two data-stores it is connecting that it is

interested in all transactions that are completed, and for the automatic manager all modifications as

well. The data-store records the details of the interested mapping manager and adds it to its list of

objects interested in its state. Several mappings may reference the same data-store and see all the

changes made to that data-store, thus establishing a central IDM with multiple views for the IBDS.

A collaborative environment with multiple concurrent actors is envisaged for the IBDS. However,

because a Macintosh environment lacking a client-server-based object-oriented database has been

utilised, the effort put into considerations of concurrency has been minimal. In the single machine

environment, data-stores are locked only when a mapping is being applied to them. It is envisaged

that this scheme could be used by an object-oriented database serving several actors on different

machines. The only other capability the object-oriented database would require is the ability to pass

a message through to the mapping manager objects on each machine which need to be informed of

new transactions or modifications (a CORBA-like environment (Otte et al. 1996) would support

this).

Figure 10.3 A transaction-based mapping manager

The mapping controller operates in its own persistent data-store, along with all the mapping

managers that it oversees. Therefore, the set of loaded mapping managers and their state can be

retained between sessions with the mapping controller. Having a persistent data-store for the

mapping managers also means that all previous mappings between the two data-stores it manages
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are retained and all the dynamically created indices, described in detail in later sections, can be

saved between sessions. This ensures that all the work performed in determining previous

mappings does not have to be duplicated when a new transaction is mapped in a later session.

10.2.1 Transaction-based mapping manager
When a transaction-based mapping manager is connected, it interrogates the two data-stores it is

connecting to ascertain what transactions they have recorded in them. A difference list is

constructed, and presented to the actor in the interface shown in Figure 10.3. The data-store’s list

of transactions can be used to ascertain which common transactions have been applied to each

data-store as when a mapping is performed the full transaction name (actor label, data-store name

and number) of the originator of the transaction is used to label the changes made in the opposing

data-store. Using the two lists of outstanding transactions the actor determines which transactions

to map between the two data-stores, when they should be mapped, and, within certain constraints,

in which order they are mapped. As new transactions are completed in each data-store they are

notified to the mapping manager and are added to the list of outstanding transactions for the

particular data-store.

If one of the schemas in the mapping being used to maintain the connections between the data-

stores is specified as read_only (see Chapter 5 for the different types of mapping available) none

of the transactions in that data-store will be displayed in the mapping manager. When an actor

selects one or more transactions to be mapped through to the other data-store, the mapping type is

examined to check whether the other store is categorised as integrated, in which case a check is

made to ensure that all outstanding transactions from the integrated data-store have been applied.

This ensures that data-stores labelled as integrated are only updated by mappings from data-stores

which are consistent with the integrated data-store’s state. If all outstanding transactions from the

integrated data-store have been applied then the mapping is allowed to proceed to the next stage of

consideration, otherwise it is aborted with an appropriate message to the actor. When a set of

transactions are organised to be mapped they are examined to ensure that there is no other

outstanding transaction from the same data-store which must be mapped through before the

selected one; for example, where a selected transaction depends upon a modification in an earlier

transaction, such as the creation of an object for which an attribute has been specified. If there is

no conflict the transaction mappings are started, otherwise an appropriate message is presented to

the actor and the mapping aborted.

Figure 10.4 An automatic mapping manager
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10.2.2 Automatic mapping manager
An automatic mapping manager can only operate between two data-stores which have had the

same transactions applied to them. When an automatic mapping manager is connected, it

interrogates the two data-stores it is connecting to ascertain what transactions they have recorded in

them. If the two lists are different it will not allow a connection. When the conditions for an

automatic mapping manager are met, an interface as in Figure 10.4 is created. This provides no

functionality to the actor, but provides information about when data is being mapped between the

two data-stores. As well as mapping individual modifications between the two data-stores, the

automatic mapper recognises signals for a completed transaction and collates the corresponding

modifications in the mapped store to become the modifications corresponding to the newly named

transaction.

The mapping controller may be used to start up a mix of mapping managers, as transaction-based

and automatic mapping managers readily coexist. However, the changes propagated by one type

of mapping manager may be seen slightly differently by the other type of mapping manager. For

example, if an IDM is connected to both transaction-based design tool models and automatically

mapped design tools, all automatically mapped modifications made to the IDM will not be seen by

the transaction-based design tools until an end of transaction is mapped through, at which time it

will see the collated set of atomic modifications. The case of a full transaction mapped to the IDM

will be seen by an automatic mapping manager as a large set of individual modifications queued

for processing.

10.3 Performing a Mapping

The sections on data-stores and the mapping controller have laid the groundwork required to

describe the actual mapping process. The reader should now have an idea of how modifications

are gathered in a data-store and the compressed form in which they are presented to the mapping

system. The reader should also understand the control options available to the actor and under

what conditions they allow a mapping to proceed. In the following sections the process followed

for a transaction-based mapping is described. It is almost identical to that followed for an

automatic mapping.

To describe how a mapping is performed, a top down approach is adopted, looking at some

general setup work, then the various cases presented by different types of objects, leading down to

how individual equations are treated in the mapping system.
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10.3.1 In preparation to map
Before a mapping can proceed it is necessary to ensure that the data-stores are in the state specified

by the transactions being mapped (see Table 10.1 for the pseudo-code). To ensure this, all current

work on the data-store and all outstanding transactions which are not being mapped must be

reversed. This is possible because the persistent data-store controller tracks all transactions, both

working and finished, and the transaction records all modifications (and the order in which they

were performed). To bring the data-store into its correct state all working and unmapped

transactions are rolled-back. Transactions to be mapped are checked against working and

unmapped transactions to ensure that no dependencies exist between them. If the transactions to be

mapped are dependant upon other unmapped data then the user in informed of the dependant

transactions and the mapping is terminated. The roll-back leaves the data-store in the state it was at

the completion of the specified transactions. As the data-store is locked during the mapping,

rolling-back the data-store does not affect any running applications, apart from stalling them. At

the end of the mapping the data-store is returned to its previous working state by rolling-forward

all the rolled-back modifications.

performing a mapping
determine outstanding transactions (working and unmapped)
calculate dependencies between outstanding transactions and transactions to map
if dependencies exist
then

cancel mapping and inform user
else

roll-back all outstanding transactions
perform mappings
roll-forward all rolled-back transactions

Table 10.1 Pseudo-code for performing a mapping

establish a mapping
determine all inter_class definitions purely for the store being mapped to
for each inter_class found above

if object of specified class exists matching the invariants
then

do nothing
else

create object of named type
solve all initialisers

Table 10.2 Pseudo-code for establishing a mapping

10.3.2 The first mapping between two stores
The first time a mapping is performed to a particular data-store, some objects may need to be

created in the data-store (see Table 10.2 for the pseudo-code). In a VML mapping this is specified

by an inter_class which only lists classes for one of the schemas being mapped between. If this is

the first known mapping to the particular data-store, the mapping system searches the mapping

database for any inter_class definitions of this form. If any are found the data-store is searched for

173



objects of the class specified. If none are found new objects of the specified type are created and

the equations, usually initialisers, calculated as defined later in this chapter.

perform mappings
for each aggregated modification to be mapped

case aggregated mapping of
create:

find inter_class definitions referencing class of created object
for each inter_class identified

determine initial object groups
generate object combinations for the inter_class
for each remaining combination

if created object is grouped in inter_class header
then

match with existing mappings of this type
re-evaluate grouped objects
re-evaluate invariants if object’s class involved
if invariants are violated
then

dissolve existing mapping
else

re-calculate affected equivalences
else

create required objects in other data store
apply initialisers
solve equivalences

modify:
{ see Table 10.11 }

delete:
determine all existing affected mappings
for each affected mapping
if object’s class is grouped in inter_class header
then

re-evaluate grouped objects
re-evaluate invariants if object’s class involved
if invariants are violated
then

dissolve existing mapping
else

re-calculate affected equivalences
else

{ see Table 10.10 }
find all other inter_class definitions with object’s class grouped
for each inter_class identified

{ perform mapping as for create above }

Table 10.3 Pseudo-code for performing mappings 

10.3.3 Consideration of modification types
The three classified forms of object modification obtained from the data-store (create, modify and

delete) are handled separately in the mapping system, though the create and modify forms are very

similar. A general outline of what happens for each of these types of object modification is

presented initially and then more detail will be presented on important aspects of their handling

(see Table 10.3 for the pseudo-code).
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create: all inter_class definitions which reference the class of the new object are identified. All

combinations of the classes in the header of the inter_class specifications are created from

objects in the data-store being mapped from, but using the created object as a placeholder

for the class in the header. Then all the invariants pertaining to that side of the mapping are

applied to the combinations to determine if any of them are applicable. If any pass the

invariants then all the initialisers and equations are solved as described later in this section.

modify: all existing mappings which use the modified object are notified of a change to the object

and must re-calculate any changed equations. If the modification affects invariants of

inter_class definitions then they must be re-evaluated as for a newly created object, i.e., it

may be possible to create a mapping with the new values, or it may be necessary to

dissolve a mapping as for delete below.

delete: all mappings referencing the deleted object are notified and must re-calculate their

equations. If the object was part of the header of an inter_class then the mapping is

dissolved and any objects created in the mapped to data-store due to the now deleted object

are themselves deleted.

10.3.4 Determining combinations of objects from an inter_class

header
When instigating a mapping between two data-stores, or propagating changes between data-stores,

it is necessary to determine which objects are going to be used with each inter_class definition.

The first step towards this is determining the combinations of objects to be tested against the

invariants for each inter_class definition (see Table 10.5 for the pseudo-code). This is calculated

by examining each class in the header of an inter_class and returning a list of possibly matching

objects. The only exception is for the class of the newly created, or modified, object where the

returned list contains just the newly created, or modified, object (unless it is denoted as grouped).

If the class of the newly created, or modified, object is in the header as grouped then the returned

list is a list of a list of all objects matching the class defined. Table 10.4 shows some combinations

of headers and the resulting lists of objects returned. CK is the class of the known (newly created

or modified) object, C1 and C2 are arbitrary classes. The resultant object list is either a single

object or a number of objects (shown as 1..n, or m or p), the O  denotes an object and is

subscripted with the class type from the inter_class header.

As the combinations of all objects in these lists grows exponentially based on the number of

objects in each list, a pruning algorithm is employed to help minimise the number of combinations

produced (see Table 10.6 for the pseudo-code). Note that in the worst case, where there are no

invariants, the number of combinations will equal the cross-product of all objects in each list. The

pruning algorithm about to be presented is not optimal computationally (the author is aware of

optimal methods from relational database work, Ullman 1982), but is used to prototype the

mapping manager implementation and is a workable tradeoff between programming time available
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(minimal), program intricacy (simple), and efficiency (moderate).

inter_class header Resultant object lists

[CK] [[OCK]]

[CK, C1] [[OCK], [O1C1..OnC1]]

[CK, C1, C2] [[OCK], [O1C1..OnC1], [O1C2..OmC2]]

[C1, CK] [[O1C1..OnC1], [OCK]]

[CK, group(C1)] [[OCK], [[O1C1..OnC1]]]

[CK, group(C1), C2] [[OCK], [[O1C1..OnC1]], [O1C2..OmC2]]

[group(CK)] [[[O1CK..OpCK]]]

[C1, group(CK)] [[O1C1..OnC1], [[O1CK..OpCK]]]

Table 10.4 Examples of inter_class headers and resultant object lists

determine initial object groups
for each class in inter_class header

if class is grouped
then

find all objects of named type
return as a list of a list

else if class is of key object
then

return the key object in a list
else

find all objects of the named type, return in a list

Table 10.5 Pseudo-code for determining initial object groups

To prune the number of object combinations at each stage the following algorithm is used. Starting

with the last list of objects, the list is reduced by applying all invariants which apply purely to

those objects. The next set of objects is similarly reduced, then the cross-product of the two sets is

obtained. This combination is reduced by applying any invariants which pertain just to the two

classes in the cross-product. Then the next set of objects is reduced by applying all invariants

which apply purely to those objects. Then the cross-product of the reduced set and the previous

cross-product is obtained. This combination is reduced by applying any invariants which pertain

just to the classes in the new cross-product. This is repeated until the first set of objects has been

incorporated into the cumulative cross-product. The result is a list of lists of objects which match

all the invariants in the inter_class definition. Each of these lists can be used to create a mapping to

the other data-store. In the worst case, where there are no invariants, the number of combinations

is equal to the cross-product of all objects of all classes. However, assuming this is a valid

specification of a mapping then it must be handled by the mapping system.
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generate object combinations for the inter_class
initialise current result set to empty
for each set of objects relating to a class in the inter_class header

determine invariants relating purely to this class
apply selected invariants to the set
create cross-product of reduced set with current result set
determine invariants applying to classes incorporated in current result set
apply selected invariants to the result set

Table 10.6 Pseudo-code for generating object combinations for an inter_class

The way in which an invariant is applied to objects of a class varies, dependent upon whether the

class is grouped or not. If a class is not grouped, and an object fails an invariant, the whole

combination is removed from the list of combinations to be further considered. If a class is

grouped, then the invariant is applied to each object in the group and is used to reduce the number

of objects in the group. The application of this algorithm is demonstrated in the following example

based upon an inter_class definition for mapping between the IDM and PlanEntry. In this

example, a mapping from PlanEntry to the IDM is being undertaken. The pe_face object is the

newly created object, and there are six pf_plane_object objects and five pe_opening objects. The

values of selected attributes and functions of the example objects are shown below the header and

invariants section of the inter_class definition. Note that in the values column for objects of class

pf_plane_object the result of calling the function map_orientation_axis is shown, rather than an

attribute value, and for the objects of class pe_opening the result of calling the function

contained_in_face is shown.

inter_class([idm_space_face], [pe_face, pf_plane_object, group(pe_opening)],

invariants(

type_of_face \= 'opening',

member(pe_face.orientation, ['n', 's']),

pe_face.offset = pf_plane_object.offset,

map_orientation_axis(pe_face.orientation, pf_plane_object.axis),

contained_in_face(pe_face, pe_opening),

pf_plane_object.axis \= 'z'

), 

. . . . . .) .
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ObjID Type Attributes / Functions Values / Results

o1 pe_face [orientation, offset] ['n', 12.5]

o2 pf_plane_object [axis, offset, map_orientation_axis('n', 'x')] ['x', -7, false]

o3 pf_plane_object [axis, offset, map_orientation_axis('n', 'x')] ['x', 12.5, false]

o4 pf_plane_object [axis, offset, map_orientation_axis('n', 'y')] ['y', -11, true]

o5 pf_plane_object [axis, offset, map_orientation_axis('n', 'y')] ['y', 12.5, true]

o6 pe_opening [contained_in_face(o1, o6)] [true]

o7 pe_opening [contained_in_face(o1, o7)] [false]

o8 pe_opening [contained_in_face(o1, o8)] [false]

o9 pe_opening [contained_in_face(o1, o9)] [true]

o10 pe_opening [contained_in_face(o1, o10)] [false]

o11 pf_plane_object [axis, offset, map_orientation_axis('n', 'z')] ['z', 0, false]

o12 pf_plane_object [axis, offset, map_orientation_axis('n', 'z')] ['z', 2.3, false]

The initial list of list of objects for the header [pe_face, pf_plane_object, group(pe_opening)] is

[[o1], [o2, o3, o4, o5, o11, o12], [[o6, o7, o8, o9, o10]]]. The first step is to try to reduce the

grouped list [[o6, o7, o8, o9, o10]]. However, there are no invariants which apply purely to these

objects, so the next list is selected, [o2, o3, o4, o5, o11, o12] and it is also reduced. In this case

the invariant checking that the axis is not z can be applied, producing the list [o2, o3, o4, o5]. The

two resultant lists are combined to create the following cross-product:

[[o2, [o6, o7, o8, o9, o10]],

 [o3, [o6, o7, o8, o9, o10]],

 [o4, [o6, o7, o8, o9, o10]],

 [o5, [o6, o7, o8, o9, o10]]]

There are no invariants affecting only pe_opening and pf_plane_object items so this initial cross-

product can not be further reduced at this time. Then the next list is selected, [o1]. There is one

invariant which applies purely to this object (member(pe_face.orientation, ['n', 's'])), this is

checked against the object in the list to produce the same list, [o1]. This list is then combined with

the other lists to create the cross-product below:

[[o1, o2, [o6, o7, o8, o9, o10]],

 [o1, o3, [o6, o7, o8, o9, o10]],

 [o1, o4, [o6, o7, o8, o9, o10]],

 [o1, o5, [o6, o7, o8, o9, o10]]]

Now the remaining three invariants on the PlanEntry side can be applied to each combination. The

first list, [o1, o2, [o6, o7, o8, o9, o10]], is rejected as ‘pe_face.offset = pf_plane_object.offset’ is

false, the second list, [o1, o3, [o6, o7, o8, o9, o10]], passes that invariant but fails the

‘map_orientation_axis(pe_face.orientation, pf_plane_object.axis)’ invariant. The third list, [o1,

o4, [o6, o7, o8, o9, o10]], is rejected as ‘pe_face.offset = pf_plane_object.offset’ is false, the

fourth list, [o1, o5, [o6, o7, o8, o9, o10]], passes that invariant and the

‘map_orientation_axis(pe_face.orientation, pf_plane_object.axis)’ invariant. The last invariant,
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‘contained_in_face(pe_face, pe_opening)’ is used to reduce the objects in [o6, o7, o8, o9, o10] to

the final list of [o6, o9]. Therefore the reduced list of lists from the given set of objects being

applied to the invariants of this inter_class is [[o1, o5, [o6, o9]]], meaning that one mapping is

performed across to the IDM for the newly created object o1.

10.3.5 Four pass mapping process
In recognition of the fact that the order in which objects are created in one data-store may not

match the order objects should be created in another data-store, the mapping process is performed

in four passes (see Table 10.7 for the pseudo-code). Using a four pass system obviates problems

that may occur in transaction-based mapping due to the collating of all object modifications to one

point, rather than the actual order they occurred. The work performed in each pass is detailed

below:

First pass: determine all combinations to be mapped from the initial data-store. Where necessary,

create new objects in the data-store being mapped to as described in Section 10.3.6. At this

point not all objects, which could be connected together to match classes in the inter_class

header, are created, so only specify values for the attributes of the newly created object. At

the end of pass one it is guaranteed that the minimum state of the mapping is that all

combinations to be mapped have been identified, and the object matching the first class of

the inter_class header for the data store being mapped to has been identified. It is also

guaranteed that all values that are directly identifiable for that first object have been

calculated.

Second pass: determine all objects matching the header class specification. In mappings where

there is more than one class specified in the header of the inter_class for the data-store

being mapped to, try to connect to existing objects for the other classes rather than create

new objects. At the end of pass two it is guaranteed that all objects matching the inter_class

header for the data store being mapped to have been identified or created. It is also

guaranteed that all values that are directly identifiable for these objects (i.e., specified in an

inter_class where the object’s class is specified in the header) have been calculated, this

includes initialisers, equivalences and invariants.

Third pass: attempt to solve equivalences for each affected object. Some equations with values that

are accessed down a pointer chain may not be solvable at this time, as the values for the

referenced object may not have been calculated. At the end of pass three it is guaranteed

that all indirectly referenced objects (i.e., those specified through a pointer chain in

equivalences) have either been associated to the inter_class (where they existed already), or

created and initialisers solved. Due to the lack of control over the order that these indirectly

referenced objects get created, and their initial values specified, there is a requirement for a

further pass to solve outstanding equivalences. For example, the following equation

o1l=>o2l=>o3l=>a1l = o1r=>o2r=>o3r=>a1r where each of the object references is solvable

by another mapping (e.g., if mapping from left to right, the object ID of o1r is determined
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from the mapping of o1l) is not solvable until all associations have been completed. This is

because the attribute references are not able to be determined until phase two is complete,

and depending upon the order of solving mappings this equation might be attempted before

all other attribute references have been matched.

Fourth pass: reassess all previously unsolvable equations involving referenced values to determine

whether they are now calculable. At the end of pass four it is guaranteed that all

equivalences which can be solved from the data available in the data store being mapped

from, through the inter_class definitions, have been calculated.

four-pass inter_class resolution
case pass number of
one:

determine all combinations to be mapped from data store
create objects for first class in inter_class header specification
apply appropriate initialisers, equivalences and invariants

two:
attach or create objects for all other classes in inter_class header
apply appropriate initialisers, equivalences and invariants

three:
for each mapping combination apply all equivalences

four:
determine unsolved equivalences affected by pass three resolutions
re-calculate determined equivalences

Table 10.7 Pseudo-code for the four-pass inter_class resolution

10.3.6 Mapping a new combination to the other data-store
When preparing to map a combination of objects it is checked against object combinations that

have already been mapped to the other data-store (see Table 10.8 for the pseudo-code). If the

combination of objects, except for those in grouped classes, is unique, then a new mapping is

initiated. If the combination matches, except perhaps for objects in grouped classes, then all

affected equations of the existing mapping are re-evaluated.

When a new mapping is created, an object whose class is that of the first class in the header for the

side being mapped to is created. In the example above, an object of class idm_space_face would

be created. Then all initialisers, equivalences, and invariants which determine values for the new

object are solved. If the inter_class header for the side being mapped to contains more than one

class, then a combination determining procedure, as outlined in Section 10.3.4, is followed in the

data-store that is being mapped to during the second pass through the mappings. This provides a

way of linking up with existing objects in the data-store being mapped to, rather than creating

superfluous objects during the mapping. If a matching combination is found, then all equivalences

which apply to the found objects are solved. If no matching combination is found, then a new

object is created for the next class along in the header, all initialisers, equivalences, and invariants

which determine values for the new object are solved and the matching process is retried. This

process is duplicated until either a matching combination of existing objects is found for the rest of
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the header classes, or until new objects have been created for every class defined in the header of

the inter_class.

mapping all combinations of objects
for each combination of objects for an inter_class header

if combination matches an existing mapping combination (except grouped)
then

re-calculate affected equivalences
else

create object for first class in inter_class of side being mapped to
apply initialisers, equivalences and invariants purely for this object
for each following class in inter_class header (in pass 2)

search for matching objects
if no objects found
then

create object for class no object could be found for
apply initialisers, equivalences and invariants

solve all equivalences and invariants for the mapping (pass 3 and 4)

Table 10.8 Pseudo-code for mapping a new combination

10.3.7 Procedures followed when a new object is created
Whenever a new object is created during a mapping, the initialisers section of the inter_class

definition being used is examined and any initialisers which apply to objects of that class are

solved, setting values for attributes, or calling methods of the newly created object (see Table 10.9

for the pseudo-code).

Whenever an object is created in a mapping it is cross-referenced against the mapping in which it

was created. In this manner the list of objects created in each individual mapping can be

ascertained, and this information used when objects need to be deleted.

a new object has been created
if an object clash was reported
then

find existing object which matches known criteria
delete newly created object (if not already discarded by system)
utilise the found object’s ID as the new object ID

else
find all initialisers applying to the object
for each identified initialiser

resolve initialiser
cross-reference object creation against this mapping

Table 10.9 Pseudo-code for creating a new object 

As the mapping manager tries to distance itself from the underlying implementation of the data-

stores, it does not duplicate the functionality which would be provided by e.g., relational

databases. To this extent, determining object uniqueness (i.e., key violations in a relational

database) is not handled explicitly by the mapping manager. Instead, if an object is created which

conflicts with existing objects, the mapping manager expects to be informed of this fact by the
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underlying data-store. If such a clash is detected, the mapping manager searches the existing data-

store to find the previous object. The object whose newly asserted value caused the clash is deleted

and the existing object used for all further references. In this manner the mapping manager can

reuse existing data-store objects, rather than creating multiple instances of objects containing the

same data. However, this is not demonstrated here as the Snart persistent data-store used in the

demonstrations of the mapping manager does not yet have an implemented key uniqueness

verification system for objects created inside it. This remains for future work.

10.3.8 Tracking objects created and referenced in mappings
The fact that an object is referenced in a mapping is also tracked. This tracking encompasses more

than just the objects collated together to match the header classes of the inter_class, but includes all

objects referenced through the equations in the inter_class. Objects that can be included in this

manner are those that are used to follow reference chains. In this way a list of mapping managers

is compiled for every object used in a mapping. Then when an object is modified the set of

mapping managers which may have to perform recalculations is quickly identified. These mapping

managers are informed of the modified object and affected attributes, and using the pre-computed

lists of objects and attributes in each equation determine which equations have to be re-computed.

an object was deleted requiring a mapping to be dissolved
delete primary object from first class of header in the inter_class
determine all other objects matching the header
for each object

if this mapping is only reference to the object
then

delete object
else

update mapping references to the object, deleting dissolved mapping
determine all objects created when solving equivalences and initialisers
for each object

if this mapping is only reference to the object
then

delete object
else

update mapping references to the object, deleting dissolved mapping

Table 10.10 Pseudo-code for mapping an object deletion 

10.3.9 Mapping the deletion of an object
The mapping of an object deletion in one data-store is handled using a type of garbage collection

scheme (see Table 10.10 for the pseudo-code). If the deletion of an object causes a mapping to

become non-viable (e.g., not enough objects for the classes in the header, or an invariant is

violated) then all objects which were necessarily created when setting up that mapping (e.g., the

object for the first class in the inter_class definition) are deleted. All the other objects which were

created during the mapping are examined.  If their only point of reference is the mapping which is

being dissolved then they are deleted as well. Also, all objects referenced by equations in the
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mapping are examined. If their only point of reference is the mapping which is being dissolved

then they are deleted as well.

10.3.10 Mapping the modification of an object
Objects whose attributes have been modified use the lookup table (an AVL tree structure) to

determine which mapping controllers need to be informed (see Table 10.11 for the pseudo-code).

When the mapping controllers learn of the modification they initially check whether the

modifications affect any of the invariants of the inter_class. If invariants are affected then they are

re-evaluated to ensure that they still hold. If the invariants are violated the mapping is dissolved

with deletions of objects as defined in Section 10.3.9. If the invariants are not affected, or if they

still hold, then all affected equations are identified and re-calculated.

an object has been modified
determine affected mappings
for each affected mapping

if modification affects an invariant specification
then

re-evaluate object combination
if new combination results (except for grouped classes)
then

dissolve existing mapping
create required objects in other data store
apply initialisers
solve equivalences

else
re-calculate affected equivalences

else
re-calculate all affected equivalences

find inter_class definitions referencing class of modified object and also in invariants
for each inter_class identified

determine initial object groups
generate object combinations for the inter_class
for each remaining combination

if combination matches existing mapping, or class is grouped in header
then

do nothing as will have been solved above
else

create required objects in other data store
apply initialisers
solve equivalences

Table 10.11 Pseudo-code for mapping an object modification

All inter_class definitions which reference the modified object in their class headers are also

identified. They are checked to see if the modified attributes affect any of the invariants of these

inter_class definitions. If they do, then the object combinations are computed as in Section 10.3.4

and any new combinations are used to initiate new mappings as detailed in Section 10.3.6.
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10.3.11 Evaluating, or re-evaluating affected equations
All equivalences in an inter_class are passed through to the equation solver, along with all

attributes affected by the object creation or modification. Prepended to all the equivalences are the

invariants which apply to objects in the data-store being mapped to (i.e., what has to hold for the

objects that are being created or modified). As each equation is pre-processed and all objects and

attributes used in the equation identified, the first step in solving an equation is to identify values

for all necessary object and attribute references in the equation (see Table 10.12 for the pseudo-

code).

The result of this search for values is used to determine whether the equation can be solved

currently or not. When performing a mapping, the controller is not allowed to make changes to the

data-store the mapping is coming from. The assumption is that the transaction is not modifiable as

it may have already been mapped to other data-stores. Therefore, any equation with unknowns on

the side being mapped from is classed as unsolvable. Given that all values are known for the data-

store being mapped from, the three different types of equation are handled slightly differently:

procedure: all values from the data-store being mapped from are matched to the procedure

parameters. If there are any object references for the store-being mapped to, then either the

existing object reference is supplied, or a new object is created to be passed in. If the

parameter $mapping_system$ is specified then the object ID of the mapping system is

passed as a parameter. Any attribute unknowns are recorded and the procedure invoked.

When it terminates, any of the unknowns which were calculated during the procedures

calculations, and passed out in the parameters, are assigned to the specified attributes.

function: all values from the data-store being mapped from are matched to the function parameters.

If there are any object references for the store being mapped to, then either the existing

object reference is supplied, or a new object is created to be passed in (on the assumption

that a function will not know how to create an object in a data-store). Any attribute

unknowns are recorded and the function invoked. When it terminates, any of the

unknowns which were calculated during the function’s calculations, and passed out in the

parameters, are assigned to the specified attributes.

equation: the mapping system contains an equation rearranger which can take most equations and

rearrange to solve for a particular attribute. Therefore it is only necessary to identify the

attribute that needs to be solved in the equation. If there is one unknown in the set of

attributes of the data-store being mapped to, then this is the unknown attribute for which

the equation is solved. If there are several unknown attributes, then the equation can not be

solved at the current time, though it may be solvable after other equations have been solved

(i.e., some of the unknowns are calculated by other equations), and is placed in a queue to

be re-examined. If there are no unknowns, an alternate approach must be taken. Part of the

meta-data recorded for each attribute, by way of facets, is a facet determining who supplied

the data for a particular attribute. Where all attributes are known, this facet information is

used to provide a ranking of the attributes in terms of the importance of where their data
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was asserted, from default data through to actor defined data. This ranking is applied to try

to identify the least significant piece of data known. The equation is then solved for this

attribute. If no attribute can be identified to be solved then the equation is placed on a queue

to be examined when the other equations have been solved, to see if they provide any

further assistance in solving the difficult equation. After all equations have been attempted,

the queue of unsolvable equations is re-examined, checking whether anything has changed

which makes these equations solvable. This queue is iterated over until there is no change

in the status of the equations in the queue, i.e., nothing was solved in a particular iteration.

Any equations which can not be solved, after all the procedures outlined above, are

rewritten as constraints and asserted against the particular object involved. In this way the

values that should hold for a particular object, or set of objects, are recorded and are seen

in the data-store even after the mapping has completed. Asserted constraints are specified

in the constraint specification language implemented in Snart (Mugridge et al. 1995). The

Snart constraint specification language has a similar syntax to the VML notation, enabling

VML equations to be easily rewritten and asserted in Snart.

identify values for an equation
for each reference in the equation to data-store being mapped from

find value for the reference
if any missing references in the equation to data-store being mapped from
then

terminate solving of equation
else

for each reference in the equation to data-store being mapped to
if value is known for the reference
then

return known value
else

case equation type of
procedure:

case reference type of
object:

{ see Table 10.9 }
$mapping_system$:

return object ID of mapping system
attribute:

record as unknown
function:

case reference type of
object:

{ see Table 10.9 }
attribute:

record as unknown
equation:

record as unknown

Table 10.12 Pseudo-code for identifying values for an equation

The ranking of importance of values assigned to an attribute is managed by the mapping system.

The mapping system ensures that no low ranked values are able to overwrite high ranked attributes

(e.g., an attribute defined through a default value being mapped over an attribute previously
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defined by an actor). In most cases, values at the same ranking may overwrite each other if

specified later in time (e.g., a design tool calculated value can overwrite a previous design tool

calculated value). This is not automatically true for one case, that of actors. In this case, a dialogue

is initiated to ensure that the new actor-specified data is allowed to overwrite the previous actor-

specified data. If the overwriting is allowed, then that permission is maintained for the whole

mapping of the transaction, before being rescinded again. The full set of update authorities is

shown in Table 10.13.

New

Previous

User Design Tool Constraint Default Unknown

User negotiate no no no no

Design Tool yes yes yes no no

Constraint yes no merge no no

Default yes yes yes yes no

Unknown yes yes yes yes yes

Table 10.13 Update authorities for attributes derived from different sources

When an equation is solved and a value instantiated for an attribute, it is necessary to instantiate the

facet recording who specified the calculated value. In some cases this is easily calculated.

Initialisers and invariants which specify a constant value for an attribute allow the value to be

categorised as default. Equations which equate single attributes or pointers can be categorised

utilising the same categorisation as the attribute from which the value or reference is mapped.

Equations which involve several attribute values which may come from very different sources

(e.g., default values and actor-specified) require a more sophisticated method of determination. In

the mapping system the highest level specifier is used for complex equations. For example, in an

equation involving default values, design tool calculated values, and actor-specified values the

final attribute value will be defined as coming from an actor. Using this method, the values in a

mapped system tend towards being actor-specified, seemingly imparting a high level of confidence

in the data in the system. However, this also means that an actor must intervene more often during

the mapping process to assert the right to overwrite values specified by other actors (assuming

they are within the actor’s schema specifying modification permission).

10.4 Appraisal of Mapping Controller

The mapping system described in this chapter provides an implementation of the VML language

capable of both transaction-based and interactive mappings between data-stores. The implemented
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system allows multiple data-stores to be connected to an IDM, with full maintenance of the

consistency of the IDM at all times, as well as reflecting changes made in any connected data-store

through to all affected data-stores. The mapping system has been tested with a wide set of

mappings, including many small mappings drawn from other work in the area (see Appendix D

and Clark 1992; Bailey 1994; Hardwick 1994), and a large example showing the integration of

four design tools connected through an IDM (see Appendix E; Hosking et al. 1995; Mugridge et

al. 1996). The large example described in Appendix E shows the use of the mapping system to

maintain information updates and consistency back and forth between the interactive tools being

integrated, as well as being output to a visualisation tool. The use of the different tools is

controlled by a process model for the task being attempted, which establishes when actors can

perform their design functions, and manages the mappings which are allowed. This example in

Appendix E provides the main demonstration of how all the components of the thesis work

together to create an integrated design system.

Although the mapping system is capable of maintaining the correspondences between two data-

stores, it is not capable of linking together two independently developed data-stores (e.g., the

same building specified independently in two different design tools). This is mainly due to the

assumption that a new object is created in the data-store being mapped to for every inter_class

mapping which is initiated with objects from the other data-store. The class matching algorithm

could be extended to attempt a match of the initial class rather than creating one, but this may not

provide the required solution in all cases. The problem is partially that there is no syntax to specify

whether an object should be created or searched for in a mapping, and partially that there are cases

when it is not possible to decide whether an object should be created or searched for. Part of the

problem comes from object-oriented systems where there are not necessarily keys defining which

objects must be unique. Instead it is assumed that the object-oriented system ensures the

consistency of the model by the way in which it is developed (semantics of the application). These

semantics may not be able to be specified in a mapping without implementing a large amount of the

object-oriented application within the mapping.

The mapping system requires more work in the section which decides which attribute of an

equation to solve for. The current method works well where there are small numbers of attributes

in an equation, or where there is a previously asserted value which is a default or other low level

of specification. However, where several attributes were all previously asserted at the same level

there is no good way of deciding which to solve for. The addition of reasons, as implemented in

the Snart language (Hosking et al. 1994), may provide a way of deciding which attribute to solve

for depending upon which attribute, or attributes, changed in the object being mapped from. This

could, however, make the equation definition much larger and more difficult to maintain, though

the use of default directions would alleviate this problem. The real problem is dealing with an

actor’s intent in specifying information. If this intent could be captured, perhaps partly through the

process specification, then it would be easier to determine what data could change. For example,
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information derived from trialling a design variation should not take precedence over previous

information asserted for a legally binding project sign-off stage. Capturing the level of intent

would extend Table 10.13 to include classifications such as actor assumptions, derived

information, informed specification, and constraints due to standards, codes of practice, best

practice, etc.

Several speed improvements could be made to this system. Mapping of small building models (a

building consisting of two spaces with doors and windows) between an application and the IDM

takes twenty minutes, or more, on the Macintosh on which this was developed. Two sections of

the mapping system are known to be inefficient.

• The persistent data-store which traces and records all modifications and method calls adds

a very large burden on all applications in which it is utilised. This is especially true for the

tracking of method calls as the calls in the running mapping system (written in Snart) are

trapped as well as those in the running design tools (also written in Snart). However,  the

method calls of the running mapping system are discarded immediately. Rewriting the data

and method call tracing in a lower level language would provide large speed improvements

to design tools and the mapping system.

• The generation of combinations matching inter_class headers is very slow when large

numbers of objects are involved. Two improvements are considered for this problem.

- The first is to implement the more efficient combination generation algorithm from

relational database work (Ullman 1982). Though the worst case combination

generation is a polynomial of the same order as the number of classes referenced in

a header (as in a relational database system), this is unlikely to ever be a practical

problem. The reasons for this are that usually only a very small number of classes

are grouped through a header, and where a larger number of classes are referenced

it is usually to associate information from a single uniquely identifiable object. The

relational database algorithms can ensure that the most efficient combinations are

computed first and the resultant sets are reduced as soon as possible.

- The second is to ensure that combinations are only generated once for any set of

new, modified, or deleted objects. In the current system this is not the case and

each new, modified, or deleted object forces the generation of its own set of

combinations, before checking that the generated combinations are not already

being used.

Other speed improvements are possible from the use of a low-level programming language like C

rather than the LPA Prolog used in this thesis. Trials with a rewritten Snart have shown two

orders of magnitude speed improvement for some operations (in the constraint processing).

However, Prolog was the correct choice for prototype implementation for this PhD thesis in that

more functionality was programmed than would have been possible in the same time with other

languages.
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Chapter 11

Flow Handling

A flow handler ties together all the work detailed in the rest of this thesis, providing a tool to

manage the actual design process for individual projects. Earlier chapters describe methods of

modelling: actors in a project; design tools used; the integrated data model; relationships between

data in various schemas; and desired flow of control in a particular project. Chapter 10 describes a

system which will move data between model instances of a particular building, and Chapter 8

refers to work on automating the invocation of design tools. The final step is to put the process

control tool in place in order to manage the allowable design tasks at any particular time, and to

ensure the design is accomplished according to the flows defined by the project manager. This

chapter describes a particular implementation of a flow handler which provides managerial control

to a project manager and task level control to the actors working on a particular project.

11.1 Requirements for Flow Handling

A flow handling system must provide two distinct categories of functionality. The first is for a

project manager who oversees the running of a particular design project and must ensure a timely

completion, as well as a final design which meets the initial design criteria. The second is for the

actors, who need to see what design functions remain to be completed in their design roles and

when they can pass the design on to another actor. The different requirements of the two main

classes of user of the integrated design system are detailed in the following subsections.
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11.1.1 Project manager requirements
The managerial requirements of a project manager are detailed below:

Project overview: the project manager must be able to determine the current state of the project;

which stages of the project have been completed; which stages are still being worked upon;

who is currently working on various stages of the project; and what design tasks are still to

be completed.

Track design path: in most projects it is imperative to be able to determine who worked on what

portion of the design, and to see when particular design tasks were completed.

Status: the project manager must be able to determine the current status of the project window; to

see who is working, and on which parts of the design.

Dynamic project flow modification: the project manager must be able to intercede in the flow of a

project if it is clear that new resources are needed to complete the project. The project

manager must be able to move an actor to a new task; stop a task before its normal

completion; stop an actor’s design role work; and start a new actor working on a new

design role, perhaps concurrently with other actors.

Dynamic flow diagram modification: if the project manager determines that a new path is required

in the flow diagram (e.g., to force a particular task to be performed, or to add new

functions into the design process, or to add paths requested by actors in the project) then

modifications should be able to be made to the flow diagram, and they should be reflected

in the running project.

11.1.2 Actor requirements
The requirements of actors are more closely related to their design roles, as detailed below:

Design role overview: actors must be able to manage the design functions required to complete

their design roles, and they must be able to determine what is required to complete their

design role.

Formal handover between actors: the completion of a design role and handover point between

actors needs to be documented, both for the time of handover and the state of the project at

the time of the handover.

Determination of allowable functions: the possible design functions for each actor are calculable

based on the other actors currently working on the project and the design functions they are

working on. Only currently invocable design functions should be allowed to start up, and

the status of all currently available, or stalled, design functions should be re-evaluated

upon the completion of any design function by any actor in the project.

This provides a level of control suitable for a strict project management regime. Actors have

control over the work they perform towards their design roles, but limited to design functions

specified in the project window definition. If an actor requires modifications to the project window

this must be negotiated with the project manager. This ensures that specified design functions are
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performed and there is no way to work around the requirements implicit in the workflow

specification.

11.2 The Exchange Executive

The Exchange Executive (ExEx) provides the implementation of the flow of control definitions of

Chapter 7 and implements the requirements of a project manager and actors as defined in Section

11.1. The main component of the ExEx is a simulator for the CombiNet specification, determining

the design functions which could be next completed in a project. As well as simulating the

CombiNet, the ExEx accesses the schema definitions of the various design tools and actors to

determine possible restrictions between the design tools when invoked concurrently. Finally, to

present the information to the various users there are separate user interfaces tailored for project

managers and actors. The working of all of these components is detailed in the following

subsections.

11.2.1 Simulation of flow of control
To describe the simulated flow of control in the ExEx, the flow through a net which comprises

simple places and transitions will be described (as all CombiNets can be rewritten in this form). In

this type of net there are four components: places, transitions, tokens, and connecting lines. The

implementational semantics of these four components are described below:

Token: a token represents the current state of an individual workflow. When shown in a place it

represents an actor working on the design function represented by that place. As the

workflow progresses from design function to design function it may pass across actor

boundaries and thereby denote a handover phase between actors. There may be several

tokens in a simulated CombiNet representing different concurrent workflows. While a

token in a place represents an actor performing a particular design function, an actor may

be involved in several tasks at any one time. Each of these tasks would be defined by

separate tokens in the CombiNet representing the particular workflow associated with the

tasks being undertaken.

Place: a place represents a design function, which may or may not be realised through the use of a

design tool. If the place represents a design tool, then the movement of a token into the

place signifies the invocation of the design tool with data from the IDM, as described in its

input schema definition. The movement of a token out of a place represents the termination

of the design tool and the transfer of its resultant data (if any) through to the IDM.

Between these two events the actor is free to perform whatever actions they wish with the

design tool (as long as the action is within the scope of the area of responsibility of the

actor, as defined by the actor’s schemas).
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Transition: a transition has no implementational semantics in the ExEx. It is purely a

representational notation to describe a choice point between several places. Transitions are

of most use when accessed by several places, reducing the number of lines in a diagram.

The whole CombiNet definition could be redrawn without transitions and retain the same

semantics, but many more lines could be required to represent flows between places.

Connecting lines: lines with an arrow at one end provide a path for the flow of control to proceed

along. Each line represents a possible pathway, either from a place to a transition, or from

a transition to a new place.

Figure 11.1 Calculating potential design functions from a CombiNet

The simulation of flow in a net comprising the above elements operates in the following manner:

• Identify each token in a place in the CombiNet. 

• For each token in a place identify all transitions that can be exited to from that place. 

• For each of these transitions identify the set of places which can be invoked from the

transition. 

• Determine the set of places which are candidates to be invoked from the current place by

taking the union of all of the sets of places for each transition .

For example, Figure 11.1 shows a token (the small open circle)  in the place representing the

glazing_layout function. Upon completion of this function there is a single transition which can be

exited to. This transition leads to the evaluate_general_thermal_properties place, however, there is
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also a global place that can be invoked, called design_building_layout. The total set of design

functions which can be invoked from this point is shown in the Runnable DTFs box of Figure

11.1.

There is a separate set of candidate places maintained by each token, representing possible

continuations of the workflow, in the CombiNet. The set of candidates for each token is reduced

by taking into account the following conditions:

Stalled place: this is derived from Constraint 1 in Chapter 7: if there is a currently running design

function whose output could modify the input of the candidate place then it is labelled as

stalled and removed from the list of candidates (e.g., Figure 11.2 shows the DTF

evaluate_general_thermal_properties of Figure 11.1 running. The output of that DTF

impacts on the evaluate_thermal_code_compliance DTF’s input and for the actor shown in

Figure 11.2, forces it to become stalled, as shown in the bottom right sub-window ).

Insufficient data: if the data in the IDM is not sufficient to invoke the candidate design function

then it is removed from the list of candidates.

Failed start: if there was enough data to start the tool but the tool would not start when invoked

(usually through a failed constraint) then it is removed from the list of candidates.

Figure 11.2 Multiple actors causing select design functions to become stalled

The set of candidates that can be run at any time is re-evaluated every time a running design

function terminates or when a new design function is invoked. This re-evaluation may: add new

places to the list that can be invoked; remove places from the list of candidates; or change the status

of places whose status is un-runnable due to the conditions listed above.
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Figure 11.3 Initial CombiNet in a project window 

We now extend the simulation semantics to cover several special states, and icons. Their flow

conditions are described below:

Start of the project window: the start of the project window is determined by looking at the top

level CombiNet (referenced by the user and function modelling diagram, see Chapter 7 and

Figure 7.3). The start transition of this CombiNet is identified and the places reachable

from it collated to become the initial candidates for the project window (e.g., Figure 11.3

shows the starting point for the examples used in Chapter 7. In this example there is only

one place that may be invoked to start the project window, namely specify_requirements).

End of the project window: the end of the project window is found by identifying the end

transitions in the top level CombiNet. Whenever one of these transitions is visible from a

place with a token in it, there is the possibility of terminating the project window. In

practice the completion of a project window is when the last token in the project window

reaches the end transition (or the last token is terminated by the project manager) (e.g.,

Figure 11.3 shows a single end transition which can only be reached from the acceptance

CombiNet).

Actor’s design role: when a token passes from one place to another, where the specified actors for

the two places is different, this signifies the end of one actor’s design role and the start of a

new actor’s design role. At this point the actor involved in the workflow represented by the

token changes. This event is notified to the project manager who is responsible for

permitting the new actor to start their design role (or who may terminate the token). At the

end of an actor’s design role the actor may aggregate the work performed into an aggregate

transaction, rather than single transactions for every design function they performed (as

previously described in Sections 10.1 and 10.2). If this option is chosen, all their work

since starting the current design role is collated under a single label in an aggregate

transaction (e.g., Figure 11.3 has an actor changeover between specify_requirements and

the design_building_layout design functions. At this point the client  has completed the
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requirement specification role and the architect  starts the building design role. The whole

requirement specification role could be recorded as a single aggregate transaction). At a

hand-over point which offers the possibility of several actors working concurrently, it is

up to the project manager to instigate any required concurrency, as is current practice in

building design.

Figure 11.4 Multiple levels of aggregate functions

Aggregate place: an aggregate place represents a whole CombiNet, so when evaluating what can

be invoked in an aggregate place, the start transition of the denoted CombiNet is identified,

and the places which are reachable from that transition collated (e.g., in Figure 11.4 the

design_and_update aggregate place, as shown in Figure 11.3, connects directly to the five

places reachable from the starting transition, and can also access a global place). This

evaluation process can be nested down several levels, as the start of a CombiNet can

reference an aggregate place whose start transition would have to be identified, etc. When

an end transition is reached in a CombiNet referenced by an aggregate place, it is tied to the

output transitions of the aggregate place which referenced the CombiNet (e.g., when the

client exits the acceptance CombiNet shown in Figure 11.5 (small CombiNet with two

places) the end transition is tied to the output transitions of the aggregate place it was called

from, in this case the acceptance aggregate place shown in Figure 11.3. In this example

there are two output transitions, one is the end transition of the project window and the

other leads back to design_and_update). Again, this evaluation may be recursive, as the
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termination of a CombiNet at one level could lead to the end transition of the CombiNet

above it, etc. The path travelled by a token is always maintained dynamically, as many

CombiNets could reference the same aggregate place (representing the same CombiNet).

As a result, the path taken to a particular design function is not necessarily unique (e.g.,

design_and_update can be accessed from the top level CombiNet shown in Figure 11.3,

but is also accessible as a global net at other stages in the project window). These different

points of access to a lower level CombiNet can also have different actors assigned to them

through the actor overlays described in Section 7.3.2.

Figure 11.5 Exiting from a CombiNet representing an aggregate place

Global places: a global place is reachable from any place in the CombiNet in which it is defined,

and from any CombiNet invoked through an aggregate place or global net (i.e., any

descendant CombiNet). When exiting a global place, the token returns to the place from

which the global place was invoked (e.g., the design_building_layout  global place in

Figure 11.4 can be reached from all the other places shown in that window. After

completing the design_building_layout function the available design functions would be

recalculated from the same place as the design_building_layout function was entered

from). A global place is also accessible by all descendant CombiNets reachable from the

CombiNet in which the global place resides.

Global net: a global net has the same functionality as a global place, except that, as it represents a

whole CombiNet, its candidate places are calculated in the same manner as for an aggregate
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place. As noted previously, when inside a global net it is not possible to reinvoke the same

global net (it is removed from the list of candidate places).

Double transition: this shorthand notation is replaced with its two-transition equivalent in the

ExEx, and handled in the same manner as other transitions (e.g., the transitions between

building_design and design_and_update in Figure 11.3 are the expansion of a double

transition).

When determining the set of candidate places from a given place it is possible to encounter the

same design function along different paths. All occurrences are displayed for the actor to choose

between, as each occurrence is part of a different workflow through the project window. Currently

actors must navigate the CombiNets to ascertain the actual path traversed to particular instances of

a design function.

11.2.2 Representation of design tool invocation
The ExEx, described in Section 11.2.1, simulates actors working in a particular project window.

However, to perform this simulation, it requires information about the status of the design

functions which are being performed. Though this ExEx implementation does not support design

tool invocation (for the reasons described in Section 8.4), the point at which this would occur is

simulated through a starting and ending dialogue for each design function. These two dialogues

are described further below.

Figure 11.6 Design tool start up dialogue

At the time an actor decides to perform a particular design function which requires the use of a

design tool a dialogue is initiated (see Figure 11.6). This dialogue is used to ensure that the actor

performs a mapping from the IDM through to the design tool model, using the mapping manager

described in Chapter 10. Dependant upon the outcome of the mapping process, and the ensuing

design tool start up, there are two messages that can be passed back to the ExEx by selecting one

of the buttons in the dialogue. These are:

Succeed: all of the required data existed in the IDM and was able to be mapped through to the

design tool model. The data in the model was successfully translated into the form required

by the design tool, and the design tool started without problems.

Fail: some initial constraints in the design tool model were invalidated, or it was not possible to

start the design function due to the failure of the design tool to start up (e.g., due to design

tool constraints not specified in the design tool’s data model).
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Figure 11.7 Design tool termination dialogue

After the design tool start up dialogue is completed, a new dialogue is presented (see Figure 11.7).

This dialogue must be completed when the actor has finished work with the design tool and has

mapped resultant data back to the IDM, using the mapping manager described in Chapter 10.

Dependent upon the outcome of the mapping process there are three messages which can be sent

back to the ExEx by selecting one of the buttons in the dialogue. These are:

Succeed: the design tool completed normally, and all data in the resultant data-files of the design

tool were mapped back to the IDM through the design tool data model.

Fail: the design tool terminated abnormally or incorrectly.

Fail Data: the mapping system was not able to map the resultant data through to the IDM. This

would be due to a violation of constraints specified in the IDM schema, which may be

more constrained than the design tool’s output model.

If the ExEx is informed of any of the three failure modes described above, it will roll the token

back to the place at which the choice was made to invoke the design tool which just failed. The

choices at that point are re-evaluated. The new list of available functions is presented to the actor

and a new design function is chosen to continue work on that actor’s design role. This list may

still include the design function which previously failed if the failure was due to its operation rather

than data constraints.

It is conceivable that failures of design functions could lead to a state where an actor has no further

choices available. There are two possible methods of resolving this situation. First, if other actors

are working on the project window, their completion of design functions will force the re-

evaluation of stalled and failed tasks. Second, the project manager is informed of any actor who is

stalled in this manner. The project manager has two options at this point, either: terminate the

actor’s design role (removing the token); or move the actor to a new point in the design process.

11.2.3 Project manager interface
To support his/her project management role, the project manager is provided with a comprehensive

query, control, and browsing interface to the ExEx, allowing arbitrary movement around the flow

definitions, and with the ability to easily modify the status of actors working in the project

window. The main interface provided for the project manager is shown in Figure 11.8. This

shows a list of all actor workflows currently executing in the project window, and the path which
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brought them to their current position. The path for a particular actor workflow starts at their

current position and steps back through all design functions invoked in their design role. Where an

aggregate place or global net has been entered a bullet is placed before the place name to denote the

point at which the lower level CombiNet was entered. For example, in Figure 11.8 the structural

consultant is working on define_wall_structures, the path taken to this design function for the

particular design role and workflow is from the structural_work aggregate place and before that the

building_design aggregate place. Any actors who are currently stalled (i.e., having no possible

design functions available at the current time) are denoted with a ‘•’ before the actor name. Actor-

specific functions supplied by the buttons in the interface become available when an actor is

selected. The actor-specific functions offered by the buttons are:

Figure 11.8 Project manager user interface

Find: opens up all CombiNets that were entered by the highlighted actor to reach the position at

which the actor is currently working. The windows are opened in order, from the top level

CombiNet through to the CombiNet in which the actor is currently working. Any

aggregate places or global nets that an actor passed through to reach the current position are

denoted with a filled token in the higher level diagram. A token is shown in these

CombiNets for any other actor working in a CombiNet passed through to reach the

selected actor.
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Information: details the design functions available to the selected actor, shows any stalled design

functions, and lists the work performed by the selected actor, using the interface provided

to individual actors (see Figure 11.10 for an actor’s user interface).

Stop: terminates the design function and workflow in which the selected actor is involved. The

actor is removed from the project window at this point and must negotiate with the project

manager if they wish to be re-involved in the current project window.

Modify: the selected workflow of an actor is modified to work in a new place in the project

window. This is used to help an actor workflow which has no available design functions,

or to make more resources available in a certain portion of the project window. The

selected actor workflow is removed from the current location, and the project manager

navigates through the CombiNets (as explained for the Navigate function below) to the

place where the workflow is to continue from. When the project manager finally double

clicks on a place, or global place, this is defined as the current location of the actor in that

workflow. After placing the actor, the project manager must specify the place, or global

place, from which it is assumed the actor reached the current place. This is in case the

design function fails and the actor has to roll back one place.

Figure 11.9 Project manager navigation through CombiNets 

The project manager also has three function buttons available which are always invocable. These

allow the following management functions to be performed:

Navigate: closes all currently visible CombiNets and displays the top level CombiNet. The project

manager can double click on aggregate places, or global nets, to expand a level in the

project window, displaying the new CombiNet. The project manager can backtrack to the

previous CombiNet by closing windows (see Figure 11.9 for a navigated view from a
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project manager interface).

New Actor: allows the placement of a new workflow for an actor in the project window. The

project manager starts navigating from the top level CombiNet as explained in the Navigate

function above. The aggregate places and global nets passed through during the navigation

provide the path of the new actor. When the project manager finally double clicks on a

place, or global place, this is defined as the current location of the new actor. After placing

the new actor, the project manager must specify the place, or global place, from which it is

assumed the new actor reached the current place. This is in case the design function fails

and the new actor has to roll back one place.

Load Net: replaces the currently loaded project window with a modified version. The paths of the

actors in the current project are used to try to place the actors in the new project window

definition. If any actor can not be placed in the new project window (for example, if a

place they passed through does not exist any more) then they must be placed in the new

project window by the project manager in the manner described for the Modify function.

Figure 11.10 Actor’s user interface 

11.2.4 Actor interface
The actors are each provided with a task level interface to the ExEx, allowing specification of the

design function they wish to work upon and determination of the status of the candidate design

functions from their current position. This interface concentrates upon an actor’s design role and
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provides very little information about the status of other actors in the project window. However,

any actors working in the same CombiNet (having followed the same path) will be displayed in the

actor’s interface. An actor will also see any filled tokens denoting an actor working down an

aggregate place, or global net, which is represented in the actor’s current CombiNet.

The main interface for an actor is shown in Figure 11.10. There are four main sections to this

interface providing information about the actor’s current state, as described below:

Runnable DTFs: provides a list of design tool functions which are currently invocable. This list is

recalculated for the current actor every time an actor in the project window completes or

starts a design function. This list is also calculated over the time that an actor is performing

a design function, providing a list of design functions that the actor could perform

concurrently (e.g., a documentation function at the same time as a simulation function).

Apart from the design functions that an actor can perform there are two special states which

may be shown in this window, they are:

end: denotes the end of the project window, usually only reachable by one or two actors in

the project window. By specifying end the actor terminates the project window

(assuming that no other tokens exist in the current project window).

hand-over: denotes the hand-over point from one actor to another. The hand-over specifies

the actor who takes up the new design role and the design function they will

perform to start that role. When choosing a hand-over the actor’s design role is

completed, and the token now represents the actor to whom the design has been

passed. When an actor completes their design role they may choose to collect their

work into an aggregate transaction representing all the work performed in that

design role.

Status: details the work performed by the current actor in their design role. This list details when

design functions were started, when design functions completed, if any design functions

failed to start, or terminate, normally.

Stalled DTFs: provides a list of candidate design functions which are not currently invocable. This

can be due to the functions being performed by other actors, or to the failure of design

functions to start or terminate correctly when previously tried.

Rerun requests: lists all design functions previously performed by the actor whose input has

changed due to the performance of subsequent design functions. This list is purely

informative, and carries no obligation for the actor to re-perform a design function whose

input has changed.

As well as being provided with the textual interface to current design functions and the design

status, an actor is also presented with a graphical window showing the CombiNet they are

currently working in, see Figure 11.5. These views can be navigated in the same way as described

for a project manager. As the actor chooses new design tasks to perform, the token representing

their position in the CombiNet moves through the graphical view. As they move up or down
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between levels in the project window, new graphical views are provided showing their current

location.

11.3 Appraisal of Flow Handling

The ExEx provides an implementation of the flow of control specification from Chapter 7, with

enough checking and control to manage project windows of the small size demonstrated in the

figures in this chapter, through to large project windows (containing several hundred places) as

demonstrated in the COMBINE project (Flynn 1994). The interfaces to the ExEx provided for its

users provide the required access to the state of a project window and the control required to

manage the running of the project window. The project manager has full control over who works

in the project window and what functions they perform, but, assuming that the actors work well

together and the design progresses without problems, the project manager may not have to do

anything to aid the completion of the project window. The actors only have control over their

design functions, but can manage all tasks pertaining to their design role with the guarantee that

they are not impinging on other actors working in the system.

There are a few aspects of the ExEx which do not provide the level of support or control which

was envisaged at the start of the project. These points are elaborated below.

The project manager’s ability to dynamically modify the running project window is limited. What

is required is a close link between the project specification tool and the ExEx, so that the project

manager may make modifications to the project window definition and have them appear in the

running project window, without the need to reload the whole project specification as is the case

currently.

There is a gap between the set of available design functions displayed to an actor in their control

interface and what they can determine from the CombiNet display of their current place. This gap

is due to not being able to see the path to all the design functions which are available at any one

time. However, there seems to be no easy way to resolve this problem, as available design

functions could have been inherited from several CombiNets above the current CombiNet as well

as from several CombiNets below through aggregate places and global nets. Place navigation aids

are available to provide navigation similar to that offered to the project manager, but these still do

not provide a good view of the relationship between the current design function and all the

available options.

The mechanism used to calculate stalled design functions provides an overly conservative

determination of what can be performed concurrently. This is due to some portions of the IDM

being generic (e.g., the geometric model). Almost all design tools draw data from the geometric
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definition, so any design function which outputs geometric data will stall almost every other

design function in the project window. In some cases this may be sensible, but in the majority it is

not necessary. For example, consider a design function which defines the paving around a

building. When using this design function, all design functions which require only internal aspects

of the building will be stalled as they access the geometry portion of the IDM. One solution would

be to mark portions of the IDM as being generic (e.g., geometry, documentation) and not consider

these portions when determining stalled design functions. However, this may be problematic for

design functions where the use of generic portions of a model does impinge on their operation

(e.g., a visualisation tool whose input is almost purely geometry). Another solution is to consider

the actual objects used by running design functions when determining what is stalled in

collaboration with the intersection of models. However, it is impossible to know whether a design

function will produce output which is going to affect a design function which wishes to start up.

The method used in the ExEx does guarantee consistency of the model, with the trade-off that

design functions may stall unnecessarily.

In a similar vein, the current model of intersection checking does not consider two design

functions whose output may partially overwrite each other, for the reasons described in Chapter 7.

However, assuming concurrent design in a project window, the current ExEx does not stop a

design function writing its data back to the central store, even if it may be overwritten by a design

function which does not have permission to overwrite it (e.g., a running design function which

should be completed before the design function which wishes to write the data). Stalling design

functions whose outputs overlap with currently running design functions would provide a

conservative strategy (for the same reasons as mentioned above), but would guarantee consistency

of the central model. This problem and the one above indicate that further work is required in

determining strategies to manage concurrency and consistency in project windows.
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Chapter 12

Conclusions

The research presented in this thesis examines the type of development framework required to plan

and implement an integrated design system. The central premise is that existing stand-alone tools

lack the functionality required for large or medium sized integration projects. Research in this

thesis also recognises that insufficient aspects of an integrated project are modelled, resulting in

stand-alone, or poorly connected tools. Although many projects and many hundreds of person

years have been spent developing integrated design systems, their development frameworks all

have major shortcomings. These shortcomings range from the limited amount of information

modelled through to the nonexistence, or low capability, of tools needed to implement prototype or

commercial systems. This thesis analyses and identifies the full range of information which needs

to be modelled for an integrated design system and demonstrates a range of tools to support this

modelling.

The above analysis shows that modelling and integrating purely data aspects in a project is not

enough. To be usable in a development project, an integrated design system must take into account

the processes involved in the development and final use of the system. Thus a very wide range of

modelling methods covering data, processes, documents, legal aspects, activities, etc. (c.f. the

IDEF family of models, Mayer et al. 1994) is needed. Support tools are required to facilitate the

creation of an integrated design system, and this thesis demonstrates the benefit offered to a project

when they are available. Examples in this thesis show the application of these ideas to an

integrated building design system. The need for the tools and integrated systems shown in this

thesis is currently growing more urgent. Many small to medium sized integrated design

environments are under consideration, or even under development. To ensure that these projects

complete successfully, and operate as required by those in the industry, tools and modelling as

described in this thesis need to be developed and introduced to the industry.
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The major framework advances proposed in this thesis fall into three areas. First, more capable

modelling tools are required for the development and testing of the very large models which must

be specified for many information types (e.g., product and process). This thesis demonstrates the

benefits of such environments. Second, formal mapping languages are required to define the

correspondences between information in the many views of a domain found in integrated design

systems. The thesis defines one such language and shows that such languages can be supported

by automated implementations (rather than using the mapping as a coding specification). Third,

formal process specification languages need to be adopted to model the intent and usage of tools

inside an integrated design system. This thesis defines a process formalism and demonstrates an

implementation which can be used to test and control a running integrated design system.

The remainder of this chapter examines the contributions made by this project and the conclusions

that can be drawn from this work, and then proposes further work required in this area.

12.1 The Project Development Environment

This thesis has highlighted the need for development environments to help with the creation of

integrated design systems. The tools currently available to developers of such environments, and

the model specifiers, are totally inadequate for a well managed project. Inadequacies highlighted in

this thesis are: an inability to guarantee the consistency and correctness of a model and the data

used to test that model; an inability to manage and present overlapping views which make the

models more understandable than canonical forms; and an inability to cope with development

teams larger than a single person. This makes existing tools poorly suited for use in development

projects where models with hundreds of classes are the norm and where the size of the

development team is usually greater than ten people. The development tools presented in this thesis

show capabilities which tackle and resolve all of these problems.

The use of several modelling methods to capture different aspects of a project, each supported by a

development tool and environment, highlights the need for connections between models. Where

several models of information in design tools and central models exist it is imperative to provide a

method of mapping between the representations. Where processes and activities are defined they

must be linked with the data aspects that support the processes and activities. When information in

one model changes there are a range of inter-related models which are in some way dependent

upon the changed information and require updating. This requires that all of the development

environments communicate between themselves when dependent data in their models is modified.

All of the development tools demonstrated in this thesis are built upon a platform which allows

related modelling systems to be attached with notification of changes to dependant objects. Even

during the schema development stages it is clear that all aspects of the project domain need to be

consulted to ensure that the schemas capture the domain sufficiently. The best way to ensure this
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sufficiency is to model also the related aspects. This has led to models of data, correspondences

between data model, processes, activities, actors, and design tool parameters being incorporated

into the demonstrated system. Other related aspects also need to be incorporated, including

documents and their associated legal aspects for a project, possible conflicts and their

management, though these two aspects are both implicit in the constraints which are seen in the

process models.

The development environments created in this thesis all provide a common set of functions much

needed in the area. This includes the ability to use multiple overlapping views of components,

enabling subset views of a schema to be presented for various design processes, thus highlighting

different aspects of a schema and the relationships between entities in the schema. This helps

ensure the correctness of schemas by allowing concentration of particular aspects of the schema at

any one time and makes the schemas more understandable to audiences with different interests.

The other main ability is to be able to work with both textual and graphical representations in the

same environment. Again this enables views of varying levels of complexity and completeness to

be presented to different audiences for different tasks. Supporting these abilities in existing

commercial and research tools would have a marked impact in terms of greater certainty of the

correctness of the models being developed, a greater ability for them to be understood, and the

reduced time that would be required to develop them.

Though there are only simple ties between the schema development and the testing environments

in this project, they show the utility of a fast and automated path between specification and testing.

The testing environment tools developed for this thesis allow schemas to be instantiated and then

visualised, both in terms of values corresponding to data structures and for renditions of graphical

definitions, to perform quick checking of schema sufficiency and validity. The tools developed

allow for an early and continuous feedback loop into the model development phase of a project. In

this way the sufficiency of the models can be demonstrated and checked from early in the model

development. These types of tools and their close linkages with modelling environments need to

be more widely used to reduce the number of large schemas which are developed from theoretical

foundations without the ability to test against actual working needs until late in the project. It is

recommended that instantiations of schemas should be developed almost in a direct parallel with

the schema development. This usage of test data alongside the model development does however

introduce an additional requirement on the linked tools, that being the ability to move test data sets

forward to new schema representations as modifications are made. The use of the VML mapping

language is recommended for this phase, especially if tied to the semantics of modification

functions in the modelling environments, which allow mappings to be built automatically as

schemas are modified.
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12.2 The Mapping System

Previous research work into integrated design systems has highlighted the necessity to perform

mappings between representations of information in a domain, usually between central models and

those utilised by the different actors and design tools used in the integrated system. Existing

mapping languages and techniques have, however, proved too restrictive for this task, mainly due

to assumptions of commonality of semantics between models being mapped. It is certainly not

possible to guarantee this between the models of existing design tools, let alone those employed by

the actors from different disciplines in a project. This thesis presents an analysis of the types of

mapping required between various models and leads to a set of requirements for a mapping

langauge. The VML language was specified to meet these requirements and is demonstrated

through an interpreted implementation.

The VML language provides a mechanism to describe the correspondences between two schemas.

One of the main premises of the language is that bidirectional mappings must be supported (as

most non-trivial mappings must be performed in both directions). This led to a high-level

declarative language with an in-built assumption that any implementation of the language will

provide a mechanism to run mappings in the required direction. VML provides a language of far

greater range than allowed in RDBMS views, with the obvious drawback that not all described

mappings are invertible (which is guaranteed in an updatable RDBMS view). However, the power

of automatically invertible declarations is also greater than that offered in RDBMS views, and

demonstrated to work through an implementation which must track all modifications and previous

mapping connections. To support non-invertible mapping definitions the VML language offers a

fall-back position of defining two procedural mappings to enact the mapping in both directions.

A base VML mapping component offers three main functionalities: a specification of constraints to

determine when the mapping can be applied; a set of mappings to be applied; and initial values to

be instantiated when new objects are created during a mapping. A VML mapping provides unique

functionality in allowing methods in object-oriented systems to be referenced and invoked as part

of a normal mapping. For example, it enables the semantics of method calls to be mapped between

various systems, especially those which have side-effects outside the scope of the data in the

model, e.g., screen display calls.

VML allows a mapping to be specified between two schemas. It also describes what type of

mapping can be performed, i.e., read only, read-write or an integrated mapping which forces a

consistent state to be achieved before application. A network of VML mappings can be specified

between a range of design tools. The examples of this project demonstrate a star topology through

a central integrated model. However, many other topologies can be specified.

208



The implementation of VML in this thesis demonstrates the ability to implement complex VML

specifications and run them bidirectionally, as illustrated for a set of tools in the building and

construction domain. To enable mappings to be made in either direction the mapping system tracks

a large amount of meta-data about the mappings which were previously applied. This allows

updates to a mapping to be identified and applied with greater efficiency in the implementation.

However, it is clear that the amount of meta-data tracked soon greatly outweighs the amount of

data in the individual repositories, especially if many small mappings are applied between two data

stores. However, this is a minor cost to be paid for the ability to perform complex mappings

bidirectionally between two data-stores. It is clear that any system required to perform efficient

mappings between two stores will need to track this level of meta-data. This is the only way to

avoid problems of trying to match structures in two existing stores through the mapping

definitions.

Trying to compare VML to other mapping languages highlighted the need for a methodology to

compare mapping languages, and, underlying this, the need for a formal description of the

mapping domain. With a description of the mapping domain it would be possible to describe the

power of individual mapping languages, their strengths and weaknesses, and their sufficiency for

different types of applications. This has been attempted to some extent in the thesis by selecting

features of the mapping problem that needed to be supported for the particular domain. However,

these features are overlapping in that they provide different views of similar functions and do not

necessarily represent a comprehensive set of mapping language requirements.

As previously noted, it is not possible to apply all declarative mappings bidirectionally. In fact, it

is not possible to determine which mappings are possible in a particular integrated environment

until the power of the mapping implementation is determined (not all VML specifications need to

be implemented in all mapping implementations), and some techniques make more mappings

possible, e.g., incorporation of a simultaneous equation solver. So, though a VML specification

can describe how a mapping could be performed, it may or may not be calculable in a particular

integrated design system. One partial solution to this problem, utilised in this thesis, is to allow

constraints to be imposed on particular data sets following a mapping. In this way, though the

value for an attribute may not be calculable, it will be possible to determine whether a newly

specified value equals the value in the store from which it should have been calculated, or if a new

mapping is required to change values in the original store. For example, with area=height*length it

is not possible to determine height or length from area, but the two attributes can be constrained to

equal the value of area when multiplied, or if they do not equal area at some later stage it requires

area to be updated with a new application of the mapping.

12.2.1 Additional applications of the mapping language
The VML mapping language is designed to be domain independent, as is the relational database

language SQL. Thus it should be applicable to any situation which requires views of a similar
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domain to be kept consistent, and where the system needs to be easily extended without having to

compile in new features, functions, or tools. Some areas where VML would be immediately

applicable are:

RDBMS Views: VML has already been shown to be at least equivalent to the operators in a

RDBMS (see Appendix A.3). Therefore, any existing RDBMS view can be described in

VML. However, VML allows more powerful views to be defined as there is no

assumption that the view and base are semantically equivalent. Therefore, VML could

allow more sophisticated RDBMS views to be defined and updated automatically.

Schema Integration: as with RDBMS views, schema integration techniques for RDBMS assume

that the schemas being integrated are semantically consistent before integration. In many

real-world applications this is not possible to ensure and hence VML would provide the

ability to integrate non-consistent schemas, but still maintain the semantics of the individual

schemas. Appendix A.3 shows that VML is at least equivalent to RDBMS schema

integration operators.

Object-Oriented Views: some object-oriented languages and distributed object environments allow

multiple public interfaces to be defined for an object (e.g., the interface description

language (IDL) in CORBA, Otte et al. 1996), equivalent to database views except

enhanced with method calls. VML provides an alternative mechanism to specify these

views and also allows access to methods to allow methods calls to be tracked or invoked

during a mapping.

Data Store Migration: some data repositories need to migrate to new schema definitions over their

lifetime. Where simple changes are made, such as adding a new attribute, there is no great

problem, but where the schema change involves existing attributes in a new form it is often

difficult to create the new version of the data store. VML provides a specification and

migration environment which can handle this problem.

Loosely Connected Toolkits: many systems exist as a set of loosely connected components or

tools. Where each tool has a well defined set of functions and provides services which may

be of use to many other tools not always known in advance. VML can be used in such

systems to provide the glue to connect each of these tools as needed using a network

approach to defining interfaces between associated tools, or through a mapping to a global

and common data store.

12.3 The Flow of Control System

The specification of processes and the flows between them has received scant attention in the

development of integrated design systems, mainly due to a focus on data and its transmission.

However, as previously stated, it has been recognised that this focus on pure data transmission

does not provide a system which can integrate with the processes required in the domain that the

integrated systems sit in. Though the more recent European integration projects have considered
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process and workflow in their systems, this modelling has often been of processes independent of

the rest of the system. In this thesis, the full set of interconnections between various aspects of a

project’s information was considered. This shows dependencies between a process and data,

documents, actors, design tools and the influence on process invocation due to legal constraints,

standards and regulations, and the state of the executing system.

The CombiNet process modelling formalism addresses many of these issues by defining a two

level specification. At one level this defines the actors in a project, their design tasks, and design

functions which are tied to data specifications and design tools. The second level of specification

provides a hierarchical specification of design functions and their possible flows of control.

Varying levels of constraint in the process flows can be defined using either global processes at

different levels of the hierarchy to provide unconstrained process flows, or totally connected

processes to force a strict flow of control. This level allows the point of actor handover between

processes to be further specified, and allows the user to place constraints on the invocation and

completion of processes. One of the major benefits of the flow of control specification is that it

allows looping or iteration between processes which is not allowed in the major process modelling

formalisms due to the difficulty in simulating processes with loops (unless the number of iterations

can be pre-determined). However, in the integrated design systems in which this process model is

utilised, it is not important to simulate time taken to complete a project (though that is useful), but

it is necessary to define the possible flows between design tasks of the actors to control the

project. Though CombiNet ties together many aspects of a project there are still links that could be

defined. One of these is a link to documents and documentation which feed into a process, or are

required at the termination of a process. This would enhance the ability to specify constraints on

processes by allowing legality aspects to brought into the project (e.g., whether a stage has been

signed off properly).

The implementation of the CombiNet formalism provides a control system for a running project.

This includes project manager type overview functions for controlling the work done on the

project. It also provides interfaces for actors to specify the design functions on which they are

working, and to notify others of their progress. It also allows actors to identify design functions

that they are next able to work on, or to specify a handover to another actor in the project. Due to

the connections between the different aspects of a project, the flow of control system can track and

manage many functions of a running project. It can determine what design functions can run at any

time in the project, providing help to those attempting concurrent engineering. It can also identify

which actor in a project is hindering other work, allowing the project manager to smooth the

running of a project, or to examine business process re-engineering of the processes. As the

implemented flow of control system tracks all processes undertaken, it provides a record of task

progression to allow actors to show they completed all design tasks in their programme of work.
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12.4 Future Work

The work presented in this thesis has examined requirements for an integrated design environment

and provided prototypes of components required to make this environment reality. However, not

all of the requirements could be addressed within the scope of this work, and several areas for

further work have been identified. A selection of the more important areas for future work are

addressed below.

12.4.1 Tighter system integration
The integrated design system framework developed in this thesis provides for communication

between several of the modelling and testing tools. However, there is benefit in providing for even

closer integration of these tools. One approach envisaged for achieving this integration is to extract

the underlying model requirements of each of the tools, and develop an integrated schema

incorporating these models. In this way, the development framework could provide services

similar to those being created in the integrated design system itself. For example, if the schema

modelling and process modelling tools utilise a common data store containing the combined

models, then by specifying the model portions in which each tool is interested it would be possible

for a tool to be notified when changes are made to information it is referencing. This would

provide for greater consistency in the total set of models developed for an integrated design

system.

Providing these meta-models for tools would also enable a wider range of modelling paradigms to

be more easily integrated into the design framework. If generic model concepts are encapsulated in

the developed meta-models, then a variety of modelling methods (e.g., NIAM, EXPRESS and

ER) could be used, as long as the tools which model with a given methodology can translate their

models into the meta-model, or accept models in the meta-model format.

Tighter integration could also apply between the tools defining models and those manipulating and

populating those models. In this way, automatic migration of test data sets between versions

would be more easily achieved. Modelling of the functionality available in the different tools, and

describing how this maps to the associated data manipulation tool is of considerable benefit. For

example, when an attribute’s type is modified in a schema development tool, it must identify what

function, or set of functions, this maps onto in the data model manipulation tool.

The final outcome of this environment integration would be a set of tools which communicates

with all other tools upon which it has an impact. This would apply whether it is a modelling tool or

a data manipulation tool. In this environment designers would be sure they are working with the

most up-to-date models and that all affected models would be notified of changes made.
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12.4.2 Distributed environment
Though all of the tools developed in this system are stand-alone and could be used by a number of

concurrent users, multi-user development was not supported in this thesis. The connected tools in

this thesis have a very simple view of the information logistics server with which they

communicate (i.e., the Macintosh OS). This should, however, be easily scalable to incorporate

information logistic servers which handle multi-platform, multi-user and multi-organisational

environments. It is envisaged that interfaces to CORBA-like platforms (Otte et al. 1996) would

enable the handling of distributed data and distributed functionality for the tools defined in this

thesis. The ‘mapping through transaction-based updating’ approach provides a model which

would enable multiple users to work on the same underlying model through a distributed

environment and guarantee consistency (though at a high level of granularity).

Providing this extension would make the framework developed in this thesis more palatable to the

types of teams which are used today to develop integrated building design systems. These teams

consist of several modellers and testers in several organisations, usually also in several countries

(for the EU funded projects). For these teams, a distributed environment which manages model

and data consistency would be in itself of enormous benefit.

12.4.3 Wider incorporation of project aspects
Throughout this thesis it is argued that integrated design systems must enable all aspects of a

project to be encompassed in the final system. The system developed for this thesis shows the

integration of data and process aspects with some computing environment information also drawn

in. However, there are other areas which need to be brought into the system. Documents and

documentation are the most important aspect not currently tied into integrated design systems,

though there are many commercial systems available (IIC Consulting and Cimtech Limited, 1996).

Documents and their legal aspects are closely examined in the ToCEE project (Amor and Clift,

1997) and the following points noted:

• Documents are the main communication mechanism in any construction project.

• All project information is passed through documents and they are the input to all processes,

as well as the output of all design processes.

• Documents are the only legally binding information medium in a project.

Therefore, by incorporating documents, it is possible to track and manage legal aspects of a project

as they impact on processes and the data being manipulated (e.g., contracts and sign-off points).

The development of models and frameworks to handle wider project aspects can be seen in the

recent work on the BCCM in STEP (Building Construction Core Model, ISO/TC184, 1996) and

the EU-ESPRIT funded ToCEE project (Towards a Concurrent Engineering Environment,

Katranuschkov et al. 1996).

213



Other aspects which could be considered for incorporation include conflict management and

negotiation. In past construction projects, this was limited to clash detection (e.g., does a pipe’s

position clash with a column’s placement). This needs to be extended to allow negotiation between

project partners when designers fail to agree on the state of overlapping portions of a design. In

some instances this can be managed by providing the project manager with tools to arbitrate

disputes and apply decisions to the project team, though in others a dialogue between partners

must be supported before decisions are enacted.

A final aspect which could be considered, and which certainly has an impact on the whole system,

is that of constraints on a project due to standards and regulations. In some cases they determine

what processes can be enacted, or in what order. In many cases they impose pre- and post-

conditions on invocation of a process as well as on aspects of the data model and documentation

which must be produced.

12.4.4 Formal definitions of the mapping domain
In Chapter 5 it is noted that there is no method available to provide a rigorous comparison between

different mapping languages. Part of the reason for this is a lack of understanding in the research

community of the scope of the mapping problem and few formal methods to help describe

mappings (though Ainsworth et al. 1996 seem to provide a way to approach this problem).

Further work is required to define the semantics of mappings and mapping languages as the initial

step to allowing mappings to be validated and languages to be compared. Though Chapter 5 details

the main requirements of a mapping language, these are drawn from analysis of mappings in a

single domain (i.e., construction). The scope of these requirements needs to be validated for a

wider set of domains and specified in a more formal way. This more formal specification would

then allow the power of related techniques to be gauged (e.g., constraint specification systems and

the Interface Description Language (IDL) of CORBA, Otte et al. 1996).

A formal specification of the semantics of mapping languages would also help clarify the use of

methods and transactions in a mapping. Currently VML allows method calls to be mapped

between models, though the time dependency of the method calls is collapsed through the use of

transactions to amalgamate multiple model modifications into a single mapping. A formal treatment

of methods and their mapping requirements would provide an insight into where transaction

boundaries should be drawn for a mapping.

12.4.5 Alternate mapping language implementations
In this thesis an interpreter for VML was constructed. However, VML could be translated into

many other forms. An interesting project would be to examine the requirements for translating

VML into other languages. This would clarify the trade-off that has been made between the

specification language power and implementation complexity. For example, the translation of
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VML into a procedural language is likely to be very difficult even when supported by a powerful

set of backing libraries to provide many of the mapping functions. Examining the requirements

would enable a decision on the technical feasibility and commercial viability of this translation to

be made. The translation requirements would also determine the possibility of extending other

systems to handle mappings, for example, constraint solving systems.

12.4.6 Incorporation of measure tools
Once all project aspects are incorporated into an integrated design system, there exists a central

repository of all information relevant to a particular project and its progress. This would provide

an exciting opportunity to data-mine the workings of a project, either to provide feedback for new

projects, or as a monitor while a project is running.

A set of tools incorporated into the integrated design system and development environment could

provide measures of the state of the running or developing system. These measures could identify

aspects of a project which are: outside of best-practice (e.g., an inheritance hierarchy over twenty

entities deep); or bottlenecks (e.g., the structural and HVAC engineers are both waiting for the

architect to finish the redesign, they have been waiting 2 days, and this is the third time this

month); or performance indicators (e.g., how much various parts of the project deviate from

schedule).

Tools to examine completed projects would examine common aspects of a series of projects to

identify possible improvements. For example, any possibilities for concurrent engineering in

similar projects could be identified, or the feasibility of applying business process re-engineering

to reduce the development time, and hence the project cost.

12.4.7 Dissemination and exploitation
The integrated design system development environment proposed in this thesis has been

demonstrated for the construction domain. However, the system was devised to be generic and

applicable to any domain with similar problems. To this extent, the system should be transferable

to most engineering domains as well as medical domains and software engineering domains, all of

which require the development of similar integrated systems. In many cases it is likely that such a

system would make more impact, as these domains are further advanced in terms of data models

developed and used, their understanding of process, the legal implications of getting it wrong, and

the profits to be made by improvements.

In terms of general software systems there are several existing data management systems which

could be improved through the use of a system as described in this thesis. RDBMS specification,

development and maintenance could be subsumed by an integrated design system such as

demonstrated, providing the same wide range of benefits as well as providing more powerful data
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views for the database users. The same approach could be taken for heterogeneous database

systems as long as a more sophisticated information logistics system was incorporated. Again this

would provide greater power in the data views supported.
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Appendix A

The View Mapping Language

VML is a major component of this thesis. This appendix provides the technical specification of its

syntax, the graphical notation, and comparisons to other methods to show equivalence.

A.1 VML Syntax

The syntax of the mapping language is detailed below in two parts. The first part provides high-

level structures in the language, and the second part provides low level definitions for basic

structures such as strings and numbers. The starting point of the syntax below, which is listed

alphabetically, is the mapping specification.

and_op = ',' .
attribute_id = simple_id | variable_id .
attribute_name = class_name '.' ( attribute_ref | 'SELF' ) .
attribute_ref = attribute_spec [ attribute_ref_tail ] .
attribute_ref_tail = '=>(' expression ')' | '=>' attribute_spec [ attribute_ref_tail ] .
attribute_spec = attribute_id [ '[' [ list_id { ',' list_id } ] ']' ] .
attribute_value = [ [ model_id ':' ] class_id '.' ] attribute_ref | variable_id .
bijection_expr = class_name | attribute_name | invariant_simple_expr .
class_id = simple_id .
class_list = '[' [ class_list_name { ',' class_list_name } ] ']' .
class_list_name = 'group(' class_name ')' | class_name .
class_name = ( [ model_id ':' ] class_id | variable_id ) 

[ '[' [ list_id { ',' list_id } ] ']' ] .
constant_values = 'pi' | atom_literal | integer_literal | real_literal | string_literal 

| boolean_literal .
equivalences_def = 'equivalences(' equivalent { ',' equivalent } ')' .
equivalent = expression '=' expression | 'map_to_from(' predicate ',' predicate ')' 

| 'bijection(' bijection_expr ',' bijection_expr ')' | predicate .
expression = term { add_like_op term } .
factor = simple_factor { '^' simple_factor } .
function = function_1_arg | function_2_arg .
function_1_arg = 1_arg predicate_expr ')' .
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function_2_arg = 2_arg predicate_expr ',' predicate_expr ')' .
group_expression = '(' expression { ',' expression } ')' .
inherits = 'inherits(' inherit_list ')' .
inherit_list = inherit_map { ',' inherit_map } .
inherit_map = 'inter_class(' class_list ',' class_list ')' .
initialiser = expression '=' expression | method | predicate .
initialisers_def = 'initialisers(' initialiser { ',' initialiser } ')' .
inter_class_def = 'inter_class(' class_list ',' class_list [ ',' inherits ] 

[ ',' invariants_def ] [ ',' equivalences_def ] [ ',' initialisers_def ] ')' '.' .
inter_view_def = 'inter_view(' model_id ',' model_type ',' model_id ',' model_type ','

map_type ')' '.' .
invariants_def = 'invariants(' invariant_expr { or_op invariant_expr } ')'.
invariant_expr = invariant_simple_expr { and_op invariant_simple_expr } .
invariant_simple_expr = '(' invariant_expr { or_op invariant_expr } ')' 

| expression rel_op expression | predicate | function | method 
| 'group(' attribute_name { ',' attribute_name } ')' .

list_expression = '[' expression { ',' expression } ']' .
list_id = integer_literal | attribute_value .
mapping = inter_view_def { inter_class_def } .
map_type = 'complete' | 'partial' .
method = ( [ [ model_id ':' ] class_id '.' ] method_attribute_ref | [ model_id ':' ] class_id 

| ∋ ) '@' ( method_id | predicate ) .
method_attribute_ref = attribute_spec [ method_attribute_ref_tail ] .
method_attribute_ref_tail = '=>' attribute_spec [ method_attribute_ref_tail ] .
method_id = simple_id .
model_id = simple_id [ '{' version '}' ] .
model_type = 'integrated ' | 'read_only ' | 'read_write ' .
or_op = ';' .
predicate = predicate_id '(' predicate_expr { ',' predicate_expr } ')' .
predicate_expr = '[' predicate_expr { ',' predicate_expr } ']' | expression .
predicate_id = simple_id .
simple_factor = group_expression | list_expression | function | predicate | attribute_name 

| method | constant_values.
term = factor { multiplication_like_op factor } .
version = integer_literal | real_literal | atom_literal | string_literal .
1_arg = 'abs(' | 'average(' | 'cos(' | 'cos_1(' | 'count(' | 'deg_rad(' | 'exp(' | 'int(' 

| 'ln(' | 'maximum(' | 'minimum(' | 'rad_deg(' | 'sign(' | 'sin(' | 'sin_1(' | 'sqr(' 
| 'sqrt(' | 'sum(' | 'tan(' | 'tan_1(' .

2_arg = 'pwr(' | 'pwr_1(' .

%-----------------------------------------------------------
% Low level definitions for strings, numbers, comments, etc.
%-----------------------------------------------------------
add_like_op = '+' | '-' .
atom_literal = \q { atom_literal_char } \q . 
atom_literal_char = character | ' ' | '"' .
boolean_literal = 'false' | 'true' .
character = digit | letter | special . 
digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' . 
digits = digit { digit } . 
embedded_remark = '/*' { embedded_remark_el } '*/'.
embedded_remark_el = not_lparen_star | lparen_not_star | star_not_rparen | embedded_remark .
integer_literal = digits . 
letter = lower_case | upper_case .
logical_literal = 'false' | 'true' .
lower_case = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm' 

| 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' | 'z' .
lparen_not_star = '/' not_star . 
multiplication_like_op = '*' | '//' | '/' | 'mod' .
not_lparen_star = not_paren_star | ')' . 
not_paren_star = letter | digit | not_paren_star_special . 
not_paren_star_special = '!' | '@' | '#' | '$' | '%' | '^' | '&' | '_' | '(' | ')' | '-' 

| '+' | '=' | '{' | '}' | '[' | ']' | '~' | ':' | ';' | '''' | '<' | '>' | ',' 
| '.' | ' ' | \t | \n | '?' | '/' | '|' | '\' . 

not_rparen = not_paren_star | '*' .
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not_star = not_paren_star .
real_literal = digits '.' [ digits ] ( 'e' | 'E' ) [ sign ] digits .
rel_op = '<=' | '>=' | '<>' | '<' | '>' | '=' | '=\=' | '=:=' . 
remark = embedded_remark | tail_remark .
sign = '+' | '-' . 
simple_id = lower_case { simple_id_char } . 
simple_id_char = letter | digit | '_' .
special = not_paren_star_special | '*' | '/' .
star_not_rparen = '*' not_rparen . 
string_literal = '"' { string_literal_char } '"' .
string_literal_char = character | ' ' | \q .
tail_remark = '%' { tail_remark_char } \n .
tail_remark_char = character | ' ' .
upper_case = 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J' | 'K' | 'L' | 'M' 

| 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z' . 
variable_id = upper_case { simple_id_char } | '_' ( letter | digit ) { simple_id_char } . 
whitespace = { whitespace_char } .
whitespace_char = ' ' | \n | \t | remark .

A.2 VML Graphical Notation

The graphical notation for VML was created in order to specify high-level over-views of

mappings. It comprises few components and is basically a wiring notation. Figure A.1 shows the

main components of the notation.

Figure A.1 VML graphical notation

Classes being mapped between are denoted by rounded rectangles. Normally mapped classes are

shown with a single line (e.g., idm_hip_roof) whilst those which are grouped in the mapping are

shown with a double line (e.g., v3d_polygon). An inter_class definition is shown by a rectangular

box broken into three sub-components, one each for invariants, equivalences and initialisers.

Individual objects and attributes involved in a single equation are wired to the same line in the
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inter_class specification. Four different types of equation can be specified in this notation, straight

equivalence (=), more complicated equations (eqn), functions (func), and procedures (proc).

A.3 VML Comparison to other Notations

VML provides greater functionality than current languages for specifying views of data, though

these languages are based on a formal specification able to guarantee integrity of data. To help the

claim of VML’s power, it is necessary to show its equivalence to existing methods. Here the

equivalence to relational operators and those used in one method of database integration are

shown.

A.3.1 Comparison to database operators
In this section it is shown that VML has an equivalent expressive power to the five basic operators

required in a relational database system (Ullman 1982), i.e., projection, selection, union, set

difference and cartesian product. After this, the emulation of some of the more useful higher order

functions used in relational databases is shown.

A.3.1.1 The five basic operators from relational databases

1) Project

Given a source entity with attributes S1..Sm and a target entity with attributes T1..Tk, then a project

is accomplished with the following mapping:

inter_class([S], [T],
equivalences(...,

Si = Tj, ...)
).

2) Select

A select statement is accomplished through the use of the invariants section of a mapping. Given a

source entity S, with attributes S1..Sm, and some set of boolean formulas F which work on

attributes in S to give a target entity T then a select is accomplished as follows:

inter_class([S], [T],
invariants(F),
equivalences(S1 = T1,

. . . ,
Sm = Tm)

).
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3) Union

The union of entities R and S, with attributes R1..Rm and S1..Sm, to a target entity T is performed

by specifying two mapping definitions with no invariant definition such as:

inter_class([R], [T],
equivalences(R1 = T1,

. . . ,
Rm = Tm)

).

inter_class([S], [T],
equivalences(S1 = T1,

. . . ,
Sm = Tm)

).

4) Set difference

The difference between entities R and S, which have key attributes R1..Rk and S1..Sk and

attributes R1..Rm, to a target entity T is specified by checking that R does not exist in the set of S

entities. To do this a function called same_key is introduced. This function is assumed to return

true if an object has the same key as any of a set of objects passed as the second parameter. In this

case S is grouped in the header which means that the set of all S are associated with each mapping.

Therefore, the reference to S in the same_key function will be substituted with the whole set of S

objects when called.

inter_class([R, group(S)], [T],
invariants(not(same_key(R, S))),
equivalences(R1 = T1,

. . . ,
Rm = Tm)

).

5) Cartesian product

The cartesian product of entities R and S, with attributes R1..Rm and S1..Sn, to a target entity T

with attributes T1..Tm+n is simply specified as below:

inter_class([R, S], [T],
equivalences(R1 = T1,

. . . ,
Rm = Tm,
S1 = Tm+1,
. . . ,
Sn = Tm+n)

).
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A.3.1.2 Higher order operators from relational databases

Intersection
The intersection between entities R and S, which have key attributes R1..Rk and S1..Sk and
attributes R1..Rm, to a target entity T is specified with an invariant to find all the intersecting
objects in the consideration set and then projecting the attributes of R as follows:

inter_class([R, S], [T],
invariants(R1 = S1, ..., Rk = Sk),
equivalences(R1 = T1,

. . . ,
Rm = Tm)

).

Join

This is basically a cartesian product coupled with an invariant. The join of entities R and S, with

attributes R1..Rm and S1..Sn, under the conditions F to a target entity T with attributes T1..Tm+n is

simply specified as below:

inter_class([R, S], [T],
invariants(F),
equivalences(R1 = T1,

. . . ,
Rm = Tm,
S1 = Tm+1,
. . . ,
Sn = Tm+n)

).

Natural join

Again this is very similar to a cartesian product, but this time the invariant is composed of a key in

the source entities. The natural join of entities R and S, with attributes R1..Rm and S1..Sn, and

keys R1..Rk and S1..Sk to a target entity T with attributes T1..Tm+n-k is simply specified as below:

inter_class([R, S], [T],
invariants(R1 = S1, ..., Rk = Sk),
equivalences(R1 = T1,

. . . ,
Rm = Tm,
Sk+1 = Tm+1,
. . . ,
Sn = Tm+n-k)

).

A.3.2 Comparison to Motro virtual integration operators
In this section it is shown that VML has equivalent expressive power to the ten operators defined

in Motro (1987) for the definition of superviews for multiple databases. Some of these mappings

will look rather simple (for example the rename operator) as the main scope of Motro is the
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definition of a superview model, whereas VML is more concerned with the definition of

equivalences between existing models. However, as discussed in the thesis, it is possible to use

the mapping system to perform model integration so the comparison to an existing model

integration language is of benefit.

1) Meet

The meet of two entities S and T with attributes S1..Sn and T1..Tp, which share a common key

S1..Sk and T1..Tk and have shared attributes S1..Sm and T1..Tm (where m > k and n > m and p >

m) to three entities S', T' and U where U is the common generalisation of S and T is as follows

(note that U is not seen, as both S' and T' inherit from it):

inter_class([S], [S'],
equivalences(S1 = S'1,

. . . ,
Sn = S'n

).

inter_class([T], [T'],
equivalences(T1 = T'1,

. . . ,
Tp = T'p

).

2) Join

The join of two entities S and T with attributes S1..Sn and T1..Tp, which share a common key

S1..Sk and T1..Tk (where n > k and p > k) to the entity U where U is the generalisation of S and T

is defined as follows:

inter_class([S, T], [U],
invariants(S1 = T1, ..., Sk = Tk),
equivalences(S1 = U1,

. . . ,
Sn = Un,
Tk+1 = Un+1,
. . . ,
Tp = Un+p-k

) .

3) Fold

The fold of two entities S and T with attributes S1..Sn and T1..Tp, where T is a generalisation of S

(n > p and S1 = T1 .. Sp = Tp) to the entity T' where T' contains all of S and T is defined as

follows:
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inter_class([T], [T'],
invariants(var(T'p+1), ..., var(T'n)),
equivalences(T1 = T'1,

. . . ,
Tp = T'p

).

inter_class([S], [T'],
invariants(nonvar(T'p+1); ...; nonvar(T'n)),
equivalences(S1 = T'1,

. . . ,
Sn = T'n

).

4) Rename

Renaming the entity S to the entity T is achieved as follows:

inter_class([S], [T],
equivalences(S1 = T1,

. . . ,
Sn = Tn

).

5) Combine

Combining the equivalently typed entities S and T to the entity U is defined as follows:

inter_class([S], [U],
equivalences(S1 = U1,

. . . ,
Sn = Un

).

inter_class([T], [U],
equivalences(T1 = U1,

. . . ,
Tn = Un

).

6) Connect

Connecting the entities S and T with attributes S1..Sn and T1..Tp, where the type of S is contained

in T (so n < p) to the entity T' which is equivalently typed to T is defined as follows:

inter_class([T], [T'],
invariants(nonvar(T'n+1); ...; nonvar(T'p)),
equivalences(T1 = T'1,

. . . ,
Tp = T'p

).
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inter_class([S], [T'],
invariants(var(T'n+1), ..., var(T'p)),
equivalences(S1 = T'1,

. . . ,
Sn = T'n

).

7) Aggregate

The aggregation of S to classes S' and T is defined as follows:

inter_class([S], [S', T],
equivalences(S1 = S'1,

. . . ,
Sm = S'm,
Sm+1 = S'.T=>T1,
. . . ,
Sn = S'.T=>Tn-m

).

8) Telescope

Telescoping the entities S and T into S' is defined as follows:

inter_class([S, T], [S'],
equivalences(S1 = S'1,

. . . ,
Sn = S'n,
S.T=>T1 = S'n+1,
. . . ,
S.T=>Tp = S'n+p

).

9) Add

The addition of an implied attribute S'n+1 to the entity S with attributes S1..Sn to give the entity S'

is defined as:

inter_class([S], [S'],
invariants(S'n+1 = function_result),
equivalences(S1 = S'1,

. . . ,
Sn = S'n

).

10) Delete

The removal of a non relevant attribute Sn from the entity S with attributes S1..Sn to give the entity

S' is defined as:
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inter_class([S], [S'],
equivalences(S1 = S'1,

. . . ,
Sn-1 = S'n-1

) .
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Appendix B

Project Specification Language

The project specification language as described in Sections 7.2 and 7.3 of this thesis consist of a

graphical notation, as all information is ascertainable in this form. However, to be transferred to

the ExEx described in Chapter 11 there is a schema specification which is used to define what

should be transferred. The schema definition of the CombiNet is included below, followed by a

description of the graphical icons used in the notation.

B.1 Project Model Transfer Syntax

The schema definition for project window specification is given below in the EXPRESS modelling

language.

SCHEMA pw_reference_model;

TYPE schema_filename = STRING;
END_TYPE;

TYPE design_tool = STRING;
END_TYPE;

ENTITY project_window;
called : STRING;
requires : SET [1:?] OF actor;
scheduled_by : combi_net;
UNIQUE called;

END_ENTITY;
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ENTITY actor;
has_name : STRING;
performs : SET [1:?] OF design_role;
viewable_schema : schema_filename;
modifiable_schema : schema_filename;
UNIQUE has_name;

END_ENTITY;

ENTITY design_role;
has_role : STRING;
requires : SET [1:?] OF design_function;
UNIQUE has_role;

END_ENTITY;

ENTITY design_function;
has_function : STRING;
is_performed_by : OPTIONAL design_tool;
has_input_schema : OPTIONAL schema_filename;
has_output_schema : OPTIONAL schema_filename;
UNIQUE has_function;

END_ENTITY;

ENTITY combi_net;
called : STRING;
places : SET [1:?] OF abstract_place;
transitions : SET [2:?] OF abstract_transition;
actors : OPTIONAL SET [1:?] OF actor_overlay;

END_ENTITY;

ENTITY abstract_place
ABSTRACT SUPERTYPE OF (

ONEOF (invocable_place, global_place, global_net));
x_loc : INTEGER;
y_loc : INTEGER;

END_ENTITY;

ENTITY invocable_place
ABSTRACT SUPERTYPE OF (

ONEOF (place, aggregate_place)) 
SUBTYPE OF (abstract_place);
exits_to : SET [0:?] OF transition;

END_ENTITY;

ENTITY place SUBTYPE OF (invocable_place);
represents : design_function;

END_ENTITY;

ENTITY aggregate_place SUBTYPE OF (invocable_place);
represents : combi_net;

END_ENTITY;

ENTITY global_place SUBTYPE OF (abstract_place);
represents : design_function;

END_ENTITY;

ENTITY global_net SUBTYPE OF (abstract_place);
represents : combi_net;

END_ENTITY;
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ENTITY abstract_transition
ABSTRACT SUPERTYPE OF (transition, double_transition);
x_loc : INTEGER;
y_loc : INTEGER;

END_ENTITY;

ENTITY transition SUBTYPE OF (abstract_transition);
invokes : SET [0:?] OF invocable_place;

END_ENTITY;

ENTITY double_transition SUBTYPE OF (abstract_transition);
invokes : SET [2:2] OF invocable_place;

END_ENTITY;

ENTITY actor_overlay;
represents : actor;
covers : SET [1:?] OF abstract_place;

END_ENTITY;

END_SCHEMA;

B.2 Project Modelling Graphical Notation

The project specification is detailed in two separate types of diagram. The icons of the user and

function modelling are described below, followed by the icons in the flow of control specification.

B.2.1 User and function specification
There are three icons available for user and function specification at this level. These icons are

shown in Figure B.1. From left to right they allow specification of actors involved in a project,

their design roles, and the design functions associated with those design roles. A fuller description

is provided below:

esign
unction

esign tool

esign tool outputesign tool input

ctor

ctor viewable ctor modifiable

esign role

Figure B.1 Icons used for user and function specification

actor: every person involved in a project must be specified at this level. The actor icon allows the

name or type of person to be identified along with two schema definitions which provide

the specification of the viewable portion of the integrated data model for the actor, and the

modifiable portion of the integrated data model for the actor. The actor can be connected to

multiple design roles which defines their sphere of influence and activities in a project.
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design role: the design role is a high-level definition of a particular role required by an actor. The

design role icon allows the name of the role to be specified. Design roles are broken into

several design functions which define the tool supported activities which are required to

complete the design role. Multiple actors can access the same design role and the design

role can be connected to multiple design functions.

design function: a design function is an identifiable portion of work, usually associated with a

single design tool. The design function allows the name of the function to be specified and,

if a design tool is used to perform the design function, the name of the design tool to be

used along with the input schema for the design tool and its output schema. Several design

functions can use the same design tool. However, in this case the input and output

schemas are likely to be different to reflect the work performed by the design tool for

different design functions (i.e., limit what can be written back to the IDM to reflect the

function being performed by the design tool).

A convention used in the CGE tool created to support this formalism is to have a title block for

each diagram. In the CGE tool there may only be one diagram for user and function specification.

The project name specified in the title block is treated as the name of the top level CombiNet for the

project window.

B.2.2 Flow of control specification
There are seven icons available for flow of control specification at this level. These icons are

shown in Figure B.2. A set of the icons shown below can be grouped together to create what is

called a single CombiNet. As most project window specifications will require hundreds of design

functions to be specified it is likely that multiple CombiNets will be required to show the whole

project specification. To allow this, the notation allows for the aggregation of items into named

CombiNets. Again, in the CGE tool, each CombiNet has a title block. The name of a CombiNet is

specified in this title block, and becomes the name used to reference the whole set of icons in any

other CombiNet. A fuller description is provided below:

actor overlay

place aggregate place

global place global net

double transition transition

Figure B.2 Icons used for flow of control specification
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place: a place represents one of the design functions specified in the user and function diagram.

Each place icon is labelled with the name of the design function. If the design function is

only used by a single actor then it can be calculated who is able to use the design function.

If several actors can use the design function then an actor overlay (see specification below)

is needed to define who will be using the design function in this part of the workflow.

Places are joined to other places or aggregate places through transitions as described

below. Multiple arrows may leave a place to connect to transition icons (see description

below), and define possible flows of control. Multiple arrows may point to a place

representing multiple paths to the design function.

aggregate place: these icons, very similar to a place, represent a whole CombiNet. The label in the

aggregate place defines the name of an existing CombiNet whose components will be

substituted for the icon in an implemented system. Arrows entering an aggregate place are

implicitly tied to the starting transition of the named CombiNet, whilst arrows leaving an

aggregate place come from the end transitions of the named CombiNet (see transitions

below). Multiple arrows may leave an aggregate place to connect to transition icons (see

description below), and define possible flows of control. Multiple arrows may point to an

aggregate place representing multiple paths to the CombiNet.

global place: a global place represents a design function that can be accessed at any time (i.e., it is

not sequenced). Therefore it is visible from any point in the CombiNet in which it is

specified, and all CombiNets that are accessible from this CombiNet. When a global place

terminates, the flow of control is returned to the point from which it was called.

global net: this represents a CombiNet which can be accessed at any time (i.e., it is not sequenced)

and its visibility is the same as for a global place.

actor overlay: This box is drawn over all design functions and CombiNet specifications which are

utilised by a particular actor (where this is not uniquely defined by the user and function

diagram). When drawn over global nets and aggregate places it affects everything in the

CombiNet that those global nets and aggregate places represent. Actor overlays may

overlap to specify design functions or CombiNets which can be followed by different

actors.

transition: these are used to sequence the workflow in a CombiNet. Many arrows may lead to a

transition representing flow of control from the termination of design functions and

CombiNets. Many arrows may leave from a transition representing the possible flows of

control available. A transition with no arrows leading to it is called a starting transition and

represents a possible starting point for a CombiNet. A transition with no arrows leaving

from it is called an end transition and represents the completion point of a CombiNet. If the

CombiNet is at the top level for a project then its end transitions define the end of a project,

or project window. For lower level CombiNets, the end transition represents the interface

back to lines leading from the point at which the CombiNet was referenced.

double transition: this is a shorthand notation to represent two transitions forming a loop between

places or aggregate places.
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Appendix C

Snart

The Snart language, in which the majority of this thesis has been implemented, was under

continuous development over the life of this research. Started for use in another PhD thesis

(Grundy 1993), it was taken up for teaching purposes and other research projects (Mugridge et al.

1995). Work on this thesis highlighted support areas which did not exist in Snart at the time. To

enable Snart to be used efficiently for this thesis several extensions were proposed and

implemented. Some of these are now part of the basic Snart release (Mugridge et al. 1995). This

appendix describes extensions to Snart for the specification of facets for attributes, a query

language, object spaces, persistency, and a dynamic object viewer.

C.1 Facets

Previous research work by the author (Amor 1991) identified the requirement to specify additional

meta-information about attributes in a schema (like a data dictionary in relational database

systems). This allowed information to be associated with an attribute such as units for values,

default values, constraints, textual description, and who asserted a value. The frames-based

system developed for ICAtect (Amor 1991) supported this concept. When working on this thesis it

was recognised that facet information would again be required, and this was not supported by

Snart. To accommodate this requirement, the syntax of the language was extended to allow

arbitrary facet information to be specified in a schema definition. The snippet of syntax diagram

below shows what was added to allow facets to be represented.
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attribute =  name '(' 'facets(' facet_list ')' ')' | name ':' 'facets(' facet_list ')' |
name '(' attribute_type ')' | name ':' attribute_type .

facet_list = '[' [ facet { ',' facet } ] ']' .
facet = facet_name '(' value ')' .
/* The list below is not complete */
facet_name = 'type' .
facet_name = 'unit' .
facet_name = 'default' .
facet_name = 'asserted_by' .
facet_name = 'constraints' .
facet_name = 'description' .
facet_name = prolog_atom .

It was also necessary to extend the language to allow facet values to be set and to allow facet

values to be retrieved. The following snippet of syntax diagram shows the additions to the Snart

language to support these requirements.

snart_statement = attribute_value | facet_value | method_call | attribute_assignment |
facet_assignment .

facet_value = object_id '@' name '@@' facet_name '(' value ')' .
facet_assignment = object_id '@' name '@@' facet_name ':=' value .

The set of facets able to be defined for a single attribute is not constrained to those specified in the

schema. New facets can be added to an attribute dynamically. Facet information was used heavily

in the mapping system (see Section 10.3.11) to determine what values in a mapping took

precedence when choices had to be made about how to solve equations referencing several

attributes. The instance management system developed for EPE (see Section 9.2.1) also allowed

an attribute’s facet information to be viewed and modified.

C.2 Query Language

This sub-appendix describes the query language provided for the object-oriented language Snart

(Mugridge 1994, following on from Grundy 1993). This query language provides a very

powerful method to determine sets of objects which match certain criteria. Development of this

language is partially in response to the Snart language supporting multiple persistent object-spaces

as well as normal non-persistent object-spaces (where a persistent space may be used in a similar

manner to a relational database system), and partly through the development of an inter-schema

mapping language (see Chapter 5) which requires groups of objects to be identified in order to use

a mapping specification.

C.2.1 Introduction
There are many occasions when it is useful to find a set of objects which match a certain criteria.

In some circumstances all objects of a certain class are needed, in others objects whose attributes

have a particular value are required. So it is of no surprise that many object-oriented database

systems have followed the path of their relational counterparts and offer a query language, in most

cases a variant of SQL. However, a straightforward adaption of SQL to the object-oriented world
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is not always possible. Notions of tables, relations and allowable operations in the relational

database field often have no fixed counterpart in the object-oriented field. Methods developed to

evaluate conditions and optimise queries in the relational database field can not be taken directly

through to the object-oriented field. New methods of evaluating queries for object-oriented

database systems have been developed and some of these ideas have been incorporated into this

query language (see the description of language implementation in a later section).

Figure C.1 Snart query language interface

The query language is accessible in two forms. For the users of the Snart programming

environment, there is a query window interface invoked from the pull-down menus. This allows

the user to specify queries and have the resultant objects ID’s displayed (see Figure C.1 which

displays a query to return all space objects with an area greater than 30m2). For Snart

programmers, there is a search predicate through which a programmer can specify a search

condition and be returned a list of matching object ID’s. This second form of access to the query

system is an important feature for the work on providing multiple views of a base model through

the inter-schema mapping language of Chapter 5. One critical requirement of a view maintenance

system is to be able to define specific criteria which must be met before a mapping is performed.

The query language is the vehicle through which this portion of the mapping system can be

achieved.

C.2.2 Example Schemas
To illustrate the querying system throughout this section I will define two simple classes which

can be used in all further examples. These are a space and wall class as detailed below:
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class(space,
features(

height : float,
area : float,
connect_space : space,
walls : list(wall)

)
).

class(wall, 
features(

height : float,
width : float,
wall_type : atom,
my_space : space,
position : [float, float, float],
calc_ratio(float),
is_exterior

)
).

C.2.3 Old Style Queries in Snart
The original Snart querying system was tiered in three levels, this structure has been modified in

the new system. One could query by the exact object identifier, in which case one object was

returned, if it existed. Alternatively, one could query through a combination of the class name and

a set of attributes value pairs. The class name and conditions could be applied simultaneously or

independently to give differing sets of objects in return. One could also select objects in a given

object space, which narrowed the search even further. The structure of the query for class and

attribute querying was:

sn_find_objects(+ClassName(s), +Conditions, -TheObjects)

sn_find_objects(+ObjectSpace, +ClassName(s), +Conditions, -TheObjects)

The previous form of Conditions was either a single attribute with a value, or a list of attributes

with values which were evaluated in a conjunctive form. For example:

:- sn_find_objects(end_of_file, height(2.4), X).

:- sn_find_objects(end_of_file, position([1,2,0]), X).

:- sn_find_objects(end_of_file, [height(2.4),position([1,2,0])], X).

These queries would return all objects whose attributes matched exactly the given values. The

end_of_file value for ClassName signifies that it was not to be included in the query. In these

examples, query one would return both wall and space objects since they both had a height

attribute, while query two and three could only return wall objects.

C.2.4 New Style Queries in Snart
The simple equivalence offered in the old style Snart query language is quite limited and a more

flexible description of the objects to be selected is useful in many applications. In fact for the
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mapping language it is imperative to have a very flexible and powerful query language, and the

requirements of the mapping language has driven the functionality offered in this query language.

The call for the new query system is almost identical to previously, i.e.,

sn_find_objects(+ClassList, +Conditions, -TheObjectTuples)

sn_find_objects(+ObjectSpace, +ClassList, +Conditions, -TheObjectTuples)

Conditions must be passed as a term of the individual conditions to be satisfied. There are two

special modes of use of this predicate that users should be aware of. If the ClassList contains a list

of classes and there are no conditions which bind objects from different classes, then the result is a

list of all objects of the classes defined (rather than the cross-product of the objects of the named

classes). If no classes are specified in the ClassList, but there are conditions, then these conditions

are applied to all objects.

In the previous query language it was only possible to describe queries pertaining to one class

type, in this query language any number of classes can be collected and searched as part of the

query. To this extent, the result of a query will be a set of tuples of objects of each class specified

in the query and which matches the specified conditions. Put in another way, a multi-class query

forms the cross product of all the objects from all the classes and returns only those which match

the specified query. As this initial cross-product could be enormous, we employ several methods

of reducing the size of tuples which must be examined at any one time (see the later discussion of

the language implementation). The various components of the query language are demonstrated in

the remainder of this section.

Class, Attribute and Method Referencing

To reference a particular attribute of a class in a query the user should specify both the class and

attribute names, though where a query references just one class, or where the attribute name is

unique in the classes referenced, the class name can be omitted (though this is strongly

recommended against). The object identifier of the individual objects being matched can also be

specified in the query through the use of the self keyword. The methods attached to a class can

also be invoked and are expected to be in one of two forms. Either the method is called with all

parameters specified in the condition, in which case the method must succeed or fail; or the last

parameter of the method is not specified in the query and this parameter is used to return the result

of the method invocation. For example:

ClassName@Attribute e.g., wall@height > 2

Attribute e.g., height = 2.2

ClassName@self e.g., space@connect_space = space@self

ClassName@Method() e.g., wall@calc_ratio > 1.5

ClassName@Method() e.g., wall@is_exterior
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Simple Comparisons

At its most fundamental level, a query is concerned with evaluating a condition to be either true or

false. To enable us to make that decision we write a query which evaluates a certain condition

through the use of the comparison operators =, \=, >, <, >=, =< (and also all the other Prolog

comparison operators). For example:

wall@height = 2.4

space@area >= 30

Compound Terms

To enable complex compound queries the user may string together a set of simple comparisons

through the use of both conjunctive (,) and disjunctive (;) operators teamed with brackets. For

example:

wall@height > 2.4, wall@width > 4.5 ; wall@height > 7.5

wall@height > 2.4, (wall@width > 4.5 ; wall@width < 2.2)

Arithmetic Expressions

Comparisons need not be based purely on the existing value of an attribute, queries may also

contain arbitrary mathematical expressions which will be evaluated to determine the outcome of the

query. The allowable arithmetic operators are +, -, *, /, // (integer quotient), mod (remainder after

integer division), ^ (to the power of), and several bit operators which can be found in the Prolog

reference manual. For example:

space@area > space@height * 5

space@height > space@area / space@height * 2.4

Extended Arithmetic Expressions

Along with the standard arithmetic shown above the user can use arithmetic functions in an

expression. The allowable arithmetic functions are abs (absolute value), acos, aln (base e), alog

(base 10), asin, atan, cos, deg_rad (change from degrees to radians), exp (e to the power of), fp

(the fractional part of a float), int (integer equal to or less than value), ip (integer part of a float), ln

(base e), log (base 10), max (of two values), min (of two values), rad_deg (change from radians

to degrees), rand (a random number in the given integer range), sign (-1 if negative, 0 if 0, 1 if

positive), sin, sqr, sqrt, tan. For example:

sqrt(space@area) > ln(space@height)

sqr(int(sqrt(space@area))) > tan(deg_rad(space@height))

max(wall@height, wall@width) < 2.4

Prolog Predicates

Queries using standard arithmetic may be extended by using any other standard Prolog predicates

or user defined predicates. These predicates may be of two types, those which either pass or fail in

their execution, or those which return their result as the last parameter of the predicate. For
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example:

integer(wall@height)

member(wall@wall_type, [interior, partition]), wall@height =< 2

distance_from_origin(wall@position) < 20

Reference Pointers

As many class definitions in an object-oriented schema are concerned with references to other

objects, it is useful to be able to check values by following references in the object structure. We

introduce the operator => to denote an attribute of a referenced object. For example:

wall@my_space=>area > 25

wall@my_space=>connect_space=>height > wall@my_space=>height

wall@my_space=>(height * area) > wall@height * sqr(wall@width)

wall@my_space=>(ln(height) * area) > wall@height * sqr(wall@width)

Aggregation Functions

In keeping with the relational query language support for aggregation it is also possible to include

aggregation functions in an expression. While these operators are usually used to aggregate values

in a table in a relational system, in an object-oriented system they are normally used to aggregate

over a list of references found in an object. The allowable aggregation functions are sum,

maximum, minimum, count and average. For example:

maximum(space@walls=>height) > 2.4

average(space@walls=>(height * width)) > 12

count(space@walls) >= 4

List or Array Indexing

As the type of attributes can be a list of values, or a list of lists, etc., it can be useful to have a

method of accessing individual items in the list or if we treat lists as a n-dimensional array then any

point in that array. To achieve this there is a list index operator ~ to specify which item to retrieve

from the list, or ~[] if the user wishes to reference an item in a multi-dimensional array (eg

toy_array~[4, 19, 28]). For example:

wall@position~[1] > 50

wall@my_space=>walls~[1] = wall@self

Multiple Class References in a Single Condition

Though all the examples thus far have shown individual conditions dealing with just one class

type, it is quite possible to reference several class types in a condition. This is extremely useful in

associating two objects which otherwise have no connection between them (or limiting the number

of combinations of classes that get returned from a multi-class query). For example:

wall@height * wall@width = space@area

wall@my_space = space@connect_space
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C.2.5 Implementation of the Query Language in Snart
As may be obvious from the examples shown above, the query system built on top of Snart takes

full advantage of many of the features present in Prolog to manage the evaluation of a particular

query. For example, the and and or conditions are handled directly using , and ; from Prolog.

Also, the order of the query evaluation is determined through the precedence of the various

operators in Prolog. At the lowest level of the evaluation all attribute references are replaced by

their value and all arithmetic terms replaced with the result of their evaluation. Therefore at the top

level of the evaluation a conditional term either fails or succeeds, thereby determining whether an

object should be added to the list of objects which satisfy the query.

To improve the efficiency of a query evaluation there is some juggling of the queries separated by

the conjunctive operator (,). Initially each part of the query is classified as to whether it references

a single class, or whether it references multiple classes. When processing the query, the object

ID’s for all objects of the named classes are grouped by class. Then all conditions acting on a

single class are evaluated on the objects belonging to that class. With the reduced lists of objects

the cross-product of objects from all classes is built up. This is achieved by starting from the first

class specified in the class list and creating a cross-product with the next class from the class list.

This cross-product is reduced by applying all conditions which apply purely to these two classes.

The result of this is used to create a cross-product with the third class from the class list, and all

conditions which apply to these three classes are applied to reduce the number of tuples to

consider, and so on, until we have covered all the classes in the class list, and all conditions have

been applied.

C.3 Object Spaces

This sub-appendix discusses the method used in the Snart language (Grundy 1993) to allow

multiple object spaces to exist in the Snart model space. Multiple object spaces provide a

mechanism for having several distinct class name spaces working in the same environment. This

allows schemas with the same class names to be used without conflict in the same environment.

For example, as the name wall is common to almost all schemas dealing with buildings, it would

be inconvenient and user unfriendly to be required to have separate class names for a wall in each

schema. The modifications required to implement multiple object spaces on top of the existing

Snart system are discussed, as are the various predicates provided for creating and manipulating

various object spaces. The object space additions described here were added to the original Snart.

The newest versions of Snart (Mugridge et al. 1995) incorporate a newer mechanism to handle

object spaces, though the management of name spaces is not addressed. The use of the new Snart

and its object spaces is described in Appendix C.4 in association with persistence and persistent

spaces.
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C.3.1 Introduction
The provision of multiple object spaces allows new levels of class management and manipulation

to be achieved in the Snart object-oriented environment. They can also lead to better user

interaction with the Snart system by allowing the user to name classes without having undue

worry about name generation and naming conflicts. For example, in a multiple view scenario there

may be several participants who have a class they wish to call a wall, even though the definition of

these classes may all be quite distinct. With multiple object spaces each participant works in their

own object space and may name classes as they wish. The name they define, however, is mapped

to a distinct name at the Snart class management level.

There are several levels of management which are imposed by the addition of object spaces. At one

level it is necessary to identify the object space that any defined class belongs to. With this addition

it becomes possible to manipulate a defined set of classes in one operation. One can remove a

subset of the system classes in one go, or identify which classes are in a particular object space,

etc.

At another level it must be possible to distinguish all objects which were created in a particular

object space. With this addition it is possible to manipulate a defined set of objects in one

operation. One can remove a whole model in one operation, map a function over a whole set of

objects in one space, merge two object spaces into one, etc.

C.3.2 Defining an object space in Snart
It is necessary to identify which object space a class definition belongs to when that class is first

seen and again when it is modified. This is due to the term expansion which is used by Snart to

translate a class definition into a form useable by the Snart system. At this point it is necessary to

map the class name from that defined in the object space to a unique name inside the Snart object

space. At the initialisation of the Snart system a default user space called base is defined. If there

has been no other object space referenced before a class definition then the class will become a part

of the base object space. To specify the object space that a particular set of classes belongs to it is

necessary to use a predicate call of the form:

:- object_store(+ObjectSpaceName).

This must appear in each window containing class definitions before the actual class definitions.

All classes parsed after this predicate call will belong to the named object space and it will become

the default object space. At the parsing stage a register of classes which have been defined in an

object space is constructed. The definition of object spaces is stored through property lists with the

form defined below:
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(sn_os_current_type, ?ObjectSpaceName)

Defines the current default object space

(sn_os_class_register, +ObjectSpaceName, ?Register)

Keeps track of all classes defined in this object space. The register contains a list of objects of the

form:

ClassObjectSpaceName(ClassSnartName)

(sn_os_name, +ObjectSpaceName, ?OS_Tag)

Defines the atom which is prepended to the class name to give a unique class name in the Snart

system.

(sn_os_inherit, +ObjectSpaceName, ?ObjectSpaceParent)

Defines a parent object space whose class definitions can be seen from the current object space.

To work with the object spaces there are a number of predicates which have been added to the

Snart system. They are described below.

sn_os_create(+ObjectSpaceName)

Creates a new object space of the given name, or changes to the named object space if it already

exists.

sn_os_change, sn_os_change(+ObjectSpaceName)

 Changes the default object space to the one named or creates it if it doesn't already exist.

sn_os_delete(+ObjectSpaceName)

Deletes an object space from the Snart system. This removes all class definitions and all objects in

an object space of this name.

sn_os_find_name(+ObjectSpaceClass, -SnartClassName, -ObjectSpaceName)

Finds the mapped name of a class in an object space. This search proceeds from the current default

object space and if such a class is not found there then looks up the object space hierarchy, if there

is one defined for this object space. If the class is still not found then it searches all other object

spaces in no particular order until it finds a matching class name.

sn_os_find_name_rev(+SnartClassClass, -ObjectSpaceClass)

The reverse for the predicate above. Given a class name in the Snart class space, it will find the

corresponding name in its object space.
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sn_os_find_all_os(+Class, -ObjectSpaceNameList)

Returns a list of all object spaces which contain a class definition matching Class.

It is also possible to define a default method for a whole object store. If there is a definition of the

form:

object_store(ObjectStoreName)::MethodName:- Body

object_store(ObjectStoreName)::MethodName(Arguments) :- Body

with the class definitions for an object store then this method will be applied to every object in the

named object store when MethodName is called for an object. Uses for this form of definition are

a create method which can specify special conditions for the creation of any object in a given

object-store, and similarly for a delete method.

C.3.3 Working with an object space model in Snart
Currently the creation of objects works in a similar method to classes in an object space in the

sense that any object created must be created in an object space model of the same type as the class

from which it is being created. Extra information required to manage models of an object space is

kept in property lists of the following form. This extends to the persistency system in Snart (Amor

1993b) which must also keep track of which model a particular object was created in.

ObjectSpace&Class@create([Parameters, ]ObjectID)

Allows an object to be created in the named object space and for the specified class.

(sn_os_current_model, ?ObjectSpaceNumber)

Defines the current object space model being worked with.

(sn_os_model, +ObjectSpaceNumber, ?ObjectSpaceName)

Defines the type of object space that a particular model was created for.

(sn_os_object_register, +ObjectSpaceNumber, ?Register)

Holds the list of objects which were created in the object space model. The register will hold

information about all objects and is in the form:

[1,’p(12)’,’p(15)’,6,27,’p(2)’]

(sn_os_def_model, +ObjectSpaceName, ?ObjectSpaceNumber)

Defines the model which was last used when working with an object space of a given type. This is

used to ascertain which object space an object should be inserted into.

To work with objects in the object space model there are a set of predicates which have been added

to the Snart system. They are described below.
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sn_create_os(+ObjectSpaceName, -ObjectSpaceModelNumber)

Creates a new object space model of the given type and returns the unique number associated with

that model.

sn_os_model_change(+ObjectSpaceModelNumber)

Allows the user to change the default object space model to the named one.

sn_find_os_name(+ObjectID, -ObjectSpaceName)

Finds the object space type that a given object was created in.

sn_find_os_number(+ObjectID, -ObjectSpaceModelNumber)

Finds the object space number that a given object was created in.

sn_os_delete_model(+Model)

Deletes a model space and all the objects defined in that model. It then updates all properties to

reference another valid model. If the base model is being cleared it is left as an empty model space.

sn_os_merge(+FromModel, +ToModel)

Merges two object space models, and then deletes all references to the FromModel.

sn_os_map(+ObjectSpaceModelNumber, +Call)

Sends a method call defined by Call to all objects in a given object space model.

C.4 Persistency

This sub-appendix discusses two methods used in different versions of the Snart language to

allow objects to be persistent. Both methods are introduced as some modules in this thesis are

written in the old Snart  (e.g., EPE and Cerno-II extensions). The mechanisms involved in

declaring and checking persistent classes are discussed, as are the methods used to load and save

data to a persistent store.

C.4.1 Introduction
Persistency is required in almost all programs which manage and manipulate quantities of data. In

this thesis almost every component has a requirement to manage and manipulate large amounts of

data, whether they be the schema models, mappings, process specifications, or even the data in

models being used by the various design tools. This requirement led to a very early decision to

extend the capabilities of Snart to include persistency in some form. The two resulting systems are

described further below.

243



There has recently been a discussion on the Internet in the comp.databases.object newsgroup

about persistency and its implementation in object-oriented languages. The conclusions of this

discussion are definitions of the various models of persistency which are presented below.

OO-DBMS theory says there are 4 models of persistence. Either classes are persistent or individual

objects of classes are persistent. Persistent objects may be stored implicitly without any explicit

store operation, or they may be stored explicitly. In the net discussion one further model of

persistence was suggested which is based on a notion of reachability. This yields the following

models:

Implicit class level persistence

Your class declaration says that this class is persistent. Any object belonging to this class is

automatically stored in the database.

Implicit object level persistence

Individual objects are declared to be persistent when they are allocated. These persistent objects are

automatically stored in the database.

Explicit class level persistence

Your class declaration says that this class is persistent. Any object belonging to this class can be

stored in the database with a store operation.

Explicit object level persistence

Individual objects are declared to be persistent when they are allocated. These persistent objects

can be stored in the database with a store operation.

Persistency by reachability

Any object reachable from a persistent root(s) at commit time becomes persistent. The programmer

never says anything about persistence; persistence is implicit in the structure of the object graph.

Persistence by reachability was the model used in the Argus distributed persistent programming

language (Atkinson et al. 1983), and was retained in the design for the Thor distributed object-

oriented database. Persistence by reachability (based on garbage collection) was also the model

used by PS-Algol (Atkinson et al. 1983) and Napier (Morrison et al. 1988). PS-Algol is not,

however, based on an object-oriented data model.

C.4.2 Persistency in the old Snart
The model of persistency used in previous implementations of the Snart programming language

(Grundy 1993) was that of explicit class level persistence. In this form a persistent class was

described through a variation of the normal class definition syntax of Snart. This previous general

form of a persistent class definition in Snart, as opposed to the normal class definition, is detailed
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below:

persistent_class(ClassName, ClassVersion, ClassParents, ClassFeatures).

class(ClassName, ClassParents, ClassFeatures).

The current version of Snart has been changed to explicit object level persistence, where persistent

stores are created and only objects explicitly created in this store are saved when the store is

instructed to save itself. With potentially multiple types of object spaces available, a persistent

object space keeps track of the object ID’s in its store. This enables persistent models to be kept

distinct from other models in the system.

C.4.3 Manipulating persistent objects in the old Snart
Once created, persistent objects in Snart are accessed in exactly the same way as any other type of

Snart object. Where a persistent object is referenced and it hasn’t been loaded from the object store

then the object will be loaded automatically. Any change to an feature of a persistent object marks

that object as modified and a candidate for saving back to the persistent object store upon the store

closure or a forced update. The only visible difference between the persistent object and a normal

object is the index number which is generated for the object. A normal object has integer values

generated during object creation while a persistent object has an index value of the form

p(IndexNumber)  indicating to the Snart system that the object is persistent.

The management and access methods for a persistent store are fairly rudimentary, stores can be

created, opened or closed, and the objects in the store can be manually loaded or saved. The major

access methods are described below:

sn_create_object_store(File, Path) or sn_create_object_store

Creates and initialises a new object store in the specified location.

sn_open_object_store(File, Path) or sn_open_object_store

Opens a previously saved object store and sets the new object index above the maximum index

used in the object store. Upon opening the object spaces existing in the store are loaded and new

object spaces are defined in the Snart system for each of the object spaces in the persistent store.

sn_close_object_store(File) or sn_close_object_store

Closes an object store after saving all modified objects. A register of all object spaces which

contain persistent objects is also saved to the object store at this point.

sn_load_object_store

Loads all objects from the object store, unless they have already been previously loaded.
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sn_load_object_store(ClassName)

Loads all objects of the type ClassName from the object store, unless they have already been

previously loaded.

sn_write_objects

Saves all modified objects back to the object store. A register of all object spaces which contain

persistent objects is also saved to the object store at this point.

sn_merge_object_store(File, Path) or sn_merge_object_store

Merges all objects from the named persistent store into the current persistent store. Duplicate or

clashing object ID’s are mapped to a new ID so they can be saved in the current store.

C.4.4 Persistency in the new Snart
The model of persistency used in the newer implementations of the Snart programming language

(Mugridge et al. 1995) is that of explicit object level persistence. In this form an object is created in

a named space. If this space happens to be a persistent space then when the space is instructed to

save itself it will save all objects created inside itself. The basic structure of object spaces and the

persistent space is detailed in the Snart definitions below:

class(object_space,
metas(

 object_spaces:list(object_space), % All but default, called 'o'
create(+id, args),
remove_object_space(+objectSpace),
all_object_spaces(-list(object)),
load_object(+object),
trace_objects

),
features(

locate_object(+object),
load_object(+object),
dispose,
new_object(+object),
deleted_object(+object),
all_objects(-list(object))

)
).

class(small_persistent_space,
inherits(object_space),
features(

file : atom,
  kind : atom,

create(+atom),
create(+atom, +atom),
open,
close,
save,
delete

)
).
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This small persistent space is implemented by an ASCII file containing all objects created in the

object space. This is a very simple implementation suitable for small amounts of data. The

complete object space is written to the file every time it is saved, and loaded in its entirety when the

space is opened. The only optimising feature implemented (by John Grundy) was the addition of a

line size at the start of each line to allow the remainder of the line to be read in one go, rather than

byte by byte. The basic structure of a persistent file is shown in the file below (note: this is

formatted to show what would appear on one line as an indented piece of text):

traced_persistent_space.

96.

data_store_1.

239. obj(data_store_1, [('#traced', false), (file, 'Trebor:Desktop Folder:VML Test:idm.db'), 

     (kind, traced_persistent_space), ('#class', ms_traced_persistent_space), (tracer, 

     data_store_1_1), ('#original_class', ms_traced_persistent_space)]).

180. obj('data_store_1(ms_db_controller', [('#original_class', meta_ms_db_controller), 

     ('#facets', []), ('#traced', false), ('#triggered', false), ('#class', 

     meta_ms_db_controller)]).

168. obj('data_store_1(idm_3d_point', [('#original_class', meta_idm_3d_point), ('#facets', 

     []), ('#traced', false), ('#triggered', false), ('#class', meta_idm_3d_point)]).

159. obj('data_store_1(idm_space', [('#class', meta_idm_space), ('#original_class', 

     meta_idm_space), ('#facets', []), ('#traced', false), ('#triggered', false)]).

The major functionality available for the persistent object space is described below:

sn_init_persistent_space(+Name, -Space, -File)

Creates a persistent space with the specified Name. The user is prompted to specify a filename for

the space and this file is used to save all objects into. The returned Space atom is the name of the

space which was created. This atom is required to name the space when an object is created as

with persistent spaces in the old versions of Snart.

small_persistent_space::create(+File [, +Kind])

Creates a persistent space with a specified filename and if requested with a specified type. The type

enables specialised forms of persistent spaces to be recognised. For example, in the example

shown above the space type is a traced_persistent_space.

small_persistent_space::open

Opens the space and loads all objects in the file into main memory. If the name of the space in the

file being loaded from is different from the one it is being loaded into all object references in the

file are renamed to suit the new space name.
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small_persistent_space::save

Determines all objects which exist in the space and then writes them all to file. In the process of

doing this the old file is overwritten and all objects rewritten.

small_persistent_space::close

Closes a persistent space, without saving, and removes all the object definitions from the main

working memory.

small_persistent_space::delete

Performs a close as defined above and then physically removes the file from the file system.

C.5 ObjectViewer

While LPA Prolog provides a debugging system, and Snart objects all have a print method

associated with them, this does not provide the ideal interface for interactive development and

testing of Snart programs. What is often required is a dynamic view of the changing state of

specific objects as a program runs. The ObjectViewer provides a general purpose debugging tool

for the Snart language as well as a data model viewing and navigation tool. The basic premise of

the ObjectViewer is that it spies upon an object, and always reflects the current state of the object.

It is more powerful than that, as it also allows attributes to be modified, and methods of the class

to be invoked, from the object view window.

Figure C.2 ObjectViewer interface 

The ObjectViewer is built into Snart and can be invoked either through an extended menu item in

the LPA Prolog environment, or through a hot-key. Whichever way it is invoked the ObjectViewer

collects the highlighted text in the current window and parses this to extract all object identifiers.
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For each identifier found in the highlighted text it will create an ObjectViewer window for them.

To be informed of the state of the named object, the ObjectViewer places a trace on the object and

is then informed of all modifications made to the object through the Snart system (e.g., attribute

assignment, re-classification, deletion). For each class of object the ObjectViewer spies upon, it

creates a new class definition which provides the mechanism to display an object and manage

messages passed back from the viewing window. The window created for an object allows values

for attributes to be modified, and then set for the underlying object. Attribute values in a window

change at the same time that they are set in the underlying object.

By default the ObjectViewer uses the set of attributes of a class to determine the layout of a

window representing that object. The resulting layout is as seen in Figure C.2.

This default layout displays all attributes in alphabetic order, followed by a set of functions in the

Window Popup Menu line at the bottom. This default layout can be modified by specifying a

layout template for objects of a given class. This layout comprises a list of four types of

component which will be rendered in the display window in the order they are named. This

provides a way of ordering and reducing the attributes which are displayed, of changing the style

of layout of the window specific functions, and of allowing method calls of the object to be

invoked. The four components are described below:

Attribute: names an attribute of the class to be displayed in the window. Attributes are displayed

according to their type. As shown in the diagram above, classifiers are shown as a popup

item which allows the object to be reclassified. Attributes of enumerated types will also be

shown as a popup where any of the enumeration can be selected.

Button: defines a button to be displayed in the window. Buttons declared in sequence are strung

side-by-side, up to three across a window. Button specifications take the form

ButtonID(ButtonLabel), where ButtonID is the name of the method invoked when the

button is pressed. ButtonLabel provides the name that will be seen in the button.

Popup: defines a popup menu which can contain several items. When the popup menu is accessed,

the item selected when the mouse button is released is the method which is invoked. Popup

specifications take the form PopupID(PopupLabel, [ItemID1(ItemLabel1),

ItemID2(ItemLabel2), ...]) , where PopupLabel is the name given to the popup in the

window (e.g., Window in the figure above) and ItemID is the name of the method invoked

when the popup item is selected. ItemLabel provides the name that will be seen in the

popup. A special form of popup item is allowed called nop(+Char). This allows a

separating item to be placed in a list which performs no operation. Char is used as the

character used to create the separating line and is drawn across the maximum width of the

popup.

Window Functions: this is a keyword of either '$popup_system$' or '$button_system$' which

defines where the window system functions are placed and in what form they appear.

Window functions can be placed as a popup, as shown in the diagram above, or as a set of
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buttons in the window. If the window function keyword is not included in the layout

specification then it will be added automatically at the end as a popup.

The set of window functions which are supplied for every object are as follows:

update('Apply Modifications')

Modifies the object to reflect the values which have been set in the ObjectViewer window. If this

includes a reclassification then the object type is reclassified.

view_all('View All Objects')

Runs the ObjectViewer over everything in the attribute that the cursor resides in. This is the same

as calling ObjectViewer with highlighted text, except in this case the text does not need to be

highlighted.

view_selected('View Selected')

Runs the ObjectViewer over everything highlighted in the attribute that the cursor resides in. This

is the same as calling ObjectViewer with highlighted text.

print_object('Print Object')

Invokes the print method of the underlying object.

dispose('Discard View')

Removes the window and tracers on the object from the system. This is in contrast to clicking the

go-away box in the window title-bar which merely hides the window.

redraw('Re-Draw')

Redraws the window to take account of the newly specified window size or font specifications.

restructure('Re-Structure')

Totally redraws the window to take into account a new layout specification for the class the object

represents.

There are also a set of global parameters which can be set for the ObjectViewer. These are

described below:

sn_ov_set_width

sn_ov_set_width(+Width)

Sets the maximum width of the window. This is then used to calculate the size required for

attribute names and the remainder is used for displaying the attribute values. Without a parameter

sn_ov_set_width sets the value back to its default. This call only affects windows which are
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created after the call is made, not existing windows. There are constraints upon the maximum and

minimum window width based on screen size and the font specification described below.

sn_ov_set_font

sn_ov_set_font(+Font)

sn_ov_set_font(+Font, +Size)

sn_ov_set_font(+Font, +Style, +Size)

Sets the display font, style and size. By default this is Courier 10 point. This call only affects

windows which are created after the call is made, not existing windows.
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Appendix D

Small Examples Models and Mappings

These twenty small examples are taken from examples in papers describing other mapping

languages (Clark 1992, Bailey 1994, Hardwick 1994) as well as the author’s own work. While

there is some considerable overlap between some of the following examples, the author feels it is

useful to provide VML definitions of each example for comparison purposes. The layout of the

following examples is a definition of the schemas used for the IDM model in the left column and

the view schema in the right column. The required mapping definition for the two schemas is

given below the schema definitions.
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1) Example from Clark (1992).

This example shows the mapping between a single entity in one schema and multiple classified

entities in the second schema. The invariant gender = male ensures that only entities describing a

male in the idm are mapped to the male entity in view1. The entity reference of male for view1 in

the inter_class definition ensures that only male entities get mapped to person entities in the idm

schema with gender being set to male.

Note: In this example the entity person in view1 can not be mapped to person in the idm as the

gender attribute of person in the idm is not optional.

1)
SCHEMA idm;

TYPE sex_type = ENUMERATION OF
(male, female);

END_TYPE;

ENTITY person;
name : STRING;
age : INTEGER;
gender : sex_type;
inity : INTEGER;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY person
SUPERTYPE OF (ONEOF (male,

female));
name : STRING;
age : INTEGER;

END_ENTITY;

ENTITY male
SUBTYPE OF (person);
masculinity : INTEGER;

END_ENTITY;

ENTITY female
SUBTYPE OF (person);
femininity : INTEGER;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([person],[male],
invariants(gender = 'male'),
equivalences(name = name,

age = age,
inity = masculinity)

).

inter_class([person],[female],
invariants(gender = 'female'),
equivalences(name = name,

age = age,
inity = femininity)

).
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2) Example from Clark (1992).

This example shows the mapping between schemas whose inheritance hierarchies have a different

distribution of attributes. This mapping shows how mappings may be defined for parent entities

and seen by children entities when they need to perform their mappings.

Note: the attribute size for entity person in schema view1 will be required when mapping from the

idm to view1. However, this does not force a reclassification as would be the case in the previous

example, so a mapping between person and person is possible in this case.

1)
SCHEMA idm;

ENTITY person
SUPERTYPE OF (ONEOF (man,

woman));
name : STRING;
age : INTEGER;

END_ENTITY;

ENTITY man
SUBTYPE OF (person);
masculinity : INTEGER;
size : INTEGER;

END_ENTITY;

ENTITY woman
SUBTYPE OF (person);
femininity : INTEGER;
size : INTEGER;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY person
SUPERTYPE OF (ONEOF (man,

woman));
name : STRING;
age : INTEGER;
size : INTEGER;

END_ENTITY;

ENTITY man
SUBTYPE OF (person);
masculinity : INTEGER;

END_ENTITY;

ENTITY woman
SUBTYPE OF (person);
femininity : INTEGER;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([person],[person],
equivalences(name = name,

age = age)
).

inter_class([man],[man],
inherits(inter_class([person],[person])),
equivalences(size = size,

masculinity = masculinity)
).

inter_class([woman],[woman],
inherits(inter_class([person],[person])),
equivalences(size = size,

femininity = femininity)
).
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3) Example from Clark (1992).

This example is an extension of the previous example which shows a derived entity in view1. In

Clark (1992) there is an explicit mapping to generate this derived entity. We believe that this is an

erroneous schema and that defining a mapping in this case is invalid. This is a derived entity and

as such should be described so in the schema definition, and implemented as one in the database

system (i.e., a database view).

1)
SCHEMA idm;

ENTITY person
SUPERTYPE OF (ONEOF (man,

woman));
name : STRING;
age : INTEGER;

END_ENTITY;

ENTITY man
SUBTYPE OF (person);
masculinity : INTEGER;
size : INTEGER;

END_ENTITY;

ENTITY woman
SUBTYPE OF (person);
femininity : INTEGER;
size : INTEGER;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY person
SUPERTYPE OF (ONEOF (man,

woman));
name : STRING;
age : INTEGER;
size : INTEGER;

END_ENTITY;

ENTITY man
SUBTYPE OF (person);
masculinity : INTEGER;

END_ENTITY;

ENTITY woman
SUBTYPE OF (person);
femininity : INTEGER;

END_ENTITY;

ENTITY couple;
him : man;
her : woman;
compatibility : INTEGER;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([person],[person],
equivalences(name = name,

age = age)
).

inter_class(inherits([man],[man],
inter_class([person],[person])),
equivalences(size = size,

masculinity = masculinity)
).

inter_class(inherits([woman],[woman],
inter_class([person],[person])),
equivalences(size = size,

femininity = femininity)
).
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4) Example from Clark (1992).

This example shows the mapping definition between two conceptually different representations of

a point on a plane. The idm represents a point using an angle and radius, view1 by absolute

geometrical coordinates.

1)
SCHEMA idm;

ENTITY point;
r : REAL;
theta : REAL;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY point;
x_coord : REAL;
y_coord : REAL;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([point],[point],
equivalences(r * cos(theta) = x_coord,

r * sin(theta) = y_coord,
r = sqrt(sqr(x_coord) + sqr(y_coord)),
theta = tan_1(y_coord / x_coord))

).
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5) Example from Bailey (1994).

This example shows a simple mapping between two structurally similar representations of a circle.

Note: If comparing to Bailey (1994) notice that we define the mapping between references to other

entities explicitly (e.g., circle.centre and circ.centre). Bailey (1994) assumes that this can be

handled automatically.

1)
SCHEMA idm;

ENTITY circle;
centre : point;
radius : REAL;

END_ENTITY;

ENTITY point;
x, y, z : REAL;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY circ;
centre : point;
diameter : REAL;

END_ENTITY;

ENTITY point;
x_coord, y_coord, z_coord :

REAL;
END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([circle],[circ],
equivalences(radius * 2 = diameter,

centre = centre)
).

inter_class([point],[point],
equivalences(x = x_coord,

y = y_coord,
z = z_coord)

).
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6) Example from Bailey (1994).

This example shows how the mapping between two structurally dissimilar representations of a

circle can be described. The invariant provides the requisite information to create a point for each

circle when mapping from the idm to view1 and gives the selection strategy when creating idm

circles from view1 objects.

1)
SCHEMA idm;

ENTITY circle;
radius : REAL;
centre_x, centre_y, centre_z

: REAL;
END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY circ;
centre : point;
diameter : REAL;

END_ENTITY;

ENTITY point;
x_coord, y_coord, z_coord :

REAL;
END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([circle],[circ],
equivalences(radius * 2 = diameter,

centre_x = centre=>x_coord,
centre_y = centre=>y_coord,
centre_z = centre=>z_coord)

).
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7) Example from Bailey (1994).

This example is structurally identical to the previous example and is included for comparison to

Bailey (1994).

1)
SCHEMA idm;

ENTITY location;
point : cartesian_point;

END_ENTITY;

ENTITY cartesian_point;
x, y, z : REAL;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY location;
p, q, r : REAL;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([location],[location],
equivalences(point=>x = p,

point=>y = q,
point=>z = r)

).
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8) Example from Bailey (1994).

This example shows the mappings required for a classification problem.

1)
SCHEMA idm;

ENTITY circle;
centre : cartesian_point;
diameter : OPTIONAL REAL;
radius : OPTIONAL REAL;
p1, p2, p3 : OPTIONAL

cartesian_point;
END_ENTITY;

ENTITY cartesian_point;
x, y, z : REAL;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY point;
x, y, z : REAL;

END_ENTITY;

ENTITY radius_circle;
centre : point;
radius : REAL;

END_ENTITY;

ENTITY diam_circle;
centre : point;
diameter : REAL;

END_ENTITY;

ENTITY three_p_circle;
p_1, p_2, p_3 : point;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([cartesian_point],[point],
equivalences(x = x,

y = y,
z = z)

).

inter_class([circle],[radius_circle],
invariants(exists(circle.radius)),
equivalences(centre = centre,

radius = radius)
).

inter_class([circle],[diam_circle],
invariants(exists(circle.diameter)),
equivalences(centre = centre,

diameter = diameter)
).

inter_class([circle],[three_p_circle],
invariants(exists(p1),exists(p2),exists(p3)),
equivalences(p1 = p_1,

p2 = p_2,
p3 = p_3)

).
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9) Example from Bailey (1994).

This example shows the mapping for two structurally different representations of an arc.

1)
SCHEMA idm;

ENTITY three_point_arc;
pnt1, pnt2, pnt3: point;

END_ENTITY;

ENTITY point;
x, y : REAL;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY angle_arc;
centre : point;
radius : REAL;
theta : REAL;
phi : REAL;

END_ENTITY;

ENTITY point;
x, y : REAL;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([three_point_arc],[angle_arc],
equivalences(pnt2=>x = centre=>x,

pnt2=>y = centre=>y,
pnt1=>x = centre=>x - radius * cos(theta),
pnt1=>y = centre=>y + radius * sin(theta),
pnt3=>x = centre=>x - radius * cos(phi),
pnt3=>y = centre=>y - radius * sin(phi))

).
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10) Example from Amor (1994).

This example shows the merging of two entities in view1 to one entity in the idm, or vice versa.

The creation of trombe_type entities is regulated by the unique clause on name which guarantees

that only one of any trombe_type exists in the system.

Note: The matching of trombe_wall and trombe_type is done by equivalence of the name field to

the trombe_type.

1)
SCHEMA idm;

ENTITY trombe_wall;
height, width : REAL;
glazing_area : REAL;
vent_area : REAL;
trombe_type : STRING;
perf_ratio : REAL;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY trombe_wall;
height, width : REAL;
glazing_area : REAL;
vent_area : REAL;
trombe_type : STRING;

END_ENTITY;

ENTITY trombe_type;
name : STRING;
perf_ratio : REAL;
UNIQUE name;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([trombe_wall],[trombe_wall, trombe_type],
invariants(trombe_wall.trombe_type = trombe_type.name),
equivalences(height = height,

width = width,
glazing_area = glazing_area,
vent_area = vent_area,
trombe_type = trombe_type,
perf_ratio = perf_ratio)

).
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11) Example from Amor (1994).

This example is the same as the previous example except the link between trombe_wall and

trombe_type is made through a pointer to an object of trombe_type.

1)
SCHEMA idm;

ENTITY trombe_wall;
height, width : REAL;
glazing_area : REAL;
vent_area : REAL;
trombe_type : STRING;
perf_ratio : REAL;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY trombe_wall;
height, width : REAL;
glazing_area : REAL;
vent_area : REAL;
trombe_type : trombe_type;

END_ENTITY;

ENTITY trombe_type;
name : STRING;
perf_ratio : REAL;
UNIQUE name;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([trombe_wall],[trombe_wall],
equivalences(height = height,

width = width,
glazing_area = glazing_area,
vent_area = vent_area,
trombe_type = trombe_type=>name,
perf_ratio = trombe_type=>perf_ratio)

).
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12) Example from Amor (1994).

This example shows the merging of several entities based on a key into one entity in the idm.

1)
SCHEMA idm;

ENTITY wall;
results : perf_result;

END_ENTITY;

ENTITY perf_result;
a1, a2, a3 : REAL;
b1, b2, b3 : INTEGER;
c1, c2, c3 : BOOLEAN;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY wall;
id : INTEGER;
UNIQUE id;

END_ENTITY;

ENTITY wperf1;
wall_ID : INTEGER;
a1, a2, a3 : REAL;
UNIQUE wall_ID ;

END_ENTITY;

ENTITY wperf2;
wall_ID : INTEGER;
b1, b2, b3 : INTEGER;
UNIQUE wall_ID ;

END_ENTITY;

ENTITY wperf3;
wall_ID : INTEGER;
c1, c2, c3 : BOOLEAN;
UNIQUE wall_ID ;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([wall],[wall, wperf1, wperf2, wperf3],
invariants(view1:wall.id = wperf1.wall_ID,

view1:wall.id = wperf2.wall_ID,
view1:wall.id = wperf3.wall_ID),

equivalences(results=>a1 = a1,
results=>a2 = a2,
results=>a3 = a3,
results=>b1 = b1,
results=>b2 = b2,
results=>b3 = b3,
results=>c1 = c1,
results=>c2 = c2,
results=>c3 = c3)

).
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13) Example from Amor (1994).

This example shows the definition of an equivalence which can not be mapped automatically in

two directions. Trying to create the idm wall from a view1 wall will result in a constraint being

imposed on height and width without it being possible to calculate their exact values.

1)
SCHEMA idm;

ENTITY wall;
construction : LIST OF

material;
height : REAL;
width : REAL;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY wall;
construction : LIST OF

material;
area : REAL;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([wall],[wall],
equivalences(width * height = area,

construction = construction)
).
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14) Example from Amor (1994).

This example shows the mapping required for a view1 entity which contains summary information

rather than explicit representations of component entities. It is obvious in this example that there is

no way to generate idm windows directly from the view1 wall entity. However, mapping from

view1 to the idm will impose several constraints on the properties of the windows list.

1)
SCHEMA idm;

ENTITY wall;
materials : LIST OF material;
windows : LIST OF window;
height : REAL;
width : REAL;

END_ENTITY;

ENTITY window;
offset : position;
height : REAL;
width : REAL;
materials : LIST OF

window_mat;
END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY wall;
materials : LIST OF material;
wall_area : REAL;
glazing_area : REAL;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([wall],[wall],
equivalences(wall.materials = materials,

sum(wall.windows=>(height * width)) = glazing_area,
wall.height * wall.width = wall_area + glazing_area)

).
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15) Example from Amor (1994).

This example is similar to the previous example except that there is more information which can be

gleaned from the idm objects.

1)
SCHEMA idm;

ENTITY window;
panes : LIST OF pane;
offset : position;
framing : frame;

END_ENTITY;

ENTITY pane;
offset : position;
height : REAL;
width : REAL;
material : LIST OF

glazing_mat;
END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY window;
offset : position;
height : REAL;
width : REAL;
material : LIST OF

glazing_mat;
END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([window],[window],
equivalences(offset = offset,

panes[1]=>material = material,
maximum(panes=>(offset=>y + height))- minimum(panes=>offset=>y) =

height,
maximum(panes=>(offset=>x + width))- minimum(panes=>offset=>x) =

width)
).
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16) Example from Amor (1994).

This example shows the relative complexity required to manage the mapping between a general

schedule representation in the idm, and a more specific representation in view1 (where schedule

information is grouped into bunches of three in each entity). This example comes from

representations found in SUNCODE and DOE-2. In this example it is useful to introduce a

temporary entity which captures a list of lists comprising up to three time_val entities as a half way

point between the two schema entities. This temporary entity has an implied schema as follows:

ENTITY _temp_schedule;

name : STRING;

splitvals : LIST OF LIST [1:3] OF time_val;

END_ENTITY;

Also note the use of a variable parameter I in the inter_class definition, this provides the

mechanism for determining how to merge the multiple schedule objects into a single

_temp_schedule object with the list being constructed in the correct order.

1)
SCHEMA idm;

ENTITY schedule;
name : STRING;
vals : LIST OF time_val;
UNIQUE name;

END_ENTITY;

ENTITY time_val;
time : INTEGER;
val : REAL;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY schedule;
name : STRING;
position : INTEGER;
sched1 : time_val;
sched2 : OPTIONAL time_val;
sched3 : OPTIONAL time_val;
UNIQUE name, position;

END_ENTITY;

ENTITY time_val;
time : INTEGER;
val : REAL;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([time_val],[time_val],
equivalences(time = time,

val = val)
).

inter_class([schedule],[_temp_schedule],
equivalences(name = _temp_schedule.name,

list_splitter(vals, _temp_schedule.splitvals))
).
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inter_class([_temp_schedule],[schedule],
invariants(group(schedule.name)),
equivalences(name = name ,

splitvals[schedule.position, 1] = sched1,
splitvals[schedule.position, 2] = sched2,
splitvals[schedule.position, 3] = sched3)

).

list_splitter([], []).
list_splitter([A], [[A]]).
list_splitter([A, B], [[A, B]]).
list_splitter([A, B, C|Rest], [[A, B, C]|SplitRest) :-

list_splitter(Rest, SplitRest).

269



17) Example from Amor (1994).

This example shows the mapping required to provide representations of a wall as a positioned

rectangle in the idm and as a stretched and rotated column in view1.

Note: The definition of the mapping for lists of equivalent types can be performed without

recourse to individual elements in the list. However, in the next example we have a case where

accessing the individual elements of a list is necessary for the specification of the mappings.

1)
SCHEMA idm;

ENTITY wall;
name : STRING;
height : REAL;
width : REAL;
azimuth : REAL;
position : LIST [3:3] OF

REAL;
UNIQUE name;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY column;
name : STRING;
height : REAL;
radius : REAL;
azimuth : REAL;
position : LIST [3:3] OF

REAL;
UNIQUE name;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([wall],[column],
equivalences(name = name,

height = height,
width = radius * 2,
azimuth = azimuth,
position[1] = position[1] - cos(azimuth) * radius,
position[2] = position[2] - sin(azimuth) * radius,
position[3] = position[3])

).
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18) Example from Amor (1994).

This example shows the mapping required to provide representations of a wall as a positioned

rectangle in the idm and as a set of four 3D points in view1.

1)
SCHEMA idm;

ENTITY wall;
name : STRING;
height : REAL;
width : REAL;
azimuth : REAL;
position : LIST [3:3] OF

REAL;
UNIQUE name;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY wall;
name : STRING;
corners : LIST [4:4] OF LIST

[3:3] OF REAL;
UNIQUE name;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([wall],[wall],
equivalences(name = name,

position[1] = corners[1, 1],
position[1] = corners[4, 1],
position[2] = corners[1, 2],
position[2] = corners[4, 2],
position[3] = corners[1, 3],
position[3] = corners[2, 3],
position[3] + height = corners[3, 3],
position[3] + height = corners[4, 3],
position[1] + width * cos(azimuth) = corners[2, 1],
position[1] + width * cos(azimuth) = corners[3, 1],
position[2] + width * sin(azimuth) = corners[2, 2],
position[2] + width * sin(azimuth) = corners[3, 2])

).
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19) Example from Amor (1994).

This example shows the mapping between a global coordinate system and an offset coordinate

system. This example is rather contrived as it is more likely that there would be a space entity

above the wall of the idm which would also be in global coordinates, and hence the calculation of

the wall location would be considerably easier. The use of variables greatly simplifies the size of

the expressions that would otherwise need to be written in this mapping.

1)
SCHEMA idm;

ENTITY wall;
name : STRING;
x_pos : REAL;
y_pos : REAL;
z_pos : REAL;
height : REAL;
width : REAL;
azimuth : REAL;
UNIQUE name;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA view1;

ENTITY building;
x_pos : REAL;
y_pos : REAL;
z_pos : REAL;
azimuth : REAL;

END_ENTITY;

ENTITY space;
x_offset : REAL;
y_offset : REAL;
z_offset : REAL;
azimuth : REAL;
from_building : building;

END_ENTITY;

ENTITY wall;
name : STRING;
x_offset : REAL;
y_offset : REAL;
height : REAL;
width : REAL;
azimuth : REAL;
from_space : space;
UNIQUE name;

END_ENTITY;

END_SCHEMA;

Mapping
inter_view(idm, integrated, view1, read_write, complete).

inter_class([wall],[wall],
equivalences(name = name,

height = height,
width = width,
WallTheta = tan_1(y_offset / x_offset),
WallDist = sqrt(sqr(x_offset) + sqr(y_offset)),
WallX = WallDist * cos(WallTheta + azimuth),
WallY = WallDist * sin(WallTheta + azimuth),
SpaceLocalX = WallX + from_space=>x_offset,
SpaceLocalY = WallY + from_space=>y_offset,
SpaceTheta = tan_1(SpaceLocalY / SpaceLocalX ),
SpaceDist = sqrt(sqr(SpaceLocalX) + sqr(SpaceLocalY)),
SpaceX = SpaceDist * cos(SpaceTheta + from_space=>azimuth),
SpaceY = SpaceDist * sin(SpaceTheta + from_space=>azimuth),
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BuildingLocalX = SpaceX + from_space=>from_building=>x_pos,
BuildingLocalY = SpaceY + from_space=>from_building=>y_pos,
BuildingTheta = tan_1(BuildingLocalY / BuildingLocalX ),
BuildingDist = sqrt(sqr(BuildingLocalX) + sqr(BuildingLocalY)),
x_pos = BuildingDist*cos(BuildingTheta 

+ from_space=>from_building=>azimuth),
y_pos = BuildingDist*sin(BuildingTheta 

+ from_space=>from_building=>azimuth),
z_pos = from_space=>from_building=>z_pos + from_space=>z_offset,
azimuth = BuildingTheta)

).
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20) Example from Hardwick (1994).

This example shows the mapping required to provide a representation of a block as defined in AP

203 from STEP in a less complex form (i.e., collapsing the structure).

1)
SCHEMA easy_203;

ENTITY cube;
x : REAL;
y : REAL;
z : REAL;
size : REAL;

END_ENTITY;

END_SCHEMA;

2)
SCHEMA ap_203;

ENTITY block;
position : axis2_placement;
x : REAL;
y : REAL;
z : REAL;

END_ENTITY;

ENTITY axis2_placement;
axis : direction;
ref_direction : direction;
location : cartesian_point;

END_ENTITY;

ENTITY direction;
vector : LIST [3:3] OF REAL;

END_ENTITY;

ENTITY cartesian_point;
coordinates : LIST [3:3] OF

REAL;
END_ENTITY;

END_SCHEMA;

Mapping
inter_view(easy_203, read_write, ap_203, integrated, complete).

inter_class([cube],[block],
invariants(block.x = block.y,

block.y = block.z),
equivalences(size = x,

x = position=>location=>coordinates[1],
y = position=>location=>coordinates[2],
z = position=>location=>coordinates[3]),

initialisers([0,0,1] = position=>axis=>vector,
[0,0,1] = position=>ref_direction=>vector)

).
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Appendix E

Large Example Models and Mappings

To provide an example of the use of the type of integrated design system and hence a more realistic

example than those shown in Appendix D, the work performed in previous BRANZ contracts is

highlighted (Hosking et al. 1995 and Mugridge et al. 1996). As part of these contracts a range of

small tools were connected through an integrated data model (see Figure E.1). Several screen-

dumps of the use of this system are shown in the following section, followed by descriptions of

the tools and their schemas. The mappings for each tool are listed as well as a project window to

show how the use of these tools could be managed in a project. Much of the description below is

drawn from Hosking et al. (1995) and Mugridge et al. (1996).

PlanEntry

FaceEditor

Vision-3D

IDM ThermalDesigner

WallBrace

Figure E.1 Integration of tools in example

E.1 Description of Large Example

In this section we describe an example of the integrated system in action. Figure E.2 shows a

building design for a simple L shaped building constructed using PlanEntry. Having constructed
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this model, the user is currently in the process of mapping the design (as a whole, in this case) to

the IDM and then on to the other tools. The additional windows provide information about the

transactions involved in the various mappings, and allow the user to instigate the mapping

process. 

 

Figure E.2 Building design in PlanEntry with mapping controlers

Figure E.3 Result of mapping to VISION-3D and FaceEditor
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Figure E.3 shows the result of mapping the model through to VISION-3D (at rear) and mapping

one of the faces through to the face editor to allow addition of materials.

Figure E.4 shows another design represented in three of the tools. 

Figure E.4 Building design after mapping to three tools

A layout change for this design is shown in Figure E.5, where one of the spaces is moved so that

the building changes from being an L-shape to being a T-shape. 

Figure E.5 Layout change to building in Figure E.4
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The result of propagating this change to the other tools is shown in Figure E.6.

Figure E.6 Result of propagating changes shown in Figure E.5

E.2 Schemas for the Large Example

Detailed below are the schemas for the IDM, PlanEntry, FaceEditor, VISION-3D, and

ThermalDesigner. The schemas are described utilising a combination of SPE diagrams and the full

code of some of the schemas. The code for PlanEntry and FaceEditor is not presented, as the class

definitions are tied very closely to the implementation, giving unnecessary complexity for this

appendix.

E.2.1 IDM schema
The schema description for the IDM is shown below. This incorporates elements from PlanEntry

and the FaceEditor, as well as including building attributes that are relevant to ThermalDesigner

and WallBrace. Following the approach taken in (Mugridge and Hosking 1995) the IDM is

composed of several views of the building components. A geometric or space oriented view

specifies the geometric properties of the building components. A materials view specifies

thermally-oriented materials characteristics. A bracing view specifies bracing-related

characteristics. 
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Redundancy is managed from outside the IDM, consequently, any tool that changes space

information, for example, must ensure that plane and face information that is dependent on that

change is also changed to retain consistency.

idm_building

num_of_occupants

name

mass_type
address

idm_environment

wind_speed

wind_area

seismic_area

location
infiltration_zone

exposure_class

degree_days

environment

idm_face

type_of_face

plane

normal

min

max

face_property

face_views

idm_abstract_space

normal

name

min

max

spaces

idm_bracing_face

idm_material_face

idm_space_face

orientation

location

idm_material

type_of_material

material

idm_face

openings

idm_floor_material

type_of_floor

floor_covering_type

idm_roof_material

idm_inter_floor_material

idm_wall_material

type_of_wall

colour
idm_window_material

type_of_window

abutting

idm_space

idm_roof
type

idm_roof_material

idm_abstract_space

idm_hip_roof

apex2
apex1

idm_dutch_roof

ridge2

ridge1
idm_mansard_roof

ridge2

ridge1
hip

material

idm_suspended_floor

subfloor_protection
foundation_height

floor_insulation

idm_slab_floor

slab_depth
idm_other_floor

r_value_other

idm_single

window_subtype

idm_other_window_type

r_value

idm_wall1

wall_insulation

softboard_12mm
cladding_type

cavity_ventilated

idm_other_wall_type

r_value

Figure E.7 IDM schema

class(idm_building, inherits(idm_cuboid), features(
        name : text ,
        address : text,
        mass_type : [spp, sppb, other],
        num_of_occupants : integer,
        spaces : list(idm_abstract_space),
        face_views : list(idm_face),
        environment : idm_environment
)).
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class(idm_environment, features(
        wind_area : [low, medium, high],
        seismic_area : [a, b, c],
        wind_speed : float, %   affects wind_area
        exposure_class : [sheltered, medium_sheltered,medium_exposed, exposed],
        % Some relation between exposure_class and wind_area/ local_acceleration
        location : [auckland, hamilton, napier, new_plymouth, wellington,
                    christchurch, dunedin, invercargill, other],
        infiltration_zone : [a, b, c, d], % uses location if it's <> other
        degree_days : integer       % uses location if it's <> other
)).

class(idm_2d_point, features(
        x    : float,
        y    : float
)).

class(idm_3d_point, features(
        x    : float,
        y    : float,
        z    : float
)).

class(idm_line, features(
        p1    : idm_3d_point,
        p2    : idm_3d_point
)).

class(idm_rectangle, features(
        normal   : [x, y, z],
        min      : idm_2d_point,
        max      : idm_2d_point
)).

class(idm_cuboid, features(
        normal   : [x, y, z],
        min      : idm_3d_point,
        max      : idm_3d_point
)).

class(idm_plane, features(
name : text,

 axis : [x, y, z],
offset  : float,
view_plane

)).

idm_plane::view_plane :- true. % so we can pass messages about planes

class(idm_abstract_space, inherits(idm_cuboid), features(
        name : text,
        abutting : list(idm_abstract_space)
)).

class(idm_space, inherits(idm_abstract_space), features(
)).

class(idm_face, inherits(idm_rectangle), features(
        type_of_face : [wall, floor, inter_floor, opening],
        face_property : classifier(idm_bracing_face, idm_material_face, idm_space_face),

plane : idm_plane
)).

class(idm_bracing_face, inherits(idm_face), features(
)).
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class(idm_material_face, inherits(idm_face), features(
        material : idm_material
)).

class(idm_space_face, inherits(idm_face), features(
location : [int, ext],
orientation : [n, ne, e, se, s, sw, w, nw, up, down],

        openings : list(idm_face)  % Includes windows, doors, sky-lights, etc
)).

class(idm_material, features(
        type_of_material : classifier(idm_floor_material, idm_inter_floor_material, 

idm_roof_material, idm_wall_material, idm_window_material)
)).

class(idm_floor_material, inherits(idm_material), features(
        floor_covering_type : ['carpet and underlay', 'cork tile', 'other covering'],

type_of_floor : classifier(idm_suspended_floor, idm_slab_floor, idm_other_floor)
)).

class(idm_suspended_floor, inherits(idm_floor_material), features(
        foundation_height : float,
        subfloor_protection : [a, b, c],
        floor_insulation : [uninsulated, 'perforated foil 25mm', 'lined 75mm blanket']
)).

class(idm_slab_floor, inherits(idm_floor_material), features(
        slab_depth  : float
)).

class(idm_other_floor, inherits(idm_floor_material), features(
        r_value_other : float 
)).

class(idm_roof, inherits(idm_abstract_space), features(
        material : idm_roof_material,

type : classifier(idm_hip_roof, idm_dutch_roof, idm_mansard_roof)
)).

class(idm_hip_roof, inherits(idm_roof), features(
        apex1 : idm_3d_point,
        apex2 : idm_3d_point 
)).

class(idm_dutch_roof, inherits(idm_roof), features(
        ridge1 : idm_line,
        ridge2 : idm_line 
)).

class(idm_mansard_roof, inherits(idm_roof), features(
        ridge1 : idm_line,

hip : idm_line,
        ridge2 : idm_line 
)).

class(idm_roof_material, inherits(idm_material), features(
        colour : [dark, light],
        type_of_roof : classifier(idm_roof1_material, idm_other_roof_material)
)).
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class(idm_roof1_material, inherits(idm_roof_material), features(
        building_paper : boolean,
        cladding_primed : boolean,
        roof_insulation : [nil,'fibre 75','fibre 100', 'fibre 150', 'paper 150'],
        softboard_12mm : boolean
)).

class(idm_other_roof_material, inherits(idm_roof_material), features(
        r_value : float
)).

class(idm_inter_floor_material, inherits(idm_material), features(
        type_of_inter_floor : classifier(idm_inter_floor1_material, 

idm_other_inter_floor_material)
)).

class(idm_inter_floor1_material, inherits(idm_inter_floor_material), features(
ceiling_type : ['panel ceiling', 'slab ceiling', 'other ceiling'],

        inter_floor_insulation : [nil, 'fibre 75', 'fibre 100', 'fibre 150', 'paper 150'],
        softboard_12mm : boolean
)).

class(idm_other_inter_floor_material, inherits(idm_inter_floor_material), features(
        r_value : float
)).

class(idm_wall_material, inherits(idm_material), features(
        colour : [dark, light],
        type_of_wall : classifier(idm_wall1, idm_other_wall_type)
)).

class(idm_wall1, inherits(idm_wall_material), features(
        cavity_ventilated : boolean,
        cladding_type : ['bevelback timber', 'lightweight ventilated PVC', 

'fibre reinforced planks'],
        softboard_12mm : boolean,
        wall_insulation : [nil, foil, 'fibre 75', 'fibre 94', 'paper 94']
)).

class(idm_other_wall_type, inherits(idm_wall_material), features(
        r_value : float 
)).

class(idm_window_material, inherits(idm_material), features(
        type_of_window : classifier(idm_single, idm_other_window_type)
)).

class(idm_single, inherits(idm_window_material), features(
        window_subtype : [clear, 'clear with eaves', tinted, reflective,'emit 0.6',

'emit 0.2']
)).

class(idm_other_window_type, inherits(idm_window_material), features(
        r_value : float
)).

E.2.2 PlanEntry schema
PlanEntry is a constraint-based CAD tool for constructing and manipulating three-dimensional

building models from multiple two-dimensional projections. It was developed as part of

Uniservices project 4376.01 (Hosking and Mugridge, 1994), using the Snart object-oriented

constraint language.
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Figure E.8 (from Hosking et al, 1994) shows PlanEntry in use. Four views of a building are

shown: two plan views, at different heights; and front and side elevations. Each view has a tool

palette for manipulating and extending the building model via its two-dimensional projection. 

Figure E.8 PlanEntry in use

Figure E.9 Planes calculated for a building
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For the purposes of the BRANZ project, the PlanEntry tool was extended with planes. Each plane

is coincident with one or more faces of spaces of the building. Planes are made visible by the user

selecting the plane tool (see Figure E.9). 

Clicking on a plane using the PlanEntry face tool causes the FaceEditor to provide a view of the

faces of the building that lie on that plane, ready for specifying or modifying additional

information about those faces (as shown in Figure E.11). 
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Figure E.10 PlanEntry schema 
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The FaceEditor requires geometric information concerning the faces of a building that lie on a

plane. As these planes and faces are completely determined by the juxtaposition of spaces in

PlanEntry, the PlanEntry model has been extended to include this plane and face information.

Consistency between the spaces, planes and faces is maintained by PlanEntry.

Each space has six or more associated faces. Where spaces abut, the partially overlapping faces are

divided according to whether they are internal or external. For example, in the figures above, a

wall of the larger space partially abuts another space so it is divided in two; one face is an internal

wall while the other is exterior. Faces have no rendered representation in PlanEntry; they are

constructed for use by other tools, via the IDM. 

The resulting schema for the PlanEntry building model, including all features of interest to the

integrated data model, is shown in below. While spaces, faces, and planes are represented

independently and redundantly in the schema, Plan Entry is responsible for maintaining their

consistency. There is a functional dependency from the set of spaces to the set of faces and to the

set of planes. When the set of spaces is altered (such as through adding or deleting a space, or

through moving or resizing an existing space), PlanEntry ensures that the set of planes and faces is

updated appropriately. Additional user-supplied information may be associated with the original

faces, as they were before the change. Thus any updates to the faces (and planes) have to be

managed carefully to avoid loss of such information. 

 
Figure E.11 FaceEditor in use 
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E.2.3 FaceEditor schema
The FaceEditor tool was developed specifically for the BRANZ project. When a plane is selected

by the PlanEntry face tool, geometric information about the plane is passed through to the

FaceEditor. The FaceEditor allows materials and bracing information to be overlaid on faces that

lie on the selected plane, including the material of openings (such as windows). This permits, for

example, a single wall material to be specified for the faces of several spaces that lie together on a

plane (e.g., several storeys) as well as for several different wall materials to be specified for

different parts of a single face.

Figure E.11 shows an example of the FaceEditor in operation, specifying materials and bracing for

one face of a building.

To allow for the later integration of the ThermalDesigner and WallBrace tools, the FaceEditor can

be used to specify wall materials both in terms of their thermal properties or their bracing

properties. For example, the user may specify a timber framed weatherboard/plasterboard wall

which has diagonal braces. However, at this stage the FaceEditor does not ensure that overlapping

thermal and bracing properties are consistent; this will be the subject of future work.

The FaceEditor allows multiple planes to be selected and edited. Plane views may be hidden when

not needed.
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Figure E.12 FaceEditor schema 

The schema for the FaceEditor model, including all features of interest to the integrated data

model, is shown in the figure below. Geometric information of walls and openings that lie on a

plane are provided to the FaceEditor from PlanEntry, via the IDM. These may not be altered in the

FaceEditor.
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In this schema, both fe_opening and fe_face_material entities have an associated material attribute.

This is a string specifying the material type, and is associated in the mapping with an object

defining the material attributes in the IDM. The kind attributes are used to specify the type of

rendering to be associated with the various FaceEditor components. 

E.2.4 VISION-3D schema
VISION-3D is a 3D model creation, editing, and rendering system for the Macintosh, developed

by staff at the University of Auckland School of Architecture (Bourke, 1989). It can be supplied

with a variety of scene description formats, which can be rendered in several different ways (wire

frame, hidden line, coloured, shaded, etc). It is possible to observe the scene from any angle, and

to create fly-through animations.

For the purposes of this project, VISION-3D is only used to provide a three dimensional rendering

of a building model. An example of such a rendering is shown in Figure E.13. Data entry for this

application is via a formatted file, which is constructed according to the mapping defined between

the VISION-3D and IDM schemas. 

Figure E.13 VISION-3D in use
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Figure E.14 VISION-3D schema

287



A schema for VISION-3D, corresponding to the descriptors in the file, is shown in Figure E.14

and below. A small application has been written which takes models in the form of this schema

and generates the formatted file representation (see dump_to_file).

/**********************************************************
 * © Copyright Robert W. Amor 1995
 *
 * Department of Computer Science
 * University of Auckland
 * Private Bag 92019
 * Auckland
 * New Zealand
 *
 * This software may be duplicated and used for research
 * purposes as long as this copyright message remains.
 *
 *********************************************************/
/**********************************************************
 * Purpose:Collate information on the whole model
*********************************************************/
class(v3d_model,
 features(
  model_name : string,
  create,
  dump_to_file
 )
).

/**********************************************************
 * Purpose:Print out info on create
*********************************************************/
v3d_model::create :-

cat([self, '@dump_to_file'], Meth, _),
writeseqnl(['To dump the Vision3D model to file type: ',Meth]).

/**********************************************************
 * Purpose:Allow the whole model to be dumped to disk for use
 *          in Vision 3D
*********************************************************/
v3d_model::dump_to_file :-

new(File, 'Vision-3D file to create?', '*.v3d'),
open(File, write),
self@'#space'(Space),
Space@all_objects(Objs),
findall(P, (member(P, Objs), P@class(v3d_polygon)), Polygons),
forall(member(Poly, Polygons), Poly@dump_to_file(File)),
close(File).

/**********************************************************
 * Purpose:Collate information on a single polygon in an object.
 *          The object is determined by the object_id
*********************************************************/
class(v3d_polygon,
 features(
  object_id : int,
  diffuse_reflection : float,
  specular_reflection : float,
  gloss_factor : float,
  points : list(v3d_point),
  colour : v3d_rgb,
  dump_to_file(+file)
 )
).
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/**********************************************************
 * Purpose:Output all information on a polygon in the correct
 *          format and order to the named file
*********************************************************/
v3d_polygon::dump_to_file(File) :-

self@object_id(OID),
self@diffuse_reflection(DR),
self@specular_reflection(SR),
self@gloss_factor(GF),
self@points(Points),
self@colour(Colour),
length(Points, NumPoints),
writeseqnl([NumPoints, OID, DR, SR, GF]) ~> File,
forall(member(Point, Points), Point@dump_to_file(File)),
Colour@dump_to_file(File).

/**********************************************************
 * Purpose:Definition of a point in 3D space
*********************************************************/
class(v3d_point,
 features(
  x : float,
  y : float,
  z : float,
  dump_to_file(+file)
 )
).

/**********************************************************
 * Purpose:Write the points location to the named file
*********************************************************/
v3d_point::dump_to_file(File) :-

self@x(X),
self@y(Y),
self@z(Z),
writeseqnl([X, Y, Z]) ~> File.

/**********************************************************
 * Purpose:Definition of a colour in RGB vector
*********************************************************/
class(v3d_rgb,
 features(
  r : float,
  g : float,
  b : float,
  dump_to_file(+file)
 )
).

/**********************************************************
 * Purpose:Write the colour vector to the named file
*********************************************************/
v3d_rgb::dump_to_file(File) :-

self@r(R),
self@g(G),
self@b(B),
writeseqnl([R, G, B]) ~> File.

E.2.5 ThermalDesigner schema
ThermalDesigner (Amor et al, 1992) helps a designer to check that a building design meets the

requirements of the New Zealand thermal insulation standard for residential buildings, NZS4218P

(SANZ, 1977). It is based on an approach developed by the Building Research Association of
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New Zealand (BRANZ) as a paper design guide (Bassett et al, 1990). Figure E.15 shows the

forms-based interface to the application.

Figure E.15 ThermalDesigner in use

/*
File: ThermalDesigner.sn
Purpose: Prototype of the ALF thermal design system.
First Developed in Kea by:

Robert Amor
Department of Computer Science,University of Auckland

Date: April 1991

Then redeveloped in Snart by:
Rick Mugridge
Department of Computer Science, University of Auckland

Date: July 1995
Copyright (C) 1991,1995 Building Research Association of New Zealand

*/

%___________ Climate ___________

class(td_climate,
  features( % All Defined from IDM

exposure_class: [sheltered, medium_sheltered, medium_exposed, exposed],
infiltration_zone: [a, b, c, d],
degree_days: int,

 create % Set up the local dialog for Climate
)).

td_climate::create :-
  set_prop(td,climate,self),
  climate_dialog.

%___________ Space ___________

class(td_space,
  features(

floor: list(td_floor), % Defined from IDM
roof: list(td_roof), % Defined from IDM
walls: list(td_wall)), % Defined from IDM

  constraints(
space_volume: float := sum(collect(f in floor, f@area)) * max(collect(w in walls,

w@height)),
walls_heat_loss: float   := sum(collect(w in walls, w@heat_loss)),
floor_heat_loss: float   := sum(collect(f in floor, f@heat_loss)),
roof_heat_loss: float   := sum(collect(r in roof, r@heat_loss)),
windows_heat_loss: float := sum(collect(w in walls, w@solar_loss_total)),
windows_heat_gain: float := sum(collect(w in walls, w@solar_gain_total)),
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solar_glazing_area: float
:= sum(collect(w in walls, w@window_area_total where (w@orientation in [n, ne, nw]))),

joint_length: float
:= sum(collect(w in walls, w@joint_length)) + sum(collect(f in floor, f@joint_length))

   + sum(collect(r in roof, r@joint_length))
)).

%___________ Floor ___________

class(td_floor(degree_days: int),
   features( % All defined from IDM, except r_value
      construction_type: classifier(td_suspended_floor, td_concrete_floor),
      length: float,
      width: float,
      floor_covering_r_value: float,
      r_value: float), % Calculated in subclasses
   constraints(
      area: float := length * width,
      perimeter_length: float := 2.0 * (length + width),
      area_perimeter_ratio: float := area / perimeter_length,
      alf: float := 3.5343 + 0.045608 * degree_days - 1.1001e-5 * degree_days * degree_days,
      heat_loss: float := area * alf / r_value,
      joint_length: float := length + width
)).

%___________ Suspended Floor ___________

class(td_suspended_floor, inherits(td_floor),
   features(  % All from IDM

subfloor_protection: [a,b,c],
foundation_height: float,
floor_insulation_r_value: float),

   constraints(
perimeter_wall_area: float := area * foundation_height,
area_perimeter_wall_area_ratio: float := area / perimeter_wall_area,
r_value := subfloorR(subfloor_protection,area_perimeter_wall_area_ratio) +

floor_insulation_r_value + floor_covering_r_value
)).

subfloorR(a,_,0.01).
subfloorR(b,Ratio,V) :- V is 0.05714 * Ratio.
subfloorR(_,Ratio,V) :- V is 0.1 * Ratio.

%___________ Concrete Floor ___________

class(td_concrete_floor, inherits(td_floor),
   features( % Defined from IDM

insulation_depth: float),
   constraints(

slab_r_value: float := 0.4 + 0.2 * insulation_depth + area_perimeter_ratio * 
(0.464 + 0.052 * insulation_depth),

% Formula derived from the graphs given on ALF p16.
% Extrapolation beyond insulation depth = 1m is unwise

r_value := slab_r_value + floor_covering_r_value
)).

%___________ Roof ___________

class(td_roof(degree_days: int),
   features( % Defined from IDM
      length: float,
      width: float,
      r_value: float,
      colour: [light, dark]),
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   constraints(
      area: float := length * width,
      alf: float := roof_alfR(colour,degree_days),
      heat_loss : float := area * alf / r_value,
      joint_length : float := length + width
)).

roof_alfR(dark,Days,V) :-
  V is -9.7212 + 0.065364 * Days - 1.9697e-5 * Days * Days.
roof_alfR(light,Days,V) :-
  V is -2.8380 + 0.063549 * Days - 1.9522e-5 * Days * Days.

%___________ Wall ___________

class(td_wall(degree_days: int),
   features( % All from IDM
      width: float,
      height: float,
      orientation : [n, ne, nw, w, e, sw, se, s],
      colour: [dark, light],
      windows: list(td_window),
      r_value: float),
   constraints(
      alf: float := alfR(colour, orientation, degree_days),
      heat_loss: float := area * alf / r_value,
      window_area_total : float := sum(collect(j in windows, j@area)),
      area: float := width * height - window_area_total,
      solar_gain_total: float := sum(collect(w in windows, w@heat_gain)),
      solar_loss_total: float := sum(collect(w in windows, w@heat_loss)),
      % a hack for joint length, presume that it is half the joint length of a wall
      % as each wall joint touches the wall joint of another wall or ceiling or floor.
      joint_length: float := width + height
)).

alfR(light, Or, Days, V) :-
member(Or,[n, ne, nw]),
V is -5.9841 + 0.060934 * Days - 1.8473e-5 * Days * Days.

alfR(light, Or, Days, V) :-
member(Or,[e, w]),
V is -3.9841 + 0.060934 * Days - 1.8473e-5 * Days * Days.

alfR(light, Or, Days, V) :-
member(Or,[s, se, sw]),
V is -2.6186 + 0.060696 * Days - 1.8240e-5 * Days * Days.

alfR(dark, n, Days, V) :-
V is -16.875 + 0.065122 * Days - 1.9639e-5 * Days * Days.

alfR(dark, Or, Days, V) :-
member(Or,[ne, nw]),
V is -13.005 + 0.063322 * Days - 1.8765e-5 * Days * Days.

alfR(dark, Or, Days, V) :-
member(Or,[e, w]),
V is -11.529 + 0.067010 * Days - 2.0688e-5 * Days * Days.

alfR(dark, Or, Days, V) :-
member(Or,[s, se, sw]),
V is -7.0047 + 0.063322 * Days - 1.8765e-5 * Days * Days.

%___________ Window ___________

class(td_window(facing: orientation_type, degree_days: int),
   features(
      r_value: float,
      shading_coef: float,
      height: float,
      width: float),
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   constraints(
      area: float := height * width,
      alf: float := 12.0 + 0.02143 * degree_days,
      heat_loss: float := area * alf / r_value,
      heat_gain: float := area * shading_coef * agfR(facing,degree_days)
)).

agfR(n,Days,V) :- V is 429.41 - 0.241220 * Days + 4.1833e-5 * Days * Days.
agfR(Or,Days,V) :- member(Or,[ne,nw]), V is 354.59 - 0.234590 * Days + 5.8192e-5 * Days *
Days.
agfR(Or,Days,V) :- member(Or,[e,w]), V is 221.18 - 0.158000 * Days + 4.1833e-5 * Days * Days.
agfR(Or,Days,V) :- member(Or,[se,sw,s]), V is 99.468 - 0.071612 * Days + 2.4488e-5 * Days *
Days.

%___________ Building ___________

class(td_building,
   features(
        building_name: text, % Defined from IDM
        num_of_occupants: int, % Defined from IDM
        effective_thermal_mass: float, % Defined from IDM
        spaces: list(td_space), % Defined from IDM
        climate: td_climate, % Defined from IDM
        create), % Used to set up local dialogs
   constraints(

floor_area_total: float := sum(collect(s in spaces, sum(collect(f in s@floor, f@area)))),
building_volume_total: float := sum(collect(r in spaces, r@space_volume)),
joint_length: float := sum(collect(s in spaces, s@joint_length)),
joint_volume_ratio: float := joint_length / building_volume_total,
air_leak_temp: float := air_leak(climate@infiltration_zone) * joint_volume_ratio,   
air_leakage_rate: float := air_leak_rate(climate@exposure_class) * air_leak_temp,
air_leakage_alf: float := -3.3678 + 0.022838 * climate@degree_days

- 6.7557e-6 * climate@degree_days * climate@degree_days,
air_heat_loss: float := building_volume_total * air_leakage_alf * air_leakage_rate,
total_seasonal_heat_losses: float
   := air_heat_loss 
   + sum(collect(s in spaces, s@floor_heat_loss + s@roof_heat_loss

    + s@walls_heat_loss + s@windows_heat_loss)),
internal_heat_gain: float := 900.0 + 150.0 * num_of_occupants,
total_seasonal_gain: float

:= internal_heat_gain + sum(collect(s in spaces, s@windows_heat_gain)),
gain_loss_ratio: float := total_seasonal_gain / total_seasonal_heat_losses,
glr: float := gain_loss_ratio,
    % Equations for the graphs in ALF: use the closest graph for finding

    % a point instead of a trickier interpolation to the correct value - 
    % things are so vague anyway that this slight inaccuracy won't matter
    % a damn

useful_fraction: float := useful_fract(effective_thermal_mass,glr),
useful_heat_gain: float := total_seasonal_gain * useful_fraction,
net_heating_EU: float := total_seasonal_heat_losses - useful_heat_gain,
solar_glazing_area: float := sum(collect(s in spaces, s@solar_glazing_area)),
solar_glazing_floor_area_ratio: float := solar_glazing_area / floor_area_total,
est_max_winter_indoor_temp: float

:= 20.0 + 142.857 * (1.0 - 0.38333 * effective_thermal_mass)
* solar_glazing_floor_area_ratio,

bpi: float := net_heating_EU / (climate@degree_days * floor_area_total),
window_N_gain: float

:= sum(collect(s in spaces, sum(collect(w in s@walls, w@solar_gain_total where 
(w@orientation = n))))),

window_NE_NW_gain: float
:= sum(collect(s in spaces, sum(collect(w in s@walls, w@solar_gain_total where 

(w@orientation in [ne, nw]))))),
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window_E_W_gain: float
:= sum(collect(s in spaces, sum(collect(w in s@walls, w@solar_gain_total where

(w@orientation in [e, w]))))),
window_SE_SW_S_gain: float

:= sum(collect(s in spaces, sum(collect(w in s@walls, w@solar_gain_total where 
(w@orientation in [se, sw, s]))))),

slab_heat_loss: float
:= sum(collect(s in spaces, sum(collect(f in s@floor, f@heat_loss where

(f@construction_type = td_suspended_floor))))),
suspended_heat_loss: float

:= sum(collect(s in spaces, sum(collect(f in s@floor, f@heat_loss where 
(f@construction_type = td_concrete_floor))))),

wall_N_heat_loss: float
:= sum(collect(s in spaces, sum(collect(w in s@walls, w@heat_loss where 

(w@orientation = n))))),
wall_NE_NW_heat_loss: float

:= sum(collect(s in spaces, sum(collect(w in s@walls, w@heat_loss where 
(w@orientation in [ne, nw]))))),

wall_E_W_heat_loss: float
:= sum(collect(s in spaces, sum(collect(w in s@walls, w@heat_loss where 

(w@orientation in [e, w]))))),
wall_SE_SW_S_heat_loss: float

:= sum(collect(s in spaces, sum(collect(w in s@walls, w@heat_loss where 
(w@orientation in [se, sw, s]))))),

roof_heat_loss: float
:= sum(collect(s in spaces, s@roof_heat_loss)),

window_heat_loss : float
:= sum(collect(s in spaces, sum(collect(w in s@walls, w@solar_loss_total))))),

  demons(
    cw_set_item('Thermal Designer',bpiText,number_atom(bpi))
)).

air_leak(a,15.00000).  air_leak(b,13.33333).
air_leak(c,11.81818).  air_leak(d,10.43478).

air_leak_rate(exposed,0.09091).           air_leak_rate(medium_exposed,0.07857).
air_leak_rate(medium_sheltered,0.06666).  air_leak_rate(sheltered,0.05714).

  
useful_fract(ETM,GLR,V) :- ETM =< 0.15, uf(1.07870, 0.42465, 0.0518650, 0.0043706, GLR, V).
useful_fract(ETM,GLR,V) :- ETM =< 0.45, uf(1.10220, 0.38544, 0.0075756, 0.0147310, GLR, V).
useful_fract(ETM,GLR,V) :- ETM =< 0.80, uf(1.11800, 0.36126,-0.0059524, 0.0113678, GLR, V).
useful_fract(ETM,GLR,V) :- ETM =< 1.25, uf(1.06130, 0.12136,-0.2161800, 0.0673400, GLR, V).
useful_fract(ETM,GLR,V) :- ETM =< 1.75, uf(0.97333, 0.23106,-0.5170500, 0.1420500, GLR, V).
useful_fract(ETM,GLR,V) :- ETM  > 1.75, uf(0.95071,-0.33541,-0.5955100, 0.1578300, GLR, V).

uf(A,B,C,D,GLR, V) :- V is A - B * GLR + C * GLR * GLR + D * GLR * GLR * GLR.

td_building::create :-
  set_prop(td,building,self),
  td_dialog.  % Set up the top-level TD dialog

E.3 Mappings for the Large Example

Listed below are the VML specifications for the mappings between the IDM and PlanEntry,

FaceEditor, VISION-3D, and ThermalDesigner.
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E.3.1 IDM <-> PlanEntry mapping
Only a small range of classes need to be mapped between the IDM and PlanEntry as shown below.

When first creating a mapping to PlanEntry it is important that a pe_proto_plan object gets created

to manage the running of PlanEntry. Building objects map straight across, though there is a

mismatch between the objects in sets for both of those classes requiring a bijection to split out the

right objects. The mapping of planes utilises method mappings to ensure that object select methods

in PlanEntry get mapped through to connected applications (e.g., the FaceEditor to allow

specification of materials for the selected face). All mappings with geometry flip the y-axis

between the two systems as a different axis setup is utilised in both systems.

inter_view(idm, integrated, planentry, read_write, complete).

inter_class([], [pe_proto_plan]
).

inter_class([idm_building], [pe_building],
equivalences(

bijection(idm_building.spaces[]@class('idm_space'), spaces=>list[]),
bijection(idm_building.spaces[]@class('idm_roof'), roofs=>list[]),
bijection(idm_building.face_views[]@class('idm_space_face'), faces[])

),
initialisers(

name = 'PlanEntry building',
pe_building.plan=>building = pe_building

)
).

inter_class([idm_plane], [pf_plane_object],
equivalences(

name = planename,
axis = axis,
offset = offset,
@view_plane = @select

)
).

inter_class([idm_space], [pe_space],
equivalences(

min=>x = x,
min=>y = 0 - y,
min=>z = z,
max=>x = x1,
max=>y = 0 - y1,
max=>z = z1,
bijection(abutting[], faces=>list[]=>spaces[] \= pe_space) % Only works from PE to IDM

)
).

inter_class([idm_hip_roof], [pe_roof],
equivalences(

min=>x = x,
min=>y = 0 - y,
min=>z = z,
max=>x = x1,
max=>y = 0 - y1,
max=>z = z,
apex1=>x = p1x,
apex1=>y = 0 - p1y,
apex1=>z = z1,
apex2=>x = p2x,
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apex2=>y = 0 - p2y,
apex2=>z = z1,
bijection(abutting[], faces=>list[]=>spaces[] \= pe_roof) % Only works from PE to IDM

)
).

inter_class([idm_space_face], [pe_face, pf_plane_object, group(pe_opening)],
invariants(

type_of_face \= 'opening',
member(pe_face.orientation, ['up', 'down']),
pe_face.offset = pf_plane_object.offset,
map_orientation_axis(pe_face.orientation, pf_plane_object.axis),
contained_in_face(pe_face, pe_opening)

),
equivalences(

min=>x = pe_face.x,
min=>y = 0 - pe_face.y,
max=>x = pe_face.x1,
max=>y = 0 - pe_face.y1,
plane=>name = pf_plane_object.planename,
map_orientation_axis(pe_face.orientation, idm_space_face.plane=>axis),
plane=>offset = pe_face.offset,
location = internal,
orientation = orientation,
map_face_type_from_orientation(type_of_face, pe_face.orientation, pe_face, spaces),
openings = pe_opening

)
).

inter_class([idm_space_face], [pe_face, pf_plane_object, group(pe_opening)],
invariants(

type_of_face \= 'opening',
member(pe_face.orientation, ['n', 's']),
pe_face.offset = pf_plane_object.offset,
map_orientation_axis(pe_face.orientation, pf_plane_object.axis),
contained_in_face(pe_face, pe_opening)

),
equivalences(

min=>x = pe_face.x,
min=>y = pe_face.y,
max=>x = pe_face.x1,
max=>y = pe_face.y1,
plane=>name = pf_plane_object.planename,
map_orientation_axis(pe_face.orientation, idm_space_face.plane=>axis),
plane=>offset = 0 - pe_face.offset,
location = internal,
orientation = orientation,
map_face_type_from_orientation(type_of_face, pe_face.orientation, pe_face, spaces),
openings = pe_opening

)
).

inter_class([idm_space_face], [pe_face, pf_plane_object, group(pe_opening)],
invariants(

type_of_face \= 'opening',
member(pe_face.orientation, ['e', 'w']),
pe_face.offset = pf_plane_object.offset,
map_orientation_axis(pe_face.orientation, pf_plane_object.axis),
contained_in_face(pe_face, pe_opening)

),
equivalences(

min=>x = 0 - pe_face.x,
min=>y = pe_face.y,
max=>x = 0 - pe_face.x1,
max=>y = pe_face.y1,
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plane=>name = pf_plane_object.planename,
map_orientation_axis(pe_face.orientation, idm_space_face.plane=>axis),
plane=>offset = pe_face.offset,
location = internal,
orientation = orientation,
map_face_type_from_orientation(type_of_face, pe_face.orientation, pe_face, spaces),
openings = pe_opening

)
).

inter_class([idm_space_face], [pe_wall],
invariants(

location = 'int',
type_of_face = 'wall'

),
equivalences(

map_to_from(map_polar_to_3D_rect(min, max, plane, pe_wall),
            map_3D_rect_to_polar(x, y, z, x1, y1, z1, min, max, plane)),
openings = openings=>list

)
).

inter_class([idm_space_face], [pe_opening],
invariants(

type_of_face = 'opening'
),
equivalences(

map_to_from(map_polar_to_3D_rect(min, max, plane, pe_opening),
            map_3D_rect_to_polar(x, y, z, x1, y1, z1, min, max, plane))

)
).

% Auxiliary functions
map_face_type_from_orientation(wall, Orientation, _, _) :-

member(Orientation, [n, s, e, w]).
map_face_type_from_orientation(floor, down, FromOID, [FromOID]).
map_face_type_from_orientation(inter_floor, Orientation, _, _) :-

member(Orientation, [up, down]).

map_orientation_axis(n, y).
map_orientation_axis(s, y).
map_orientation_axis(e, x).
map_orientation_axis(w, x).
map_orientation_axis(up, z).
map_orientation_axis(down, z).

map_axis_orientation(y, Orient) :-
member(Orient, [n, s]).

map_axis_orientation(x, Orient) :-
member(Orient, [e, w]).

map_axis_orientation(z, Orient) :-
member(Orient, [up, down]).

map_3D_rect_to_polar(X, Y, Z, X1, Y1, Z1, Min, Max, Plane) :-
FY is 0 - Y,
FY1 is 0 - Y1,
(Z = Z1 ->

Plane@axis := z,
Plane@offset := Z,

  concat('Plane z-', Z, PlaneName),
Plane@name := PlaneName,
Min@x := X,
Min@y := FY,
Max@x := X1,
Max@y := FY1
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;(Y = Y1 ->
Plane@axis := y,
Plane@offset := FY,

  concat('Plane y-', FY, PlaneName),
Plane@name := PlaneName,
Min@x := X,
Min@y := Z,
Max@x := X1,
Max@y := Z1

;Plane@axis := x,
Plane@offset := X,

  concat('Plane x-', X, PlaneName),
Plane@name := PlaneName,
Min@x := FY,
Min@y := Z,
Max@x := FY1,
Max@y := Z1

)
).

 
map_polar_to_3D_rect(Min, Max, Plane, Rect) :-

Plane@axis(Axis),
Plane@offset(Offset),
Min@x(MinX),
Min@y(MinY),
Max@x(MaxX),
Max@y(MaxY),
(Axis = z ->

Rect@x := MinX,
FMinY is 0 - MinY,
Rect@y := FMinY,
Rect@z := Offset,
Rect@x1 := MaxX,
FMaxY is 0 - MaxY,
Rect@y1 := FMaxY,
Rect@z1 := Offset

;(Axis = y ->
FOffset is 0 - Offset,
Rect@x := MinX,
Rect@y := FOffset,
Rect@z := MinY,
Rect@x1 := MaxX,
Rect@y1 := FOffset,
Rect@z1 := MaxY

;Rect@x := Offset,
FMinX is 0 - MinX,
Rect@y := FMinX,
Rect@z := MinY,
Rect@x1 := Offset,
FMaxX is 0 - MaxX,
Rect@y1 := FMaxX,
Rect@z1 := MaxY

)
).

contained_in_face(Face, Opening) :-
Face@orientation(Orient),
Opening@axis(Axis),
map_orientation_axis(Orient, Axis),
Face@offset(Radius),
Face@x(BX),
Face@y(BY),
Face@x1(BX1),
Face@y1(BY1),
Opening@x(X),
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Opening@y(Y),
Opening@z(Z),
Opening@x1(X1),
Opening@y1(Y1),
Opening@z1(Z1),
((Axis = z, Z = Z1, Z = Radius) ->

contained_in_rect(X, Y, X1, Y1, BX, BY, BX1, BY1)
;((Axis = y, Y = Y1, Y = Radius) ->

contained_in_rect(X, Z, X1, Z1, BX, BY, BX1, BY1)
;Axis = x,

X = X1,
X = Radius,
contained_in_rect(Y, Z, Y1, Z1, BX, BY, BX1, BY1)

)
).

contained_in_rect(X, Y, X1, Y1, BX, BY, BX1, BY1) :-
value_between(X, BX, BX1),
value_between(Y, BY, BY1),
value_between(X1, BX, BX1),
value_between(Y1, BY, BY1).

value_between(Val, P1, P2) :-
(P1 < P2 ->

P1 =< Val,
Val =< P2

;P2 =< Val,
Val =< P1

).

E.3.2 IDM <-> FaceEditor mapping
The mapping between the IDM and FaceEditor is more complicated than that for PlanEntry as

more work is required in identifying the right objects for a mapping. Every plane has a one-to-one

correspondence, but there is a requirement for data from associated objects in the model when

mapping. FaceEditor has complicated create methods for most of its objects, so requires create

methods to be specified in the initialisers of most mappings. Again the y-axis is measured

differently from the IDM and must be swapped around during mapping of geometry.

inter_view(idm, integrated, faceeditor, read_write, complete).

inter_class([idm_building], [fe_application]).

inter_class([idm_plane, idm_building, group(idm_space_face), group(idm_material_face),
group(idm_bracing_face)], [fe_face_window, fe_application],

invariants(
plane_equivalence(idm_plane, idm_space_face.plane),
plane_equivalence(idm_plane, idm_material_face.plane),
plane_equivalence(idm_plane, idm_bracing_face.plane)

),
equivalences(

bijection(idm_space_face[].type_of_face \= 'opening', walls[]),
bijection(idm_space_face[].type_of_face = 'opening', openings[]),
idm_material_face = materials,
idm_bracing_face = bracing,
idm_plane.name = name,
idm_plane@view_plane = fe_application@create_view(_, idm_plane.name)

),
initialisers(

fe_face_window@create(idm_building, idm_plane.name, idm_plane.axis, 0, '+', [])
)

).
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inter_class([idm_space_face], [fe_face, fe_face_window],
invariants(

type_of_face \= 'opening',
member(fe_face, fe_face_window.walls)

),
equivalences(

min=>x = x0,
min=>y = 0 - y0,
max=>x = x1,
max=>y = 0 - y1

),
initialisers(

face_property = 'idm_space_face',
fe_face@create(idm_space_face.plane, idm_space_face.plane, 'space', 0, 0,

idm_space_face.min=>x, 0 - idm_space_face.min=>y,
idm_space_face.max=>x, 0 - idm_space_face.max=>y)

)
).

inter_class([idm_space_face, idm_material_face], [fe_opening, fe_face_window],
invariants(

idm_space_face.type_of_face = 'opening',
idm_material_face.type_of_face = 'opening',
point_equivalence(idm_space_face.min, idm_material_face.min),
point_equivalence(idm_space_face.max, idm_material_face.max),
plane_equivalence(idm_space_face.plane, idm_material_face.plane),
member(fe_opening, fe_face_window.openings)

),
equivalences(

idm_space_face.min=>x = x0,
idm_space_face.min=>y = 0 - y0,
idm_space_face.max=>x = x1,
idm_space_face.max=>y = 0 - y1,
idm_space_face.plane = fe_face_window,
idm_material_face.min=>x = x0,
idm_material_face.min=>y = 0 - y0,
idm_material_face.max=>x = x1,
idm_material_face.max=>y = 0 - y1,
idm_material_face.material=>r_value = material=>r_value,
idm_material_face.material=>shading_coefficient = material=>shading_coef,
idm_material_face.material=>construction_name = material=>name

),
initialisers(

idm_space_face.face_property = 'idm_space_face',
idm_material_face.face_property = 'idm_material_face',
idm_material_face.material=>type_of_material = 'idm_window_material',
fe_opening@create(idm_space_face.plane, idm_space_face.plane, 'space', 0, 0,

idm_space_face.min=>x, 0 - idm_space_face.min=>y,
idm_space_face.max=>x, 0 - idm_space_face.max=>y,

idm_material_face.material=>construction_name)
)

).

inter_class([idm_material_face], [fe_face_material, fe_face_window],
invariants(

type_of_face = 'wall',
kind = 'wall',
member(fe_face_material, fe_face_window.materials)

),
equivalences(

min=>x = x0,
min=>y = 0 - y0,
max=>x = x1,
max=>y = 0 - y1,
plane = fe_face_window,
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material=>r_value = material=>r_value,
material=>colour = material=>colour,
material=>construction_name = fe_face_material.material=>name

),
initialisers(

face_property = 'idm_material_face',
idm_material_face.material=>type_of_material = 'idm_wall_material',
idm_material_face.material=>colour = 'dark',
fe_face_material@create(idm_material_face.plane, idm_material_face.plane, 'wall', 0, 0,

idm_material_face.min=>x, 0 - idm_material_face.min=>y,
idm_material_face.max=>x, 0 - idm_material_face.max=>y,

idm_material_face.material=>construction_name)
)

).

inter_class([idm_material_face], [fe_face_material, fe_face_window],
invariants(

type_of_face = 'floor',
kind = 'floor',
member(fe_face_material, fe_face_window.materials)

),
equivalences(

min=>x = x0,
min=>y = 0 - y0,
max=>x = x1,
max=>y = 0 - y1,
plane = fe_face_window,
material=>r_value = material=>r_value,
material=>construction_name = material=>name

),
initialisers(

face_property = 'idm_material_face',
material=>type_of_material = 'idm_floor_material',

 material=>type_of_floor = 'idm_suspended_floor',
fe_face_material@create(idm_material_face.plane, idm_material_face.plane, 'floor', 0,

0, idm_material_face.min=>x, 0 - idm_material_face.min=>y,
idm_material_face.max=>x, 0 - idm_material_face.max=>y,

idm_material_face.material=>construction_name)
)).

inter_class([idm_material_face], [fe_face_material, fe_face_window],
invariants(

type_of_face = 'inter_floor',
kind = 'inter_floor',
member(fe_face_material, fe_face_window.materials)

),
equivalences(

min=>x = x0,
min=>y = 0 - y0,
max=>x = x1,
max=>y = 0 - y1,
plane = fe_face_window,
material=>r_value = material=>r_value,
material=>construction_name = material=>name

),
initialisers(

face_property = 'idm_material_face',
material=>type_of_material = 'idm_inter_floor_material',
material=>type_of_inter_floor = 'idm_inter_floor1_material',
fe_face_material@create(idm_material_face.plane, idm_material_face.plane,

'inter_floor', 0, 0, idm_material_face.min=>x, 0 - idm_material_face.min=>y,
idm_material_face.max=>x, 0 - idm_material_face.max=>y,

idm_material_face.material=>construction_name)
)

).

301



inter_class([idm_bracing_face], [fe_bracing, fe_face_window],
invariants(

member(fe_bracing, fe_face_window.bracing)
),
equivalences(

min=>x = x0,
min=>y = 0 - y0,
max=>x = x1,
max=>y = 0 - y1,
plane = fe_face_window

),
initialisers(

face_property = 'idm_bracing_face',
fe_bracing@create(idm_bracing_face.plane, idm_bracing_face.plane, 'bracing', 0, 0,

idm_bracing_face.min=>x, 0 - idm_bracing_face.min=>y,
idm_bracing_face.max=>x, 0 - idm_bracing_face.max=>y)

)
).

Auxiliary functions
point_equivalence(Point, Point).
point_equivalence(Point1, Point2) :-

Point1@x(X),
Point2@x(X),
Point1@y(Y),
Point2@y(Y),
!.

plane_equivalence(Plane, Plane).
plane_equivalence(Plane1, Plane2) :-

Plane1@axis(A),
Plane2@axis(A),
Plane1@offset(O),
Plane2@offset(O),
!.

E.3.3 IDM <-> VISION-3D mapping
The mapping to VISION-3D is only maintained in a single direction as VISION-3D is utilised

purely as a viewer and navigation system. Only geometry needs to be mapped through to VISION-

3D from the IDM objects, though default material types are set for objects with little material

information in the IDM.

inter_view(idm, integrated, vision3d, read_only, complete).

inter_class([idm_building],[v3d_model],
equivalences(

name = model_name
)

).

inter_class([idm_space_face],[v3d_polygon],
invariants(

type_of_face = 'opening'
),
equivalences(

map_id_to_num(idm_space_face, object_id),
map_polar_rect_to_polygon(min=>x, min=>y, max=>x, max=>y, plane=>axis, plane=>offset,

points[1], points[2], points[3], points[4])
),
initialisers(

diffuse_reflection = 0.1,
specular_reflection = 0.1,

302



gloss_factor = 90.0,
colour=>r = 0.88,
colour=>g = 0.88,
colour=>b = 0.88

)
).

inter_class([idm_space_face],[v3d_polygon],
invariants(

type_of_face \= 'opening' % Could check for inter_floor, floor, wall to set different
material types

),
equivalences(

map_id_to_num(idm_space_face, object_id),
map_polar_rect_to_polygon(min=>x, min=>y, max=>x, max=>y, plane=>axis, plane=>offset,

points[1], points[2], points[3], points[4])
),
initialisers(

diffuse_reflection = 0.8,
specular_reflection = 0.5,
gloss_factor = 2.0,
colour=>r = 0.6,
colour=>g = 0.6,
colour=>b = 0.6

)
).

inter_class([idm_hip_roof],[group(v3d_polygon)],
invariants(

apex1=>x = apex2=>x,
apex1=>y = apex2=>y

),
equivalences(

map_id_to_num(idm_hip_roof, v3d_polygon[1].object_id),
map_triangle_to_polygon(min=>x, min=>y, min=>z, min=>x, max=>y, min=>z, apex1=>x,

apex1=>y, apex1=>z,  v3d_polygon[1].points[1], v3d_polygon[1].points[2],
v3d_polygon[1].points[3]),

map_id_to_num(idm_hip_roof, v3d_polygon[2].object_id),
map_triangle_to_polygon(min=>x, min=>y, min=>z, max=>x, min=>y, min=>z, apex1=>x,

apex1=>y, apex1=>z,  v3d_polygon[2].points[1], v3d_polygon[2].points[2],
v3d_polygon[2].points[3]),

map_id_to_num(idm_hip_roof, v3d_polygon[3].object_id),
map_triangle_to_polygon(max=>x, min=>y, min=>z, max=>x, max=>y, min=>z, apex1=>x,

apex1=>y, apex1=>z,  v3d_polygon[3].points[1], v3d_polygon[3].points[2],
v3d_polygon[3].points[3]),

map_id_to_num(idm_hip_roof, v3d_polygon[4].object_id),
map_triangle_to_polygon(max=>x, max=>y, min=>z, min=>x, max=>y, min=>z, apex1=>x,

apex1=>y, apex1=>z,  v3d_polygon[4].points[1], v3d_polygon[4].points[2],
v3d_polygon[4].points[3])

),
initialisers(

diffuse_reflection = 0.8,
specular_reflection = 0.5,
gloss_factor = 2.0,
colour=>r = 0.6,
colour=>g = 0.3,
colour=>b = 0.3

)
).

inter_class([idm_hip_roof],[group(v3d_polygon)],
invariants(

apex1=>x \= apex2=>x,
apex1=>y = apex2=>y

),
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equivalences(
map_id_to_num(idm_hip_roof, v3d_polygon[1].object_id),
map_triangle_to_polygon(min=>x, min=>y, min=>z, min=>x, max=>y, min=>z, apex1=>x,

apex1=>y, apex1=>z,  v3d_polygon[1].points[1], v3d_polygon[1].points[2],
v3d_polygon[1].points[3]),

map_id_to_num(idm_hip_roof, v3d_polygon[2].object_id),
map_quad_to_polygon(min=>x, min=>y, min=>z, max=>x, min=>y, min=>z, apex2=>x, apex2=>y,

apex2=>z, apex1=>x, apex1=>y, apex1=>z,  v3d_polygon[2].points[1], v3d_polygon[2].points[2],
v3d_polygon[2].points[3], v3d_polygon[2].points[4]),

map_id_to_num(idm_hip_roof, v3d_polygon[3].object_id),
map_triangle_to_polygon(max=>x, min=>y, min=>z, max=>x, max=>y, min=>z, apex2=>x,

apex2=>y, apex2=>z,  v3d_polygon[3].points[1], v3d_polygon[3].points[2],
v3d_polygon[3].points[3]),

map_id_to_num(idm_hip_roof, v3d_polygon[4].object_id),
map_quad_to_polygon(max=>x, max=>y, min=>z, min=>x, max=>y, min=>z, apex1=>x, apex1=>y,

apex1=>z, apex2=>x, apex2=>y, apex2=>z,  v3d_polygon[4].points[1], v3d_polygon[4].points[2],
v3d_polygon[4].points[3], v3d_polygon[4].points[4])

),
initialisers(

diffuse_reflection = 0.8,
specular_reflection = 0.5,
gloss_factor = 2.0,
colour=>r = 0.6,
colour=>g = 0.3,
colour=>b = 0.3

)
).

inter_class([idm_hip_roof],[group(v3d_polygon)],
invariants(

apex1=>x = apex2=>x,
apex1=>y \= apex2=>y

),
equivalences(

map_id_to_num(idm_hip_roof, v3d_polygon[1].object_id),
map_quad_to_polygon(min=>x, min=>y, min=>z, min=>x, max=>y, min=>z, apex2=>x, apex2=>y,

apex2=>z, apex1=>x, apex1=>y, apex1=>z,  v3d_polygon[1].points[1], v3d_polygon[1].points[2],
v3d_polygon[1].points[3], v3d_polygon[1].points[4]),

map_id_to_num(idm_hip_roof, v3d_polygon[2].object_id),
map_triangle_to_polygon(min=>x, min=>y, min=>z, max=>x, min=>y, min=>z, apex1=>x,

apex1=>y, apex1=>z,  v3d_polygon[2].points[1], v3d_polygon[2].points[2],
v3d_polygon[2].points[3]),

map_id_to_num(idm_hip_roof, v3d_polygon[3].object_id),
map_quad_to_polygon(max=>x, min=>y, min=>z, max=>x, max=>y, min=>z, apex2=>x, apex2=>y,

apex2=>z, apex1=>x, apex1=>y, apex1=>z,  v3d_polygon[3].points[1], v3d_polygon[3].points[2],
v3d_polygon[3].points[3], v3d_polygon[3].points[4]),

map_id_to_num(idm_hip_roof, v3d_polygon[4].object_id),
map_triangle_to_polygon(max=>x, max=>y, min=>z, min=>x, max=>y, min=>z, apex2=>x,

apex2=>y, apex2=>z,  v3d_polygon[4].points[1], v3d_polygon[4].points[2],
v3d_polygon[4].points[3])

),
initialisers(

diffuse_reflection = 0.8,
specular_reflection = 0.5,
gloss_factor = 2.0,
colour=>r = 0.6,
colour=>g = 0.3,
colour=>b = 0.3

)
).
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Auxiliary functions
map_quad_to_polygon(P1x, P1y, P1z, P2x, P2y, P2z, P3x, P3y, P3z, P4x, P4y, P4z,  Points1,
Points2, Points3, Points4) :-

Points1@x := P1x,
Points1@y := P1y,
Points1@z := P1z,
Points2@x := P2x,
Points2@y := P2y,
Points2@z := P2z,
Points3@x := P3x,
Points3@y := P3y,
Points3@z := P3z,
Points4@x := P4x,
Points4@y := P4y,
Points4@z := P4z.

map_triangle_to_polygon(P1x, P1y, P1z, P2x, P2y, P2z, P3x, P3y, P3z,  Points1, Points2,
Points3) :-

Points1@x := P1x,
Points1@y := P1y,
Points1@z := P1z,
Points2@x := P2x,
Points2@y := P2y,
Points2@z := P2z,
Points3@x := P3x,
Points3@y := P3y,
Points3@z := P3z.

map_polar_rect_to_polygon(X, Y, X1, Y1, Orientation, Radius, Points1, Points2, Points3,
Points4) :-

((Orientation = up ; Orientation = down) ->
 Points1@x := X,
 Points1@y := Y,
 Points1@z := Radius,
 Points2@x := X1,
 Points2@y := Y,
 Points2@z := Radius,
 Points3@x := X1,
 Points3@y := Y1,
 Points3@z := Radius,
 Points4@x := X,
 Points4@y := Y1,
 Points4@z := Radius
;((Orientation = w ; Orientation = e) ->
  Points1@x := Radius,
  Points1@y := X,
  Points1@z := Y,
  Points2@x := Radius,
  Points2@y := X,
  Points2@z := Y1,
  Points3@x := Radius,
  Points3@y := X1,
  Points3@z := Y1,
  Points4@x := Radius,
  Points4@y := X1,
  Points4@z := Y
 ;Points1@x := X,
  Points1@y := Radius,
  Points1@z := Y,
  Points2@x := X1,
  Points2@y := Radius,
  Points2@z := Y,
  Points3@x := X1,
  Points3@y := Radius,
  Points3@z := Y1,
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  Points4@x := X,
  Points4@y := Radius,
  Points4@z := Y1
 )
).

map_rect_to_polygon(X, Y, Z, X1, Y1, Z1, Points1, Points2, Points3, Points4) :-
(Z = Z1 ->
 Points1@x := X,
 Points1@y := Y,
 Points1@z := Z,
 Points2@x := X1,
 Points2@y := Y,
 Points2@z := Z,
 Points3@x := X1,
 Points3@y := Y1,
 Points3@z := Z,
 Points4@x := X,
 Points4@y := Y1,
 Points4@z := Z
;(Y = Y1 ->
  Points1@x := X,
  Points1@y := Y,
  Points1@z := Z,
  Points2@x := X1,
  Points2@y := Y,
  Points2@z := Z,
  Points3@x := X1,
  Points3@y := Y,
  Points3@z := Z1,
  Points4@x := X,
  Points4@y := Y,
  Points4@z := Z1
 ;Points1@x := X,
  Points1@y := Y,
  Points1@z := Z,
  Points2@x := X,
  Points2@y := Y1,
  Points2@z := Z,
  Points3@x := X,
  Points3@y := Y1,
  Points3@z := Z1,
  Points4@x := X,
  Points4@y := Y,
  Points4@z := Z1
 )
).

map_id_to_num(ID, Num) :-
ID@'#space'(Space),
name(Space, SpaceList),
length(SpaceList, LenSpace),
LenDivider is LenSpace + 1,
cat(Bits, ID, [LenDivider]),
Bits = [_, NumAtom],
pname(Num, NumAtom).

E.3.4 IDM <-> ThermalDesigner mapping
The mapping between the IDM and ThermalDesigner is again fairly complicated, mostly due to the

need to associate related objects together in a mapping to provide enough information for the

mapping. There is also much information in ThermalDesigner which can not be found in the IDM

and is asserted through as defaults in the initialisers section of the mappings. The mappings here
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require complex invariants to ensure that the right plane and material definitions are associated

together to enable the mapping to take place.

inter_view(idm, integrated, thermaldesigner, read_write, complete).

inter_class([idm_building], [td_building],
equivalences(

name = building_name,
num_of_occupants = num_of_occupants,
effective_thermal_mass = effective_thermal_mass,
spaces = spaces,
environment = climate

),
initialisers(

td_building.building_name = '*BUILDING NAME*',
td_building.num_of_occupants = 4,
td_building.effective_thermal_mass = 0.5

)
).

inter_class([idm_environment], [td_climate],
equivalences(

exposure_class = exposure_class,
infiltration_zone = infiltration_zone,
degree_days = degree_days

),
initialisers(

td_climate.exposure_class = 'medium_exposed',
td_climate.infiltration_zone = 'c',
td_climate.degree_days = 369

)).

inter_class([group(idm_space_face), group(idm_roof)], [td_space],
invariants(

idm_space_face.location = 'ext' 
),
equivalences(

bijection(idm_space_face[].type_of_face = 'wall', walls[]),
bijection(idm_space_face[].type_of_face = 'floor', floor[]),
idm_roof = roof

)).

inter_class([idm_space_face, idm_material_face, idm_building], [td_wall],
invariants(

idm_space_face.type_of_face = 'wall',
idm_space_face.location = 'ext',
idm_material_face.type_of_face = 'wall',
plane_equivalence(idm_space_face.plane, idm_material_face.plane),
point_equivalence(idm_space_face.min, idm_material_face.min),
point_equivalence(idm_space_face.max, idm_material_face.max)

),
equivalences(

idm_space_face.max=>x - idm_space_face.min=>x = width,
idm_space_face.max=>y - idm_space_face.min=>y = height,
idm_space_face.orientation = orientation,
bijection(idm_space_face.openings[]@class(idm_space_face), windows[]),
idm_material_face.material=>colour = colour,
idm_material_face.material=>r_value = r_value

),
initialisers(

td_wall.colour = 'light',
td_wall.r_value = 1.7,
td_wall@create(idm_building.environment=>degree_days)

)).
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inter_class([idm_space_face, idm_material_face, idm_building], [td_window],
invariants(

idm_space_face.type_of_face = 'opening',
idm_space_face.location = 'ext',
idm_material_face.type_of_face = 'opening',
plane_equivalence(idm_space_face.plane, idm_material_face.plane),
point_equivalence(idm_space_face.min, idm_material_face.min),
point_equivalence(idm_space_face.max, idm_material_face.max)

),
equivalences(

idm_space_face.max=>x - idm_space_face.min=>x = width,
idm_space_face.max=>y - idm_space_face.min=>y = height,
idm_material_face.material=>shading_coefficient = shading_coef,
idm_material_face.material=>r_value = r_value

),
initialisers(

td_window.shading_coef = 1.0,
td_window.r_value = 0.23,
td_window@create(idm_space_face.orientation, idm_building.environment=>degree_days)

)
).

inter_class([idm_roof, idm_building], [td_roof],
equivalences(

idm_roof.max=>x - idm_roof.min=>x = width,
idm_roof.max=>y - idm_roof.min=>y = length,
idm_roof.material=>colour = colour,
idm_roof.material=>r_value = r_value

),
initialisers(

td_roof.colour = 'light',
td_roof.r_value = 3.6,
td_roof@create(idm_building.environment=>degree_days)

)
).

inter_class([idm_space_face, idm_material_face, idm_building], [td_suspended_floor],
invariants(

idm_space_face.type_of_face = 'floor',
idm_space_face.location = 'ext',
idm_material_face.type_of_face = 'floor',
idm_material_face.material@class('idm_suspended_floor'),
plane_equivalence(idm_space_face.plane, idm_material_face.plane),
point_equivalence(idm_space_face.min, idm_material_face.min),
point_equivalence(idm_space_face.max, idm_material_face.max)

),
equivalences(

idm_space_face.max=>x - idm_space_face.min=>x = width,
idm_space_face.max=>y - idm_space_face.min=>y = length,
idm_material_face.material=>floor_covering_r_value = floor_covering_r_value,
idm_material_face.material=>subfloor_protection = subfloor_protection,
idm_material_face.material=>foundation_height = foundation_height,
idm_material_face.material=>floor_insulation_r_value = floor_insulation_r_value

),
initialisers(

td_suspended_floor.floor_covering_r_value = 0.4,
td_suspended_floor.subfloor_protection = 'c',
td_suspended_floor.foundation_height = 1,
td_suspended_floor.floor_insulation_r_value = 0.3,
td_suspended_floor@create(idm_building.environment=>degree_days)

)
).
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inter_class([idm_space_face, idm_material_face, idm_building], [td_concrete_floor],
invariants(

idm_space_face.type_of_face = 'floor',
idm_space_face.location = 'ext',
idm_material_face.type_of_face = 'floor',
idm_material_face.material@class('idm_slab_floor'),
plane_equivalence(idm_space_face.plane, idm_material_face.plane),
point_equivalence(idm_space_face.min, idm_material_face.min),
point_equivalence(idm_space_face.max, idm_material_face.max)

),
equivalences(

idm_space_face.max=>x - idm_space_face.min=>x = width,
idm_space_face.max=>y - idm_space_face.min=>y = length,
idm_material_face.material=>floor_covering_r_value = floor_covering_r_value,
idm_material_face.material=>insulation_depth = insulation_depth

),
initialisers(

td_concrete_floor.floor_covering_r_value = 0.4,
td_concrete_floor@create(idm_building.environment=>degree_days)

)
).

Auxiliary functions
point_equivalence(Point, Point).
point_equivalence(Point1, Point2) :-

Point1@x(X),
Point2@x(X),
Point1@y(Y),
Point2@y(Y),
!.

plane_equivalence(Plane, Plane).
plane_equivalence(Plane1, Plane2) :-

Plane1@axis(A),
Plane2@axis(A),
Plane1@offset(O),
Plane2@offset(O),
!.

E.4 Project Window for the Large Example

The following set of diagrams shows a project window devised as the main example for this

thesis. The diagrams are broken into two sections, those concerned with the user and function

specification, followed by those concerned with flow of control specification.

E.4.1 User and function specification
Though originally there was a single diagram showing all actors, design roles, and design

functions, this could not be read reproduced on a single sheet. The following diagrams are

extracted views from the original highlighting the roles of individual actors.

E.4.1.1 Client

The client has two roles in this project window (see Figure E.16), the initial specification of

requirements and then the final acceptance of the building design. Defining the building

requirements can be performed by a single design function, that of specifying requirements. This
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design function is associated with a design tool called WordPerfect, in this case there is no input to

WordPerfect from the IDM, and no output from WordPerfect to the IDM, hence no schemas are

specified for the design function. The role of final acceptance can be achieved through two design

functions, those of viewing the plans and viewing the model (in 3D). Both of these design

functions have associated design tools with input from the IDM. However, there is no output from

VISION-3D, meaning that no changes can be made in that design function and passed through to

the IDM.
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ordPerfect

iew_
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lanEntry

elo_out.xpselo_in.xps

iew_
odel

ision3D

3d_in.xps
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efine_building_
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inal_acceptance

Figure E.16 Client and design roles

E.4.1.2 Architect

The architect plays three main roles in this project window (see Figure E.17), those of layout

design, specifying building properties, and evaluation of the design. Each of these roles is

supported by a range of design functions, including a documentation function for all roles.

E.4.1.3 Structural consultant

While the architect plays a fairly broad role in the project window (see Figure E.18), the structural

consultant has very specialised design roles. These comprise the design of the structural system

and ensuring the building’s structural integrity.

E.4.1.4 Daylighting consultant

The daylighting consultant also plays a very specialised role in the project window (see Figure

E.19). They can specify glazing for the building (note the overlap with the architect’s design role

of specifying glazing properties) and must ensure that there is no serious overheating in the
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building due to the glazing specified.
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Figure E.17 Architect and design roles
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Figure E.18 Structural consultant and design roles
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Figure E.19 Daylighting consultant and design roles

E.4.1.5 Thermal consultant

The thermal engineering consultant also has a very specialised role (see Figure E.20). They can

specify materials for the building (note the overlap with the architect’s design function to specify

thermal properties) and must ensure that the proposed building meets the code on thermal

compliance.
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Figure E.20 Thermal consultant and design roles
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E.4.2 Flow of control specification
The following set of diagrams show the flow of control for the example project window, starting

from the top level CombiNet.

Figure E.21 Top-level CombiNet 

E.4.2.1 Top-level CombiNet

The top level CombiNet (see Figure E.21) provides a high-level view of the flow in this project

window. Work starts with the client specifying requirements, followed by the architect performing
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an initial building design layout. Following these two sequential stages is an iterative stage of

designing and updating looping with building design and acceptance CombiNets until the design is

accepted and the project window terminates.

Figure E.22 Design and update CombiNet 

E.4.2.2 Design and update CombiNet

The design and update CombiNet (see Figure E.22) allows the architect to specify a range of

properties of the building. There is a looping between the specification of thermal properties and

evaluating their impact on the building. When the architect is happy with the properties, or with the
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bracing, or having navigated the model, they may exit the CombiNet. Note that designing the

building layout may be entered at any stage in this CombiNet. 

Figure E.23 Building design CombiNet 

E.4.2.3 Building design CombiNet

The building design CombiNet (see Figure E.23) allows the various consultants to be drawn into

the project with iterations between structural, daylighting and thermal work being supported.

Documentation may be performed at any time, and the architect can be called in to perform design
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and update work at any time by any of the consultants.

Figure E.24 Structural work CombiNet 

E.4.2.4 Structural work CombiNet

This CombiNet allows the structural consultant to specify bracing and structural walls in an

iterative manner until they complete their work by evaluating against structural code compliance

(see Figure E.24). Note this structuring forces code compliance checks before the structural

consultant can complete their task.
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E.4.2.5 Daylight work CombiNet

This CombiNet allows the daylighting consultant to specify glazing in an iterative manner until

they complete their work by evaluating the overheating risk of their specification (see Figure

E.25). Note this structuring forces a check on overheating implications before the daylighting

consultant can complete their task.

Figure E.25 Daylight work CombiNet
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E.4.2.6 Thermal work CombiNet

This CombiNet allows the thermal consultant to specify thermal and glazing properties in an

iterative manner until they complete their work by evaluating against thermal code compliance (see

Figure E.26). Note this structuring forces code compliance checks before the thermal consultant

can complete their task.

Figure E.26 Thermal work CombiNet
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E.4.2.7 Acceptance CombiNet

The acceptance CombiNet (see Figure E.27) is the final work section in the project window and

must be completed before the project window can complete. In this CombiNet the client reviews

the plans and 3D model before giving approval, at which point the project window terminates

(likely to lead to another project window for the construction phase); or rejection, in which case

another round of design and update is performed by the architect.

Figure E.27 Acceptance CombiNet
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Appendix F

The Parsers

This appendix briefly describes the parsers and language translators which were written as part of

this thesis. A range of methods were used to implement the parsers, ranging from DCGs through

to a hand-coded parser.

F.1 ISO-10303:11 EXPRESS Parser

The vast majority of schemas developed for domains in the construction industry are written in the

EXPRESS modelling language (ISO/TC184 1992) which is part of the ISO-STEP standards. To

be able to utilise models developed in the industry, and to remain compatible with efforts

underway, it was felt necessary to be able to accept schema definitions in this language. The

EXPRESS standard document contains a BNF grammar (Wirth 1977) for the language. The

standard is available in electronic format and the grammar could be extracted from this document

without rekeying. Starting with a BNF grammar, it is an easy task to create a DCG form, which

returns a parse tree of the schema being handled. This is what was implemented for this parser.

The parser reads the whole schema into memory (for ease of programming, though a buffered

approach would be more capable for very large schemas) and then passes it to the DCG grammar

to return a parse tree for the schema. The main predicates developed in the EXPRESS parser are

presented below:

exp_schema_block(-Schema, +Chars, [])

This is the top level DCG predicate which takes a set of characters (Chars) and returns a parse tree

in Schema. The [] denote that the whole set of characters must be used when parsing. As many

existing schemas were found to have incorrect syntax, the DCG provides status messages in the

standard output window indicating which entity, type definition, procedure, etc it is attempting to
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parse. This aids in identifying the point in a schema where a syntax error has been encountered.

express2parse(-Parsed)

This top level predicate prompts the user for the file(s) containing the EXPRESS schema to be

parsed, and reads the file before passing it through to the exp_schema_block predicate to return the

parse tree in Parsed.

express_checker

To check an EXPRESS schema’s syntax prior to use, this predicate loads in the file(s) and ensures

that it can be processed by the DCG.

An example of the syntax tree returned for a simple schema definition is shown below:

An EXPRESS schema
SCHEMA idm;

ENTITY wall;
name : STRING;
height : REAL;
width : REAL;
azimuth : REAL;
position : LIST [3:3] OF REAL;
UNIQUE name;

END_ENTITY;
END_SCHEMA;

Parsed representation of an EXPRESS schema

Parsed = schema_block(idm, 
 schema_body([], nil, 
  [
  entity_block( 
   entity_head(wall, subsuper(nil, nil)), 
    entity_body(
     [
     explicit_attribute([name], nil, simple_type('STRING'(nil))), 
     explicit_attribute([height], nil, simple_type('REAL'(nil))), 
     explicit_attribute([width], nil, simple_type('REAL'(nil))), 
     explicit_attribute([azimuth], nil, simple_type('REAL'(nil))), 
     explicit_attribute([position], nil, list_type( bound_specification( 
      simple_expression([term([factor(simple_factor(literal(3)), nil)])]), 
      simple_expression([term([factor(simple_factor(literal(3)), nil)])])), 
      nil, simple_type('REAL'(nil))))
     ], 
     [], 
     [], 
     unique_clause('UNIQUE', [labelled_attribute_list(nil, 
      [referenced_attribute(name)])]), 
     nil
    )
   )
  ]
 )
)
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Initial tests with this parser produced many failed attempts at parsing existing schemas which

caused some concern. However, investigations showed that this was not due to the parser, but due

to the tested schemas being incorrectly specified according to the EXPRESS standard. This

appears to be a hold-over from draft versions of the EXPRESS standard whose syntax were more

flexible than the final version (e.g., allowing any order of SUBTYPE and SUPERTYPE

specification in earlier definitions). Parsers developed from the time of the draft specification

always allowed these more flexible syntax specifications and hence a strict checker failed on

schemas which were being passed through to ISO for evaluation as draft standards.

Being able to parse a schema specification is an initial step, to be used in the environments

developed in this thesis the parsed schema has to be translated into an implementable language.

Two such translators are described below.

F.1.1 EXPRESS to Snart translator
The Snart language is the implementation language for this thesis. Therefore, to be able to utilise

EXPRESS schemas in this thesis it was necessary to translate the parsed EXPRESS definition into

Snart class definitions. At the time that this translator was written a conscious decision was taken

to limit the amount of EXPRESS which was translated into Snart. This was to limit the amount of

time required to produce the translator, and in recognition of the fact that all schemas produced to

date do not use the majority of the EXPRESS language. The portions of EXPRESS which are not

translated are the procedure definitions and some complicated where conditions. All inheritance

structures, type definitions, attribute specifications, uniqueness constraints, and many simple

where conditions are translated into Snart form. The main predicate available to perform this

translation is described below:

express2snart

Prompts the user for the file(s) containing the EXPRESS schema to be translated to Snart. The

files are passed through the parser described above and the resultant parse trees passed to a pretty

printer which creates a file of Snart class definitions.

The translated Snart equivalent of the EXPRESS code above is shown below:

% Snart class definitions created from the EXPRESS file for the schema:  idm

class(wall,
   inherits([]),
   features([
      name: facets([type(string), relationship(values), relationship(key)]),
      height: facets([type(real), relationship(values)]),
      width: facets([type(real), relationship(values)]),
      azimuth: facets([type(real), relationship(values)]),
      position: facets([type(list(real)), attribute_cardinality([3, 3]), 
                relationship(values)])
   ])
).
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F.1.2 Snart to EXPRESS translator
While Snart is the implementation language of this thesis, it has previously been stated that

EXPRESS is the specification language used by modellers in this domain. Therefore, it was felt

necessary to provide a mechanism to translate Snart-based schemas through to EXPRESS form.

This translator provides a limited translation ability as EXPRESS has no ability to record method

definitions as exist in Snart. Therefore, what gets translated is restricted to class specifications

with inheritance and attribute definitions. The predicate that provides this translation is described

below:

snart2express

Prompts the user for the file(s) containing the Snart schema definition. These files are loaded into

the Snart system (if not already loaded) and all class definitions extracted. A pretty printer is then

invoked to write a new file containing the EXPRESS representation of the Snart definitions.

F.1.3 Snart to Reƒlex translator
The Reƒlex CAD tool provides a language to specify new objects which can be placed in the CAD

environment. To take advantage of its use as a model specification tool, as described in Section

9.2.4, it was necessary to be able to translate schema specifications into its object definition

language. The object definition language of Reƒlex is very simple, utilising a single inheritance

model and with an associated form definition language to enable attributes of an object to be

specified when the object is laid down using the CAD tool. However, what was not possible to

specify directly in the translation was the graphical form of the object. This has to be hand-edited

into the object specification. In most cases, existing object definitions from the Reƒlex library can

be used and the parameters of these library objects tied to the attributes specified for the translated

objects. The predicate provided to translate schemas into Reƒlex form is described below:

snart2reflex

Prompts the user for the file(s) containing the Snart schema definition. These files are loaded into

the Snart system (if not already loaded) and all class definitions extracted. A pretty printer is then

invoked to write a new file containing the Reƒlex representation of the Snart definitions.

The Reƒlex object and form definitions for the EXPRESS schema above are shown below (prior

to the hand-editing to insert existing library object definitions):
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A Reƒlex object specification

/////////////////////////////////////////////////////////////////////////////
//
// Element Name:    wall
//
// Library Name: IDM
//
// Written by:   Robert Amor - Building Research Establishment
//
// Date:         1997-5-24
//
// Version No:   1.0
//
// Version Date: 1997-5-24
//
//
// Description:
//
// (c) Copyright 1997 Robert Amor and the Building Research Establishment
//
/////////////////////////////////////////////////////////////////////////////

#include "objlib.vel"
#include "wall_draw.vel"

element wall
{

saved
     float azimuth
     float height
     string name
     float position[3] 
     float width

private
     void OnEdit()
     void OnSave()
     void draw_shape(integer)

views
     plan
     View3d

dialog
     wallDlg
}

link wallDlg
{
     azimuth Tazimuth
     height Theight
     name Tname
     position Tposition
     width Twidth
}
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void OnEdit()
{
}

void OnSave()
{
}

view plan
{
     draw_shape(0)
}

view View3d
{
     draw_shape(1)
}

A Reƒlex dialogue specification

/////////////////////////////////////////////////////////////////////////////
//
// Dialog Name:     wallDlg
//
// Library Name: IDM
//
// Written by:   Robert Amor - Building Research Establishment
//
// Date:         1997-5-24
//
// Version No:   1.0
//
// Version Date: 1997-5-24
//
//
// Description:
//
// (c) Copyright 1997 Robert Amor and the Building Research Establishment
//
/////////////////////////////////////////////////////////////////////////////

dialog wallDlg
{

     Help "IDM/wall"
     Title "wall - IDM"

     Wgrid GRgrid
     {
          Dimension 5 2

          Wlabel Lazimuth { XY 1 1; Label "azimuth" }
          Wtext Tazimuth { Width 150 ; XY 1 2 }

          Wlabel Lheight { XY 2 1; Label "height" }
          Wtext Theight { Width 150 ; XY 2 2 }

          Wlabel Lname { XY 3 1; Label "name" }
          Wtext Tname { Width 150 ; XY 3 2 }
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          Wlabel Lposition { XY 4 1; Label "position" }
          Wtext Tposition[3] { Width 150 ; XY 4 2 }

          Wlabel Lwidth { XY 5 1; Label "width" }
          Wtext Twidth { Width 150 ; XY 5 2 }

     }

}

F.2 ISO-10303:21 STEP data-file Parser

As well as being able to handle schema definitions in the EXPRESS specification language, it was

necessary to be able to handle data associated with these schema definitions. ISO-STEP have

defined a simple data-file representation to enable models to be transported (ISO/TC184 1994).

The STEP Part 21 standard document contains a BNF grammar (Wirth 1977) for the language.

The standard is available in electronic format and the grammar could be extracted from this

document without rekeying. Starting with a BNF grammar it is an easy task to create a DCG form,

which returns a parse tree of the schema being handled. This is what was implemented for this

parser. The parser reads the whole data-file into memory (for ease of programming, though a

buffered approach would be more capable for very large files) and then passes it to the DCG

grammar to return a parse tree for the data-file. The main predicates developed in the STEP data-

file parser are presented below:

step_exchange_file(-Schema, +Chars, [])

This is the top level DCG predicate which takes a set of characters (Chars) and returns a parse tree

in Schema. The [] denote that the whole set of characters must be used when parsing. The DCG

prints out the record number being processed at any stage as an aid to identifying syntax errors in

data-files being parsed.

step2parse(-Parsed)

This top level predicate prompts the user for the file containing the STEP data-file to be parsed and

reads the file before passing it through to the step_exchange_file predicate to return the parse tree

in Parsed.

step_read(+FName, -Schema)

This programming level predicate provides a silent way of performing the function offered by

step2parse. This predicate is used inside other predicates to import a STEP data-file for further

processing, without having to involve the user.
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step_checker

To check a STEP data-file’s syntax prior to use this predicate loads in the file and ensures that it

can be processed by the DCG.

An example of the syntax tree returned for a simple STEP data-file (based on the wall schema of

Appendix F.1) is shown below:

A STEP data-file

ISO-10303-21;

HEADER;
FILE_DESCRIPTION(('This file contains a simple set of wall examples'),'idm');
FILE_NAME($,'1997-04-20 17:05:23',('RWA'),('Comp Sci, University of
Auckland'),'Hand-coded','idm',$);
FILE_SCHEMA(('idm'));
ENDSEC;

DATA;
#1 = WALL('North ground-floor', 2.4, 6.5, 0.0, (0.0, 0.0, 0.0));
#2 = WALL('East ground-floor', 2.4, 4.5, 90.0, (6.5, 0.0, 0.0));
#3 = WALL('South ground-floor', 2.4, 6.5, 180.0, (6.5, 4.5, 0.0));
#4 = WALL('West ground-floor', 2.4, 4.5, 270.0, (0.0, 4.5, 0.0));
ENDSEC;

END-ISO-10303-21;

Parsed representation of a STEP data-file

Parsed = exchange_file(
 header_section(
  [
  header_entity(standard_keyword('FILE_DESCRIPTION'), 
   [untyped_parameter(list([untyped_parameter(
   string('This file contains a simple wall example'))])), 
   untyped_parameter(string(idm))]), 
  header_entity(standard_keyword('FILE_NAME'), [untyped_parameter(missing), 
   untyped_parameter(string('1997-04-20 17:05:23')), 
   untyped_parameter(list([untyped_parameter(string('RWA'))])), 
   untyped_parameter(list([untyped_parameter(string('Comp Sci, University of 
   Auckland'))])), untyped_parameter(string('Hand-coded')), 
   untyped_parameter(string(idm)), untyped_parameter(missing)]), 
  header_entity(standard_keyword('FILE_SCHEMA'), 
   [untyped_parameter(list([untyped_parameter(string(idm))]))])
  ]
 ), 
 data_section(
  [
  entity_instance(entity_name(1), nil, 
   simple_record(standard_keyword('WALL'), 
   [
   untyped_parameter(string('North ground-floor')), 
   untyped_parameter(real(2.4)), 
   untyped_parameter(real(6.5)), 
   untyped_parameter(real(0)), 
   untyped_parameter(list([untyped_parameter(real(0)), 
    untyped_parameter(real(0)), untyped_parameter(real(0))]))
   ]
  )), 
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  entity_instance(entity_name(2), nil, 
   simple_record(standard_keyword('WALL'), 
   [
   untyped_parameter(string('East ground-floor')), 
   untyped_parameter(real(2.4)), 
   untyped_parameter(real(4.5)), 
   untyped_parameter(real(90)), 
   untyped_parameter(list([untyped_parameter(real(6.5)), 
    untyped_parameter(real(0)), untyped_parameter(real(0))]))
   ]
  )), 
  entity_instance(entity_name(3), nil, 
   simple_record(standard_keyword('WALL'), 
   [
   untyped_parameter(string('South ground-floor')), 
   untyped_parameter(real(2.4)), 
   untyped_parameter(real(6.5)), 
   untyped_parameter(real(180)), 
   untyped_parameter(list([untyped_parameter(real(6.5)), 
    untyped_parameter(real(4.5)), untyped_parameter(real(0))]))
   ]
  )), 
  entity_instance(entity_name(4), nil, 
   simple_record(standard_keyword('WALL'), 
   [
   untyped_parameter(string('West ground-floor')), 
   untyped_parameter(real(2.4)), 
   untyped_parameter(real(4.5)), 
   untyped_parameter(real(270)), 
   untyped_parameter(list([untyped_parameter(real(0)), 
    untyped_parameter(real(4.5)), untyped_parameter(real(0))]))
   ]
  ))
  ]
 )
)

F.2.1 STEP data-file to Snart translator
The Snart language is the implementation language for this thesis. Therefore, to be able to utilise

data associated with EXPRESS schemas in this thesis it was necessary to translate the parsed

STEP data-file definition into Snart objects. The objects are created in the current object space, and

if this space happens to be persistent then the created objects will be saved when the persistent

store is saved. The main predicate available to perform this translation is described below:

step2snart

Prompts the user for the file containing the STEP data-file to be translated to Snart objects. The file

is passed through the parser described above and the resultant parse tree passed to an instantiator

which will create objects as required and assert the specified values for the object’s attributes.

STEP data-file style object references are changed to Snart style object references to ensure that

relationships between objects are still maintained.
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F.2.2 Snart to STEP data-file translator
While Snart is the implementation language of this thesis it has previously been stated that STEP is

the environment used by modellers in this domain. Therefore, it was felt necessary to provide a

mechanism to translate Snart-based models through to STEP data-file form. The predicate that

provides this translation is described below:

snart2step(+OSNum)

All objects in the space specified by OSNum are identified and the user prompted for a STEP data-

file to create. Each object is written directly to the file with Snart style object references modified to

STEP data-file references.

F.3 CGE Parser

To allow modelled processes to be used to drive the workflow of an integrated design system, as

described in Chapter 7, it was necessary to extract relevant process information from the files

created by the CGE modelling tool (Vogel 1991). The CGE program uses a single directory for a

set of files representing one model. Each diagram in a model has its own file in this directory. The

file representing a diagram is stored in plain ASCII format (see the example below) and is named

according to the formalism used in the diagram. Therefore it is relatively simple to identify all files

associated with a project window, and using the file-name it is possible to identify the top level

diagram which describes actors and their design roles as well as identifying the top level

CombiNet.

Due to the simple fixed-format, attribute per line syntax of CGE files it was felt unnecessary to

develop a CGE parser for this formalism. Instead a simpler hand-coded parser was written which

processes the file line-by-line. Based on the object types that are found in the file, the parser

extracts only those attributes which are named as necessary for that object type (e.g., the tmp, x,

and y variables in the DesignFunction objects shown below are not required).

A portion of a CGE data-file

Name_of_st_def_used : "PW"
Diagram_name        : "Trebor_house"
Diagram_title       : "No_Title"
Name_of_creator     : "marcel"
Date_of_creation    : September 19 1995
Time_of_creation    : 13:04:40
Date_last_updated   : September 21 1995
Time_last_updated   : 10:12:16
Modified_by         : "marcel"
Release_number      : 0
Version_number      : 7
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Diagram "Trebor_house"
Begin

Class "Actor" With

Class "DesignRole" With

Class "DesignFunction" With

Class "Connector" With
Var "show_amt" = 0

Class "brpnt" With

Class "Legend" With
Var "x" = 300
Var "y" = -1000
Var "w" = 2900
Var "h" = 2700
Var "version" = "1.0"
Var "date" = "21/9/95"
Var "author" = "Robert Amor"

Object <14> Is_of_class "DesignFunction" With
Var "x" = 880
Var "y" = -680
Var "design_function" = "specify_

bracing"
Var "tmp" = 42
Var "input_tool" = "mest_in.xps"
Var "output_tool" = "mest_out.xps"
Var "tool_name" = "MaterialsEditor"

Object <13> Is_of_class "DesignFunction" With
Var "x" = 1180
Var "y" = -1200
Var "design_function" = "specify_

glazing_
properties"

Var "tmp" = 36
Var "input_tool" = "mewi_in.xps"
Var "output_tool" = "mewi_out.xps"
Var "tool_name" = "MaterialsEditor"

There is a single predicate provided in the CGE parser to translate CGE projects, this is described

below:

pw_read

This predicate prompts the user for the directory in which the project window files are stored. The

set of files in this directory are collated and the top level project window description identified.

This file is parsed to identify the top level CombiNet as well as actors, design roles, and design

functions with their associated design tools. The CGE parser then processes all of the flow of

control diagrams and builds up a single consistent name space for all workflow items in these

diagrams. The parsed CGE project window is then written out into a STEP data-file representation

of the whole project window. An example for the CGE file above is shown below:
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A portion of a STEP data-file representing a CGE project window

ISO-10303-21;

HEADER;
FILE_DESCRIPTION(('This file contains a PW model translated from CGE'),'PW');
FILE_NAME($,'1997-04-20 17:05:23',('RWA'),('Comp Sci, University of Auckland'),'CGE to STEP','PW',$);
FILE_SCHEMA(('PW'));
ENDSEC;

DATA;
#1 = PROJECT_WINDOW('Trebor_house', (#11, #28, #29, #30, #31), #32);
#2 = DESIGN_FUNCTION('specify_bracing', 'MaterialsEditor', 'mest_in.xps', 'mest_out.xps');
#3 = DESIGN_FUNCTION('specify_glazing_properties', 'MaterialsEditor', 'mewi_in.xps', 'mewi_out.xps');

F.4 VML Parser

VML has a syntax very similar to that of Prolog, as much of its expressive capability is based on

that of Prolog. However, there are some syntactic constructs which make VML specifications not

directly parsable by the Prolog system. Therefore, a DCG was constructed based on the BNF

grammar shown in Appendix A.1. The parser reads the whole data-file into memory (for ease of

programming, though a buffered approach would be more capable for very large files) and then

passes it to the DCG grammar to return a parse tree for the mapping. The main predicates

developed in the VML parser are presented below:

map_mapping(-Schema, +Chars, [])

This is the top level DCG predicate which takes a set of characters (Chars) and returns a parse tree

in Schema. The [] denote that the whole set of characters must be used when parsing. The DCG

prints out the mapping header being processed at any stage as an aid to identifying syntax errors in

data-files being parsed.

map2parse(-Parsed)

This top level predicate prompts the user for the file containing the VML specification to be parsed

and reads the file before passing it through to the map_mapping predicate to return the parse tree in

Parsed.

map_read(+FName, -Schema)

This programming level predicate provides a silent way of performing the function offered by

map2parse. This predicate is used inside other predicates to import a VML specification for further

processing, without having to involve the user.

map_checker

To check a VML file’s syntax prior to use this predicate loads in the file and ensures that it can be

processed by the DCG.

331



Appendix G

Generalised Schema Representation Notation

This notation allows the definition of general schemas from a wide range of modelling languages

in both relational and object-oriented forms. The notation allows for versioning control in schema

specification and holds redundant data to allow easy application or undoing of modifications.

The definitions below use a notation derived from the Prolog specification of the representation.

Lower-case symbols are terminal tokens in the definition. Upper-case symbols represent variables

which are to be specified for each record. The use of square brackets [] denotes a list of zero or

more of the object defined between the brackets.

G.1 Version Tree

The version tree is defined as a directed acyclic graph with a single root node, denoted by an

empty list in the ParentVersion definition. Version information is stated as shown in Table G.1.

version(VersionNumber, [ParentVersion], DateStarted, ReasonStarted, ModSequenceNumber)

Table G.1 Specification of a schema version

The variables in this definition are used for the following information: VersionNumber is the

unique identifier for the version; ParentVersion is a list of all VersionNumbers that this version

builds upon; DateStarted is the date this version was started; ModSequenceNumber is the highest

specified sequence number of the modifications that have been made in this version; ReasonStarted

provides further information about the reason for the versions creation. The range of allowable

values for ReasonStarted is shown in Table G.2.
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new_schema(SchemaFileName)
user_modification(UserName, Description)
merging(UserName, Description)
mapping_dependant(MapName, MapFileName)

Table G.2 Specification of version creation reasons

The four values for ReasonStarted are used in the following cases: new_schema defines the

initialisation of the version tree and schema from an existing file of schema definition;

user_modification describes a user initiated modification to a schema (including starting a schema);

merging allows for the merging of two or more versions with no other reason than the bringing

together of modifications in the merged versions; mapping_dependant describes a new version

which is created due to specifications in a mapping definition which extend the schema version the

mapping is defined upon.

G.2 Schema

The schema definition has two parts: a definition of the schema represented in the model; followed

by a set of sequential modifications which describe the construction of the schema definition in a

particular version. The form of these two specifications is shown in Table G.3.

schema(SchemaName, VersionTreeRoot, VersionSequenceNumber)
schema_mod(Version, SequenceNumber, Modification)

Table G.3 Specification of schema information

The variables in the definitions are used for the following information: SchemaName is a unique

descriptive identifier of the schema; VersionTreeRoot specifies the starting version number for the

schema (usually number one); VersionSequenceNumber represents the highest specified version

number in the schema definition; Version is the schema version that the specified modification is

applied to; SequenceNumber is the position in the list of modifications which make up the version

that this modification occurred in; Modification describes the atomic change that was applied to the

schema during this modification. The Modification specification can take the values shown in

Table G.4.

The variables in the definitions shown in Table G.4 are used for the following information:

EntityName is the name of an entity in a schema, this is unique to each schema; EntityType defines

whether the entity is abstract or normal (for object-oriented schemas); Position allows the

specification of a position in a list of inherited entities, position may affect the methods which will

be called in an object-oriented schema; AttributeName is the name of a unique attribute in an entity

definition; Facet specifies an associated piece of information describing an attribute (e.g., attribute

type, uniqueness constraints, range constraints); Value specifies the current value of the Facet it is

defined in; Method is a method interface specification (for object-oriented schemas).
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add_entity(EntityName, EntityType)
rename_entity(OldName, NewName)
delete_entity(EntityName, [Parent], [Attribute], [Method])
add_parent(ParentName, EntityName)
add_parent(ParentName, Position, EntityName)
rename_parent(OldName, NewName, EntityName)
delete_parent(ParentName, Position, EntityName)
re_order_parents(OldOrder, NewOrder, EntityName)
add_attribute(AttributeName, EntityName)
add_attribute(AttributeName, [Facet(Value)], EntityName)
rename_attribute(OldName, NewName, EntityName)
delete_attribute(AttributeName, [Facet(Value)], EntityName)
change_attribute_type(AttributeName, OldType, NewType, EntityName)
add_facet(AttributeName, Facet(Value), EntityName)
rename_facet(AttributeName, OldName, NewName, EntityName)
delete_facet(AttributeName, Facet(Value), EntityName)
modify_facet_value(AttributeName, Facet, OldValue, NewValue, EntityName)
add_method(Method, EntityName)
rename_method(OldName, NewName, EntityName)
delete_method(Method, EntityName)
change_method_body(OldMethod, NewMethod, EntityName)

retract_mod(Version, SequenceNumber)

Table G.4 Specification of modification types
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Appendix H

Generalised Mapping Representation Notation

This notation allows the definition of a mapping between two schemas in a pre-processed form

that can be loaded by any implementation of a mapping system and used to determine the

mappings that are required between entities in the schemas. As the mappings are tied to a particular

version of a schema definition, a compacted form of the schema’s entity definitions is also

included in the definition.

The definitions below use a notation derived from the Prolog specification of the representation.

Lower-case symbols are terminal tokens in the definition. Upper-case symbols represent variables

which are to be specified for each record. The use of square brackets [] denotes a list of zero or

more of the object defined between the brackets.

H.1 Schema

A schema definition has two parts: a definition of the schema and version being represented

followed by the definition of all entities from the schema that are used in the mapping to be

described, as shown in Table H.1.

view(ViewID, ViewName, ViewFileName, ViewVersion, ViewVersionType, ViewType)
entity(ClassName, ViewID, [Parent], [Attribute], [Method], Type, [CreateAttr], [Misc])

Table H.1 Specification of schema entities

The variables in these definitions are used for the following information: ViewID is the unique

identifier of a particular schema, in the entity definition it can take the value temporary to describe a

temporary entity; ViewName  is the human readable name or description of a schema;

ViewFileName points to the generic schema representation database of the schema; ViewVersion
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represents the version of the schema in the version tree described in Appendix G;

ViewVersionType describes the reason for the creation of the version being used; ViewType

defines whether the schema is to be treated as read_only, read_write or integrated (see Section

5.3.1 for a definition of the meaning of these types); ClassName is the name of the entity; Parent is

the name of a parent class of the current class; Attribute is an attribute of the entity, described as

the attribute name and a set of facets describing the attribute type, units, constraints, etc.; Method

is the interface definition of a method defined in the entity; Type specifies whether the class is

abstract or not; CreateAttr specifies create parameters of an entity in the same form as an Attribute

definition; Misc allows a set of extraneous class definitions which do not affect the mapping to be

described in the entity definition (e.g., demons in Snart).

H.2 Mapping

The mapping definition is broken down into sections which represent the major components of

VML maps as shown in Table H.2.

inter_view(ViewID, ViewID, Type, MaxMapNumber, MaxInvNum, MaxEquivNum, MaxInitNum)
inter_class(MapNumber, [ClassName], [ClassName], [InheritMapNumber], [InvariantNumber],

[EquivalenceNumber], [InitialiserNumber])
invariant(InvariantNumber, Code, [ReferencedAttribute], [TypeFlag])
equivalence(EquivalenceNumber, Code, [ReferencedAttribute], [TypeFlag])
initialiser(InitialiserNumber, Code, [ReferencedAttribute], [TypeFlag])

Table H.2 Specification of atomic mapping components

The variables in these definitions are used for the following information: ViewID in the inter_view

defines the ID of the left and right schema in a mapping; Type describes whether partial or

complete mappings will be required (see Section 5.3.1); MaxMapNumber records the maximum

inter_class ID that has been allocated; MaxInvNum, MaxEquivNum, and MaxInitNum record the

maximum ID that has been allocated to invariants, equivalences and initialisers respectively;

MapNumber is the unique identifier of an inter_class definition in this mapping; ClassName is the

full reference of a class from either the left or right schemas in a mapping; InheritMapNumber is

the ID of an inter_class definition which is inherited by this inter_class; InvariantNumber,

EquivalenceNumber, and InitialiserNumber are the unique identifiers of individual invariants,

equivalences, and initialisers; Code is the parse tree representation of the mapping which is being

represented; ReferencedAttribute is the full reference of an entity, attribute or method from the

Code; TypeFlag is a flag which indicates the type of mapping being represented (current values

are: list_ref or no_list_ref depending upon whether there is a list reference in the equation;

pointer_equivalence if the equation is purely between pointers to other objects or calculation

otherwise).
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H.3 Inverted Index

The inverted indices provide summary information about the complete mapping between the

schemas. At the current time the information which is collated is for two purposes. One is for

determining which inter_class definitions are purely class initialisers for a mapping systems

initialisation (i.e., only reference classes from one schema). The other is to provide fast access

from a given entity, attribute or method to the code segments which utilise that reference. Table

H.3 shows the summary information structures in the generalised mapping representation.

class_initialisers([MapNumber])
class_maps(ClassName, ViewID, [MapNumber])
attribute_maps(AttributeName, ClassName, ViewID, [InvariantNumber], [EquivalenceNumber],

[InitialiserNumber])
method_maps(MethodName, ClassName, ViewID, [InvariantNumber], [EquivalenceNumber],

[InitialiserNumber])

Table H.3 Specification of inverted indices into mappings

The variables in these definitions are used for the following information: MapNumber is the ID of

an inter_class mapping in this database; ClassName is the full reference of a class; ViewID is the

ID of a schema in the mapping;  AttributeName or MethodName is the full reference of a particular

attribute or method referenced in a mapping; InvariantNumber, EquivalenceNumber, and

InitialiserNumber are the IDs of invariants, equivalences, and initialisers which reference a

particular attribute or method.
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Glossary

Actor A person who plays a set role in a project, for example an architect or

structural engineer or project manager

A/E/C Architecture, Engineering and Construction

ALF Annual Loss Factor method, developed by BRANZ to encourage energy

efficient building design

AP Application Protocol, a name used in ISO-STEP for domain schema

ARPA Advanced Research Projects Agency

Aspect model Defines the various views of actors, design functions and project windows.

Usually a schema definition which is a subset of the IDM, but with extra

constraints specified on the model

ATLAS Architecture, methodology and Tools for computer integrated LArge Scale

engineering, an EU funded project

AVL Adelson, Velskii and Landis tree, a partially balanced tree structure

BRANZ Building Research Association of New Zealand

CAD Computer Aided Draughting

CGE Configurable Graphical Editor

CernoII A model visualisation tool used and specialised in this thesis

CIME Computer Integrated Manufacturing and Engineering

CIMsteel Computer Integrated Manufacturing for constructional steelwork, an EU

funded project

COMBI Computer-integrated Object-oriented product Model for the Building

Industry, an EU funded project

COMBINE Computer Models for the Building Industry in Europe, an EU funded

project

CombiNet Project modelling methodology developed in this thesis

CORBA Common Object Reference Brokering Architecture

CSCW Computer Supported Collaborative Working

DCG Definite Clause Grammar
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DF Design Function

DFD Data Flow Diagram

DML Design Modelling Language

DT Design Tool

DTF Design Tool Function

EDM-2 Engineering Data Model

EER Extended Entity Relationship

Entity The container which holds the attributes and relationships used to model a

particular real life artifact

EPE EXPRESS Programming Environment. A modelling environment for the

EXPRESS and EXPRESS-G notations

ER Entity Relationship

ESPRIT The EU Information Technology Programme

EU European Union, a major funding source for large projects

ExEx Exchange Executive, workflow management tool developed in this thesis

EXPRESS A schema specification language developed for ISO-STEP

EXPRESS-C A proposed extension to EXPRESS with some mapping capability

EXPRESS-G A graphical version of EXPRESS with greatly reduced functionality

EXPRESS-M A mapping language proposed for ISO-STEP

EXPRESS-V A mapping/view language proposed for ISO-STEP

FaceEditor A material specification tool used in this thesis

GIS Geographic Information System

GUI Graphical User Interface

HVAC Heating, Ventilating and Air Conditioning

IBDS Integrated Building Design System

ID Identifier, used in the context of objects

IDEF0 A function modelling method

IDEF1X A data modelling method

IDEF3 Process flow and object state modelling method

IDL Interface Description Language, associated with the CORBA standard

IDM Integrated Data Model

IIBDS Intelligent Integrated Building Design System

Instance A set of data values which describe a particular building. The data values

are structured as specified in the model definition for the particular tool or

actor that requires the data

ISDE Integrated Software Development Environment

ISO/TC International Standards Organisation/Technical Committee

IT Information Technology, synonymous with computers

KBS Knowledge-Based System

KIF Knowledge Interchange Format
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Model A conceptual model of a particular domain. In many cases it reflects the

structures and attributes of individual tools or actors. A model which has

values inserted to describe a particular building is called an instance

MSE Modelling Support Environment

MViews Multiple Views, a framework for developing ISDEs

MViewsER MViews specialised to support ER modelling

NIAM Nijssen Information Analysis Method

Object A set of data values which describe a particular artefact. The data values are

structured as specified in the entity definition

OO Object Oriented

OOA/D Object Oriented Analysis/Design

PDT Product Data Technology, denotes the body of available tools,

methodologies and standards in the area of integrated CAD systems,

dealing with product data interchange, product models, data modelling,

integrated software architectures, etc.

PlanEntry A building plan specification tool used in this thesis

Project The process of designing and constructing a building. A project starts with

the initial ideas on a building and is finished at the time the building is

completed

PW Project Window. This is a window on a project, detailing some small part

of the total project. A PW includes the actors responsible for individual

tasks, the tools they utilise and the tasks they need to complete

RDBMS Relational DataBase Management System

SANZ Standards Association of New Zealand

Schema A data model (or models) representing a distinct domain, or sub-domain, in

the A/E/C area. Examples of a schema include models for the building

skeleton, HVAC components, or structural steel components. A full model

of a building could be thought of as a schema, though it is unlikely that a

homogeneous model can be specified for a whole building over all life-

cycles, and all actors. Each of these schema may comprise several,

potentially duplicate, sub-schema, for example to describe materials,

geometry, etc.

SDAI Standard Data Access Interface, part of the ISO-STEP standard

Snart An object-oriented language built on top of Prolog

SPE Snart Programming Environment. A modelling environment for the Snart

language

STAR A Finnish research programme at VTT for construction process

improvement and re-engineering

STEP Standard for the Exchange of Product model data (ISO 10303)

SUMM Semantic Unification Meta-Model
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Superviews A RDBMS integration technique

TES Tool Encapsulation Specification

ToCEE Towards a Concurrent Engineering Environment, an EU funded project

Transformr A mapping specification language

VEGA Virtual Enterprises using Groupware tools and distributed Architecture, an

EU funded project

VISION-3D A 3D modelling and visualisation tool used in this thesis

VML View Mapping Language. A textual mapping specification language

VML-G View Mapping Language - Graphical form. A subset of the VML textual

language

VPE VML Programming Environment. A modelling environment for the VML

language
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