
University of Auckland

Faculty of Science

Computer Science

Honours Thesis

Finite-State Descriptional

Complexity

by

Tania K. Roblot

under the supervision of

Prof. Cristian S. Calude and Dr. André Nies

A dissertation submitted in partial fulfilment of the requirements

for the degree of Bachelor of Science (Honours) in Computer Science,

The University of Auckland, 2009.

To my mother, Sylvie Roblot

Abstract

Algorithmic information theory is a specific branch of computational complexity
theory, which is concerned with randomness and the complexity of strings (or
sequences). Randomness and complexity are intertwined topics of research, as
one highly affects the other. In our research, we are concerned with defining a
computable analogue to Kolmogorov complexity. In order to do so, we explore
the concept of depth and have taken inspiration from Doty and Moser’s work,
who touch on this idea of an analogous complexity, but only briefly define it in
order to define their feasible depth. In this dissertation, we give a literature review
of the work done on depth, then move on to defining and proving a computable
complexity for finite strings, finite-state descriptional complexity. We also offer
an implementation of this complexity via a brute-force algorithm.

iii

Acknowledgements

I would like to give special thanks to Prof. Kai T. Salomaa for his precious input
in this work, his expertise in finite automata was crucial to its success. I would
also like to thank Prof. Cristian S. Calude and Dr. André Nies for this fantastic
opportunity to work on this exciting project.

v

Contents

Contents vi

1 Introduction 1

2 Depth: A Literature Review 3
2.1 Motivation . 3
2.2 Classical Notion of Depth . 4

2.2.1 Classical Complexity Concepts 4
2.2.2 Bennett’s Notion of Depth 5
2.2.3 Juedes, Lathrop and Lutz’s Notion of Depth 7
2.2.4 Theorems . 8
2.2.5 Main Results of Classical Depth 10

2.3 Feasible Depth . 10
2.3.1 Finite-State Transducers . 10
2.3.2 Doty and Moser’s Notion of Depth 12
2.3.3 Main Results of Feasible Depth 13

3 Finite-State Descriptional Complexity 15
3.1 Regular Enumeration of Transducers 15

3.1.1 A Particular Definition for Finite Transducers 15
3.1.2 A Regular Enumeration . 16

3.2 Finite-State Complexity . 18
3.3 Quantitative Estimates . 22
3.4 Closure Under Composition . 28
3.5 Finite-State Incompressibility . 29
3.6 A Brute-Force Implementation . 29

4 Conclusion 33
4.1 Conclusions . 33
4.2 Further Research . 33

vi

CONTENTS vii

Bibliography 35

A Notation 39

List of Figures 41

Chapter 1

Introduction

In 1988, Bennett explored the notion of depth as a measure of a string or se-
quence’s useful information content, which he defined as logical depth [3]. His
goal was to mathematically represent our intuitive notion of depth. This concept
is based on Kolmogorov complexity, a compressibility measure of a string (respec-
tively, sequence), which implicitly measures the redundancy within a given string
(sequence). The formal definition will be given in Chapter 2. As logical depth is
dependent upon Kolmogorov complexity, one main issue arises: logical depth is
uncomputable. Therefore, it has no practical application. In this dissertation, we
present a literature review for both Bennett’s work and its continuation, through
Juedes et al. and Doty and Moser’s works, namely Computational Depth and
Reducibility [9] and Feasible Depth [7].

Doty and Moser’s paper is of particular interest to us as they have defined
an analogous notion of depth with respect to finite automata, particularly finite-
state transducers. These results have inspired us to follow a similar approach
in order to define a computable complexity measure, analogous to Kolmogorov’s
complexity, in the domain of finite-state transducers, namely finite-state com-
plexity. Succeeding in defining and proving such a complexity would imply that
we could finally compute complexity values for strings in a practical sense — as
well as extract relevant properties.

In this dissertation, we will first introduce, in Chapter 2, the notion of depth
in both its classical sense, from Bennett and Juedes et al.’s main results, and its
finite-state machine context, Doty and Moser’s feasible depth. We will have then
covered all of the necessary background to present our own findings on finite-state
complexity in Chapter 3. Finally, in Chapter 4, we will present our conclusions
and thoughts on further research.

1

Chapter 2

Depth: A Literature Review

2.1 Motivation

As expressed in the introduction, logical depth is a measure of a string’s (re-
spectively, sequence’s) useful information content. Bennett also expressed that
his logical depth is meant as “a formal measure of value”, meaning that it uses
the information content, given by the Kolmogorov complexity, and identifies its
“buried redundancy” or computational history. In other words, logical depth
attempts to identify and measure the amount of computational work it took for
the originator to build the given string (sequence). Thus, sequences obtain their
information content from a long and complex computation, and require the same
for one’s information to be fully extracted and revealed.

In order to understand what Bennett means by our intuitive notion of depth,
consider the following two examples given by Li and Vitányi [11]: DNA and the
Set Theory textbook.

The current state of our DNA is a result of evolution. It has taken a signif-
icantly long time to reach its current state and has resulted in a complex set of
information on how to ‘construct’ and maintain a surviving organism. As for the
example of the Set Theory textbook, Li and Vitányi explain how it takes a long
time to extract all of the (useful) information from this given textbook, because
of the complex and dense material encapsulated in it. Although it could be ‘com-
pressed’ to a few main theorems, it would come at the cost of losing precision
and therefore some information.

In this chapter, we will first explicitly present the necessary definitions and
theorems from the classical notion of depth in order to prove and comprehend
the main results which concern our work: Ω is shallow, whereas χK is strongly
deep. Then, we will also present the ‘finite-state’ notion of depth, feasible depth,
and its analogous properties to the classical notion of depth.

3

4 CHAPTER 2. DEPTH: A LITERATURE REVIEW

2.2 Classical Notion of Depth

2.2.1 Classical Complexity Concepts

Kolmogorov Complexity

The Kolmogorov complexity is a core concept of algorithmic information theory
and is defined as follows:

Definition 1 (Kolmogorov Complexity). Let x ∈ {0, 1}∗, let p be a program and
let U be a (prefix-free) Universal Turing machine.
The (self-delimiting) Kolmogorov complexity of x (relative to U) is

K(x) = min
p∈{0,1}∗

{
|p|
∣∣∣ U(p) = x

}
. (2.1)

Kolmogorov complexity is the size of the minimal program p such that U runs
p and halts with x on its tape [14]. Kolmogorov complexity, K(x), is also known
as the algorithmic entropy or algorithmic information content of x.

In this paper, we will omit the adjective “self-delimiting” as it is the only form
of Kolmogorov complexity encountered here. However, Kolmogorov complexity
is self-delimiting when the Universal Turing machine runs a self-delimiting pro-
gram [3], meaning that U will halt in t steps, and so needs to compute x from p

in that amount of steps. This t therefore allows us to measure the computation
time.

The Halting Problem

Definition 2 (HALT). HALT is a TM which takes as input the pair 〈M,x〉
where M is a TM and x is a string, and accepts if M halts on x; i.e. if M halts
and accepts, or halts and rejects on input x.

Theorem 3 (The Halting Problem). HALT is uncomputable.

This is a well-known result in Computational Complexity Theory. The proof
of this problem is found in the following textbooks: Introduction to Computa-
tional Complexity by M. Sipser [14] and Computational Complexity: A Modern
Approach by S. Arora and B. Barak [1].

To give a more intuitive idea of the implications of this problem, note that if
HALT were computable, we could predict the future.

Definition 4 (Chaitin’s Ω). Ω is a real number between 0 and 1, which represents
the Halting problem. It is of the form 0.u1u2u3...un... where ui ∈ {0, 1} determines
whether the program of length i halts or not.

2.2. CLASSICAL NOTION OF DEPTH 5

In other words, knowing the first n bits of Ω would mean that we could solve
the Halting problem for the all programs (of Turing machines) of length up to n.
Ω is a true random number and, thus, is uncomputable. Being a random number
implies that Ω cannot be compressed.

The characteristic sequence of the diagonal halting problem is denoted as χK .
It represents a specific pairing function between the input and the TM for the
input of HALT . We define χK as follows:

Definition 5 (Characteristic Representation of the Diagonal Halting Problem).
Let M0,M1, ...,Mi, ... be a standard enumeration of TMs.
Let n ∈ N and χK ∈ C (where C = {0, 1}∞ is the Cantor space) such that

χK [n] =

{
1 if Mn(n) halts,

0 otherwise.

Again, since the halting problem is uncomputable, so is χK . However, unlike
Ω, χK has some redundancy. In fact, χK ’s compressed form is Ω.

2.2.2 Bennett’s Notion of Depth

Each of the following definitions and theorems in this subsection have been ex-
tracted from Bennett’s work [3].

Finite Strings

Bennett defines two types of depths of finite strings: the depth and the relative
depth of a string. We are only concerned with the depth of finite strings. For
more information on the relative depth of a finite string, refer to Bennett’s Logical
Depth and Physical Complexity paper [3].

For the continuation of this dissertation, let T : {0, 1}∗ → N be a function of
time, which is related to the number of steps taken by the machine to run on its
input w. We will denote TM (w) as the measure of the time taken by the machine
M to run w. If the machine is implicit, then we denote the function as T (w). If
M does not halt, then TM (p) =∞.

Definition 6 (Logical Depth). Let x be a string, p be some TM description (or
program) and s ∈ N a significance parameter. Let p∗ be a minimal program for
x. A string’s logical depth at a significance level s is defined as

Ds(x) = min
{
T (p)

∣∣∣ (|p| − |p∗| < s) ∧ U(p) = x
}
.

This is the form of the definition as stated in Bennett’s paper [3]. However,
note that it is equivalent to the following:

Ds(x) = min
{
T (p)

∣∣∣ (|p∗| > |p| − s) ∧ U(p) = x
}
,

6 CHAPTER 2. DEPTH: A LITERATURE REVIEW

and, we know that |p∗| = K(p), hence,

Ds(x) = min
{
T (p)

∣∣∣ (K(p) > |p| − s) ∧ U(p) = x
}
. (2.2)

Intuitively, the depth of a finite string x is the shortest time needed for the
Universal Turing machine to obtain x on its tape from some s-incompressible
program p. Note that the program does not need to be minimal, it simply
needs to be executable as fast as possible to obtain x and the fastest running
such program may not be the minimal program for x. Therefore, the longer the
computation to obtain x, the deeper x is. Note that this notion of depth is also
related to some “significance level”, which acts as a threshold to how deep a
string we are testing for.

As far as strings are concerned, depth is a binary property. Therefore a string
is shallow if it is not deep.

Sequences

Sequences are infinite strings. Accordingly, the concept of depth becomes more
complex and is in fact a ternary relation: strong depth, weak depth and shallow-
ness.

Definition 7 ([3], Strongly Deep). 1 A sequence S is called strongly deep if for
all s, where s is a significance level, for every recursive function f and for all but
finitely many n ∈ N,

Ds(S � n) > f(n). (2.3)

A sequence is strongly deep if it takes a long time to compute it. This defini-
tion implies that the larger the segment or substring of S, then the time needed
to compute that segment grows significantly.

Definition 8 ([3], Weakly Deep). A sequence is weakly deep if it is not com-
putable in recursively bounded time from any algorithmically random infinite se-
quence.

We will not focus on weakly deep sequences in this dissertation, but it is a
necessary concept in order to define shallow sequences.

Theorem 9. Every strongly deep sequence is weakly deep, but the converse does
not hold.

Definition 10 (Shallow). A sequence is shallow if it is neither weakly nor strongly
deep.

1Please see the Appendix A for the notation references.

2.2. CLASSICAL NOTION OF DEPTH 7

2.2.3 Juedes, Lathrop and Lutz’s Notion of Depth

Finite Strings

Juedes, Lathrop and Lutz re-express Bennett’s notion of depth by first introduc-
ing a new set, PROG [9].

Definition 11 (PROG). This set introduces a standard representation for the
set of programs for some string x relative to a TM, M , as follows:

PROGM (x) =
{
p ∈ {0, 1}∗

∣∣∣ M(p) = x
}
,

and similarly, the set of t-fast programs for x relative to M is

PROGtM (x) =
{
p ∈ PROGM (x)

∣∣∣ TM (p) ≤ t(|x|)
}
,

where, t is a time bound and TM is the same time function as with Bennett’s
work.

When relative to the Universal Turing machine, we simply write PROG(x)
and PROGt(x).

Using the above sets, the definition of depth for initial segments of sequences
(and therefore finite strings), as expressed in Juedes et al.’s paper [9], is as follows:

Definition 12 (Depth). For t, g : N→ N and n ∈ N,

Dt
g(n) =

{
S ∈ {0, 1}∞

∣∣∣ ∀p ∈ PROGt(S � n),K(p) ≤ |p| − g(n)
}
,

where g(n) evaluates to some constant. Thus, ∃c ∈ N such that

Dt
c(n) =

{
S ∈ {0, 1}∞

∣∣∣ ∀p ∈ PROGt(S � n),K(p) ≤ |p| − c
}
. (2.4)

In fact, this definition of depth is very similar to Bennett’s, as expected, but
returns a set of sequences whose initial segment, S � n, is deep, in the sense of
finite string depth.

Sequences

From the above definition of depth, we can simply test that (almost) all initial
segments of a given sequence are deep. Also note that if ∀n ∈ N, S1 ∈ Dt

c(n),
then S1 ∈ Dt

c. So, we obtain the following formal definition:

Definition 13 (Strongly Deep). A sequence S ∈ C is strongly deep, denoted
S ∈ strDEEP, if ∀t : N→ N and ∀c ∈ N, S ∈ Dt

c.

Intuitively, a sequence is strongly deep if given more time, it can always be
compressed further.

8 CHAPTER 2. DEPTH: A LITERATURE REVIEW

Definition 14 (Weakly Useful). Let r : N → N be a recursive time bound and
let σ be the set of all sequences S′ that are Turing reducible to S in polynomial
time, bounded by r. If r exists such that σ does not have measure 0 in REC, in
other words, σ ∩ REC 6= ∅. Then a sequence S is weakly useful. We will denote
S ∈ wkUSE.

2.2.4 Theorems

In this section, we will include the necessary theorems to prove the main results
which concern this research. However, note that not all of the theorems will be
proven. In this literature review, we will only prove those which have the most
impact on our findings. Note that the proof to each theorem may be found in its
corresponding paper [3, 9].

Theorem 15 ([3], Slow Growth Law). ∃c1, c2 ∈ N such that ∀x ∈ {0, 1}∗ and
∀s1, s2 ∈ N, pairs of significant parameters where s2 > s1, the prefix-free set of
(self-delimiting) programs{

p
∣∣∣ Ds2(U(p)) > Ds1(x) + T (p) + c1

}
(2.5)

has measure less than 2−(s2−s1)+c2. Here, T is the function of time defined for
Definition 6.

This simply means that obtaining a deep string from a shallow one is very
unlikely and to do so would take an extremely long computation; thus, naming
it the slow growth law. Considering the very small probability involved to obtain
a deep string from a shallow string, we can think of this law as the invariance
theorem of depth, which consequently also applies to strongly deep sequences.

Juedes, Lathrop and Lutz [9] give their own version of the invariance theorem
for strongly deep sequences as follows:

Theorem 16 ([9], Depth Invariance Theorem). Let x, y ∈ C.

If y ≤tt x and y ∈ strDEEP, then x ∈ strDEEP,

where y ≤tt x means that y is truth-table reducible to x.

Let us now consider the sets of sequences and their depth properties.
RAND is the set of random sequences, as expressed by Juedes et al. [9]. We

give you an intuitive proof to the following theorem.

Theorem 17 ([9]). RAND is shallow.

2.2. CLASSICAL NOTION OF DEPTH 9

Proof. Given any sequence S1 ∈ RAND, all of its information is explicitly
given (i.e. the entire sequence). So, S1 cannot be compressed. Also, S1 is built
arbitrarily, thus, not through a long and complex process. So, S1 is shallow.

Hence RAND is shallow.

This theorem is formally proven by Juedes et al., by proving that ∃t, t(n) =
O(n log n), a recursive function, and ∃c ∈ N such that RAND ∩ Dt

c = ∅, which
proves that

RAND ∩ strDEEP = ∅.

Later in the paper, they prove that

RAND ∩ wkDEEP = ∅,

where wkDEEP stands for the set of weakly deep sequences; thus, proving the
theorem.

Let us now consider the set of recursive sequences, denoted REC [9].

Theorem 18 ([9]). REC is shallow.

Juedes et al. prove that

REC ∩ strDEEP = ∅.

Proof. Fix some y ∈ RAND, ∀x ∈ REC, then x ≤tt y. So, y /∈ strDEEP. Thus,
by Theorem 16, x /∈ strDEEP. Therefore, REC ∩ strDEEP = ∅.

Later, they also prove that

REC ∩ wkDEEP = ∅,

and hence, REC is shallow.

Theorem 19 ([9]). Every weakly useful sequence is strongly deep. Also written
as

wkUSE ⊆ strDEEP.

Proof. Let x ∈ C and that x is weakly useful. By definition, there is a recursive
time bound r : N→ N such that σ does not have measure 0 in REC. Since every
recursive function is bounded above by a strictly increasing, time-constructible
function, wlog, s is strictly increasing and time-constructible.

Let t : N→ N be a recursive time bound and let c ∈ N.
By Lemma 5.5 and Corollary 5.9 in Computational Depth and Reducibility [9],

every recursive function with a certain property which holds for t̃ (a function of

t from Lemma 5.5 of their paper), have their corresponding Dt̃
c has measure 1 in

REC.
So, Dt̃

c ∩ σ = ∅. and by Lemma 5.5 (see [9]), x ∈ Dt
c.

Hence, x ∈ strDEEP.

10 CHAPTER 2. DEPTH: A LITERATURE REVIEW

2.2.5 Main Results of Classical Depth

Chaitin’s Ω

Theorem 20. Ω is Shallow.

In his paper, Bennett claims that Ω is shallow because it is algorithmically
random. Juedes, Lathrop and Lutz prove this claim, thanks to Theorem 17; since
Ω ∈ RAND, Ω is shallow.

This is an interesting result as it implies that although Ω represents a deep
problem of Algorithmic Information Theory, i.e. the halting problem, it is shallow
itself. This seems contradictory and suggests that maybe Chaitin’s Ω is not the
best representation of this problem. This result does not imply any incorrectness.
It implies, however, that Ω is such a compressed version of the halting problem,
that the information would be too easily retrieved from it — which is how we
have defined Ω earlier in this chapter.

The Halting Problem’s χK

Juedes et al. [9] prove that:

Theorem 21 ([9]). χK is strongly deep.

The sketch of the proof goes as follows: since the diagonal halting problem is
polynomial-time complete for the set of all recursively enumerable subsets of N,
χK ∈ wkUSE. Therefore, by Theorem 19, χK ∈ strDEEP.

This implies that even though Ω is a shallow representation of the halting
problem, χK is a strongly deep representation. Thus, to extract the information
about the halting problem from χK would take a long computation. Additionally,
χK witnesses the depth and complexity of the problem it represents, an uncom-
putable problem. This result also confirms our claim that Ω is the completely
compressed ‘version’ of χK , since they represent the same problem.

2.3 Feasible Depth

2.3.1 Finite-State Transducers

A generalized finite transducer [4] is a tuple

T = (X,Y,Q, q0, QF , E), (2.6)

where X is the input alphabet, Y the output alphabet, Q is the finite set of
states, q0 ∈ Q is the start state, QF ⊆ Q is the set of accepting states and

E ⊆ Q×X∗ × Y ∗ ×Q

2.3. FEASIBLE DEPTH 11

is the finite set of transitions. If e = (q1, u, v, q2) ∈ E, q1, q2 ∈ Q, u ∈ X∗,
y ∈ Y ∗ is a transition, we say that the input (respectively, output) label of e is u
(respectively, v). Also, when the states are understood from the context we say
that the transition e is labeled by u/v.

A transducer T realises the transduction τT ⊆ X∗ × Y ∗ that consists of all
pairs of strings (x, y), x ∈ X∗, y ∈ Y ∗, such that the start state q0 is connected
to an accepting state qf ∈ QF by a sequence of transitions e1, . . . , ek and x

(respectively, y) is the concatenation of input labels (respectively, output labels)
of e1, . . . , ek. For a more formal definition of the transduction realised by T we
refer the reader to [4]. It is well-known that finite transducers realise exactly the
rational relations [4].

Lemma 22. ([4], Corollary 6.2) Any rational relation can be realised by a trans-
ducer where the transitions are a subset of Q× (X ∪ {ε})× (Y ∪ {ε})×Q.

A generalised transducer T is said to be functional if τT is a partial function
X∗ → Y ∗. If T is functional, we denote by T (x) the string produced by T when
it receives x as input (T (x) may be undefined).

Unless otherwise mentioned, we always consider a binary input and output
alphabet, X = Y = {0, 1}, and denote a transducer simply as a four-tuple,
T = (Q, q0, QF , E).

Doty and Moser work with a particular type of transducer: the information
lossless finite-state transducer. In general, a transducer is information lossless
if it represents an injective function from the input string x to the pair of the
output and of the final state of the transducer on that input. In their paper, they
write FST for the set of all finite-state transducers and ILFST for the set of all
information lossless finite-state transducers.

They use ILFSTs as they have the following advantageous properties [7]:

Theorem 23 ([7], Theorem 3.1). ∀T ∈ ILFST, ∃T−1 ∈ ILFST, ∃c ∈ N, ∀x ∈
{0, 1}∗ : x � (|x| − c) v T−1(T (x)) v x.2

Corollary 24 ([7], Corollary 3.2). ∀T ∈ ILFST, ∃T−1 ∈ ILFST, ∀S ∈ C :
T−1(T (S)) = S.

These results show that we can (partially, with c precision) recover an input
string x for any given ILFST, by constructing its ‘inverse’ machine.

2See Appendix A for the details on the notation.

12 CHAPTER 2. DEPTH: A LITERATURE REVIEW

2.3.2 Doty and Moser’s Notion of Depth

Finite-State Compression

Definition 25 ([7], k-FS Decompression Complexity). Let k ∈ N and x ∈ {0, 1}∗,

Dk
FS(x) = min

p∈{0,1}∗

{
|p|
∣∣∣ ∃T ∈ FST≤k, T (p) = x

}
, (2.7)

where FST≤k is the set of all FSTs such that the length of their binary represen-
tation is less or equal to k.

The above definition also shares similarities with Kolmogorov complexity;
since a string’s complexity relates to the size of the machine and of the program
it is obtained from. Therefore, as claimed by Doty and Moser, it is a “finite-state
analogue of Kolmogorov complexity” [7]. This particular definition and approach
is what interests us in this dissertation. Ultimately, this is our goal: to effectively
compute an analogous finite-state complexity to the Kolmogorov complexity. The
authors of this paper have only briefly defined this analogue complexity, they do
not offer any computed results, or prove that it is computable.

However, they obtain interesting results from their complexity, which relate
to the concept of invariance. They state, and prove, that ILFSTs do significantly
not alter the FS complexity of a string. Here are the two relevant lemmata.

Lemma 26 ([7], Lemma 3.3). Let M ∈ ILFST . ∃c1 ∈ N, ∀k ∈ N,∀x ∈ {0, 1}∗:

Dk+c1
FS (M(x)) ≤ Dk

FS(x). (2.8)

Lemma 27 ([7], Lemma 3.4). Let M ∈ ILFST . ∃c2 ∈ N,∀k ∈ N,∀x ∈ {0, 1}∗:

Dk+c2
FS (x) ≤ Dk

FS(M(x)). (2.9)

Their FS complexity is a core concept to their notion of depth, which we
introduce next.

Finite-State Depth

Definition 28 ([7], Finite-State Depth). A sequence S is finite-state deep if

(∃α > 0)(∃k′ ∈ N)(∃∞n ∈ N)Dk
FS(S � n)−Dk′

FS(S � n) ≥ αn. (2.10)

A sequence is finite-state shallow if it is not finite-state deep.

Basically, a sequence S is finite-state deep if given more time (a larger ma-
chine, therefore more steps to execute), it can always be decompressed further.
In other words, a larger portion of S will be obtained with a shorter input for the
transducer. This is a very similar concept to Bennett’s and Juedes et al.’s notions

2.3. FEASIBLE DEPTH 13

of depth, as expected. The depth of a sequence depends on the FS complexity
of its initial segments. Moreover, since the FS complexity represents how much
a finite string can be compressed via a k-sized FST, it represents some concept
of depth for finite strings. It is therefore expected that we find the same aspects
of depth discussed in the above sections of this chapter in finite-state depth.

In particular, we find that for finite-state depth, “trivial” (i.e. ‘highly’ recur-
sive) and random sequences are finite-state shallow [7]. Doty and Moser reinforce
this claim with their Proposition 3.6 [7], which we will not state here.

Finally, we can introduce the key results of Doty and Moser’s paper, which
are direct analogues to Bennett’s work in a finite-state application.

2.3.3 Main Results of Feasible Depth

We note that each of the following theorems in this subsection have been extracted
from Doty and Moser’s work [7].

Theorem 29 (Finite-State Slow Growth Law). Let S ∈ C, let f : C → C be
ILFS-computable, and let f(S) = S′. If S′ is finite-state deep, then S is finite-
state deep.

This theorem is proven using the two lemmata, Lemma 26 and Lemma 27, and
then fitting the results to (2.10). Theorem 29 implies that a ILFST cannot build
a deep sequence from a shallow sequence. Therefore, the ‘hardness’ of obtaining
a deep sequence holds in this context, thanks to the property of invariance.

Theorem 30. There exists a finite-state deep sequence.

This is a crucial result as it makes this research non-trivial. Moreover, it
increases the interest of computing theses complexities. The proof of this theorem
can be found in Feasible Depth [7].

Chapter 3

Finite-State Descriptional

Complexity

This chapter is heavily based on Finite-State Complexity and Randomness by
Calude, Roblot and Salomaa [6]. In this chapter, we introduce the regular set of
finite-state transducers which we have use in our work. We then present our finite-
state complexity, based on this set of machines, and its remarkable properties.
Finally, we offer some practical estimates of its measures and an algorithmic
implementation of this complexity.

3.1 Regular Enumeration of Transducers

3.1.1 A Particular Definition for Finite Transducers

For our finite-state complexity model, we use a transducer where the correspond-
ing transduction can be computed deterministically. A transducer T is said to be
a deterministic sequential transducer [4] if it has no transitions with input label
ε and for any q ∈ Q and i ∈ {0, 1} there exists a unique q′ ∈ Q and v ∈ {0, 1}∗

such that (q, i, v, q′) is a transition of T . The set of transitions of a deterministic
sequential transducer is represented by a function

∆ : Q× {0, 1} → Q× {0, 1}∗. (3.1)

As we use mainly deterministic sequential transducers, we drop the adjectives,
i.e., in the rest of the paper, unless stated otherwise, by all transducers are
deterministic sequential transducers. When using the general model (2.6) we
refer to them as generalised transducers.

15

16 CHAPTER 3. FINITE-STATE DESCRIPTIONAL COMPLEXITY

For a transducer, all states are considered to be final. Thus, a transducer can
be denoted by a triple (Q, q0,∆) where ∆ comes from (3.1).

In details, the function T : {0, 1}∗ → {0, 1}∗ computed by the transducer
(Q, q0,∆) is defined by

T (ε) = ε, T (xa) = T (x) · µ(δ̂(q0, x), a),

where, δ(q, x) = π1(∆(q, x)),
µ(q, x) = π2(∆(q, x)),

for q ∈ Q, x ∈ {0, 1}∗ and a ∈ {0, 1}.1

Here, δ̂ : Q× {0, 1}∗ → Q is defined by:
δ̂(q, ε) = q,
δ̂(q, xa) = δ(δ̂(q, x), a),
for q ∈ Q and x ∈ {0, 1}∗.

Also, note that π is the standard notation for a projection function, such that
π1(a, b) = a and π2(a, b) = b.

3.1.2 A Regular Enumeration

We use binary strings to code transducers. By bin(i) we denote the binary rep-
resentation of i ≥ 1. Note that for i ≥ 1, bin(i) always begins with a 1; i.e.
bin(1) = 1,bin(2) = 10,bin(3) = 11, . . .

For v = v1 · · · vm, vi ∈ {0, 1}, i = 1, . . . ,m, we use the following functions pro-
ducing self-delimiting versions of their inputs (see [5]): v† = v10v20 · · · vm−10vm1
and v� = v1v1 · · · vmvm01. For example, ε† = ε, 0† = 01, 1† = 11, (00)† = 0001,
ε� = 01, 0� = 0001, 1� = 1101, . . .

We have: |v†| = 2 · |v|, |v�| = 2 · |v|+ 2.

Consider a transducer T with the set of states Q = {1, . . . , n}. The transition
function ∆ of T , as defined in (3.1), is encoded as the binary string

σ = bin(i1)‡ · u�i1 · bin(i2)‡ · u�i2 · · · bin(i2n)‡ · u�i2n , (3.2)

where ∆(j, k) = (i2j−1+k, ui2j−1+k
), j = 1, . . . , n and k ∈ {0, 1}. In (3.2),

bin(it)‡ = ε if the corresponding transition of ∆ is a self-loop, i.e. ∆(j, k) =
(it, uit) = (j, uit); otherwise, bin(it)‡ = bin(it)†.

Conversely, any string (3.2) encodes a unique transducer Tσ with n states
when the (arbitrary) number represented by bin(ir), 1 ≤ r ≤ n, is replaced by
the smallest positive integer congruent to bin(ir) modulo n. The function com-
puted by the transducer coded by σ is denoted by Tσ.

3.1. REGULAR ENUMERATION OF TRANSDUCERS 17

Let

S =
{

bin(i1)‡·u�i1 · · · bin(ik)‡·u�ik
∣∣∣ k ≥ 2 is even, uj ∈ {0, 1}∗, ij ∈ N, j = 1, . . . , k

}
(3.3)

be the set of all codes for transducers based on (3.2).

Proposition 31. The set of all transducers can be enumerated by a regular lan-
guage. More precisely, a) the set S in (3.3) is regular, b) for every σ ∈ S, Tσ
is a uniquely defined transducer and c) for every transducer T there exists (and
can be computed) σ ∈ S such that T = Tσ.

Proof. a) The set S is denoted by the regular expression (((r + ε)s)2)∗ where
r is a regular expression for {v† | v ∈ 1(0 + 1)∗} and s is a regular expression for
{v� | v ∈ (0 + 1)∗}.

b) Clearly any sequence of pairs (ij , uj), ij ∈ N, uj ∈ {0, 1}∗, j = 1, . . . , k, for
even k encodes a list of transitions of a transducer with k

2 states when each ij is
interpreted as a number of 1 + ({0, . . . , k2 − 1} modulo k

2). We need to verify that
any string σ ∈ S has a unique factorization as a concatenation of strings from
the set H = {bin(ij)‡ · u�j | ij ≥ 1, uj ∈ {0, 1}∗}.

To find the factorization of σ we look at the first two bits of σ. First, if the
first two bits are 10, σ begins with a string u†, u ∈ 1{0, 1}∗, which encodes a
target state of the transition. The end of u† is uniquely determined by the first
bit of value 1 occurring in an even position. After this, the subsequent string u�1
is uniquely determined by the first substring 01 starting from an even position.

Second, if the first two bits of σ are 00, 11 or 01, σ begins with a string of
the form v�, v ∈ {0, 1}∗, and the end of v� is uniquely determined by the first
occurrence of 01 starting in an odd position. Note that the binary numbers used
as names of states do not have leading zeros and, hence, 00 or 01 cannot be a
prefix of any state name. This case corresponds to a situation where the first
string of H encodes a self-loop and omits the target state.

After having found the unique element of H that is a prefix of σ we continue
in the same way with the remaining suffix of σ.

Finally, the claim c) is obvious.

The simplest transducer, T , has one state and always produces the empty
string:

Example 32. Let ∆ : {1} × {0, 1} → {1} × {0, 1}∗ be defined by ∆(1, 0) =
∆(1, 1) = (1, ε). The code of T is σ = bin(1)‡ · ε� · bin(1)‡ · ε� = 0101.

A few more simple examples follow.

18 CHAPTER 3. FINITE-STATE DESCRIPTIONAL COMPLEXITY

Example 33. The code of the transducer given by ∆1 : {1} × {0, 1} → {1} ×
{0, 1}∗ where ∆1(1, 0) = (1, ε),∆1(1, 1) = (1, 0) is σ = bin(1)‡ · ε� · bin(1)‡ · 0� =
010001.

The code of the transducer given by ∆2 : {1} × {0, 1} → {1} × {0, 1}∗ where
∆2(1, 0) = (1, 0),∆2(1, 1) = (1, ε) is σ = bin(1)‡ · 0� · bin(1)‡ · ε� = 000101.

The code of the transducer given by ∆3 : {1} × {0, 1} → {1} × {0, 1}∗ where
∆3(1, 0) = ∆3(1, 1) = (1, 0) is σ = bin(1)‡ · 0� · bin(1)‡ · 0� = 00010001.

The code of the transducer given by ∆4 : {1} × {0, 1} → {1} × {0, 1}∗ where
∆4(1, 0) = ∆4(1, 1) = (1, 1) is σ = bin(1)‡ · 1� · bin(1)‡ · 1� = 11011101.

Example 34. The identity transducer T is given by ∆ : {1} × {0, 1} → {1} ×
{0, 1}∗, where ∆(1, 0) = (1, 0),∆(1, 1) = (1, 1). Its code is σ = bin(1)‡ · 0� ·
bin(1)‡ · 1� = 00011101.

3.2 Finite-State Complexity

We use transducers to ‘define’ or ‘represent’ strings in the following way: a pair
(Tσ, p), p ∈ {0, 1}∗, defines the string x provided Tσ(p) = x. Then, the pair
(Tσ, p) is called a representation of x. We code the pair (Tσ, p) in a unique way
by the binary string σ† · x. Accordingly, we define the size of the representation
(Tσ, p) of x, denoted by ||(Tσ, p)||, by |σ† · x| = 2 |σ|+ |x|.

Based on the above, we define the finite-state complexity of a string x ∈ {0, 1}∗

by the formula:

C(x) = inf
σ∈S, p∈{0,1}∗

{
||(Tσ, p)||

∣∣∣ Tσ(p) = x
}

= inf
σ∈S, p∈{0,1}∗

{
2|σ|+ |p|

∣∣∣ Tσ(p) = x
}
.

Note that in our binary encoding of the language S, we need to, roughly,
double the lengths of the strings in S. The choice of the encoding means that
when a transducer T is used to encode a string x, a string v occurring as the
output of a transition in T ‘contributes’ roughly 4 · |v| to the size of an encoding
||(T, p)||.

How ‘objective’ is the above definition? Our complexity is defined as an
analogue of the complexity used in algorithmic information theory, whose objec-
tivity is given by the invariance theorem, which in turn relies essentially on the
universality theorem [5]. Using the existence of a universal (prefix-free) Turing
machine, one can obtain a complexity which is optimal up to an additive con-
stant (the constant ‘encapsulates’ the size of this universal machine). For this
reason, the complexity does not need to explicitly include the size of the universal
machine.

3.2. FINITE-STATE COMPLEXITY 19

In sharp contrast, our definition of finite-state complexity counts the size of
the transducer as part of the encoding length.2 The reason is that there is no
“universal” transducer. Below, we establish, slightly more generally, that no fi-
nite generalised transducer can simulate a transducer on a given input—not an
unexpected result.

We start with the following lemma that follows from the observation that a
functional generalised transducer cannot have a loop where all transitions have
input label ε.

Lemma 35. For any functional generalised transducer T there exists a constant
MT such that every prefix of an accepting computation of T that consumes input
x ∈ {0, 1}+ produces an output of length at most MT · |x|.

Theorem 36. There does not exist a functional generalised transducer U such
that for all σ ∈ S and w ∈ {0, 1}∗,

U(σ†w) = Tσ(w).

Proof. For the sake of contradiction, assume that U exists and wlog we assume
that the transitions of U are in the normal form of Lemma 22. Let MU be the
corresponding constant given by Lemma 35.

Let σi ∈ S, i ≥ 1, be the encoding of the single-state transducer where the
two self-loops are labeled by 0/0i and 1/ε, i.e. ∆(1, 0) = (1, 0i),∆(1, 1) = (1, ε).

Define the function g : N→ N by setting

g(i) = |σ†i | ·MU + 1, i ≥ 1.

Let Di be an accepting computation of U that corresponds to the input
σi
† · 0g(i), i ≥ 1. Let qi be the state of U that occurs in the computation Di

immediately after consuming the prefix σi† of the input. Since U is in the normal
form of Lemma 22, qi is defined.

Choose j < k such that qj = qk. We consider the computation D of U on
input σ†j · 0g(k) that reads the prefix σ†j as Dj and the suffix 0g(k) as Dk. Since
qj = qk this is a valid computation of U ending in an accepting state.

On prefix σ†k, the computation Dk produces an output of length at most
MU · |σ†k| and, hence, on the suffix 0g(k) the computation Dk (and D) outputs 0z

where
z ≥ k · g(k)− |σ†k| ·MU > (k − 1) · g(k).

The last inequality follows from the definition of the function g. Hence the output
produced by the computation D is longer than j · g(k) = |Tσj (0g(k))| and U does
not simulate Tσj correctly.

2One can use this approach also in algorithmic information theory [14].

20 CHAPTER 3. FINITE-STATE DESCRIPTIONAL COMPLEXITY

We conjecture that there does not even exist a universal two-way finite trans-
ducer in the sense of Theorem 36:

Conjecture 37. No two-way finite transducer can simulate an arbitrary trans-
ducer Tσ when it receives σ as part of the input.

Obviously Tσ(w) can be computed from input σ†w by a two-way transducer
that can use a logarithmic amount of read/write memory, or by a read-only finite
transducer with two two-way heads and one one-way head.

A weak form of universality can be proven for transducers:

Proposition 38. For every strings x, y ∈ {0, 1}∗ there exist infinitely many
transducers Tσ such that Tσ(x) = y.

Proof. Given x, y with x = x1x2 · · ·xn of length n we construct the transducer
∆ having n+1 states acting as follows: ∆(i, xi) = (n+1, ε), 1 ≤ i ≤ n, ∆(1, x1) =
(2, y), ∆(j, xj) = (j + 1, ε), 2 ≤ j ≤ n, ∆(n+ 1, 0) = ∆(n+ 1, 1) = (n+ 1, ε).

Corollary 39. For every string y ∈ {0, 1}∗, σ ∈ S, we have lim
|σ|→∞

CTσ =∞.

In spite of the negative result presented in Theorem 36, the analogue of the
invariance theorem in algorithmic information theory is true for C. Accordingly,
we define the complexity associated to a transducer Tσ by

CTσ(x) = inf
p∈{0,1}∗

{
‖(Tσ, p)‖

∣∣∣ Tσ(p) = x
}

= 2|σ|+ inf
p∈{0,1}∗

{
|p|
∣∣∣ Tσ(p) = x

}
.

Theorem 40. For every σ0 ∈ S we have C(x) ≤ CTσ0 (x), for all x ∈ {0, 1}∗.

Proof. Using the definitions of C and CTσ0 we have:

C(x) = inf
σ∈S, p∈{0,1}∗

{
‖(Tσ, p)‖

∣∣∣ Tσ(p) = x
}

= inf
σ∈S, p∈{0,1}∗

{
2|σ|+|p|

∣∣∣ Tσ(p) = x
}

≤ 2|σ0|+ inf
p∈{0,1}∗

{
|p|
∣∣∣ Tσ0(p) = x

}
= CTσ0 (x).

Corollary 41. If Tσ0(x) = x, then C(x) ≤ |x| + 2 |σ0|, for all x ∈ {0, 1}∗. In
particular, using Example 34 we deduce that C(x) ≤ |x|+ 16, for all x ∈ {0, 1}∗.

3.2. FINITE-STATE COMPLEXITY 21

In contrast with the complexities used in algorithmic information theory by
Corollary 41 we get:

Lemma 42. The complexity C is computable.

Obviously, the problem of deciding whether C(x) ≤ m for given x ∈ {0, 1}∗,
m ∈ N is in NP. It may be difficult to establish an NP-hardness result since even
the NP-hardness of grammar-based compression remains an open problem in the
binary case [2, 10].

Open problem 43. How difficult is it to compute C?

We use finite-state transducers to find ‘regularities’ in strings to obtain shorter
definitions of those strings. In other words, regularities are used to compress
strings.
The following example illustrates the power of transducer compression.

Example 44. Define the sequence of strings

wm = 01021031 · . . . · 0m−110m1, m ≥ 1.

Using the transducer T1 of Figure 3.1 we produce an encoding of w100, where
|w100| = 5150.

With the encodings of the states indicated in Figure 3.1, T1 is encoded by a
string σ1 ∈ S of length 346. Each number 1 ≤ i ≤ 100 can be represented as
a sum of, on average, 3.18 numbers from the multi-set {1, 5, 10, 18, 25, 50} [13].
Thus, when we represent w100 in the form T1(p100), we need on average at most
6× 3.18 symbols in p100 to output each substring 0i, 1 ≤ i ≤ 100. This is only a
very rough estimate since it assumes that for each element in the sum representing
i we need to make a cycle of length six through the start state, and this is, of
course, not true when the sum representing i has some element occurring more
than once. Additionally, we need to produce the 100 symbols “1”, which means
that the length of p100 can be chosen to be at most 2008. Our estimate gives that

||(Tσ1 , p100)|| = 2 · |σ1|+ |p100| = 2700,

which is a very rough upper bound for C(w100).

The above estimation could obviously be improved using more detailed infor-
mation from the computation of the average from [13]. Furthermore, [13] does
not claim that {1, 5, 10, 18, 25, 50} would, on average, be the most efficient way
to represent numbers from 1 to 100 as the sum of the least number of sum-
mands.3 These types of constructions can be seen to hint that computing the
value of finite-state complexity may have connections to so called postage stamp
problems considered in number theory, with some of their variants known to be
computationally hard [8, 12].

3In [13] it is proved that 18 is the optimal value to add to an existing system of
{1, 5, 10, 25, 50}.

22 CHAPTER 3. FINITE-STATE DESCRIPTIONAL COMPLEXITY

1 111 1000 1001 1010 1011 1110

10 11

100

101

110

1/1 0/0 0/0
5

0/0
10

0/0
18

0/0
25

0/0
50

1/ε

1/ε

0/ε

0/ε
1/ε

0/ε
1/ε

0/ε

0/ε

1/ε

1/ε

1/ε

1/ε

1/ε

1/ε

Figure 3.1: The transducer T1 for Example 44.

3.3 Quantitative Estimates

Proposition 38 can be presented in a more precise manner:

Theorem 45. For n ≥ 1 we have: C(0n) ∈ Θ(
√
n).

Proof. It is sufficient to establish that

4 · b
√
nc ≤ C(0n) ≤ 6 · b

√
nc+ c, (3.4)

where c is a constant.
For the upper bound we note that 0n can be represented by a pair (T, p)

where T is a single state transducer having two self-loops labeled, respectively,
0/0b

√
nc and 1/0, and p can be chosen as a string 0b

√
nc+y1z, where 0 ≤ y ≤ 1,

0 ≤ z ≤ b
√
nc. By our encoding conventions the size of (T, p) is at most 6·b

√
nc+c

where c is a small constant.
To establish the lower bound, consider an arbitrary pair (T ′, p′) representing

0n. If v is the longest output of any transition of T ′, then |v| · |p′| ≥ n. On the
other hand, according to our encoding conventions ||(T ′, p′)|| ≥ 4|v|+ |p′|. These

3.3. QUANTITATIVE ESTIMATES 23

inequalities imply ||(T ′, p′)|| ≥ 4 · b
√
nc.

Using a more detailed analysis, the upper and lower bounds of (3.4) could be
moved closer to each other. Because the precise multiplicative constants depend
on the particular encoding chosen for the pairs (T, σ) and the language S, it may
not be very important to try to improve the values of the multiplicative constants.

The argument used to establish the lower bound in (3.4) gives directly the
following:

Corollary 46. For any x ∈ {0, 1}∗, C(x) ≥ 4 · b
√
|x|c.

The bounds (3.4) imply that the inequality H(xx) ≤ H(x) +O(1) familiar to
program-size complexity does not hold for finite-state complexity:

Corollary 47. There is no constant c such that for all strings x ∈ {0, 1}∗,
C(xx) ≤ C(x) + c.

The mapping 0n 7→ 02·n is computed by a transducer of small size. Hence we
deduce:

Corollary 48. There is no constant c such that for all strings x ∈ {0, 1}∗,
C(T (x)) ≤ C(x) + c.

As in Theorem 45, we get estimations for the finite-state complexity of powers
of a string.

Proposition 49. For u ∈ {0, 1}∗ and n >> |u|,

C(un) ≤ 4 · (b
√
nc+ 1) · |u|+ 2

√
n+ c, (3.5)

where c is a constant independent of u and n.

Proof. Let T be the single state transducer with two self-loops labeled, respec-
tively, by 0/ub

√
nc and 1/u. The string un has a representation (T, 0b

√
nc+y1z),

where 0 ≤ y ≤ 1, 0 ≤ z ≤ b
√
nc. By our encoding conventions

||(T, 0b
√
nc1z)|| ≤ 4 · (b

√
nc+ 1) · |u|+ 2

√
n+ c,

where c is a constant.

The upper bound (3.5) is useful only when n is larger than |u|2 because using
a single state transducer with self-loop 0/u we get an upper bound C(un) ≤
4 · |u|+ n+ c, with c constant.

Corollary 50. We have: C(0n1n) ∈ Θ(
√
n).

24 CHAPTER 3. FINITE-STATE DESCRIPTIONAL COMPLEXITY

Proof. The lower bound follows from Proposition 46. The string 0n1n has
representation

(T, 0d
√
ne−1+y11z10z21d

√
ne−1+y2),

where 0 ≤ y1, y2 ≤ 1, 1 ≤ z1, z2 ≤ d
√
ne and T is the transducer given in

Figure 3.2. Note that differing from the construction used in Theorem 45, the
transducer in Figure 3.2 begins by outputting strings 0d

√
ne−1 (instead of 0b

√
nc).

This is done in order to guarantee that z1 ≥ 1 also when n is a perfect square.
Thus, C(0n1n) ≤ 12 · d

√
ne+ c, where c is a constant.

1 2 3

0/0
⌈√n⌉−1

1/0

1/0

0/1

0/1

1/1
⌈√n⌉−1

Figure 3.2: Transducer T in the proof of Corollary 50.

From Theorem 45, we know that transducers used in minimal encodings may
need to output arbitrarily long strings in a single transition, and hence, there is
no upper bound for the size of encodings of such transducers.

Next, we establish that finite-state complexity is a rich complexity measure
also with respect to the number of states of the transducers, in the sense that there
is no a priori upper bound for the number of states used for minimal encodings
of arbitrary strings. This is in contrast to algorithmic information theory where
the number of states of a universal Turing machine can be fixed.

Theorem 51. ∀n ∈ N, ∃xn ∈ {0, 1}∗ such that whenever C(xn) = ||(Tσ, p)|| the
transducer Tσ has more than n states.

Proof. Consider an arbitrary but fixed n ∈ N. We define 2n+1 strings of length
2n+ 3,

ui = 10i12n+2−i, i = 1, . . . , 2n+ 1.

Choose
m = 32n2 + 68n+ 29 (3.6)

and define
xn = um

2

1 um
2

2 · · ·um
2

2n+1.

Let (Tσ, p) be an arbitrary encoding of xn where the transducer encoded by
σ has at most n states. We claim that

||(Tσ, p)|| >
m2

2
. (3.7)

3.3. QUANTITATIVE ESTIMATES 25

The set of transitions of Tσ can be written as a disjoint union of transitions
θ1 ∪ θ2 ∪ θ3, where

• θ1 consists of the transitions where the output contains a unique ui, 1 ≤
i ≤ 2n + 1, as a substring, that is, for any j 6= i, uj is not a substring of
the output;

• θ2 consists of the transitions where for distinct 1 ≤ i < j ≤ 2n + 1, the
output contains both ui and uj as a substring;

• θ3 consists of transitions where the output does not contain any of the ui’s
as a substring, i = 1, . . . , 2n+ 1.

Note that if a transition α ∈ θ3 is used in the computation Tσ(p), the output
produced by α cannot completely overlap any of the occurrences of ui’s, i =
1, . . . , 2n+ 1. Hence,

each transition of θ3 used in the computation Tσ(p) has length at most 4n+ 4.
(3.8)

Since Tσ has at most n states, and consequently at most 2n transitions, it
follows by the pigeon-hole principle that there exists 1 ≤ k ≤ 2n+ 1 such that uk
is not a substring of any transition of θ1. We consider how the computation of Tσ
on p outputs the substring um

2

k of xn. Let z1, . . . , zr be the minimal sequence of
outputs that ‘covers’ um

2

k . Here, z1 (respectively, zr) is the output of a transition
that overlaps with a prefix (respectively, a suffix) of um

2

k .
We define

Ξi = {1 ≤ j ≤ r | zj is output by a transition of θi}, i = 1, 2, 3.

By the choice of k, we know that Ξ1 = ∅. For j ∈ Ξ2, we know that the transition
outputting zj can be applied only once in the computation of Tσ on p because,
for i < j, all occurrences of ui as substrings of xn occur before all occurrences of
uj . Thus, for j ∈ Ξ2 the use of this transition contributes at least 4 · |zj | to the
length of the encoding ||(Tσ, p)||.

Finally, by (3.8), for any j ∈ Ξ3 we have |zj | ≤ 4n + 4 < 2|uk|. Such
transitions may naturally be applied multiple times. However, the use of each
transition outputting zj , j ∈ Ξ3, contributes at least one symbol to p.

Thus, we get the following estimate:

||(Tσ, p)|| ≥
∑
j∈Ξ2

4 · |zj |+ |Ξ3| >
|um2

k |
2|uk|

=
m2

2
.

To complete the proof it is sufficient to show that C(xn) < m2

2 . The string xn
can be represented by the pair (T0, p0) where T0 is the 2n-state transducer from
Figure 3.3 and p0 = (0m1)2n−10m1m.

26 CHAPTER 3. FINITE-STATE DESCRIPTIONAL COMPLEXITY

1 2 2n−1 2n

0/um

1

1/ε

0/um

2

. . .

0/um

2n−1

1/ε

0/um

2n

1/um

2n+1

Figure 3.3: The transducer T0 from the proof of Theorem 51.

Each state of T0 can be encoded by a string of length at most dlog2(2n)e, so
we get the following upper bound for the length of a string σ0 ∈ S encoding T0:

|σ0| ≤ (8n2 + 16n+ 6)m+ (4n− 2)dlog2(2n)e+ 8n.

Noting that |p0| = (2n+ 1)m+ 2n− 1 we observe that

||(Tσ0 , p0)|| = 2|σ0|+ |p0| = (16n2 + 34n+ 13) ·m+ f(n),

and by using (3.6) we verify that the term f(n) is less than m. Using again (3.6)
we get

C(xn) ≤ ||(Tσ0 , p0)|| < m2

2
. (3.9)

Open problem 52. It is an open problem whether, for every n ∈ N, there
exists a string xn such that any minimal finite-state encoding of xn has to use a
transducer with exactly n states.

Comment 53. Intuitively, the following type of property would probably seem
natural or desirable. If u is a prefix of v, then C(u) ≤ C(v) + c where c is
a constant independent of u and v. However, the below example, based on a
construction similar to the one used in Theorem 51, seems to contradict this
property.

For m ≥ 1, define

um = 0m
2
1m

2
0m

2−1, vm = 0m
2
1m

2
0m

2
.

Now vm has a representation (T, 0m1m0m) where T is the single-state transducer
with two self-loops labeled by 0/0m and 1/1m. Thus, C(vm) ≤ 11 ·m+ c where
c is a constant independent of m.

We do not know how to construct a representation for um, m ≥ 1, having size
11 ·m+O(1).

3.3. QUANTITATIVE ESTIMATES 27

The following result gives an upper bound for the finite-state complexity of
the catenation of two strings.

Proposition 54. ∀ε > 0, ∃d(ε) > 0 such that ∀x, y ∈ {0, 1}∗,

C(xy) ≤ (1 + ε) · (4C(x) + C(y)) + d(ε).

Here the value d(ε) depends only on ε, i.e., it is constant with respect to x, y.

Proof. Let (T, u) and (R, v) be minimal representations of x and y, respec-
tively. Let u = u1 · · ·um, ui ∈ {0, 1}, i = 1, . . . ,m and recall that u† =
u10u20 · · ·um−10um1.

We denote the sets of states of T and R, respectively, as QT and QR, and let
Q′T = {q′ | q ∈ QT }.

We construct a transducer W with set of states QT ∪Q′T ∪QR as follows.

1. For each transition of T from state p to state q labeled by i/w (i ∈ {0, 1},
w ∈ {0, 1}∗), W has a transition from q to p′ labeled by i/w and a transition
labeled 0/ε from p′ to p.

2. Each state p′ ∈ Q′T has a transition labeled 1/ε to the starting state of R.

3. The transitions originating from states of QR are defined in W in the same
way as in R.

Now |u†| = 2 · |u| and

W (uv) = T (u)R(v) = xy.

It remains to verify that the size of the encoding of W is, roughly, at most four
times the size of T plus the size of R.

First assume that:

(※) the states of W could have the same length encodings as the encodings used
for states in T and R.

We note that the part of W simulating the computation of T has simply doubled
the number of states and, for the new states of Q′T , the outgoing transitions
have edge labels of minimal length (0/ε and 1/ε). An additional increase in the
length of the encoding occurs because each self-loop of T is replaced in W by two
transitions that are not self-loops. It is easy to establish, using induction on the
number of states of T , that if all states of T are reachable from the start state,

28 CHAPTER 3. FINITE-STATE DESCRIPTIONAL COMPLEXITY

and T has t non-self-loop transitions, the number of self-loops in T is at most
t+ 2.

Thus, by the above observations together with assumption (※), C(xy) could
be upper bounded by 4C(x) + C(y) + d where d is a constant. Naturally, in
reality the encodings of states of W need one or two additional bits added to
the encodings of the corresponding states in T and R. The proportional increase
of the state encoding length caused by the two additional bits for the states of
QT ∪Q′T , (respectively, states of QR) has the upper bound of 2 · (dlog(|QT |)e)−1

(respectively, 2·(dlog(|QR|)e)−1). Thus, the proportional increase of the encoding
length becomes smaller than any positive ε when max{|QT |, |QR|} is greater than
a suitably chosen threshold M(ε). On the other hand, the encoding of W contains
at most 2·(2|QT |+|QR|) ≤ 6·max{|QT |, |QR|} occurrences of substrings encoding
the states. This means that by choosing d(ε) = 12 ·M(ε) the statement of the
lemma holds also for small values of |QT | and |QR|.

3.4 Closure Under Composition

It is known that deterministic transducers are closed under composition [4]. For
transducers Tδ and Tγ , there exists σ ∈ S such that Tσ(x) = Tδ(Tγ(x)), for all
x ∈ {0, 1}∗. Using the construction from [4] (Proposition 2.5, page 101, and trans-
lated into our notation) we give an upper bound for |σ| as a function of |δ| and |γ|.

Let Tδ = (Q, q0,∆) and Tγ = (P, p0,Γ), where ∆ is a function with ∆ :
Q× {0, 1} → Q× {0, 1}∗ and Γ is a function with Γ : P × {0, 1} → P × {0, 1}∗.
The transition function ∆ is extended in the natural way as a function ∆̂ :
Q× {0, 1}∗ → Q× {0, 1}∗.

The composition of Tγ and Tδ is computed by a transducer

Tσ = (Q× P,Ξ),

where, Ξ : Q × P × {0, 1} → Q × P × {0, 1}∗ is defined by setting for q ∈ Q,
p ∈ P , i ∈ {0, 1},

Ξ ((q, p) , i) =
((
π1

(
∆̂ (q1, π2 (Γ (p, i)))

)
, π1 (Γ (p, i))

)
, π2

(
∆̂ (q, π2 (Γ (p, i)))

))
.

The number of states of Tσ is upper bounded by |δ|·|γ|. 4 An individual output
of Tσ consists of the output produced by Tδ when it reads an output produced
by one transition of Tγ (via the extended function ∆̂). Thus, the length of the
output produced by an individual transition of Tσ can be upper bounded by

4Strictly speaking, this could be multiplied by (log log |δ|)·(log log |γ|)
log |δ|·log |γ| to give a better estimate.

3.5. FINITE-STATE INCOMPRESSIBILITY 29

|δ| · |γ|. These observations imply that

|σ| = O(|δ|2 · |γ|2).

The above estimate was obtained by combining the worst-case upper bound for
the size of the encoding of the states of Tσ and the worst-case length of individual
outputs of the transducers Tδ and Tγ . The worst-case examples for these two
bounds are naturally very different, as the latter corresponds to a situation where
the encoding of individual outputs ‘contributes’ a large part of the strings δ and
γ. The overall upper bound could be somewhat improved using a more detailed
analysis.

3.5 Finite-State Incompressibility

As in the case of incompressibility in algorithmic information theory, we define
the following concepts:

Definition 55. A string x is finite-state i–compressible, for i ≥ 1, if C(x) ≤
|x| − i.

Definition 56. A string x is finite-state i–incompressible, for i ≥ 1, if C(x) >
|x| − i. If i = 1, then the string is called finite-state incompressible.

Lemma 57. There exist finite-state incompressible strings of any length.

Proof. We note that the set {x | |x| = n,C(x) ≤ |x| − i} has at most 2n−i+1− 1
elements.

Following is a notable fact about the asymptotic nature of incompressibility:

Fact 58. For every string x and i > 0 there exists a string z such that C(xz) >
|xz| − i.

3.6 A Brute-Force Implementation

Finally, we would like to introduce our first implementation of the finite-state
complexity presented in this dissertation. The pseudocode is as follows:

Procedure FSDComplexity(String x)
Calculate upperBound for x’s complexity
for each string enumeration σ such that |σ| ≤ upperBound do

if CorrectEncoding(σ) and ObtainsX(T , p, x) then
return |σ|

end if
end for

30 CHAPTER 3. FINITE-STATE DESCRIPTIONAL COMPLEXITY

return false

end Procedure

Procedure CorrectEncoding(String σ)
if σ has the correct pattern then

T † = substring of σ up to first even positioned 1
p = rest of σ
Find each bin(i) and ui in T and respectively assign each to the arrays:

bins and outs

if |bins| = |outs| and |bins| is even and |bins| > 0 then
return true

end if
end if
return false

end Procedure

Procedure ObtainsX(String T , String p, String x)
for each bin(i) ∈ bins do

if i = 0 or i ≥ |bins|/2 then
return false

end if
add i to the transition array, trans

end for
String output = ε

k = 0
for each character pi in p do

if pi = ‘0’ then
t = element of trans at k
output = output + element of outs at k

else
t = element of trans at k + 1
output = output + element of outs at k + 1

end if
k = 2× (t− 1)
end if

end for
if output = x then

return true

end if
return false

end Procedure

We discuss each procedure separately.

3.6. A BRUTE-FORCE IMPLEMENTATION 31

Note that we have not included the pseudocode for the string enumeration
procedure, as it is a known process. We will simply mention that the enumeration
is done in lexicographical order, for every length, starting from the description of
the identity transducer.

The FSDComplexity procedure is the core of the algorithm. It manages the
enumerations and calls upon the other processes to check if we have reached
the correct encoding for a desired pair and if this pair obtains our given input
string. As the enumeration is in lexicographic order, the first such pair we find
will clearly be the pair whose length is the complexity of our string. An open
question comes into play.

Open problem 59. Can and will some strings x correspond to several ‘minimal’
pairs (T, p)?

There may be several pairs, of the same length, who obtain the same string.
Therefore, further development in our implementation is to build a table, which
will record the resulting complexities of the algorithm and allow us to empiri-
cally discover these strings, with multiple pairs describing them. Even though
the resulting complexity would be the same, there may be distinctive properties
between the pairs of such strings.

The CorrectEncoding procedure first checks the general pattern of the enu-
merated σ, to ensure it is in fact of the form (T, p)†. If this first check succeeds,
it respectively assigns the parts of σ to T † and p. It also, in that last process,
checks whether or not T † (from σ) is of the correct form. Finally, this procedure
extracts the transition and the output functions from T . If there are 2n of them,
then T is a correct encoding. Thus, σ was a correct encoding, according to our
set S. Otherwise, the procedure will reject the current σ.

Our final procedure, ObtainsX uses the extracted functions from the last
procedure and simulates the transducer T on the input p, then stores the output.
When the simulation is complete, ObtainsX compares the obtained output with
x, if they are identical, then we have found our pair (T, p). The success of the
procedures is then returned to the main procedure FSDComplexity, which will
return the length of this pair, completing the algorithm.

Chapter 4

Conclusion

4.1 Conclusions

In this dissertation, we give a literature review of three different papers covering
the notion of depth from its original uncomputable conception, by Bennett in
1988, to its latest computable analogy, by Doty and Moser in 2007. Following
Doty and Moser’s example, we define a regular set of descriptions of finite-state
transducers, from which we can define and compute the finite-state descriptional
complexity of finite strings. We have had successful results both with the theoret-
ical aspect of this research as well as the practical implementation. These findings
have produced several new open questions, and we expect there are many more
to come as we inspect the computational quality of this complexity and compare
the results with its ‘parent’ complexity, Kolmogorov complexity.

4.2 Further Research

We have left to further work the modification of the current algorithm in order to
construct a table of a wide range of strings, their complexities and their associated
pairs, (T, p) (or σ’s). This should reveal further properties and implications about
the strings which have several associated pairs, or do not. Also, we have left to
further research the implementation of an algorithm which does not take a brute-
force approach and more effectively enumerates all the elements of our regular
set S of finite-state transducers.

In further research, we expect to explore and answer the open questions put
forth in this dissertation. Hopefully, we will be able to explore in more depth the
relations between this complexity and classical complexity, as well as where they
differ. This research offers an important contribution in the field of algorithmic
information theory. We expect it still has many promising results to unravel.

33

Bibliography

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009. [cited at p. 4]

[2] J. Arpe and R. Reischuk. On the complexity of optimal grammar based compression.
In Proceedings of the Data Compression Conference, DCC’06, pages 173–186, 2006.
[cited at p. 21]

[3] C. H. Bennett. Logical depth and physical complexity. In Rolf Herken, editor,
The Universal Turing Machine - a Half-Century Survey, pages 227–257. Oxford
University Press, 1988. [cited at p. 1, 4, 5, 6, 8]

[4] J. Berstel. Transductions and Context-free Languages. Teubner, 1979. [cited at p. 10,

11, 15, 28]

[5] C. S. Calude. Information and Randomness: An Algorithmic Perspective. Springer,
Berlin, 2nd edition, 2002. [cited at p. 16, 18]

[6] C. S. Calude, T. K. Roblot, and K. T. Salomaa. Finite-state complexity and ran-
domness. 2009. [cited at p. 15]

[7] D. Doty and P. Moser. Feasible depth. CoRR, abs/cs/0701123, 2007. [cited at p. 1,

11, 12, 13]

[8] R. K. Guy. Unsolved Problems in Number Theory. Springer, Berlin, 3rd edition,
2004. [cited at p. 21]

[9] D. W. Juedes, J. I. Lathrop, and J. H. Lutz. Computational depth and reducibility.
Theoretical Computer Science, 132:37–70, 1994. [cited at p. 1, 7, 8, 9, 10]

[10] E. Lehman. Approximation algorithms for grammar-based compression. PhD thesis,
MIT, 2002. [cited at p. 21]

[11] M. Li and P. M. B. Vitányi. Logical depth. In An Introduction to Kolmogorov
Complexity and its Applications, chapter 7. Resource-Bounded Complexity, pages
510–516. Springer, second edition, 1990. [cited at p. 3]

[12] J. Shallit. The computational complexity of the local postage stamp problem.
SIGACT News, 33:90–94, 2002. [cited at p. 21]

35

36 BIBLIOGRAPHY

[13] J. Shallit. What this country needs is an 18 cent piece. Mathematical Intelligencer,
25:20–23, 2003. [cited at p. 21]

[14] M. Sipser. Introduction to the Theory of Computation. Course Technology, second
edition, 2005. [cited at p. 4, 19]

Appendices

37

Appendix A

Notation

ε Empty string.
N Set of all non negative integers; the natural numbers.

C = {0, 1}∞ Cantor space.
TM Turing Machine.
U Efficient, fixed, prefix-free Universal TM (with time bound).
〈M〉 (String) Description of a TM M .
p Turing machine program, in this paper, p = 〈M〉.
|p| Length of p.

PROGM (x) Set of programs for x relative to M .
S[i..j] Substring of the ith through jth bits of S inclusive,

where S is a string or sequence.
S � n = S[0..(n− 1)]; i.e. initial segments of S.
S v x where S is a string or sequence and x is a string, for all n ∈ N, x = S � n.
REC Set of recursive sequences; i.e. computable sequences.

RAND Set of random sequences; i.e. uncomputable sequences.
wkDEEP Set of weakly deep sequences.
strDEEP Set of strongly deep sequences.
wkUSE Set of weakly useful sequences.

39

List of Figures

3.1 The transducer T1 for Example 44. 22
3.2 Transducer T in the proof of Corollary 50. 24
3.3 The transducer T0 from the proof of Theorem 51. 26

41

	Contents
	1 Introduction
	2 Depth: A Literature Review
	2.1 Motivation
	2.2 Classical Notion of Depth
	2.2.1 Classical Complexity Concepts
	2.2.2 Bennett's Notion of Depth
	2.2.3 Juedes, Lathrop and Lutz's Notion of Depth
	2.2.4 Theorems
	2.2.5 Main Results of Classical Depth

	2.3 Feasible Depth
	2.3.1 Finite-State Transducers
	2.3.2 Doty and Moser's Notion of Depth
	2.3.3 Main Results of Feasible Depth

	3 Finite-State Descriptional Complexity
	3.1 Regular Enumeration of Transducers
	3.1.1 A Particular Definition for Finite Transducers
	3.1.2 A Regular Enumeration

	3.2 Finite-State Complexity
	3.3 Quantitative Estimates
	3.4 Closure Under Composition
	3.5 Finite-State Incompressibility
	3.6 A Brute-Force Implementation

	4 Conclusion
	4.1 Conclusions
	4.2 Further Research

	Bibliography
	A Notation
	List of Figures

