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Abstract

In this thesis, we propose a new variant to Algorithmic Information Theory. This
new theory is constructed around finite-state complexity, a computable counter-
part to Kolmogorov complexity based on finite transducers rather than Turing
machines.

In Chapter 1 we provide the necessary background knowledge and notation for
the thesis, mostly stemming from computability theory. We then present finite
transducers, the fundamental basis of our new complexity measure, and proffer
some recent results about our regular enumerations of these machines. In partic-
ular, we introduce our encodings for the set of finite transducers and our main
results concerning the definition of such encodings along with the corresponding
regular enumerations for this set.

In Chapter 2 we propose the new complexity measure, finite-state complex-
ity, and present our main results concerning its theoretical, computational and
practical aspects. The greatest appeal to this new complexity measure is its com-
putability, which we prove and begin to exploit thanks to our main algorithm.
This algorithm is presented and its implementation results are used to give an
empirical grounding and insight to the theory. The finite-state complexity is also
interesting in itself on a computational basis which this thesis will show in some
depth, exploring concepts such as incompressibility and state-size hierarchy.

In Chapter 3, we present a first attempt at applying the finite-state com-
plexity in a practical setting: the approximative measure of DNA’s finite-state
complexity. In sight of the practical limitations we currently face with measur-
ing the finite-state complexity of sequences of such great length, we compromise
with an approximative measure of the finite-state complexity of DNA sequences
using the results of a DNA-focused grammar-based compressor, Iterative Repeat
Replacement Minimal Grammar Parsing, and converting the resulting ‘smallest’
straight-line grammars into transducers. We also discuss ways in which to opti-
mise our conversion algorithms by heuristic means.

The most of the results in this thesis have been communicated in the following
papers: [12], [13], [14], [21] and [33].
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Chapter 1

Introduction

The research conducted in this thesis stems directly from computational the-
ory. In this chapter we bring forth the required background and notation used
throughout this thesis. We complete this chapter with a detailed presentation of
the backbone of our work: finite transducers.

1.1 Motivation

Algorithmic Information Theory (AIT) [17, 10] uses various measures of descrip-
tional complexity to define and study different classes of ‘algorithmically random’
finite strings or infinite sequences. This theory, based on the existence of a uni-
versal Turing machine (of various types), is very elegant and has produced many
important results, as one can see from the latest monographs on the subject
[30, 25].

The incomputability of all descriptional complexities was an obstacle towards
more ‘down-to-earth’ applications of AIT (practical compression, for example).
One possibility to avoid incomputability is to restrict the resources available to the
universal Turing machine and the result of this is resource-bounded descriptional
complexity [8]. Various models which have been studied in this area did not
produce significant understandings of ‘deterministic randomness’ (i.e. chaoticity
and software-generated randomness).

Another approach which avoids incomputability involves restricting the com-
putational power of the machines used. For example, the size of the smallest
context-free grammar, or straight-line program, generating the singleton language
{x} is a measure of the descriptional complexity of x. This model, investigated
since the 1970s, has recently received much attention [20, 29, 28, 34] (also because
of connections with Lempel-Ziv encodings [28, 34]). By further restricting the
computational power, from context-free grammars to finite automata, one ob-
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2 CHAPTER 1. INTRODUCTION

tains automatic complexity [39]. The automatic complexity of a string is defined
as the smallest number of states of a DFA (deterministic finite automaton) that
accepts x and does not accept any other string of length |x|. Note that a DFA
that recognises the singleton language {x} always needs |x| + 1 states, which is
the reason the definition considers only strings of length |x|. Automaticity [2, 38]
is an analogous descriptional complexity measure for languages.

The first connections between finite-state machine computations and random-
ness have been obtained for infinite sequences. In [1] it was proved that every
subsequence selected from a (Borel) normal sequence by a regular language is
also normal. Characterisations of normal infinite sequences have been obtained
in terms of finite-state gamblers, information lossless finite-state compressors and
finite-state dimension and are defined as follows: a) a sequence is normal if and
only if there is no finite-state gambler that succeeds on it [7, 35], and b) a se-
quence is normal if and only if it is incompressible by any information lossless
finite-state compressor [44].

Computations with finite transducers are used in [24] for the definition of
finite-state dimension of infinite sequences. The NFA-complexity of a string [20]
(non-deterministic finite automata) can be defined in terms of finite transducers
that are called “NFAs with advice” [20]; the main problem with this approach is
that NFAs used for compression can always be assumed to have only one state.

The finite-state complexity of a finite string x was communicated recently
in [12, 33]. It is a complexity measure based on an enumeration of finite transduc-
ers and the input strings used by transducers which output a string x, following
the model used in AIT with the goal to develop a computable version of it. The
core purpose of this thesis is to reintroduce and deepen this work.

The main obstacle in developing a version of AIT based on finite transducers
is the non-existence of a universal finite transducer. We prove this result later
in this thesis. To overcome this negative result we prove the Invariance Theo-
rem for finite-state complexity, based on the fact that we prove that the set of
finite transducers can be enumerated by a computable (even a regular) set. The
finite-state complexity is computable and examples of finite-state complexities of
some strings are presented, along with various properties, most of which were
communicated in [12, 13, 14, 21].

1.2 Preliminaries

In this section we present some of the general terms used throughout this thesis.
Any term or concept that is associated to a specific chapter or section will be
introduced accordingly. We follow the formalisations of Sipser [40]. For more
thorough introductory details on each of the referenced definitions and concepts,
we encourage the reader to refer to Sipser’s text [40].
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1.2.1 Notation

Our notation is standard [6, 10]. If X is a finite set then X∗ is the set of all
strings (words) over X with ε denoting the empty string. The length of x ∈ X∗

is denoted by |x|.
Throughout this thesis we only consider the binary alphabet, i.e. we take

Σ = {0, 1} unless specified otherwise. Any enumeration done on an alphabet will
be in co-lexicographic order. By co-lexicographic order we mean that the strings
are enumerated in lexicographic order, in sets of growing length. Mathematically,
we have the relation x <L y if |x| < |y| or |x| = |y| and xi = 0 for the smallest i
such that xi 6= yi, where x = x1x2x3 . . . and y = y1y2y3 . . .. In other words, for
Σ = {0, 1}—recall that we are working with binary—the first few strings in the
enumeration are: ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . .

1.2.2 Nomenclature

Here we briefly define the necessary concepts from automata and computability
theory.

As expressed in [40], a grammar is a collection of (substitution) rules. Each
one of these rules is composed of a ‘right-hand side’ (rhs) representing the vari-
able accessing the rule, and a ‘left-hand side’ (lhs) representing the outcome of
the rule. The outcome is itself composed of a combination of variables and/or
terminals. The terminals are the alphabet characters and cannot be found on the
rhs of any rule, whereas the purpose of the variables is to indicate the use of an
existing rule. One variable is designated to be the start variable and a grammar
has completed a configuration, or derivation, when there are no more variables
to substitute.

A straight-line grammar (SLG) is a grammar which can only derive a single
unique string [15]. Hence for straight-line grammars each variable is associated
with exactly one rule; this guarantees that there can only be one outcome associ-
ated with each variable, and therefore with the grammar. Following is the formal
definition of a SLG as used in this thesis.

Definition 1. A SLG G is a 4-tuple (V,Σ, R, S), where:

• V is the finite set of variables (or non-terminals);

• Σ is the finite alphabet (finite set of terminals);

• R : V → (V ∪Σ)+ is the set of rules of the form Ni → ηi, for i = 0, . . . , |R|,
where ηi : (V ∪ Σ)+ and Ni /∈ ηi;1 and

1Since each variable is associated with exactly one rule, i.e. for each ri ∈ R, lhs(ri) ↔
rhs(ri), each rule is sometimes referred to by its associated variable S or Ni instead of ri.
However in this thesis, the distinction is kept for the sake of clarity.
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• S ∈ V is the start variable.

Definition 2 ([40]). A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0, F ),
where:

• Q is the finite set of states;

• Σ is the finite alphabet;

• δ : Q× Σ→ Q is the transition function;

• q0 ∈ Q is the start state; and

• F ⊆ Q is the set of final (or accepting) states.

A DFA always halts on all inputs and either accepts or rejects. A well known
feature of DFAs is that they recognise exactly the regular languages.

A finite-state transducer is a DFA which outputs a string rather than simply
accept or reject [40]. The transition (or transduction) function is a combination
of the classical transition function with an output function. Each transition, for
a given input symbol, outputs a string and changes the current state to a specific
target state. In this thesis we focus on a particular type of finite-state transducers
which we explicitly define and present in Section 1.3.

Definition 3 ([40]). A Turing machine is a 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject),
where:

• Q is the finite set of states;

• Σ is the finite input alphabet, not containing the blank symbol (denoted t);

• Γ is the finite tape alphabet, where t ∈ Γ and Σ ⊂ Γ;

• δ : Q × Γ → Q × Γ × {L,R} is the transition function (where L and R are
left and right directions for the tape reader pointer);

• q0 ∈ Q is the start state;

• qaccept ∈ Q is the (halting) accept state; and

• qreject ∈ Q is the (halting) reject state, where qreject 6= qaccept.

In computability theory, the field of AIT introduced a standardised complex-
ity measure which was defined by Andrei Kolmogorov using Turing machines.
Chaitin [16, 17, 18] later developed a variation using the prefix-free universal
Turing machine, denoted U . A prefix-free Turing machine is a Turing machine
whose language is a prefix-free set of strings. A universal Turing machine can sim-
ulate every Turing machine, given its description. The complexity measure called
descriptive complexity (also known as Kolmogorov-Chaitin complexity) [4, 30, 40]
of a string x ∈ Σ∗ is the function K : Σ∗ → Σ∗ and is defined as follows.
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Definition 4. Given a string x ∈ Σ∗,

K(x) = min
〈M,p〉∈Σ∗

{〈M,p〉 |M(p) = x}

where M is a Turing machine (〈M〉 being its string description) and p its input
string (or program).

Its prefix-free variant, which we will refer to as Kolmogorov complexity in
this thesis is the function H : Σ∗ → Σ∗ such that:

Definition 5. Given a string x ∈ Σ∗,

H(x) = min
p∈Σ∗
{p | U(p) = x}

However, because of its reliance on Turing machines and in particular on
the universal Turing machine, Kolmogorov complexity (in all its forms) is con-
fronted with the Halting problem and is therefore incomputable [17, 40]. The
Halting problem is the inability to decide whether a machine will halt on any
given input. Alan Turing [42] proved that this is indeed undecidable over Turing
machines. In simple terms, the Halting problem occurs in the context of Turing
machines because, unlike DFAs—where the sets of accepting and rejecting states
are ‘complements’ of each other (they are disjoint and their union forms exactly
the set of states)—the ‘accept’ and ‘reject’ states are two single states within Q,
not subsets of Q. Hence on some inputs those states are unreachable (especially
the accept state) and the machine does not halt. Since the universal Turing
machine simulates all machines, it obviously is also impaired by this problem,
causing the incomputability of this complexity.

Borel normality [1, 7, 9, 35, 44] is a concept introduced by Émile Borel in
1909 with his study of reals and sequences. He in fact was the first to explicitly
inquire into randomness, despite working with an unsatisfactory definition of
randomness [9]. Borel normality allows us to determine if a string or sequence is
‘normal’ in the sense that all substrings occur within it equally often. For finite
strings, it only makes sense to consider substrings of reasonably short length.
Let Nm

i : Σ∗ → IN count the number of non-overlapping occurrences of the ith
binary string of length m in a given string. We can then proceed to define Borel
normality for strings.

Definition 6 ([9]). Let x ∈ Σ∗ be a non-empty string and 1 ≤ m ≤ |x|.

1) We call x Borel m-normal if for every 1 ≤ i ≤ 2m we have:∣∣∣∣∣Nm
i (x)

b |x|m c
− 2−m

∣∣∣∣∣ ≤
√

log2 |x|
|x|

.
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2) If for every natural 1 ≤ m ≤ log2 log2 |x|, x is Borel m-normal, then we call
x Borel normal.

We can easily generalise the above definition to infinite sequences (in fact it
was first formulated for infinite sequences) by requiring that it holds in the limit
for substrings of increasing length. In this thesis however, our interest relies on
finite strings.

In the following section, we thoroughly introduce the machine upon which
our complexity measure is based on: finite transducers.

1.3 Finite Transducers

1.3.1 Definitions

As mentioned in Section 1.2 the complexity we are about to define is based on
specific finite transducers. These transducers are in fact a subtype of gener-
alised finite transducers. We give the hierarchy of definitions which leads to our
specialised type of machine and which we simply call (with a slight abuse of
terminology) a transducer.

Definition 7. A generalised finite transducer [6] is a 6-tuple T = (X,Y,Q, q0, QF , E),
where:

• X is the input alphabet,

• Y the output alphabet,

• Q is the finite set of states,

• q0 ∈ Q is the start state,

• QF ⊆ Q is the set of accepting states and

• E ⊆ Q×X∗ × Y ∗ ×Q is the finite set of transitions.

If e = (q1, u, v, q2) ∈ E, q1, q2 ∈ Q, u ∈ X∗, v ∈ Y ∗ is a transition from q1 to
q2, we say that the input (respectively, output) label of e is u (respectively, v).
When the states are understood from the context we say that the transition e is
labeled by u/v.

A generalised transducer T whose input alphabet is binary is said to be a
(deterministic sequential) transducer [6] if it has no transitions with input label ε
and if for any q ∈ Q and i ∈ Σ there exists a unique q′ ∈ Q and v ∈ Σ∗ such that
(q, i, v, q′) is a transition of T . The set of transitions of a deterministic sequential
transducer is fully represented by the function

∆ : Q× Σ→ Q× Σ∗. (1.1)
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For a transducer all states are considered to be final. Hence, we can define a
finite transducer (transducer for short) as:

Definition 8. A transducer is a triple (Q, qinit,∆), where Q is the finite set
of states, qinit is the initial state and ∆ is the transition function as in (1.1).
The function2 T : Σ∗ → Σ∗ computed by the transducer (Q, qinit,∆) is defined
inductively by

T (ε) = ε, T (xa) = T (x) · µ(δ̂(qinit, x), a),

where δ(q, a) = π1(∆(q, a)), µ(q, a) = π2(∆(q, a)), q ∈ Q, x ∈ Σ∗ and a ∈ Σ.3

π1 and π2 are the first two projections on Q × Σ∗. Hence, δ : Q × Σ → Q is
the first ‘component’ of ∆, meaning the state projection, and µ : Q × Σ → Σ∗

is the second ‘component’ of ∆, the output projection. Here δ̂ : Q × Σ∗ → Q is
defined inductively by δ̂(q, ε) = q, δ̂(q, xa) = δ(δ̂(q, x), a), where, again, q ∈ Q,
and x ∈ Σ∗.

A run of a machine is a sequence of configurations. A configuration of a
machine is a description of the ‘settings’ of the machine at a given instance.
These are usually terms used for Turing machines [40] but we can adapt them for
simpler machines such as transducers. In terms of transducers, those ‘settings’
are: the current state, the last read input bit and the current outputted string.

1.3.2 Regular Enumerations

We use binary strings to encode transducers and prove that the set of all legal en-
codings of transducers is a computable and in some cases even a regular language.
We encode a transducer by listing for each state q and input symbol a ∈ Σ the
output and target state corresponding to the pair (q, a), that is, ∆(q, a). Thus,
the encoding of a transducer is a list of (encodings of) states and output strings.

By bin (i) we denote the binary representation of i ≥ 1. Note that for all
i ≥ 1, bin (i) always begins with 1; bin (1) = 1,bin (2) = 10,bin (3) = 11, . . .;
by string (i) we denote the binary string obtained by removing the leading 1
from bin (i), i.e. bin (i) = 1 · string (i). If Log(i) = blog2(i)c, then |string (i) | =
Log(i), i ≥ 1.

For v = v1 · · · vm, vi ∈ Σ, i = 1, . . . ,m, we use the following functions produc-
ing self-delimiting versions of their inputs (see [10]): v† = v10v20 · · · vm−10vm1
and v� = (1v)†, where is the negation morphism given by 0 = 1, 1 = 0. It is
seen that |v†| = 2|v|, and |v�| = 2|v| + 2. In Table 1.1 we present the encodings
of the first binary strings.

2By slight abuse of notation the function computed by a transducer is named after its
associated transducer

3In the context of strings, we use · to denote concatenation.
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Table 1.1: Encodings of the first binary strings and a comparison of their length,
using the different encoding functions: bin (n), bin† (n), string (n) and string� (n).
These functions are then used to compose our first encoding S0.

n bin (n) bin† (n) string (n) string� (n) |bin† (n) | = |string� (n) |
1 1 11 ε 00 2
2 10 1001 0 0110 4
3 11 1011 1 0100 4
4 100 100001 00 011110 6
5 101 100011 01 011100 6
6 110 101001 10 010110 6
7 111 101011 11 010100 6
8 1000 10000001 000 01111110 8

Consider a transducer T with the set of states Q = {1, . . . , n}. The transition
function ∆ of T (as in (1.1)) is encoded by a binary string

σ = bin‡ (i1) · string�
(
i′1
)
·bin‡ (i2) · string�

(
i′2
)
· · · bin‡ (i2n) · string�

(
i′2n
)
, (1.2)

where ∆(j, k) =
(
i2j−1+k mod n, string

(
i′2j−1+k

))
, it, i′t ≥ 1, t = 1, . . . , 2n, j =

1, . . . , n, and k ∈ {0, 1}. We denote by m mod n the smallest positive integer
congruent with m modulo n.4 This allows us to guarantee that our notation
respects the size of Q, meaning that it will never map a state to a non-existent
state in T and similarly with each transition’s corresponding output. In (1.2), we
modify bin† (it) into bin‡ (it) to add a ‘compacting’ feature such that: bin‡ (it) = ε

if the corresponding transition of ∆ is a self-loop, i.e. δ(j, k) = π1(∆(j, k)) = j;
otherwise, bin‡ (it) = bin† (it).

The transducer T encoded by σ is called TS0
σ , where S0 is the set of all strings

of the form (1.2) where 1 ≤ ij ≤ n for all j = 1, . . . , 2n.

Theorem 9. The set of all transducers can be enumerated by a regular language.
More precisely, we can construct a regular set S0 such that:

a) for every σ ∈ S0, TS0
σ is a transducer,

b) for every transducer T one can compute a code σ ∈ S0 such that T = TS0
σ .

Proof. We consider the languages X = {bin† (n) : n ≥ 1} = {11, 1001, 1011, . . .},
Y = {string� (n) : n ≥ 1} = {00, 0110, 0100, . . .} and we define the language

S0 = (((X ∪ {ε})Y )2)∗. (1.3)

4In (1.2) we use it instead of it mod n in order to guarantee that the set of legal encodings
of all transducers is regular, cf. Theorem 9.
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The languages X and Y are regular, hence S0 is regular since we can write it
in the form (1.3).

The claim a) follows from (1.2). For b) we note that in view of the construction
it is clear that every string σ ∈ S0 has a unique factorisation of the form σ = x1 ·
y1 · · ·x2n · y2n, for appropriate strings x1, . . . , x2n ∈ X ∪ {ε} and y1, . . . , y2n ∈ Y ,
since both X and Y are prefix-free sets. So, from σ we uniquely get the length
n and the codes xs · ys, for s = 1, 2, . . . , 2n. Every xs can be uniquely written
in the form xs = bin† (ts) and every ys can be uniquely written in the form
ys = string� (rs).

Next we compute the unique transition encoded by xs·ys = bin† (ts)·string� (rs)
according to (1.2). First assume that xs 6= ε. There are two possibilities depend-
ing on s being odd or even. If s = 2i + 1, for 0 ≤ i ≤ n, then ∆(s, 0) = (ts
mod n, string (rs)); if s = 2i, for 1 ≤ i ≤ n, then ∆(s, 1) = (ts mod n, string (rs)).
The decoding process is unique and shows that the transducer obtained from σ

is TS0
σ = T . Secondly, if xs = ε, then ∆(s, 0) = (s, string (rs)) for an odd s, and

∆(s, 1) = (s, string (rs)) for an even s.

Fact 10. An explicit encoding σ ∈ S0 of the transition function of TS0
σ can be

computed in quadratic time.

Example 11. The transducer T with the shortest S0 encoding has one state
and always produces the empty string. It has transition function ∆ : {1} × Σ→
{1} × Σ∗ defined by ∆(1, 0) = ∆(1, 1) = (1, ε). The transducer is coded as
σ = bin‡ (1) · ε� · bin‡ (1) · ε� = 0000.

The identity transducer Tid is given by ∆(1, 0) = (1, 0), ∆(1, 1) = (1, 1). Its
code is

σid = bin‡ (1) · 0� · bin‡ (1) · 1� = ε · 0� · ε · 1� = 01100100.

Example 12. Table 1.2, below, has simple examples. The first example is the
smallest transducer; the last example is the identity transducer, as explicitly
given in Example 11.

The encoding used in Theorem 9 is regular but not as compact as it could
be, as the pair (i, string (j)) is coded by bin† (i) · string� (j), a string of length
2(Log(i) + Log(j)) + 4.

By using the encoding

x§ = 0|string(|x|+1)| · 1 · string (|x|+ 1) · x (1.4)

we obtain a more compact one. Indeed, instead of basing our encoding on Ta-
ble 1.1, we use the functions illustrated in Table 1.3, where

string§ (n) = 0|string(|string(n)|+1)| · 1 · string (|string (n) |+ 1) · string (n) ,
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Table 1.2: Some simple transducers encoded using the S0 encodings. This table
first shows the ∆ definition of the transducer, then it shows its encoding and
finally the length of that particular code.

transducer code code length
∆1(1, 0) = ∆1(1, 1) = (1, ε) σ = 0000 4

∆1(1, 0) = (1, ε),∆1(1, 1) = (1, 0) σ = 000110 6
∆2(1, 0) = (1, 0),∆2(1, 1) = (1, ε) σ = 011000 6

∆3(1, 0) = ∆3(1, 1) = (1, 0) σ = 01100110 8
∆4(1, 0) = ∆4(1, 1) = (1, 1) σ = 01000100 8

∆(1, 0) = (1, 0),∆(1, 1) = (1, 1) σ = 01100100 8

Table 1.3: Encodings of the first binary strings and a comparison of their length,
using the new encoding functions: bin# (n) and string§ (n). These functions are
then used to compose our second more compact encoding S1.

n bin (n) bin# (n) string (n) string§ (n) length
1 1 0 ε 001εε = 1 1
2 10 1010 0 0100 4
3 11 1011 1 0101 4
4 100 10000 00 01100 5
5 101 10001 01 01101 5
6 110 10010 10 01110 5
7 111 10011 11 01111 5
8 1000 11011000 000 00100000 8

bin# (n) = 1|string(|string(n)|+1)| · 0 · string (|string (n) |+ 1) · string (n) ,

and the pair (i, string (j)) is coded by bin# (i+ 1) · string§ (j + 1), obtaining a
string of length 2 · Log (Log (i+ 1) + 1) + Log (i+ 1) + 2 · Log (Log (j + 1) + 1)
+ Log (j + 1) + 2< 2 (Log (i) + Log (j)) + 4 almost everywhere.

By iterating the formula (1.4) we can indefinitely improve almost everywhere
the encoding of the pairs (i, string (j)) obtaining more and more efficient variants
of Theorem 9.

Theorem 13. We can construct a sequence of computable sets (Sn)n≥1 such
that:

a) for every σ ∈ Sn, TSnσ is a transducer,

b) for every transducer T one can compute a code σ ∈ Sn such that T = TSnσ ,

c) the difference in length between the encodings of the pair (i, string (j)) accord-
ing to Sn and Sn+1 tends to ∞ with n.
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Proof. This is proven in a similar fashion to the proof of Theorem 9.

1.4 Summary

In this chapter, we covered the background needed for this thesis, introducing the
concepts in automata and computability theory which brought us to this study.
Furthermore, we presented in detail what we mean by a transducer and proffered
our main results concerning transducers, in particular our encodings and hence
our means of enumerating these transducers as a regular set of binary strings.





Chapter 2

Finite-State Complexity

In this chapter we present the finite-state complexity, first proposed as an ana-
logue of Kolmogorov complexity in [33] then in a more refined version in [12].
First we define the complexity measure in Section 2.1. Then, in the same sec-
tion we present its main theoretical results. As mentioned briefly in Chapter 1,
the finite-state complexity is computable. We prove this property in Section 2.2
where we also explore and begin to exploit it. In Section 2.3 we deepen the study
of this complexity measure and present its main computational results.

2.1 Proposing an Analogue of Kolmogorov Complexity

2.1.1 Definition

Transducers, as previously defined, are used to ‘define’ or ‘represent’ strings in
the following way. First we fix a computable set S of encodings as in Theorem 9
or Theorem 13. Then we say that a pair (TSσ , p), σ ∈ S, p ∈ Σ∗, defines the string
x provided TSσ (p) = x; the pair (TSσ , p) is called a description of x. We define the
size of the description (TSσ , p) of x by

||(TSσ , p)|| = |σ|+ |p|.

Based on the above and on the fact that we are proposing an analogue version
of Kolmogorov complexity, we define the finite-state complexity of a string as
the length of the shortest description of that string, according to transducers.
Formally, the definition is as follows.

13
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Definition 14. The finite-state complexity (with respect to the enumeration S)
of a string x ∈ Σ∗ is

CS(x) = inf
σ∈S, p∈Σ∗

{
||(TSσ , p)|| : TSσ (p) = x

}
= inf

σ∈S, p∈Σ∗

{
| σ | + | p | : TSσ (p) = x

}
.

How ‘objective’ is the above definition? Firstly, finite-state complexity de-
pends on the enumeration S; if S and S′ are encodings then CS′ = f(CS ), for
some computable function f .

Secondly, finite-state complexity is defined as an analogue of the complexity
used in AIT whose objectivity is given by the Invariance Theorem which in turn
relies essentially on the Universality Theorem [10]. Using the existence of a uni-
versal (prefix-free) Turing machine one can obtain a complexity which is optimal
up to an additive constant (the constant ‘encapsulates’ the size of this universal
machine). For this reason the complexity does not need to explicitly include the
size of the universal machine. In sharp contrast, the finite-state complexity has to
count the size of the transducer as part of the encoding length1 but can be more
relaxed in working with the pair (σ, p). The reason is that there is no ‘universal’
transducer. However, we still have a strong invariance theorem which relates
the ‘generalised’ finite-state complexity to its ‘specialised’ (or more restricted)
complexities, analogous to AIT’s Invariance Theorem.

Thirdly, our proposal does not define just one finite-state complexity but
rather a class of ‘finite-state complexities’ (depending on the underlying enumer-
ation of transducers). At this stage we do not have a reasonable ‘invariance’ result
relating every pair of complexities in this class. In the theory of left-computable
ε–randomness [11] the difference between two prefix complexities induced by dif-
ferent ε–universal prefix-free Turing machines can be arbitrarily large. In the
same way here it is possible to construct two enumerations S′ and S′′ satisfying
Theorem 13 such that the difference between CS′ and CS′′ is arbitrarily large.

2.1.2 Universality and Invariance

Below we establish in a slightly more general fashion that no finite generalised
transducer can simulate a transducer on a given input—not an unexpected result.
For this we note the following two lemmas, and also that the pair (σ,w) can be
uniquely encoded into the string σ†w.

Lemma 15. ([6], Corollary 6.2) Any rational relation can be realised by a trans-
ducer where the transitions are a subset of Q× (X ∪ {ε})× (Y ∪ {ε})×Q.

1One can also use this approach in AIT [40], as we have also briefly mentioned in Section 1.2.
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Lemma 16. For any functional generalised transducer T there exists a constant
MT such that every prefix of an accepting computation of T that processes input
x ∈ Σ+ produces an output of length at most MT · |x|.

Proof. The statement follows from the observation that no functional generalised
transducer can have a cycle where all transitions have input label ε.

Theorem 17. Let S be an enumeration satisfying Theorem 9.2 There is no
functional generalised transducer U such that for all σ ∈ S and w ∈ Σ∗, U(σ†w) =
TSσ (w).

Proof. For the sake of contradiction assume that U exists and without loss of gen-
erality we assume that the transitions of U are in the normal form of Lemma 15.
Let MU be the corresponding constant given by Lemma 16.

Let σi ∈ S, i ≥ 1, be the encoding of the single-state transducer where the
two self-loops are labeled by 0/0i and 1/ε, i.e. ∆(1, 0) = (1, 0i),∆(1, 1) = (1, ε).

Define the function g : IN→ IN by setting

g(i) = |σ†i | ·MU + 1, i ≥ 1.

Let Di be a valid computation of U that corresponds to the input σi† · 0g(i),
i ≥ 1. Let qi be the state of U that occurs in the computation Di immediately
after consuming the prefix σi

† of the input. Since U is in the normal form of
Lemma 15, qi is defined.

Choose j < k such that qj = qk. We consider the computation D of U on
input σ†j · 0g(k) that reads the prefix σ†j as Dj and the suffix 0g(k) as Dk. Since
qj = qk this is a valid computation of U ending in an accepting state.

On prefix σ†k the computation Dk produces an output of length at most MU ·
|σ†k| and, hence, on the suffix 0g(k) the computation Dk (and D) outputs 0z where

z ≥ k · g(k)− |σ†k| ·MU > (k − 1) · g(k).

The last inequality follows from the definition of the function g. Hence the output
produced by the computation D is longer than j · g(k) = |TSσj (0

g(k))| and U does
not simulate TSσj correctly.

In the remainder of this section we fix an enumeration S satisfying Theo-
rem 13.

Proposition 18. For every pair of strings x, y ∈ Σ∗ there exist infinitely many
transducers TSσ such that TSσ (x) = y.

2We use a regular enumeration to avoid the possibility that the non-existence of a universal
transducer is simply caused by the fact that a finite transducer cannot recognise legal encodings
of transducers.
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Proof. Given x, y ∈ Σ∗, with x = x1x2 . . . xn of length n, we construct the trans-
ducer Tσ = (Q, 1,∆) having n+ 1 states acting as follows: ∆(i, xi) = (n+ 1, ε),
1 ≤ i ≤ n, ∆(1, x1) = (2, y), ∆(j, xj) = (j + 1, ε), 2 ≤ j ≤ n, ∆(n + 1, 0) =
(n+ 1, ε).

In spite of the negative result stated in Theorem 17, the Invariance Theorem
from AIT is true for C. To this aim we define the complexity associated with a
transducer TSσ by

Definition 19. The finite-state complexity (with respect to a fixed transducer
TSσ ) of a string x ∈ Σ∗ is

CTSσ (x) = inf
p∈{0,1}∗

{
| p | : TSσ (p) = x

}
.

Theorem 20. (Invariance) For every σ0 ∈ S we have CS(x) ≤ CTSσ0
(x) + |σ0|,

for all x ∈ Σ∗.

Proof. Using the definitions of CS and CTSσ0
we have:

CS(x) = inf
σ∈S, p∈Σ∗

{
‖(TSσ , p)‖ : TSσ (p) = x

}
= inf

σ∈S, p∈Σ∗

{
|σ|+|p|: TSσ (p) = x

}
≤ |σ0|+ inf

p∈Σ∗

{
|p| : TSσ0

(p) = x
}

= CTSσ0
(x) + |σ0|.

Corollary 21. If TSσ0
(x) = x, then CS(x) ≤ |x| + |σ0|, for all x ∈ Σ∗. In

particular, using Example 12 (last transducer) we deduce that CS0(x) ≤ |x| + 8,
for all x ∈ Σ∗.

Corollary 22. The complexity CS is computable.

Conjecture 23. The computational complexity of testing whether the finite-state
complexity of a string x is less or equal to n is in NP.

Open Problem 24. Is the decision problem expressed in Conjecture 23 NP-
hard? (See also [5, 28].)

The implications of these statements lie in the domain of efficiency when we
deal with computing the finite-state complexity of a string. Assuming that P
6= NP, then given a string x and an integer n, if testing whether CS(x) ≤ n is
NP-hard, then by implication there is no efficient way to compute the finite-state
complexity. We conjecture that this decision problem is in NP, but we highly
suspect that it is the case that it is in fact NP-hard. However, proving this would
be extremely difficult.



2.1. PROPOSING AN ANALOGUE OF KOLMOGOROV COMPLEXITY 17

2.1.3 Quantitative Estimates

Here we establish basic upper and lower bounds for finite-state complexity of
arbitrary strings as well as for strings of particular types. For the rest of this
section we use the enumeration S0. Furthermore, we write Tσ and C instead of
TS0
σ and CS0 .

Definition 25. Let f and g be two functions. We say that f(n) ∈ Θ(g(n)) if
and only if c1 · g(n) ≤ f(n) ≤ c2 · g(n) for all n > n0, where c1, c2 are positive
constants.

Theorem 26. For n ≥ 1 we have: C(0n) ∈ Θ(
√
n).

Proof. It is sufficient to establish that

2 · b
√
nc ≤ C(0n) ≤ 4 · b

√
nc+ α, (2.1)

where α is a constant.
For the upper bound we note that 0n can be represented by a pair (T, p) where

T is a single state transducer having two self-loops labeled respectively, 0/0b
√
nc

and 1/0, and p can be chosen as a string 0b
√
nc+y1z, where 0 ≤ y ≤ 1, 0 ≤ z ≤

b
√
nc. By our encoding conventions the size of (T, p) is at most 4 · b

√
nc + α

where α is a small constant.
To establish the lower bound, consider an arbitrary pair (T ′, p′) representing

0n. If v is the longest output of any transition of T ′, then |v| · |p′| ≥ n. On the
other hand, according to our encoding conventions ||(T ′, p′)|| ≥ 2 · |v|+ |p′|. These
inequalities imply ||(T ′, p′)|| ≥ 2 · b

√
nc.

Using a more detailed analysis the upper and lower bounds of (2.1) could be
moved closer to each other. But, because the precise multiplicative constants
depend on the particular enumeration S0, it should not be very important to try
to improve the values of the multiplicative constants.

The argument used to establish the lower bound in (2.1) directly provides the
following:

Corollary 27. For any x ∈ Σ∗, C(x) ≥ 2 · b
√
|x|c.

The bounds (2.1) imply that the inequality H(xx) ≤ H(x) + O(1) familiar
for Kolmogorov complexity does not hold for finite-state complexity:

Corollary 28. There is no constant α such that for all strings x ∈ Σ∗, C(xx) ≤
C(x) + α.

The result in Corollary 28 implies that, contrary to intuition, as far as finite-
state complexity is concerned the string xx contains significantly more informa-
tion than the string x.



18 CHAPTER 2. FINITE-STATE COMPLEXITY

The mapping 0n 7→ 02·n is computed by a transducer of small size. Hence we
deduce:

Corollary 29. For a given transducer T there is no constant α such that for all
strings x ∈ Σ∗, C(T (x)) ≤ C(x) + α.

In Corollary 29 we require only that α is independent of x. That is the value
α could depend on the transducer T . This result implies that the pair describing
T (x) for a given transducer T on any string x will always hold more information
than the string x itself. As in Theorem 26 we get estimations for the finite-state
complexity of powers of a string.

Proposition 30. For u ∈ Σ∗ and n� |u|,

C(un) ≤ 2 · (b
√
nc+ 1) · |u|+ 2b

√
nc+ α, (2.2)

where α is a constant independent of u and n.

Proof. Let T be the single state transducer with two self-loops labeled respec-
tively by 0/ub

√
nc and 1/u. The string un has a description (T, 0b

√
nc+y1z) where

0 ≤ y ≤ 1, 0 ≤ z ≤ b
√
nc. By our encoding conventions

||(T, 0b
√
nc1z)|| = 2 · (b

√
nc+ 1) · |u|+ 4 + b

√
nc+ y + z.

Note that, when encoding self-loops, the state name is not part of the encoding
and a self-loop with output string w contributes 2|w| + 2 to the length of the
encoding. The claim follows from the upper bounds for y and z.

The upper bound (2.2) is useful only when n is larger than |u|2 because using
a single state transducer with self-loop 0/u we get an upper bound C(un) ≤
2 · |u|+ n+ α, with α constant.

Corollary 31. We have: C(0n1n) ∈ Θ(
√
n).

Proof. The lower bound follows from Corollary 27. The string 0n1n has descrip-
tion

(T, 0d
√
ne−1+y11z10z21d

√
ne−1+y2),

where 0 ≤ y1, y2 ≤ 1, 1 ≤ z1, z2 ≤ d
√
ne and T is the transducer given in

Figure 2.1.
Note that, differing from the construction used in Theorem 26, the transducer

in Figure 2.1 begins by outputting strings 0d
√
ne−1 (instead of 0b

√
nc). This is done

in order to guarantee that z1 can be chosen to be at least 1 also when n is a perfect
square.

Thus C(0n1n) ≤ 8 · d
√
ne+ α where α is a constant.
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From Corollary 31 we note that the finite-state complexity of 0n1n is within
a constant factor of the automatic complexity (as defined in [39]) of the same
string. This can be viewed merely as a coincidence since the two descriptional
complexity measures are essentially different and generally have very different
upper and lower bounds.

1 2 3

0/0
⌈√n⌉−1

1/0

1/0

0/1

0/1

1/1
⌈√n⌉−1

Figure 2.1: Transducer T in the proof of Corollary 31.

The following result gives an upper bound for finite-state complexity of the
catenation of two strings.

Proposition 32. For any ω > 0 there exists d(ω) > 0 such that for all x, y ∈ Σ∗,

C(xy) ≤ (1 + ω) · (4C(x) + C(y)) + d(ω).

Here the value d(ω) depends only on ω, i.e., it is independent of x and y.

Proof. Let (T, u) and (R, v) be minimal descriptions of x and y, respectively. Let
u = u1 · · ·um, ui ∈ Σ, i = 1, . . . ,m and recall that u† = u10u20 · · ·um−10um1.

Denote the sets of states of T and R, respectively, as QT and QR, and let
Q′T = {q′ | q ∈ QT }.

We construct a transducer W with set of states QT ∪Q′T ∪QR as follows.

1. For each transition of T from state p to state q labeled by i/w (i ∈ Σ,
w ∈ Σ∗), W has a transition from q to p′ labeled by i/w and a transition
labeled 0/ε from p′ to p.

2. Each state p′ ∈ Q′T has a transition labeled 1/ε to the starting state of R.

3. The transitions originating from states of QR are defined in W in the same
way as in R.
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Now |u†| = 2 · |u| and

W (u†v) = T (u)R(v) = xy.

It remains to verify that the size of the encoding of W is roughly at most four
times the size of T plus the size of R.

First assume that

(A) the states of W could have the same length encodings as the encodings used
for states in T and R.

We note that the part of W simulating the computation of T has simply dou-
bled the number of states and for the new states of Q′T the outgoing transitions
have edge labels of minimal length (0/ε and 1/ε). An additional increase in the
length of the encoding occurs because each self-loop of T is replaced in W by two
transitions that are not self-loops. It is easy to establish, using induction on the
number of states of T , that if all states of T are reachable from the start state
and T has t non-self-loop transitions, the number of self-loops in T is at most t+2.

Thus by the above observations with the assumption (A), C(xy) could be
bounded above by 4C(x)+C(y)+d where d is a constant. Naturally, in reality the
encodings of states of W need one or two additional bits added to the encodings
of the corresponding states in T and R. The proportional increase of the state
encoding length caused by the two additional bits for the states of QT ∪ Q′T ,
(respectively, states of QR) is bounded above by 2 ·(dlog2(|QT |)e)−1 (respectively,
2 · (dlog2(|QR|)e)−1). Thus, the proportional increase of the encoding length
becomes smaller than any positive ω when max{|QT |, |QR|} is greater than a
suitably chosen threshold M(ω). On the other hand, the encoding of W contains
at most 2·(2|QT |+|QR|) ≤ 6·max{|QT |, |QR|} occurrences of substrings encoding
the states. This means that by choosing d(ω) = 12 ·M(ω) the statement of the
lemma holds also for small values of |QT | and |QR|.

The proof of Proposition 32 relies on an estimation that the part of the trans-
ducer W simulating the computation of R has an encoding at most four times
the size of the encoding of R. The additional increase is caused by the compli-
cation that each self-loop is simulated by two non-self-loops and the encoding of
transitions that are not self-loops needs to include the state names. Using a more
detailed analysis the constant 4 could likely be improved.

It is known that deterministic transducers are closed under composition [6].
That is, for transducers Tδ and Tγ there exists σ ∈ S such that Tσ(x) = Tδ(Tγ(x))
for all x ∈ Σ∗. Using the construction from [6] (Proposition 2.5, page 101) we
give an upper bound for |σ| as a function of |δ| and |γ|.
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Let Tδ = (Q, q0,∆) and Tγ = (P, p0,Γ), where ∆ is a function Q×Σ→ Q×Σ∗

and Γ is a function P × Σ → P × Σ∗. The transition function ∆ is extended in
the natural way as a function ∆̂ : Q× Σ∗ → Q× Σ∗.

The composition of Tγ and Tδ is computed by a transducer Tσ = (Q ×
P, (q0, p0),Ξ) where Ξ : Q × P × Σ → Q × P × Σ∗ is defined by setting for
q ∈ Q, p ∈ P , a ∈ Σ,

Ξ ((q, p) , a) =((
π1

(
∆̂ (q, π2 (Γ (p, a)))

)
, π1 (Γ (p, a))

)
, π2

(
∆̂ (q, π2 (Γ (p, a)))

))
.

The number of states of Tσ is bounded above by |δ|·|γ|.3 An individual output
of Tσ consists of the output produced by Tδ when it reads an output produced
by one transition of Tγ (via the extended function ∆̂). Therefore the length of
the output produced by an individual transition of Tσ can be bounded above by
|δ| · |γ|. These observations imply that

|σ| = O(|δ|2 · |γ|2).

The above estimate was obtained simply by combining the worst-case upper
bound for the size of the encoding of the states of Tσ and the worst-case length
of individual outputs of the transducers Tδ and Tγ . The worst-case examples
for these two bounds are naturally very different as the latter corresponds to a
situation where the encoding of individual outputs ‘contributes’ a large part of
the strings δ and γ. The overall upper bound could be somewhat improved using
a more detailed analysis.

Open Problem 33. Is it possible to obtain a reasonable upper bound for C(u)
in terms of C(v) when u is a prefix of v?

2.1.4 Incompressibility and Lower Bounds

Following the model of incompressibility in AIT we obtain:

Definition 34. A string x is finite-state i–compressible (i ≥ 1) if C(x) ≤ |x| − i.

Definition 35. A string x is finite-state i–incompressible (i ≥ 1) if C(x) > |x|−i.
If i = 1, then the string is called finite-state incompressible.

Lemma 36. There exist finite-state incompressible strings of any length.

3Strictly speaking this could be multiplied by (log2 log2 |δ|)·(log2 log2 |γ|)
log2 |δ|·log2 |γ|

to give a better esti-
mate.
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Proof. We simply note that the set {x : |x| = n,C(x) ≤ |x| − i} has at most
2n−i+1 − 1 elements.

Lemma 36 relies on a standard counting argument and does not give a con-
struction of incompressible strings. By relying on results on grammar-based
compression we can get lower bounds for finite-state complexity of explicitly con-
structed strings.

A grammar G (or straight-line program [15, 23, 29, 34]) used as an encoding
of a string has a unique production for each nonterminal. Furthermore, the
grammar is acyclic as defined in Section 1.2. That is, there is an ordering of
the nonterminals X1, . . . , Xm such that the productions are of the form X1 →
α1, . . . , Xm → αm, where αi contains only nonterminals from {Xi+1, . . . , Xm}
and terminal symbols.

Definition 37. The size of the grammar G, size(G), is
∑m

i=1 |αi|.

Grammar-based compression of a string x may result in exponential savings
compared to the length of x. Comparing this to Corollary 27 we note that the size
of the smallest grammar generating a given string may be exponentially smaller
than the finite-state complexity of the string. Conversely, any string x can be
generated by a grammar with size O(C(x)).

Lemma 38. There exists a constant d ≥ 1 such that for any x ∈ Σ∗, {x} is
generated by a grammar Gx where size(Gx) ≤ d · C(x).

Proof. The construction outlined in [20] for simulating an ‘NFA with advice’ by a
grammar is similar. For the sake of completeness we include here a construction.

Assume x is encoded as a transducer-string pair (Tσ, p), where p = p1 · · · pn,
pi ∈ Σ. The initial nonterminal of the grammar Gx has a production with
right side (p1, si1)(p2, si2) · · · (pn, sin) where sij is the state of Tσ reached by the
transducer after consuming the input string p1 · · · pj−1, 1 ≤ j ≤ n. After this the
rules for nonterminals (pi, s) simply simulate the output produced by Tσ in state
s on input pi.

Let Q be the set of states of Tσ and, as usual, denote the set of transitions
by ∆ : Q× Σ→ Q× Σ∗. The size of Gx, that is the sum of the lengths of right
sides of the productions of Gx, is

size(Gx) = |p|+
∑

q∈Q,i∈Σ

|π2(q, i)|.

Note that size(Gx) is defined simply as the sum of lengths of productions
of Gx while C(x) uses a binary encoding of a transducer T . In cases where
minimal representations use transducers with fixed length outputs for individual
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transitions and large numbers of states, size(Gx) is less than a constant times
C(x) · (log2C(x))−1.

Next we show some interesting results on the finite-state complexity of specific
types of words: de Bruijin words. These results show that these information-filled
words will always have high finite-state complexity. A binary de Bruijn word of
order r ≥ 1 is a string w of length 2r+r−1 over alphabet Σ such that any binary
string of length r occurs as a substring of w (exactly once). It is well known that
de Bruijn words of any order exist and have an explicit construction [22, 43].

Theorem 39. There is a constant d such that for any r ≥ 1 there exist strings
w of length 2r + r − 1 with an explicit construction such that C(w) ≥ d · |w| ·
(log2(|w|))−1.

Proof. It is known that any grammar generating a de Bruijn string of order r
has size Ω(2r

r ) [3]. Grammars generating a singleton language are called string
chains in [3]. See also [23]. The claim follows by Lemma 38.

Conjecture 40. de Bruijn words are finite-state incompressible.

We therefore have a specific construction of words which will always yield
a high complexity measure, a set that we suspect is in fact finite-state incom-
pressible, as stated in Conjecture 40. These sorts of results doubly increase the
interest in the computability of this complexity measure and developing an effec-
tive and efficient algorithm in order to empirically explore its results becomes an
inevitability.

2.2 Computing the Finite State Complexity

Since we have a computable complexity measure (see Corollary 22), it is natural to
attempt to find an efficient algorithm to compute the finite-state complexity. This
subsection presents the algorithm’s pseudocode along with the many approaches
that were explored to compute both our S0 and S1 encodings. We also present
the optimisation features that we implemented. Finally, we give some initial
complexity results obtained from the computations.

2.2.1 One Algorithm to Compute Them All

Below is the general pseudocode outlining all the programs we devised to compute
the finite-state complexity. We found that even though certain details are com-
puted differently and some constant values change from one encoding to another,
the general approach remains the same. This is supported by Conjecture 23. No
matter what clever tricks we may think of to better the efficiency, the overall
algorithm always fundamentally employs a brute force approach.
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The general idea of the algorithm is that given an input n it enumerates
through all strings of length n and following a specific encoding, finds all the
legal transducer/input pairs within these and stores those along with their output
string in an ever-growing table. More technically, given n, it enumerates through
all possible strings ρ, where ρ should be of the form σ · p and |ρ| = n. We must
check for every ρ whether it is of the correct form. For every successful ρ we
extract the pair (Tσ, p) and test whether Tσ(p) successfully outputs a string x. If
so, then we can measure its complexity, CSσ (x) = |σ| + |p| (which equals n). In
all other cases, we reject the current ρ and continue with the enumeration. The
algorithm terminates once all possible ρs of length n have been explored; that is,
from 00 . . . 0︸ ︷︷ ︸

n

to 11 . . . 1︸ ︷︷ ︸
n

.

The table, or database, that this algorithm populates aims at holding all
possible finite-state complexities. The table is populated in co-lexicographical
order of the pairs, therefore in increasing ‘finite-state complexity order’. Here is
the algorithm below.

Algorithm 2.2.1: FiniteStateComplexity(int n)

procedure FSComplexity(int n)
upperBd← n

for each string enumeration ρ such that |ρ| == upperBd

do

{
if correctEncoding(ρ) and obtainsX(Tσ, p)

then return ( |ρ| )

procedure correctEncoding(String ρ)
if ρ has correct pattern

then



σ ← prefix of ρ
p← rest of ρ
comment: find and assign each bin(i) and ui to their array

for each bin(i) ∈ σ and ui ∈ σ (i.e in Tσ)

do

{
bins← bin(i)
outs← ui

if |bins| = |outs| and |bins| is even and |bins| > 0
then return ( true )

return ( false )
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procedure obtainsX(Array bins, Array outs, String p)
for each bin(i) ∈ bins

do


if i = 0 or i ≥ |bins|2

then return ( false )
trans← i (where trans is the transition array)

output← ε

k ← 0
for each character pi ∈ p

do



if pi = ‘0’

then

{
t← element of trans at k
output← output+ element of outs at k

else

{
t← element of trans at k + 1
output← output+ element of outs at k + 1

k ← 2× (t− 1)
return ( true )

We now discuss each procedure of the algorithm separately in order to give
some conceptual proof of correctness.

The enumeration procedure of binary strings is performed in co-lexicographic
order, for every length, starting from the description of the smallest transducer
which outputs ε on all inputs.

The FSComplexity(n) procedure is the core of the algorithm. It takes an
integer n as input and manages both the enumeration and the other processes.
Its role is to find the shortest strings ρ which are the correct encodings of corre-
sponding pairs (Tσ, p) that each compute some string x. As the enumeration is
in co-lexicographic order, the length of such a pair is the complexity of the string
if this string has never been encountered previously. It also limits the search of
such a ρ, based on the upper bound for its length defined in Corollary 21, and
fixed by the input n.

The correctEncoding(ρ) procedure first checks whether the enumerated ρ
(passed as input to this procedure) is of the form σ·p. In the affirmative it decodes
ρ into σ and p and then checks whether these components have the correct form
and extracts Tσ from σ. Finally, if still in the affirmative this procedure extracts
the transition and the output functions from Tσ and checks whether the size of
their ranges are equal and even. If all of these conditions hold the enumerated ρ
is a (seemingly —as we still need to test whether the pair can successfully outputs
a string) correct encoding, i.e. ρ = σ · p where σ ∈ S. Otherwise the procedure
rejects the current ρ, returning to the FSComplexity(n) procedure to test the
next possible ρ.

The final procedure, obtainsX(bins, outs, p), is only called if we have a poten-
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tial pair (Tσ, p). It uses the extracted functions (passed as inputs to the procedure
along with p) to simulate the computation of the transducer Tσ on the input p
and stores the output. If the simulation completes then there were no errors in
matching the functions representing the transducer and obtainsX(bins, outs, p)
returns true. Otherwise it returns false. The simulation may still encounter er-
rors as the building of the functions in correctEncoding(ρ) does not check
that the functions correctly map to each other (i.e. no non-existent states are
called), a check which is done here. If this procedure in fact returns true, we have
found a description (Tσ, p) for some x. If this x was never encountered then we
actually have a minimal description.

It is clear that since we enumerate through all possible binary strings of a
fixed length, we loop over all lengths starting from the size of the description of
the smallest σ in S. Hence, every possible pair will eventually be enumerated
exactly once. If any one of the steps in the ‘decoding’ fails, the algorithm rejects
the considered ρ and enumerates the next string in co-lexicographic order. Thus
for every string x, the algorithm will find a minimal description; computing the
finite-state complexity of x. Furthermore, it will halt since there are a finite
amount of strings of length n to consider.

Where each of the specific algorithms differ is in the handling of the encod-
ings, which occurs in correctEncoding(ρ) and obtainsX(bins, outs, p). Some
specifics of FSComplexity(n) can be handled in different ways, especially the
enumeration. These details are where we can work on optimising the algorithm.

2.2.2 Optimisations

First, we recall the fact that this algorithm is used to build a table (or database)
of all the possible complexities. This table is therefore infinite in size. The longest
procedure in this algorithm is the enumeration, which has to sort through all the
strings and separate the ‘correct’ encodings from the ‘incorrect’ ones; as a result
there is a lot of ‘wasted’ work. Hence we have focused on making the enumeration
as efficient as possible by limiting the wasteful computations as much as we could.

The first improvement is that instead of computing the complexity of a given
string directly as in [33], we have altered the algorithm to build a table (which
we store in a database). Now the process of computing a specific finite-state
complexity can be done in two steps. First, searching through the table for that
string. Then returning its complexity if it has been computed, or starting the
search from the last (largest) computed pair (Tσ, p).

Secondly, we have explored two new possible ways for the enumeration to take
form. On the one hand we let the algorithm enumerate directly over all strings
ρ in co-lexicographic order, as it originally did. We parsed each ρ, extracting all
possible pairs from it instead of one. This is more clearly represented mathemat-
ically as such: Let ρ = σ · p and |ρ| = n. Now let |σ| = k, where k = c, c + 1,
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c+2, · · · , n and c is the size of the smallest transducer (as defined in Example 11)
with the corresponding encoding. Then p is the remainder of the string ρ. On the
other hand we had the algorithm enumerate over all σ’s and then over all p’s (for
each σ), both in co-lexicographic order. Hence we are dealing with two separate
enumerations: one for σ, another for p. However, we maintain the condition that
|ρ| = n. Therefore, in both cases we are building the table in sets, where each
set comprises of all the strings of complexity some fixed n.

Thirdly, we developed a parallel (or distributive) approach. As we wanted to
build as much of the table as possible and as fast as possible, we exploited the
independent aspect of the algorithm to run several copies over a cluster of com-
puters in parallel, building the one static database. Unfortunately, a combination
of technical issues and a lack of resources severely stalled our endeavour, and it is
still in the works. Nevertheless, it is currently being applied and is continuously
populating our table.

2.2.3 Some Results

In Tables 2.1 and 2.2 we present a few initial values of CS0 and CS1 , respectively.
‘Complementary’ strings are omitted. A plot containing the values of CS0 and
CS1 appears in Figure A.1, and a more comprehensive plot is found in Figure A.2,
both found in Appendix A.

Table 2.1: Finite-state complexity (w.r.t. S0) of all strings in co-lexicographic
order from ε to 01111.

x CS0(x) (σ, p) x CS0(x) (σ, p)
ε 4 (0000,ε) 00000 11 (000110,11111)
0 7 (000110,1) 00001 13 (01000110,11110)
00 8 (000110,11) 00010 13 (01000110,11101)
01 9 (00011100,1) 00011 13 (01000110,11100)
000 9 (000110,111) 00100 13 (01000110,11011)
001 11 (01000110,110) 00101 13 (01000110,11010)
010 11 (01000110,101) 00110 13 (01000110,11001)
011 11 (01000110,100) 00111 13 (01000110,11000)
0000 10 (000110,1111) 01000 13 (01000110,10111)
0001 12 (01000110,1110) 01001 13 (01000110,10110)
0010 12 (01000110,1101) 01010 13 (01000110,10101)
0011 12 (01000110,1100) 01011 13 (01000110,10100)
0100 12 (01000110,1011) 01100 13 (01000110,10011)
0101 10 (00011100,11) 01101 13 (01000110,10010)
0110 12 (01000110,1001) 01110 13 (01000110,10001)
0111 12 (01000110,1000) 01111 13 (01000110,10000)
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Table 2.2: Finite-state complexity (w.r.t. S1) of all strings in co-lexicographic
order from ε to 01111.

x CS1(x) (σ, p)
ε 16 (1010010010100100,ε)
0 17 (1010010010100101,1)
00 18 (1010010010100101,11)
01 18 (10100100101001110,1)
000 19 (1010010010100101,111)
001 19 (10100101101001110,01)
010 19 (10100101101001110,10)
011 20 (10100101101001100,011)
0000 19 (10100100101001101,11)
0001 20 (10100101101001110,001)
0010 20 (10100101101001110,010)
0011 21 (10100101101001100,0011)
0100 20 (10100101101001110,100)
0101 19 (10100100101001110,11)
0110 20 (101001110101001111,01)
0111 21 (10100101101001100,0111)
00000 20 (10100101101001101,011)
00001 21 (10100101101001110,0001)
00010 21 (10100101101001110,0010)
00011 22 (10100101101001100,00011)
00100 21 (10100101101001110,0100)
00101 20 (10100101101001110,011)
00110 22 (10100101101001100,00110)
00111 22 (10100101101001100,00111)
01000 21 (10100101101001110,1000)
01001 20 (10100101101001110,101)
01010 20 (10100101101001110,110)
01011 21 (101001100101001110,110)
01100 22 (10100101101001100,01100)
01101 21 (101001100101001110,101)
01110 22 (10100101101001100,01110)
01111 22 (10100101101001100,01111)

Currently these tables have been completed for all strings of complexities at
most 40 for the S0 encoding, and at most 30 for the S1 encoding. The afore-
mentioned plots include all strings for which the complexity in both encodings
were found. These plots show the overall trend of the two complexities, and of-
fer a visual comparison of these. We can directly see that S1 allows for a more
compact encoding, and they heavily suggest that in the long run, for all x ∈ Σ∗,
CS1(x) ≤ CS0(x).
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In Subsection 2.1.4, we have mentioned Borel normality and our interest in
linking the property with finite-state incompressibility (FS-incompressibility). In
AIT, we have the following theorem correlating Borel normality and (algorithmic)
incompressibility [9].

Theorem 41 ([9]). There exists an integer M such that for all x ∈ Σ∗ and
|x| ≥ M , x is incompressible implies that x is Borel normal, but the converse
implication is false.

We believe that an equivalent theorem holds true for finite-state complexity.
Even though we lack the theoretical results proving this, we do have partial results
and some experimental evidence hinting towards it, which we present here. In the
charts represented in Figure 2.2 and Figure 2.3 we show the results from compar-
ing how many strings are FS-incompressible, and how many are Borel normal (ac-
cording to Trenton’s algorithm [41] which is heavily based on Calude’s work [9]).
We first need to note that Borel normality is an asymptotic property of strings,
and strings of length greater than or equal to 16, as discussed in [41], are proven
to always evaluate to being Borel normal according to the formula given in Defini-
tion 6. Therefore, in the concerned charts we ignored all strings of length strictly
less than 16. Second, a similar phenomenon is true for FS-compressibility since
our encodings will not truly allow for compression until we have reached strings
of a certain length (in order for the description of the string to be shorter than
the identity pair). In our results the first encountered FS-compressible string, in
the S0 encoding, is the string w1 = 000000000000000000000000000000000 = 033.
In fact, we obtain 76 FS-compressible strings out of 9822 strings (excluding those
of length < 16). As we still have not encountered an FS-compressible string for
the S1 encoding results, we focus our Borel normal results on the S0 encoding
measurements.

For the S0 encoding results, let us begin by stating that for strings of length
≤ 40, 99.23% are FS-incompressible and 93.73% are Borel normal. Among those
we find that most Borel normal strings are FS-incompressible (99.28%). Only
a very small set of strings that are Borel normal are also FS-compressible (only
0.72%, that is 66 strings). Moreover, most FS-compressible strings are Borel
normal (86.84%), surprisingly since we would expect the FS-compressible strings
to be not Borel normal; this result should be taken with caution as the set
concerned is very small, with only 76 strings being FS-compressible. In our data,
there exists a string

w2 = 001001001001001001001001001001001 = (001)11

such that w2 is FS-compressible and Borel normal. Note that |w2| = 33 which is
the length of the first FS-compressible string, and in fact all of the strings in this
case have length greater or equal to 33. In the plot below, in Figure 2.4, we show
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Figure 2.2: Comparing FS-incompressibility and Borel-Normality on 9822 strings
of length ≥ 16 and of FS-complexity ≤ 42, using S0.

the trend of the data that is both FS-compressible and Borel normal in terms of
lengths of strings.

A clear ‘step’ function is apparent in Figure 2.4 which shows that the number
of strings that are both FS-compressible and Borel normal increases proportion-
ally with the number of strings of greater lengths. But we are missing data for
strings of considerably greater length before we can draw stronger conclusions.
Another notable fact is that the number of these strings is only 66, a number
which could either continue to minimally increase (with the size of the data set)
or suddenly peak, even though no evidence suggests the latter. From our example
and all the data put forth in Figure 2.4, we have therefore proved the following.

Lemma 42. There exists a string x ∈ Σ∗, |x| = 40 such that x is both Borel nor-
mal and finite-state compressible; in particular, Borel normality does not imply
FS-incompressibility for strings of length up to 40.

Lemma 42 is a weak version of the converse statement in Theorem 41. But
the evidence that we have collected so far still suggests that we can conjecture
that Borel normality does not imply FS-incompressibility.



2.2. COMPUTING THE FINITE STATE COMPLEXITY 31

10092	
  

9294	
  

0	
  

1000	
  

2000	
  

3000	
  

4000	
  

5000	
  

6000	
  

7000	
  

8000	
  

9000	
  

10000	
  

	
  FS-­‐incompressible	
   	
  BN_TrentonTest	
  

TRUE	
  

Figure 2.3: Comparing FS-incompressibility and Borel-Normality on 10092
strings of length ≥ 16 and of FS-complexity ≤ 30, using S1.

Conjecture 43. For all integers M, there exists x ∈ Σ∗, |x| ≥M such that x is
both Borel normal and FS-compressible.

We also observe, from our experimental results, that most of the non-Borel
normal strings are FS-incompressible (98.38%), but with only 6.60% being of
length greater or equal to 33 (40 out of the 606 to be precise). One of these being
the string

w3 = 00001000010000100001000010000100001 = (00001)7.

As an aside, note that this counter-example still holds an evident pattern despite
being FS-incompressible. We find similar cases in the S1 encoding results, but
then all strings are FS-incompressible so far. So, most of our strings are FS-
incompressible (all of them for S1), which seems to contradict Conjecture 43.
But, the sets that are not Borel normal are very small in both cases, so, in reality,
the result is not too surprising. However, what is interesting and supports our
conjecture, is that the set of non Borel normal and FS-incompressible strings
includes less and less strings as the length of the strings increase. The percentage
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Figure 2.4: Relating the set of Borel normal and FS-compressible strings to their
length, using the S0 encoding data.

of these strings decreases really fast, a trend that we can clearly see in both
Figures 2.5 and 2.6 below. These show the trends of the strings that are both
FS-incompressible and not Borel normal on the two data sets—the S0 and the
S1 encoding results.
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Figure 2.5: Relating the set of non-Borel normal and FS-incompressible strings
to their length, using the S0 encoding data. Note that the size of the data set
concerned is 606 strings, thus not all appear on the x-axis.

Notice that as we mention above, in the two plots shown in Figures 2.5 and
2.6, the overall trend is that the number of strings concerned drops considerably
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Figure 2.6: Relating the set of Borel normal and FS-compressible strings to their
length, using the S1 encoding data. Note that the size of the data set concerned
is 798 strings, thus not all appear on the x-axis.

as their length increases. Therefore, we can conjecture that a threshold exists
before we can say that all FS-incompressible strings are Borel normal.

Conjecture 44. There exists a constant M such that for all x ∈ Σ∗ and |x| ≥M ,
x is finite-state incompressible implies that x is Borel normal.

Proving Conjectures 43 and 44 would show that for almost all strings Borel
normality and finite-state incompressibility are correlated, just as they are in
AIT. As for infinite sequences, their Borel normality definition is slightly altered
and we are still unaware of the behaviour of finite-state complexity as we tend
towards infinity. Hence we cannot draw any conclusions at this point in time.
Nevertheless, we suspect that the correlation we mention here is omnipresent in
the case of infinite sequences. It is definitely an open question worth studying
further.

Open Problem 45. How are finite-state incompressibility and Borel normality
correlated in the domain of infinite sequences?

2.3 State-Size Hierarchy

By the state-size hierarchy we refer to the hierarchy of languages L≤m, m ≥ 1,
consisting of strings where a minimal description uses a transducer with at most
m states. In this section, we show that the state-size hierarchy with respect to
the standard encoding is infinite; however, it remains an open question whether
this hierarchy is strict at every level.
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In a more general setting, the definition of finite-state complexity allows an
arbitrary computable encoding of the transducers, and properties of the state-size
hierarchy depend significantly on the particular encoding. We establish that, for
suitably chosen computable encodings, every level of the state-size hierarchy can
be strict.

In order to prove the results related to this section we first need to cover some
preliminaries.

2.3.1 Preliminaries

By a computable encoding of all transducers we mean a pair S = (DS , fS) where
DS ⊆ Σ∗ is a decidable set and fS : DS → TDGSM is a computable bijective
mapping that associates a transducer TSσ to each σ ∈ DS , where TDGSM refers
to the set of transducers (or deterministic general sequential machines).4

We say that S is a polynomial-time (computable) encoding if DS ∈ P, where
P is the class of sets computed in polynomial-time, and for a given σ ∈ DS we
can compute the transducer TSσ ∈ TDGSM in polynomial time. We identify a
transducer T ∈ TDGSM with its transition function (1.1), and the set of state
names is always {1, . . . , |Q|} where 1 is the start state. By “computing the
transducer TSσ ” we mean an algorithm that (in polynomial time) outputs the list
of transitions (corresponding to (1.1), with state names written in binary) of TSσ .

In what follows, we refer to our fixed natural encoding S0 of transducers as
the standard encoding. For our main result we need some fixed encoding of the
transducers where the length of the encoding relates in a ‘reasonable way’ to the
lengths of the transition outputs. Recall that we encode a transducer as a binary
string by listing for each state q and input symbol i ∈ Σ the output and target
state corresponding to the pair (q, i), that is, ∆(q, i). Thus, the encoding of a
transducer is a list of (encodings of) states and output strings.

The results of Section 2.3.3 remain valid if, as our standard encoding, we
would encode the transducers by listing the transitions (that is, the pairs con-
sisting of the target state and the output string encoded in binary) in any rea-
sonable way where an output string w corresponding to an individual transition
contributes to the length of the encoding a quantity c · |w|, where c is a constant.

In this section we define the encoding S0 as the standard encoding. We denote
it as the pair (DS0 , fS0) where fS0 associates to each σ ∈ DS0 the transducer TS0

σ

as described above. It can be verified that for each T ∈ TDGSM there exists a
unique σ ∈ DS0 such that T = TS0

σ , that is, T and TS0
σ have the same transition

function. The details of the verification procedure to check that TS0
σ1
6= TS0

σ2

4In a more general setting the mapping fS may not be injective (for example if we want to
define DS as a regular set [12]). However, in the following we restrict consideration to bijective
encodings in order to avoid unnecessary complications with the notation associated with our
state-size hierarchy.
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when σ1 6= σ2 can be found in [12]. For T ∈ TDGSM , the standard encoding of
T is the unique σ ∈ DS0 such that T = TS0

σ . The standard encoding S0 is a
polynomial-time encoding.

2.3.2 Finite-State Complexity and State-Size

Here we are interested in the state-size, that is the number of states of transducers
used for minimal encodings of arbitrary strings. For m ≥ 1 we define the language
LS≤m to consist of strings x that have a minimal description using a transducer
with at most m states. Formally, we write

LS≤m = { x ∈ Σ∗ : (∃σ ∈ DS , p ∈ Σ∗) TSσ (p) = x,

|σ|+ |p| = CS(x), size(TSσ ) ≤ m}.

By setting LS≤0 = ∅, the set of strings x for which the smallest number of states
of a transducer in a minimal description of x is m can then be denoted as

LS=m = LS≤m − LS≤m−1, m ≥ 1.

Also, we let LS∃minm
denote the set of strings x that have a minimal description

in terms of a transducer with exactly m states. Note that LS=m ⊆ LS∃minm
, but

the converse inclusion need not hold, in general, because strings in LS∃minm
may

have other minimal descriptions with fewer than m states.
In the following, when dealing with the standard encoding S0 (introduced in

Section 2.3.1) we write, for short, Tσ, ||(T, p)||, C and L≤m, L=m, L∃minm, m ≥ 1,

instead of TS0
σ , ||(T, p)||S0 , CS0 and LS0

≤m, LS0
=m, LS0

∃minm
, respectively. The main

result in Section 2.3.3 is proved using the standard encoding; however it could
easily be modified for any ‘naturally defined’ encoding of transducers, where
each transducer is described by listing the states and transitions in a uniform
way. For example, the more efficient encoding considered in Section 1.3.2 clearly
satisfies this property. On the other hand, when dealing with arbitrarily defined
computable encodings S, the languages LS≤m, m ≥ 1, can obviously have very
different properties. In the Subsection 2.3.4 we consider properties of the more
general computable encodings.

Proposition 46. For any computable encoding S, the languages LS≤m, m ≥ 1,
are decidable.

We conclude this section with an example concerning the finite-state com-
plexity with respect to the standard encoding.

Example 47. Define the sequence of strings

wm = 101021031 · . . . · 0m−110m1, m ≥ 1.
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Figure 2.7: The transducer T7 for Example 47.

Using the transducer T7 of Figure 2.7 we produce an encoding of w99. Note that
|w99| = 5050.

With the names of the states indicated in Figure 1, T1 is encoded by a string
σ1 ∈ S0 of length 332. Each number 0 ≤ i ≤ 99 can be represented as a sum
of, on average, 2.92 numbers from the multi-set {1, 4, 6, 21, 30, 37} [37]. Thus,
when we represent w99 in the form T1(p99), we need on average at most 6 · 2.92
symbols in p99 to output each substring 0i, 0 ≤ i ≤ 99. (This is only a very rough
estimate as it assumes that for each element in the sum representing i we need
to make a cycle of length six through the start state, and this is of course not
true when the sum representing i has some element occurring more than once.)
Additionally we need to produce the 100 symbols ‘1’. This means that the length
of p99 can be chosen to be at most 1852. Our estimate gives that

||(Tσ1 , p99)|| = |σ1|+ |p99| = 2184,

which is a very rough upper bound for C(w99).

The above estimation could be improved using more detailed information from
the computation of the average from [37].

Arguably, these types of constructions are hinting that computing the value
of finite-state complexity may have connections to the so-called postage stamp
problems considered in number theory, with some variants known to be compu-
tationally hard [27, 36]. Consider a set An = a1, a2, ..., an of n positive integer-
denomination postage stamps sorted such that 1 = a1 < a2 < ... < an. Suppose
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they are to be used on an envelope with room for no more than h stamps. The
postage stamp problem then consists of determining the smallest integer Nh(An)
which cannot be represented by a linear combination

∑n
(i=1) xiai with xi ≥ 0

and
∑n

(i=1) xi < h. Without the latter restriction this problem is known as the
Frobenius problem or Frobenius postage stamp problem. Therefore, if the ca-
pacity of the envelope h is fixed it is a polynomial time problem. If the capacity
h is arbitrary the problem is known to be NP-hard [36]. We refer you back to
Conjecture 23 on the problem NP-hardness concerning finite-state complexity.

2.3.3 State-Size Hierarchy

We now establish that finite-state complexity is a rich complexity measure with
respect to the number of states of the transducers, in the sense that there is no
a priori upper bound for the number of states used for minimal descriptions of
arbitrary strings. This is in contrast to algorithmic information theory, where
the number of states of a universal Turing machine can be fixed.

We prove the hierarchy result using the standard encoding. The particular
choice of the encoding is not important and the proof could be easily modified
for any encoding that is based on listing the transitions of a transducer in a
uniform way. However as we discuss later, arbitrary computable encodings can
yield hierarchies with very different properties.

Recall that in this section we use the standard encoding S0 and the speci-
fication S0 is dropped as a sub- or superscript in the notations associated with
finite-state complexity.

Theorem 48. For any n ∈ IN there exists a string xn such that xn 6∈ L≤n.

Proof. Consider an arbitrary but fixed n ∈ IN. We define 2n+ 1 strings of length
2n+ 3,

ui = 10i12n+2−i, i = 1, . . . , 2n+ 1.

For m ≥ 1, we define
xn(m) = um

2

1 um
2

2 · · ·um
2

2n+1.

Let (Tσ, p) be an arbitrary encoding of xn(m) where size(Tσ) ≤ n. We show
that by choosing m to be sufficiently large as a function of n, we have

||(Tσ, p)|| >
m2

2
. (2.3)

The set of transitions of Tσ can be written as a disjoint union θ1 ∪ θ2 ∪ θ3,
where

• θ1 consists of the transitions where the output contains a unique ui, 1 ≤
i ≤ 2n + 1, as a substring, that is, for any j 6= i, uj is not a substring of
the output;
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• θ2 consists of the transitions where for distinct 1 ≤ i < j ≤ 2n + 1, the
output contains both ui and uj as a substring;

• θ3 consists of transitions where the output does not contain any of the ui’s
as a substring, i = 1, . . . , 2n+ 1.

Note that if a transition α ∈ θ3 is used in the computation Tσ(p), the output
produced by α cannot completely overlap any of the occurrences of ui’s, i =
1, . . . , 2n+ 1. Hence

a transition of θ3 used by Tσ on p has output length at most 4n+ 4. (2.4)

Since Tσ has at most n states, and consequently at most 2n transitions, it
follows by the pigeon-hole principle that there exists 1 ≤ k ≤ 2n + 1 such that
uk is not a substring of any transition of θ1. We consider how the computation
of Tσ on p outputs the substring um

2

k of xn(m). Let z1, . . . , zr be the minimal
sequence of outputs that ‘covers’ um

2

k . That is, z1 (respectively, zr) is the output
of a transition that overlaps with a prefix (respectively, a suffix) of um

2

k and um
2

k

is a substring of z1 · · · zr.
Define

Ξi = {1 ≤ j ≤ r | zj is output by a transition of θi}, i = 1, 2, 3.

By the choice of k we know that Ξ1 = ∅. For j ∈ Ξ2, we know that the transition
outputting zj can be applied only once in the computation of Tσ on p because
for i < j all occurrences of ui as substrings of xn(m) occur before all occurrences
of uj . Thus, for j ∈ Ξ2, the use of this transition contributes at least 2 · |zj | to
the length of the encoding ||(Tσ, p)||.

Finally, by (2.4), for any j ∈ Ξ3 we have |zj | ≤ 4n + 4 < 2|uk|. Such
transitions may naturally be applied multiple times, however, the use of each
transition outputting zj , j ∈ Ξ3, contributes at least one symbol to p.

Thus we get the following estimate:

||(Tσ, p)|| ≥
∑
j∈Ξ2

2 · |zj |+ |Ξ3| >
|um2

k |
2|uk|

=
m2

2
.

To complete the proof it is sufficient to show that, with a suitable choice of
m, C(xn(m)) < m2

2 . The string xn(m) can be represented by the pair (T1, p1)
where T1 is the 2n-state transducer from Figure 2.8 and p1 = (0m1)2n−10m1m.

Each state of T1 can be encoded by a string of length at most dlog2(2n)e.
We recall that in the standard encoding each transition output v contributes
|v�| = 2|v| + 2 to the length of the encoding, and each binary encoding u of a
state name that is the target of a transition and that is not a self-loop contributes
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Figure 2.8: The transducer T1 from the proof of Theorem 48.

2|u| to the length of the encoding. So, we get the following upper bound for the
length of a string σ1 ∈ S0 encoding T1:

|σ1| ≤ (8n2 + 16n+ 8)m+ (4n− 2)(dlog2(2n)e+ 1).

Noting that |p1| = (2n+ 1)m+ 2n− 1 we observe that

C(xn(m)) ≤ ||(Tσ1 , p1)|| = |σ1|+ |p1| <
m2

2
. (2.5)

For example if we choose m = 16n2 + 36n+ 19. This completes the proof.

As a corollary we obtain that the sets of strings with minimal descriptions
using a transducer with at most m states, m ≥ 1, form an infinite hierarchy.

Corollary 49. For any n ≥ 1, there exists effectively kn ≥ 1 such that L≤n ⊂
L≤n+kn.5

We do not know whether all levels of the state-size hierarchy with respect to
the standard encoding are strict. Note that the proof of Theorem 48 constructs
strings xn(m) that have a smaller description using a transducer with 2n states
than any description using a transducer with n states. We believe that (with m

chosen as in the proof of Theorem 48) the minimal description of xn(m) has in
fact 2n states, but do not have a complete proof for this claim. The claim would
imply that L≤n is strictly included in L≤2n, n ≥ 1. In any case the construction
used in the proof of Theorem 48 gives an effective upper bound for the size of kn
such that L≤n ⊂ L≤n+kn , because the estimation (2.5) (with the particular choice
for m) implies also an upper bound for the number of states of a transducer used
in a minimal description of xn(m).

The standard encoding is monotonic in the sense that adding states to a
transducer or increasing the lengths of the outputs, always increases the length
of an encoding. This leads us to believe that for any n there exist strings where
the minimal transducer has exactly n states, that is, for any n ≥ 1, L=n 6= ∅.

5Note that here “⊂” stands for strict inclusion.
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Conjecture 50. L≤n ⊂ L≤n+1, for all n ≥ 1.

By Proposition 46 we know that the languages L≤n are decidable. Thus for
n ≥ 1 such that L=n 6= ∅, in principle, it would be possible to compute the
length `n of shortest words in L=n. However we do not know how `n behaves as a
function of n. Using a brute-force search we have established [12] that all strings
of length at most 23 have a minimal description using a single state transducer.

Open Problem 51. What is the asymptotic behavior of the length of the shortest
words in L=n as a function of n?

In addition, we do not know whether there exists x ∈ Σ∗ that has two minimal
descriptions (in the standard encoding) where the respective transducers have
different numbers of states. This amounts to the following.

Open Problem 52. Does there exist an n ≥ 1 such that L=n 6= L∃minn?

2.3.4 General Computable Encodings

While the proof of Theorem 48 can be easily modified for any encoding that,
roughly speaking, is based on listing the transitions of a transducer, the proof
breaks down if we consider arbitrary computable encodings S. Note that the
number of finite transducers (with n states) is infinite and, for arbitrary com-
putable S, it does not seem easy, analogously to the proof of Theorem 48, to get
upper and lower bounds for CS(xn(m)) for suitably chosen strings xn(m). We
do not know whether there exist computable encodings for which the state-size
hierarchy collapses to a finite number of levels.

Open Problem 53. Does there exist an n ≥ 1 and a computable encoding Sn
such that that, for all k ≥ 1, LSn≤n = LSn≤n+k?

On the other hand, it is possible to construct particular encodings for which
every level of the state-size hierarchy is strict.

Theorem 54. There exists a computable encoding S1 such that

LS1
≤n−1 ⊂ L

S1
≤n, for each n ≥ 1.

Proof. Let pi, i = 1, 2, . . ., be the ith prime. We define an n-state (n ≥ 1)
transducer Tn = ({1, . . . , n}, 1,∆n) by setting ∆n(1, 0) = (1, 0pn), ∆n(i, 0) =
(i, ε), 2 ≤ i ≤ n, ∆n(j, 1) = (j + 1, ε), 1 ≤ j ≤ n− 1, and ∆n(n, 1) = (n, ε).

In the encoding S1 we use the string σn = bin (n) to encode the transducer Tn,
n ≥ 1. Any transducer T that is not one of the above transducers Tn, n ≥ 1, is
encoded in S1 by a string 0 · e, e ∈ Σ∗, where |e| is at least the sum of the lengths
of outputs of all transitions in T . This condition is satisfied, for example by
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choosing the encoding of T in S1 to be simply 0 concatenated with the standard
encoding of T .

Let m ≥ 1 be arbitrary but fixed. The string 0pm has a description (TS1
σm , 0)

of size dlog2me + 1, where σm ∈ S1 encodes Tm and the transducer TS1
σm has m

states. We show that CS1(0pm) = dlog2me+ 1.
By the definition of the transducers Tn, for any w ∈ Σ∗, Tn(w) is of the form

0k·pn , k ≥ 0. Thus, 0pm cannot be the output of any transducer Tn, n 6= m.
On the other hand, consider an arbitrary description (TS1

σ , w) of the string
0pm where TS1

σ is not any of the transducers Tn, n ≥ 1. Let x be the length of
the longest output of a transition of TS1

σ . Thus, x · |w| ≥ pm. By the definition
of S1 we know that |σ| ≥ x+ 1 and we conclude that

||(TS1
σ , w)||S1 = |σ|+ |w| > dlog2me+ 1.

In the encoding S1 we have shown that the unique minimal description of 0pm

uses a transducer with m states, which implies 0pm ∈ LS1
=m, m ≥ 1.

The encoding S1 constructed in the proof of Theorem 54 is not a polynomial-
time encoding because Tn has an encoding of length O(log2 n), whereas the
description of the transition function of Tn (in the format specified in Subsec-
tion 1.3.1) has length Ω(n · log2 n). Besides the above problem S1 is otherwise
efficiently computable and using standard ‘padding techniques’ we can simply
increase the length of all encodings of transducers in S1.

Corollary 55. There exists a polynomial time encoding S′1 such that

L
S′1
≤n−1 ⊂ L

S′1
≤n, for each n ≥ 1.

Proof. The encoding S′1 is obtained by modifying the encoding S1 of the proof of
Theorem 54 as follows. For n ≥ 1, Tn is encoded by the string σn = bin† (n) · 1n.
Any transducer T that is not one of the transducers Tn, n ≥ 1, is encoded by
a string 0 · w where |w| ≥ 2x and x is the sum of the lengths of outputs of
all transitions of T . If σ is the standard encoding of T , then, we can choose
w = σ† · 12|σ| , for example.

Now |σn| is polynomially related to the length of the description of the tran-
sition function of Tn, n ≥ 1, and given σn the transition function of Tn can be
output in quadratic time. For transducers not of the form Tn, n ≥ 1, the same
holds trivially.

Essentially in the same way as in the proof of Theorem 54, we verify that for
any m ≥ 1, the string 0pm has a unique minimal description (TS

′
1

σ′m
, 0), where σ′m ∈

S′1 is the description of the m-state transducer Tm. The same argument works
because the encoding of any transducer T in S′1 is roughly speaking obtained
from the encoding σ of T in S1 by appending 2|σ| ‘1’ symbols.
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There exist computable encodings that allow distinct minimal descriptions of
strings based on transducers with different numbers of states. Furthermore, the
gap between the numbers of states of the transducers used for different minimal
descriptions of the same string can be made arbitrarily large. That is, for any
n < m we can construct an encoding where some string has minimal descriptions
both using transducers with either n or m states. The proof uses an idea similar
to the proof of Theorem 54.

Theorem 56. For any 1 ≤ n < m, there exists a computable encoding Sn,m such
that LSn,m∃minm

∩ LSn,m=n 6= ∅.

Proof. Let pi, i = 1, 2, . . ., be the ith prime. Let Ti, i ≥ 1, be the particular
transducers defined in the proof of Theorem 54 and let S1 be the encoding defined
there.

Let 1 ≤ n < m be arbitrary but fixed. We denote by T ′n = ({1, . . . ,m}, 1,∆′)
an m-state transducer where ∆′(1, 0) = (1, 0pn), ∆′(i, 0) = (1, ε), 2 ≤ i ≤ m,
∆′(j, 1) = (j + 1, ε), 1 ≤ j ≤ m− 1, and ∆′(m, 1) = (m, ε). The transducer T ′n is
obtained from Tn simply by adding m− n ‘useless’ states.

Let S2 be defined as S1 except that the transducer Ti, i ≥ 1, is encoded by
the string σi = bin (i) · 0. In the encoding S2 the unique minimal description of
the string 0pi is (TS2

σi , 0). Note that the encoding of Ti in S2 has one additional
bit compared to the encoding of Ti in S1. However the same estimation as used
in the proof of Theorem 54 goes through.

Now we can choose Sn,m to be as S2 except that the transducer T ′n is encoded
as τn = bin (n) · 1. In the encoding Sn,m the minimal description of 0pn using
a transducer with the smallest number of states is (TSn,mσn , 0). However 0pn has
another minimal description (TSn,mτn , 0) where the transducer has m states.

Note that the statement of Theorem 56 implies that LSn,m=m 6= L
Sn,m
∃minm

. Again,

by padding the encodings as in Corollary 55, the result of Theorem 56 can be
established using a polynomial-time encoding.

2.4 Summary

In this chapter, we have reintroduced and developed the first steps of a variant
of AIT based on finite transducers [12, 13]. The finite-state complexity, central
to the new theory, is computable and satisfies a strong form of the Invariance
Theorem.

As this is a computable complexity, in Section 2.2 we explored ways to develop
an effective and efficient algorithm to compute it and to start building the infinite
table of finite-state complexity measures. We also proffered the initial analysis of
the sets of complexities from this algorithm and infered some preliminary results
about this new theory, especially concerning its relation to Borel normality.



2.4. SUMMARY 43

In contrast to descriptional complexities from AIT, there is no a priori upper
bound for the number of states used for minimal descriptions of arbitrary strings,
which brought our attention to the matter of state-size [13, 14]. As perhaps ex-
pected, the properties of the state-size hierarchy with respect to the specific
computable encodings considered in Subsection 2.3.4 could be established using
constructions where we added to transducers additional states without changing
the size of the encoding. In a similar way, various other properties can be estab-
lished for the state-size hierarchy corresponding to specific (artificially defined)
computable encodings. The main open problem concerning general computable
encodings is whether or not it is possible to construct an encoding for which the
state-size hierarchy collapses to some finite level (see Open problem 53).

As our main result in Section 2.3, we have established that the state-size hier-
archy with respect to the standard encoding is infinite. An almost identical proof
can be used to show that the hierarchy is infinite with respect to any ‘natural’
encoding that is based on listing the transitions of the transducer in some uniform
way. Many interesting open problems dealing with the hierarchy with respect to
the standard encoding remain. In addition to the problems discussed in Subsec-
tion 2.3.3, we can consider various types of questions related to combinatorics on
words. For example, assuming that a minimal description of a string w needs a
transducer with at least m states, is it possible that w2 has a minimal description
based on a transducer with less than m states? We conjecture a negative answer
to this question.

Conjecture 57. If w ∈ L=m (m ≥ 1), then for any k ≥ 1, wk 6∈ L≤m−1.





Chapter 3

Towards a Practical Application:

DNA Compression

In this chapter we present the beginnings of an application of finite-state complex-
ity, with which we aim to measure the finite-state complexity of some deoxyribo
nucleic acid (DNA) sequences. These results could then be used for DNA com-
pression amongst other further practical applications. DNA compression is not a
new concept in the field of bioinformatics, and many algorithms have already been
devised for that purpose. In fact, Rivals et al. [32] offer the first text compression
scheme targeted at DNA sequences: Cfact. Their successful scheme is also proven
to guarantee compression for repetitive DNA sequences and out-performs most
state-of-the-art text compressors [32]. Other DNA-dedicated compressors and
pattern recognisors have also been developed which are mostly grammar-based
(SEQUITUR, LONGEST MATCH, RE-PAIR, etc.) [15, 19]. We will further
discuss the concept of grammar-based compression shortly.

Our original interest was to use the existing results and algorithms to measure
the finite-state complexity of some smaller DNA sequences such as transposons.
A transposon is a segment of DNA that can become integrated at many differ-
ent sites along a chromosome (especially a segment of bacterial DNA that can
be translocated as a whole). Since DNA uses a different alphabet—{A,C,G, T}
instead of the Σ we have been using throughout this thesis—we need to rep-
resent or translate that alphabet into a uniquely decodable binary alphabet:
{00, 01, 10, 11}; in order to measure the complexity of DNA. This way we are
manipulating and measuring a more specific family of binary strings. However,
the algorithms computing the finite-state complexity of a string are limited to
a brute-force approach. Therefore they are restricted to an exponential growth
depending on the size of the string we wish to measure. Moreover, our current

45
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table is not complete enough to use it directly in this case, and the sequences are
too large to hope for an exact measurement. Both these obstacles mean that the
original goal was too ambitious.

Nevertheless, Carrascosa et al. [15] offer both optimisations of the existing
algorithms and a new state-of-the-art algorithm to solve the smallest grammar
problem: Iterative Repeat Replacement Minimal Grammar Parsing (IRRMGP).
This is a problem often related to DNA compression. The smallest grammar
problem is the problem of finding the smallest context-free grammar which en-
codes for a unique string of characters; conventionally the class of straight-line
grammars is used to attempt to solve this problem. IRRMGP provides a smallest
context-free grammar (in particular, a straight-line grammar) which generates ex-
actly one string—the string of interest. Hence, we have worked on approximating
the complexity by attempting to lower the upper bound with Dr. F. Coste [21].

Thus in this chapter we present our general approach: to merge the concept
of solving the smallest grammar problem and converting it into an equivalent
minimal transducer (with its corresponding input, or control sequence) in order
to generate the string of interest. The two approaches presented here are a top-
down and bottom-up approach. The ‘direction’ of the approach depends on the
ordering of the process to convert the grammar. In Section 3.2, we then discuss
the development of the score function used in an updated version of IRRMGP to
guide the SLG construction to our advantage.

3.1 Conversion Algorithms for Transforming a Smallest

Grammar into a Transducer

In this section we present the algorithms devised to convert a SLG into an equiv-
alent transducer. Before we begin to introduce the conversion algorithms, we
need to cover some preliminaries. We especially need to define our concept of
‘equivalence’ between a straight-line grammar and a transducer, which is a term
we use more generously than is conventionally encountered.

3.1.1 Preliminaries

Here we state that a transducer is equivalent to a straight-line grammar when
the said transducer simulates the grammar in its possible runs. That is, when the
language of the grammar is a subset of the language of the transducer, denoted

L(G) ⊆ L(T ).

We do need to note that the language of a SLG, L(G), is in fact the singleton
{x} since a SLG outputs a unique string x (see Section 1.2). Therefore, all we
need in our (generous) definition of equivalence between a SLG and a transducer
is that x ∈ L(T ).
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Obviously there are many equivalent transducers for one grammar (and vice
versa). Here we are interested in the smallest possible equivalent transducer that
we can build from a given straight-line grammar. The Subsections 3.1.2 and 3.1.3
offer two methods of doing this.

The algorithms we present follow two versions of the same basic ‘guideline’.
This guideline is the ordering of the rules of the grammar, which are processed
one by one to build the equivalent transducer. Once the transducer is built, a
backtracking routine is executed to ‘recover’ the input string corresponding to our
string of interest from the transducer. The computation completes by returning
the constructed pair. What follows is a more technical overview of the basic
algorithm and of its two variations.

The guideline we referred to is called the hierarchy ordering, as it imposes a
hierarchy of those rules. The first version is defined as a top-down ordering of
the grammar rules. This ordering sorts the rules in an ‘inter-call’ order, which
is an increasing ordering of the rules according to how many times each one
is called. The way in which a rule is called in a grammar is by having their
associated variable (the lhs of the rule) appear in the rhs of the set rules. As we
are working with SLGs, we can safely assume that no rule calls itself and that the
start rule is never called (recall that SLGs are context-free grammars). Clearly,
this top-down ordering is a partial-order since two rules may be called the same
amount of times without ever calling each other, therefore not imposing an order
between them. Moreover, the top-down ordering will always list the start rule
first. The second version of the hierarchy order is the natural counterpart of
top-down ordering: bottom-up ordering. This ordering sorts all of the rules in
a decreasing order of how many times they are called. For the same reasons as
we noted with the former ordering, this is a partial-ordering of the rules and the
start rule is never called. It will therefore be the last listed rule.

Once the rule ordering is completed, the algorithms process each rule individ-
ually converting these rules into a corresponding subpart of the transducer: two
states (or nodes) and a linking transduction (or transition) between them. The
transduction holds the label ‘null/ηi’ for the rule ri (see Chapter 1 for the nota-
tion). null is a placeholder for a corresponding alphabet symbol, which is only
allocated after the entire grammar is processed and the transducer is made ‘le-
gal’. By legal we mean that it is deterministic and complete: allowing exactly two
out-transductions per state—if we visualise the transducer as a graph, it would
be forcing each node to have out-degree 2. After the ‘sub-transducer’ is built,
the algorithm incorporates it into the transducer, and deletes all occurrences of
the rule that is being processed from the existing transducer. In order to do so,
every transition label is searched for a call of the rule. For every call the variable
is deleted from that transition and a path to the new ‘sub-transducer’ is added.
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Because each rule (that is not the start rule) is called at least twice, the subpart
of the transducer representing this rule will have nodes with in- and out-degrees
strictly greater than 2. This is where the process of making the transducer deter-
ministic is necessary. However, the deterministic process is not put into motion
until after the entire grammar has been converted. After processing each rule,
the algorithm minimises the transducer. Finally, once all the rules have been
processed, we have a completed legal transducer and the input corresponding to
the string of interest—the one obtained by the SLG—is obtained using a back-
tracking algorithm.

All the algorithms in this section are presented in their most general form
(except where indicated), so that they can be applied to as wide a range of
parameters as we could envision: different sized alphabets, different encodings,
different smallest grammar inputs, etc. The methods which are either in reference
to well-known algorithms or trivial/obvious procedures are not detailed in the
following algorithms. For the sake of simplicity in the pseudocode, we also assume
that the transducer T is a global variable and that when T ’s ∆ function needs
to be ‘traversed’ it is done so in a breadth-first search (BFS) manner from the
initial state.

The implementations were conceived to be written Java. Hence, we make
use of the OOP to implement the straight-line grammar and the transducer as
objects. Of course these are only one possible implementation approach. There
are undoubtedly possible optimisations which we did not have time to explore
for the scope of this work.

This section offers the two theoretically finalised algorithms devised to convert
a smallest grammar (in a straight-line form) into an equivalent transducer.

3.1.2 Top-Down Approach

In this algorithm we order the rules of the straight-line grammar in the top-down
partial-order to guarantee we have a legal grammar ordering for our algorithm.
This ordering allows a simplification of the rule processing when we move onto
the conversion of the grammar into a transducer. The rule processing is why the
top-down approach is crucial. It guarantees that no variable (non-terminal) is
repeated in the transducer and that we have a minimal amount of states, based on
the given grammar. We require the first rule of the grammar to be the initial/start
rule (associated with the start variable); however, as discussed in Section 3.1.1,
this occurs naturally in the ordering procedure. Finally, once the transducer is
built and completed, we obtain the corresponding input (or control sequence)
such that the resulting pair (T, control) outputs x (i.e. T (control) = x).

Throughout the pseudocode presented below we give brief descriptions in form
of comments before each procedure. After the pseudocode is given in full we give
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a simple example of its application on an arbitrary string.

Algorithm 3.1.1: TopdownSLGToTransducerWithMerge(G, x)

main
G← hierarchicalOrder(G)
q0 ← createNewState()
qf ← createNewState()
t← (q0,null, qf , lhs(r0))
add(∆, t)
T ← ({q0, qf},Σ, q0,∆)
for each r ∈ R

do ruleProcessing(r)
makeDeterministic()
control← findControlSeq(x)
return (T, control)

Brief: The following procedure manages the ordering of the rules of the grammar
according to their appearance in the rhs of the rules by pre-processing the gram-
mar G to initialise the required objects, calling the partialOrder() procedure
on those objects and rearranging the grammar according to the partial order.
Note that we assume r0 (first encountered rule in R) to be the rule associated to
S as we are using the top-down ordering. Once the process is complete it returns
the rearranged grammar.

procedure hierarchicalOrder(G)
for each r ∈ R

do



for each N ∈ V
do if isSubstring(rhs(r), N)
then add(children,N)

node← (lhs(r), children)
add(nodeArray, node)
n = 0
add(partialOrdering, (lhs(r), n))

partialOrdering ← partialOrder(partialOrdering, nodeArray, lhs(r0), 0)
G← map(G, partialOrder)
return (G)
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Brief: This procedure recursively builds the partial ordering of the rules accord-
ing to the top-down ordering and returns the resulting partial order.

procedure partialOrder(partialOrdering, nodeArray, node, orderV alue)
n← getPartialOrderValue(partialOrdering, node)
n← max(n, orderV alue)
partialOrdering ← setPartialOrderValue(partialOrdering, node, n)
children← getChildren(nodeArray, node)
m← n+ 1
for each c ∈ children

do partialOrdering ← partialOrder(partialOrdering, nodeArray, c,m)
return (partialOrdering)

Brief: Processes each given rule r by finding each instance of N (the lhs of r) in
T and replacing it with η (the rhs of r), without repetitions. Finally, it induces
state minimisation.

procedure ruleProcessing(r)
N ← lhs(r)
η ← rhs(r)
t← findAndIsolateFirstOccurrenceInT(N, η)
qs ← getSourceState(t)
qt ← getTargetState(t)
findAndReplaceAllOccurrencesInT(N, qs, qt)
minimiseStates()
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Brief: Searches for the first occurrence of the non-terminal N in T , replaces it
with a new transition labelled η and returns that transition. It returns null if no
such transition is found.

procedure findAndIsolateFirstOccurrenceInT(N, η)
for each t ∈ ∆

do



label← getLabel(t)
if isSubstring(label,N)

then



pos← findSubstring(label,N, 0)
end← pos+ |N |
if pos = 0 and end = |label|

then
{
t← (getSourceState(t),null,getTargetState(t), η)

else if pos = 0 and end 6= |label|

then



q ← createNewState()
t← (getSourceState(t),null, q, η)
target← getTargetState(t)
out← getSubstring(label, end, |label|)
e← (q,null, target, out)
add(∆, e)

else if pos 6= 0 and end = |label|

then



q ← createNewState()
t← (q,null,getTargetState(t), η)
source← getSourceState(t)
out← getSubstring(label, 0, pos)
e← (source,null, q, out)
add(∆, e)

else if pos 6= 0 and end 6= |label|

then



qs ← createNewState()
qt ← createNewState()
t← (qs,null, qt, η)
source← getSourceState(t)
target← getTargetState(t)
out1← getSubstring(label, 0, pos)
out2← getSubstring(label, end, |label|)
e← (source,null, qs, out1)
f ← (qt,null, target, out2)
add(∆, f)
add(∆, e)

return (t)
return (null)
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Brief: The following searches for every occurrence of N in T , replaces it by link-
ing in the existing corresponding transition, whose source and target states are
qs and qt respectively.

procedure findAndReplaceAllOccurrencesInT(N, qs, qt)
for each e ∈ ∆

do



while isSubstring(getLabel(e), N)

then



label← getLabel(e)
pos← findSubstring(label,N, 0)
end← pos+ |N |
if pos = 0 and end = |label|

then

{
merge(qs,getSourceState(e))
merge(qt,getTargetState(e))

else if pos = 0 and end 6= |label|

then



merge(qs,getSourceState(e))
target← getTargetState(e)
out← getSubstring(label, end, |label|)
f ← (qt,null, target, out)
add(∆, f)

else if pos 6= 0 and end = |label|

then



merge(qt,getTargetState(e))
source← getSourceState(e)
out← getSubstring(label, 0, pos)
f ← (source,null, qs, out)
add(∆, f)

else if pos 6= 0 and end 6= |label|

then



source← getSourceState(e)
target← getTargetState(e)
out1← getSubstring(label, 0, pos)
out2← getSubstring(label, end, |label|)
f ← (source,null, qs, out1)
g ← (qt,null, target, out2)
add(∆, f)
add(∆, g)

remove(∆, e)
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Brief: Minimises the number of states by searching for unreachable and dead-
end states and deleting them accordingly.

procedure minimiseStates()
for each q ∈ Q

do



if inDegree(q) = 0

then


for each e ∈ ∆

do

{
if getSourceState(e) = q

then Remove(∆, e)
Remove(Q, q)

for each q ∈ Q

do



if outDegree(q) = 0

then



for each e ∈ ∆

do



if getTargetState(e) = q

then



s← getSourceState(e)
in← getInputSymbol(e)
out← getLabel(e)
f ← (s, in, s, out)
add(∆, f)
Remove(∆, e)

Remove(Q, q)

Brief: This procedure calls for an out-degree fix, via fixOutDegree(), and
‘fills in’ each transition input symbol ‘slot’ (currently null) with a corresponding
alphabet symbol, making the transducer deterministic and complete.

procedure makeDeterministic()
fixOutDegree()
for each q ∈ Q

do



a ∈ Σ
for each t such that getSourceState(t) = q

do



remove(∆, t)
target← getTargetState(t)
t← (target, a, target,getLabel(t))
add(∆, t)
a← nextSymbol(Σ)
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Brief: Guarantees that the out-degree of every state is |Σ| by traversing the set
of states Q of the transducer T using a BFS. We leave the BFS for the implemen-
tation level as it would overcomplicate the pseudocode of this simple procedure.

procedure fixOutDegree()
for each q ∈ Q

do



while (outDegree(q)− 2) > 0

do



p← createNewState()
count = 0
transitionPair ← null
for each t such that getSourceState(t) = q

do


if count < 2

then

{
add(transitionPair, t)
count← count+ 1

else break
for each t ∈ transitionPair

do


e← (p,null,getTargetState(t),getLabel(t))
add(∆, e)
remove(∆, t)

s← (q,null, p, ε)
add(∆, s)

while outDegree(q) < 2

do

{
e← (q,null, q, ε)
add(∆, e)

Brief: Traverses T and, in a reverse engineering sort of way, obtains the corre-
sponding control sequence to x, such that T (control) = x.

procedure findControlSeq(x)
index← 0
for each q ∈ Q

do



for each t such that getSourceState(t) = q

do



label← getLabel(t)
if (index+ |label|) < |x|

then


if isSubstring(x, label, index)

then

{
control← control · getInputSymbol(t)
index← index+ |label|

return (control)
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Now we give an applied example of the algorithm in order to illustrate its
workings.

Example 58. Let x = 01010100011010110100111101. Note that x is an arbitrary
string and has no relation to DNA sequences. This is just for demonstration
purposes.
IRRMGP gives the following SLG for x:

0 → \0 12 \0 10 12 6 10 \1 \1 6

6 → \1 8

8 → \0 \1
10 → \0 8

12 → 6 8

In the format of IRRMGP the rules are numbered so the actual string characters
are indicated by a single ‘\’. To avoid confusion in case these are also numbers
in the inputted string. Then it is inputted into our algorithm and we get the
following set of steps, building the transducer T :
Step 1: Rule r0 = 0 → \0 12 \0 10 12 6 10 \1 \1 6 is processed. So N0 = 0,
η0 = \0 12 \0 10 12 6 10 \1 \1 6 and T is as in Figure 3.1.

1 2
null/\0 12 \0 10 12 6 10 \1 \1 6

Figure 3.1: Transducer T after processing rule r0 of the grammar and minimi-
sation.

Step 2: Rule r1 = 12→ 6 8 is processed. So N1 = 12, η1 = 6 8 and T becomes
as in Figure 3.2.

1 2 3
null/\0

null/6 8

null/\0 10

null/6 10 \1 \1 6

Figure 3.2: Transducer T after processing rule r1 of the grammar and minimi-
sation.

Step 3: Rule r2 = 10 → \0 8 is processed. So N2 = 10, η2 = \0 8 and T

becomes as in Figure 3.3.
Step 4: Rule r3 = 6→ \1 8 is processed. N3 = 10, η3 = \1 8 and T becomes

as in Figure 3.4.
Step 4: Rule r4 = 8→ \0 \1 is processed. N4 = 8, η4 = \0 \1 and T becomes

as in Figure 3.5.
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1 2

3

4
null/\0

null/6 8

null/\1 \1 6

null/\0

null/6

null/\0 8

Figure 3.3: Transducer T after processing rule r2 of the grammar and minimi-
sation.

1 2
null/\0

null/\1 8

null/\1 \1

null/\0

null/8

null/\0 8

Figure 3.4: Transducer T after processing rule r3 of the grammar and minimi-
sation.

1 2
null/\0

null/\1

null/\1 \1null/\0

null/\0 \1

Figure 3.5: Transducer T after processing rule r3 of the grammar and minimi-
sation.

Step 5: Figure 3.6 is the result of making T deterministic and complete.

The algorithm’s output is the S1 encoded pair

(T, p) = (1011 · 0101 · 1010 · 0100 · 10000 · 0100 · 10001 · 0100 · 1011

· 00100000 · 1011 · 010110110110 · 01011 · 01110,

010111101010100110100110101000011).
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1

2

3 4

1/ε

0/\0

0/ε 1/ε

0/\1 \1

1/\0 0/\1

1/\0 \1

Figure 3.6: Transducer T after processing all the rules of the grammar and then
making it deterministic and complete.

In order to make the string more readable, we have decomposed the encoding
of T by concatenating each segment. The resulting pair is greater in size than
the identity pair. Therefore we have not found a better upper bound for this
sequence. Nevertheless, DNA sequences are much longer strings so the chances
of finding a shorter description increase with the length of the string of interest
x.

3.1.3 Bottom-Up Approach

As described in Subsection 3.1.1, this algorithm follows the concept of the top-
down algorithm very closely but it reverses the order of the rule processing ap-
proach. In contrast to the previous approach in algorithm 3.1.1, in this algorithm
we order the rules of the grammar according to the bottom-up ordering we pre-
viously defined. We suspect this allows for a more efficient algorithm as we can
directly avoid ‘overbuilding’ the transducer, thus lessening the need to minimise.
This is possible since we start the construction of the transducer from the most
called rule, so the rule whose nodes will have greater in- and out-degrees in the
non-deterministic version of the transducer. We therefore lose the need to build
unnecessary nodes. The completed development of this algorithm is in the works.

Algorithm 3.1.2: Bottom-up SLG to T(G, x)

main
G← reverseHierarchicalOrder(G)
q0 ← createNewState()
T ← ({q0},Σ, q0,∆)
for each r ∈ R

do ruleProcessing(r, S)
makeDeterministic()
control← findControlSeq(x)
return (T, control)
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Brief: This procedure manages the ordering of the rules of the grammar accord-
ing to their appearance in the rhs of the rules. It pre-processes the grammar
G to initialise the required objects, calling the partialOrder() procedure on
those objects and rearranging the grammar according to the inverse of the partial
order. Then it returns the bottom-up ordered grammar. Note that we assume r0

(first encountered rule in R) to be the rule associated to S.

procedure hierarchicalOrder(G)
for each r ∈ R

do



for each N ∈ V
do if isSubstring(rhs(r), N)
then add(children,N)

node← (lhs(r), children)
add(nodeArray, node)
n = 0
add(partialOrdering, (lhs(r), n))

partialOrdering ← partialOrder(partialOrdering, nodeArray, lhs(r0), 0)
G← inverseMap(G, partialOrder)
return (G)

Brief: Builds the partial ordering of the rules recursively.

procedure partialOrder(partialOrdering, nodeArray, node, orderV alue)
n← getPartialOrderValue(partialOrdering, node)
n← max(n, orderV alue)
partialOrdering ← setPartialOrderValue(partialOrdering, node, n)
children← getChildren(nodeArray, node)
m← n+ 1
for each c ∈ children

do partialOrdering ← partialOrder(partialOrdering, nodeArray, c,m)
return (partialOrdering)
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Brief: Processes each rule r by creating a new transition t labelled η (the rhs of
r). Then, it searches through t for any occurrences of every previously processed
rules. If it finds any, these are linked into t to form a new path, without repeti-
tions. Finally, it induces state minimisation.

procedure ruleProcessing(r, S)
N ← lhs(r)
η ← rhs(r)
qt ← createNewState()
if N = S

then qs ← q0

else qs ← createNewState()
t← (qs,null, qt, η)
add(∆, t)
for each P ∈ processed

do


ps ← getSourceState(repeatPaths, P )
pt ← getTargetState(repeatPaths, P )
findAndReplaceAllOccurrencesInT(P, ps, pt, t)

add(repeatPaths, (N, qs, qt))
add(processed,N)
minimiseStates()
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Brief: Searches and replaces every occurrence of P in the transition t, by linking
in the existing corresponding path; whose source and target states are ps and pt.

procedure findAndReplaceAllOccurrencesInT(P, ps, pt, t)
e← t

while isSubstring(getLabel(e), P )

then



label← getLabel(e)
pos← findSubstring(label, P, 0)
end← pos+ |P |
if pos = 0 and end = |label|

then


merge(ps,getSourceState(e))
merge(pt,getTargetState(e))
remove(∆, e)
break

else if pos = 0 and end 6= |label|

then



merge(ps,getSourceState(e))
target← getTargetState(e)
out← getSubstring(label, end, |label|)
f ← (pt,null, target, out)
add(∆, f)
remove(∆, e)
e← f

else if pos 6= 0 and end = |label|

then



merge(pt,getTargetState(e))
source← getSourceState(e)
out← getSubstring(label, 0, pos)
f ← (source,null, ps, out)
add(∆, f)
remove(∆, e)
e← f

else if pos 6= 0 and end 6= |label|

then



source← getSourceState(e)
target← getTargetState(e)
out1← getSubstring(label, 0, pos)
out2← getSubstring(label, end, |label|)
f ← (source,null, ps, out1)
g ← (pt,null, target, out2)
add(∆, f)
add(∆, g)
remove(∆, e)
e← g
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Brief: Minimises the number of states by searching for unreachable and dead-
end states and deleting them accordingly.

procedure minimiseStates()
for each q ∈ Q

do



if inDegree(q) = 0

then


for each e ∈ ∆

do

{
if getSourceState(e) = q

then Remove(∆, e)
Remove(Q, q)

for each q ∈ Q

do



if outDegree(q) = 0

then



for each e ∈ ∆

do



if getTargetState(e) = q

then



s← getSourceState(e)
in← getInputSymbol(e)
out← getLabel(e)
f ← (s, in, s, out)
add(∆, f)
Remove(∆, e)

Remove(Q, q)

Brief: Calls for an out-degree fix and completes each transition with a corre-
sponding alphabet symbol, making the transducer complete and deterministic.

procedure makeDeterministic()
fixOutDegree()
for each q ∈ Q

do



a ∈ Σ
for each t such that getSourceState(t) = q

do



remove(∆, t)
target← getTargetState(t)
t← (target, a, target,getLabel(t))
add(∆, t)
a← nextSymbol(Σ)
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Brief: The following guarantees that the out-degree of every state is |Σ|, again
traversed using a BFS, hidden for clarity’s sake.

procedure fixOutDegree()
for each q ∈ Q

do



while (outDegree(q)− 2) > 0

do



p← createNewState()
count = 0
transitionPair ← null
for each t such that getSourceState(t) = q

do


if count < 2

then

{
add(transitionPair, t)
count← count+ 1

else break
for each t ∈ transitionPair

do


e← (p,null,getTargetState(t),getLabel(t))
add(∆, e)
remove(∆, e)

s← (q,null, p, ε)
add(∆, s)

while outDegree(q) < 2

do

{
e← (q,null, q, ε)
add(∆, e)

Brief: Traverses T and—in a reverse engineering (or backtracking) way—obtains
the corresponding control sequence to x, such that T (control) = x.

procedure findControlSeq(x)
index← 0
for each q ∈ Q

do



for each t such that getSourceState(t) = q

do



label← getLabel(t)
if (index+ |label|) < |x|

then


if isSubstring(x, label, index)

then

{
control← control · getInputSymbol(t)
index← index+ |label|

return (control)
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3.2 Heuristics as an Optimisation Tool

Since we are strongly dependent on the resulting smallest grammar for our algo-
rithms, and since our goal is to approximate the finite-state complexity of DNA
sequences, it makes sense to target the construction of that grammar towards
a reduction of the size of the resulting transducer-control pair. The smallest
grammar problem is NP-complete as a decision problem [19]. Hence, solving the
smallest grammar problem already requires a heuristics approach approximating
the result and our idea of targeting, or guiding, the construction of the grammar
to better our approximation seems natural. The state-of-the-art research on this
problem focus their heuristics on pattern recognition, in order to better compress
the string of interest and increase their chances of finding the smallest gram-
mar for that string. In the case of DNA, such pattern recognition methods used
are based certain types of patterns such as: maximal repeat, longest repeat and
many others [15, 19]. In this section our task is to define a new heuristic, or score
function, which improves the size of the resulting pair instead of the immediate
resulting grammar. This section therefore describes the process to devise such a
score function and its practical usage.

3.2.1 Devising a Score Funtion

In [15], the score functions are based on the number of occurrences of a chosen
word (or “repeat” as they are called in Bioinformatics) and its length, in order
to better reduce the size of the resulting straight-line grammar. Similarly, based
on the number of occurrences of a word w in the string of interest, α(w), and
its length |w|, we formulate a score function in order to measure whether it is
more advantageous to keep the word or to replace it by a non-terminal, and thus
forming a new rule in the grammar.
Our transducer is essentially a digraph with an exact out-degree of 2. From graph
theory, we know that a digraph has a number of arcs of

|A| =
∑
v∈V

deg+(v) =
∑
v∈V

deg−(v). (3.1)

The above formula (3.1) states that the overall in-degree is equal to the overall
out-degree. Thus we do not need to evaluate both. Here we will solely focus on
the out-degree. It is a more complex process but it guarantees not to ‘forget’
any states added to the transducer as the only limitation is on the out-degree:
∀v ∈ V, deg+(v) = 2. Hence, if the transducer has n states, then the digraph has
n vertices and the number of transitions (or arcs) is 2n. We do not know how
many states there are. But we can deduce from our algorithms in Section 3.1
that for every word w, replacing w with a non-terminal implies adding

2 ·
⌈α(w)

2

⌉
+ 2 = 2 ·

(⌈α(w)
2

⌉
+ 1
)

(3.2)
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states.

Now, we need to measure the difference in the transducer encoding size before
and after adding the states (and removing the word) in order to decide which is
more beneficial to our goal. So we need to define what the encoding size of each
word w is with a ‘direct’ encoding and with a non-terminal replacement. We will
assume that the encoding used is our S1 encoding where each pair (i, string (j))
is encoded as bin# (i+ 1) · string§ (j + 1). The pair (i, string (j)) represents the
target state qi and the output function (or the transition label, as referred to in
the algorithms). If a word w is replaced by a non-terminal in the grammar, we can
measure the size of the new encoding. But it seems very difficult to measure what
is ‘taken off’ or ‘saved’ from the current encoding. The only means we have to do
this seems to be a direct comparison of the results, and this is costly. However,
it is obvious that for all i, j such that i < j, |string§ (i) | ≤ |string§ (j) |. We
then considered finding an approximation or an average measure of the difference
between |string§ (i) | and |string§ (j) | based on the difference between i and j, to
finally use that as the score function (or weight) for each word in the sequence.
Unfortunately, evaluating this is in fact a difficult and expensive task. The best
we can do at this time is to give an upper bound. Otherwise we would have to
simulate the conversion for each word for an exact measure of the difference.

Let curr be the current encoding. Let Si, for i = 1, . . . ,m, be the sequences
in which the word w occurs, where m is the number of such sequences, and
let uj , for j = 1, . . . , α(w) + 1, be the words such that for each 1 ≤ i ≤ m,
Si = u1 ·w ·u2 ·w · · ·ul, where l ≤ α(w)+1 depending on whether there are more
ujs to be found in the other Sis. Let us also define the function γ : Σ∗ → IN such
that for all s ∈ Σ∗, γ(s) is the lexicographic index of s in the enumeration of
all strings in Σ∗. Hence the score function, scoreT : Σ∗ → IN, measures the size
of the encoding if we removed the m Si-sequences from curr and replaced those
with one encoded occurrence of w, all the ul fragments of the Si-sequences (not
forgetting to add the new states and the ε-loops that complete the new version
of the transducer). Formally, we obtain the following:

scoreT (w) = |curr| −
m∑
i=1

∣∣∣string§ (γ(Si) + 1)
∣∣∣

+
∣∣∣string§ (γ(w) + 1)

∣∣∣+
α(w)+1∑
j=1

∣∣∣string§ (γ(ui) + 1)
∣∣∣

+
(

2 ·
(

2 ·
(⌈α(w)

2

⌉
+ 1
)
−m

)
− (α(w) + 2)

)
·
∣∣∣string§ (2)

∣∣∣
+ α(w) ·

∣∣∣bin# (|Q|+ 1)
∣∣∣+ 2 ·

α(w)+|Q|∑
k=|Q|+2

∣∣∣bin# (k)
∣∣∣. (3.3)
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Let us justify this score function. First of all, we need to substract the size
of the encoded sequences which hold our target word w as a substring since we
want the new transducer to only have a single occurrence of w, in its own ‘state-
transduction-state’ triple. Then, we need to add all the components which come
with replacing this string with a non-terminal in the grammar. Hence, we add
the size of the encoded strings which compose each of the previous sequences, but
with only one occurrence of the encoding of w. We know that there are α(w) + 1
non-w components to add. We also have to add all of the ε-labelled transitions.
These labels are ‘fill-ins’ in order to make sure the transducer is deterministic and
complete. So, given that the out-degree of each state is 2, there are twice the num-
ber of added states such transition labels. However, we mustn’t forget that many
target states in the new path are not in fact added. Those states already exist in
the current transducer; they are each of the target states of the m Si-sequences.
Moreover, of all the added transitions we already have α(w) + 2 accounted for.
Thus, there are

(
2 ·
(

2 ·
(⌈

α(w)
2

⌉
+ 1
)
−m

)
− (α(w) + 2)

)
ε-labelled transitions.

We have therefore covered all of the changes to the output function of the tran-
ducer. Now we also need to cover the first projection of ∆, the transition function
of the transducer. We know that w will be outputted α(w) times, so we need to
add its corresponding state that many times. Finally, every other added state
will have an expected in-degree of 2, hence why we need to add each of their
‘pointer’ twice.

A few issues arise from this and all related to one topic: isomorphism. Recall
from Chapter 2 that the finite-state complexity is the size of the description
of a given finite sequence. We cannot guarantee our resulting transducer will
be the smallest, but how do we guarantee that—since the encoding is so index
dependent—it will be the first encountered? Is it possible that even though we
do have a correct approximation of the smallest transducer, the way that we
encode it results in a non-optimal isomorphic version? And how do we correct
the encoding in that eventuality?

Open Problem 59. Is there a way to guarantee that the resulting approximate
description of a string is co-lexicographically first?

One can then wonder why the issue in the Open Problem 59 matters. The
fact is that the algorithms we are dealing with here provide an approximation
and hopefully a better upper bound to the complexity on really long strings. So,
if we were to use these resulting pairs as a means to prune the search space for
the actual shortest description, since the search is in lexicographical order, the
‘position’ of this resulting pair dramatically affects how much of the search space
is pruned. In turn this affects the time complexity of this new search.

Nevertheless, with our current knowledge we can provide some properties
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about the encoding. From Chapter 1.3we know that

|string§ (n) | = 2 ·
⌈

log2 (dlog2(n)e+ 1)
⌉

+ dlog2(n)e+ 1. (3.4)

So, we have, for s ∈ Σ∗ and for u, v, w substrings of s such that s = u · v · w,∣∣∣string§ (γ(s))
∣∣∣ = 2 ·

⌈
log2 (dlog2(γ(s))e+ 1)

⌉
+ dlog2(γ(s))e+ 1

≤ 2 ·
⌈

log2 (dlog2(γ(u))e+ 1)
⌉

+ dlog2(γ(u))e
+2 ·

⌈
log2 (dlog2(γ(v))e+ 1)

⌉
+ dlog2(γ(v))e

+2 ·
⌈

log2 (dlog2(γ(w))e+ 1)
⌉

+ dlog2(γ(w))e+ 3

=
∣∣∣string§ (γ(u))

∣∣∣+
∣∣∣string§ (γ(v))

∣∣∣+
∣∣∣string§ (γ(w))

∣∣∣ .
(3.5)

Also recall that |bin# (n) | = |string§ (n) | (see Table 1.3). Thus, if each of the
components of s occur only once, then it is disadvantageous to replace any of them
with a non-terminal. But once we have some repetitions of substrings, we find
that it is a favourable move. However, we suspect a threshold exists in the number
of occurrences for which the advantage holds, as the amount of states—and with it
the costly necessity to complete the transducer—also increases with that number.
In order to have a better idea of what that threshold might be, we need to have
at least an approximate value for the indexing function, γ. Thankfully, we know
that the indexing is in co-lexicographic order (see Section 1.2), so we can calculate
γ exactly as follows:

∀s ∈ Σ∗, γ(s) =
|s|−1∑
n=0

|Σ|n + cs + 1, (3.6)

where cs is the lexicographic index of s within all strings of size |s|, which is

cs = (s)|Σ|.

We now have a score function which will aim at minimising the resulting
transducer built from the grammar. However, it does not consider the size of the
control sequence, which is an integral part of the finite-state complexity measure.
We need to modify the above score function and incorporate a control sequence
measure. The length control sequence is the number of transitions needed to
traverse to obtain the sequence of interest x. Therefore, we know that the control
sequence augments with the number of occurrences of a word w as that new
transition will have to be used α(w) times. Moreover, every component will be
used, so we also need to add α(w) + 1 to the length of the control sequence. As
a result, the increase of the length of the control sequence p is measured by the
following function:

`(p) = |p|+ 2 · α(w) + 1. (3.7)
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Thus, when we combine the functions (3.3) with (3.7), we obtain:

score(T,p)(w) = |curr| −
m∑
i=1

∣∣∣string§ (γ(Si) + 1)
∣∣∣

+
∣∣∣string§ (γ(w) + 1)

∣∣∣+
α(w)+1∑
j=1

∣∣∣string§ (γ(ui) + 1)
∣∣∣

+
(

2 ·
(

2 ·
(⌈α(w)

2

⌉
+ 1
)
−m

)
− (α(w) + 2)

)
·
∣∣∣string§ (2)

∣∣∣
+ α(w) ·

∣∣∣bin# (|Q|+ 1)
∣∣∣+ 2 ·

α(w)+|Q|∑
k=|Q|+2

∣∣∣bin# (k)
∣∣∣

+ 2 · α(w) + 1, (3.8)

where curr now includes both the size of the current transducer and the size of
the current control sequence. Initially, |curr| = |σ0|+1, where σ0 is the encoding
of the machine in Figure 3.7 and where the control sequence is obviously a single
bit (here ‘1’).

1 2

0/ε

1/x

1/ε

0/ε

Figure 3.7: Transducer Tσ0 representing the deterministic and completed first
instance of the transducer in Algorithm 3.1.2, no matter the inputted grammar.
It also represents the resulting transducer if for some string x, the grammar is a
single start rule (i.e. no repetitive words are compressed).

According to the encoding S1 that we are using, this transducer Tσ0 is encoded
as

σ0 = bin# (2) · string§ (2) · bin# (3) · string§ (γ(x) + 1) · bin# (3) · string§ (2)

· bin# (3) · string§ (2)

= 1010 · 0100 · 1011 · string§ (γ(x) + 1) · 1011 · 0100 · 1011 · 0100

= 101001001011 · string§ (γ(x) + 1) · 1011010010110100.
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From (3.4) and (3.6), we know that

|σ0| = |101001001011|+ |string§ (γ(x) + 1) |+ |1011010010110100|
= |string§ (γ(x) + 1) |+ 28

= 2 ·
⌈

log2 (dlog2 (γ(x) + 1)e+ 1)
⌉

+ dlog2(γ(x) + 1)e+ 29

= 2 ·

⌈
log2

⌈log2

|x|−1∑
n=0

|2|n + (x)2 + 2

⌉+ 1

⌉

+

⌈
log2

|x|−1∑
n=0

|2|n + (x)2 + 2

⌉+ 29.

We therefore have all the necessary mathematical components to implement this
score function, and begin to construct new straight-line grammars.

3.2.2 Using the Score Function

The score function was devised to be used as a preprocessing tool for our algo-
rithms (hence in the construction of the grammar from the sequence of interest).
Therefore, in collaboration with Matthias Gallé, we implemented this score func-
tion into his IRRMGP algorithm [26] such that we could produce some exper-
imental results. These are still being collected. This way we have a means to
empirically compare both the grammars as well as the transducer-control pair
results with and without the use of this score function, which is meant to better
our outcome.

Conjecture 60. There exists an integer M such that for all DNA sequences s of
length greater or equal to M , the resulting approximative finite-state complexity
from Algorithm 3.1.2 using scoreT will be smaller than that using the standard
maximal compression score function in IRRMGP.

Another possibility which we have not explored in this thesis, is to use the
score function in the algorithms themselves as a means to decide whether to use
or convert a chosen non-terminal of the grammar. We suspect that only the
top-down algorithm would truly be adaptable to such procedures; however the
matters of efficiency and comparison of results between the top-down and the
bottom-up approaches become relevant and interesting. This work could then
evolve into a direct construction of the pair (T, p) from the sequence of interest
x, making it an independent computation from the grammars. However, there is
some debate regarding the benefits and efficiency of this direct computation, as
grammars are quite different from transducers even though context-free grammars
are more powerful than finite automata. We leave this matter for future work.
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3.3 Summary

Our general approach was to merge the two concepts described in the chapter’s
introduction by using the obtained smallest grammar and converting it into an
equivalent minimal transducer with its corresponding input (or control sequence)
to generate the string of interest. Since our goal is to approximate the finite-
state complexity of DNA, we have chosen a grammar-compressor which has been
built for that same domain, IRRMGP [15, 26]. This approach allows for a better
approximation of the finite-state complexity of that string, in the case where the
resulting pair is smaller than the upper bound given in Corollary 21. In particular,
two approaches have been developed and are presented in this chapter: a top-
down and a bottom-up approach. The ‘direction’ of the approach depends on
the ordering of the process to convert the grammar; whether we work from the
start rule (associated with the start variable) to the most referenced rule, or the
other way around. Once these two algorithms were developed, we considered the
idea of guiding the construction of the grammar in order to better the results of
our algorithms. Subsequently, this brought forth the development of the score
function in Section 3.2. It seemed natural to create a new heuristic for building
the SLG which would aim at reducing the size of the resulting transducer, since
the grammar is an intermediate step of our process.

The first item on our future project’s list is to obtain a thorough set of ex-
perimental results on transposons, a set which is currently being populated but
too insignificantly small to be in anyway conclusive at this stage. These empir-
ical results will allow us to conclusively prove or disprove Conjecture 60. As we
have discussed in this chapter, future work would include developing procedures
to include the score function in the conversion algorithms, to see if those would
more efficiently reduce the size of the pair or not. We could also adapt the work
and test for a further reduction of the pair with the consideration of common
prefixes in out-degree transition (or transduction) outputs; an idea inspired by
the Onward Subsequential Transducer Inference Algorithm (OSTIA) as presented
in [31].

OSTIA is an algorithm which infers a subsequential transducer from a train-
ing set of input-output pairs for the desired transducer. It does so by first con-
structing a tree transducer from the training set. Then the output symbols are
transferred closer to the root of the tree, which becomes the initial state of the
transducer. The transfer is based on recognising the longest common prefixes of
the outputs in the branches and ‘pushing’ those prefixes back towards the root.

When considering the prefixes, we could choose in our case, in a local or global
manner, which pairs of transitions to merge or to link to new intermediate states.
This will get rid of unnecessary ε-labelled transitions and possibly minimise the
size of the encoding.

This also leads to another study: that of minimising the ambiguity. This
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concept could in turn be used in grammars, especially grammars with advice.
We have also wondered whether this idea could be used to alter the above score
function or create new heuristics on a local (as a greedy approach) or a global
(towards an optimal score) scale of ambiguity measure. But, for further research
and studies, we are particularly interested in bypassing the grammar and in ex-
ploring the possibility of a direct construction of the transducer-control pair from
the sequence itself. The forner would definitely provide a fuller, more compelling
exploitation of the computability of finite-state complexity.



Chapter 4

Conclusions and Future Work

In this thesis we have proposed a computable counterpart to Kolmogorov com-
plexity based on finite-state transducers: the finite-state complexity. We also
attempted to apply this new complexity measure to the domain of DNA com-
pression. Several other approaches were previously offered to avoid the incom-
putability of all the descriptional complexities, also working with simpler ma-
chines than Turing machines such as context-free grammars or finite automata.
Finite transducers have the combined advantage of being a specialised type of
finite automaton and dealing with an input-output pair of strings, more natu-
rally imitating Turing machines. They are also enumerable as a regular set of
encodings, as we proved in Chapter 1. This new complexity is the fundamental
basis towards a new variant of AIT and we provided many promising results.

In Chapter 2 we presented, in detail, the finite-state complexity and its the-
oretical, computational and practical results. In particular, we proved that the
finite-state complexity is computable and satisfies the Invariance Theorem. Fur-
thermore, we exploited its computability and extracted some results relating to
its capability (or lack thereof) to satisfy a strong form of the Borel normality
and FS-incompressibility correlation. We also analyzed the subject of state-size
hierarchy and our main result in the matter was that it is infinite with respect
to the standard as well as any ‘natural’ encoding.

In Chapter 3 we provided the beginnings of a practical application of the
finite-state complexity with the aim of applying it to DNA compression. We
devised a pair of algorithms approximating the complexity of a DNA sequence,
given some smallest SLG for that same sequence. We furthered the work by for-
mulating a dedicated score function, which builds the smallest SLG according to
the size of the resulting transducer.

Essentially, the future work is listed in the many conjectures and open prob-
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lems that have yet to be decided upon. Our insights and questions on the exact
place the finite-state complexity holds in the NP hierarchy were expressed in
Conjecture 23 and Open Problem 24.

Our interest in Borel normality and its relation to FS-incompressibility was
made clear through Conjectures 40 and 43, as well as in Open Problems 33 and
44. These questions are definitely prioritised in our future works as a positive
theoretical answer would significantly strengthen the new theory.

Moreover, Open Problem 45 represents our growing enthusiasm in discovering
the behaviour of the finite-state complexity as we tend towards infinity and work
in that domain is definitely needed.

In the area of state-size hierarchy, Conjectures 50 and 57 remain to be proven.
In addition, many compelling open problems on the state-size hierarchy are yet
to be answered: Open Problems 51, 52, 53 and as well as various word-related
combinatorial problems.

Finally, we also have Conjecture 60 and Open Problem 59 to resolve concern-
ing our practical work. Notice however that the algorithms devised, as well as
the score function, do not explicitly depend on the DNA sequence. Hence we
could easily apply this work to a wider range of strings or we could make better
use of the DNA features to optimise them.
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Appendix A

Finite-State Complexity Plots

This appendix holds a set of plots to depict the convergence, even on these early
results, of the complexities based on our S0 and S1 encodings. They also depict
how much more compact CS1 is and we can start to see how, as we tend towards
infinity, CS1 will obtain smaller complexity measures than CS0 .
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Figure A.1: Plot of comparative data in Tables 2.1 and 2.2. Note that there are
over 1000 strings in the data set, and they could not all fit on the x-axis. The
data is all the strings from ε to 0100100011. The complexity measures between
CS0 (in blue) and CS1 (in red) vary from 0 to 8 and range over [8, 30].
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Figure A.2: More complete plot of the comparative data in Tables 2.1 and 2.2.
Note that there are over 2000 strings in the data set, and they could not all fit
on the x-axis. The data is all the strings from ε to 00000100010. The complex-
ity measures between CS0 and CS1 vary from 0 to 8. The range of complexity
measures is [8, 32]. CS0 is depicted in blue, CS1 in red.
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