

A Data Collection Tool for Sketched Diagrams

Rachel Blagojevic1, Beryl Plimmer1, John Grundy1, 2, Yong Wang3

1Department of Computer Science
2Department of Electrical and Computer Engineering

3Department of Statistics
University of Auckland

Private Bag 92019, Auckland, New Zealand

ABSTRACT

 Repositories of digital ink sketches would be invaluable for testing and evaluation of sketch recognition software.
However, there is no existing tool for flexible data collection and management of digital ink data for building
repositories of hand drawn diagrams. We present a tool for the efficient collection, management and analysis of ink
data. A resultant dataset records each ink stroke accompanied by participant and diagram information, stroke
labels and measurements of various stroke features. This tool enables the effective construction of a large database
of sketches to aid the development of recognition techniques.

Categories and Subject Descriptors (according to ACM CCS): I.7.5 [Document Capture]: Graphics recognition and
interpretation.

1. Introduction

Stylus input hardware has spurred research of sketching
tools. By imitating the pen and paper environment, use of
sketch tools allows for ambiguity and quick construction
of diagrams [PA03, BK03]. This is advantageous for
early phase design due to its unconstrained nature which
minimises cognitive load and decreases interruptions to
the flow of creativity [Bla90, Goe95]. This flexibility is a
stark contrast to conventional widget-based environments.
With sketch tools, in contrast to traditional whiteboards
and pen-and-paper sketching, there is the ease of digital
storage, transmission and replication gained from
computerisation. Potential uses include office automation,
software design, electronics design, architecture and civil
engineering, and education.

However diagramming-based sketch tools are yet to

gain general acceptance. One of the reasons for this is the
need for far more accurate recognition than is currently
available. Recognition is important as it allows these
sketch tools to support more intelligent tasks such as
editing, execution and conversion of these diagrams.
However the ambiguity of hand drawn diagrams makes
recognition problems hard to solve.

Typically recognisers are comprised of capturing stroke

features and using algorithms to combine these features to

identify the meaning of the ink. While many recognition
algorithms have been developed to date [AD04, FPJ02,
Gro96, LM96, Rub91a, SSD01, You05,], most have been
informed by ad-hoc, heuristic-based assumptions about
sketch properties. There is a critical need for more
rigorous analysis of sketch recognition performance and
tuning. The development of high precision recognition
techniques requires large amounts of digital ink data to
aid the training and evaluation stages. In addition to
quantity, the quality of this data is paramount to the
success of their development and therefore must be un-
biased and representative of a wide range of diagram
types. However, to enable this we require a corpus of
well-authored sketches, sketch components and
categorisation of data elements to be assembled.

There is little ink data available that meet these criteria

and little support for obtaining such data. A tool that
provides ease of data collection and management would
allow us to construct a data repository more efficiently
and therefore aid the development of recognition
techniques.

This paper describes such a tool. The next section gives

an overview of past work related to the collection of ink
data. Sections three and four describe the requirements of
a sketch data authoring tool and the implementation
details of the prototype we developed according to these
requirements. Section five describes our evaluation

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

relating to the usability of our software. We then proceed
to discuss the wider potential of our tool in section six
and conclude with a summary.

2. Background

Sketch tools generally include some form of
recognition. Early sketch tools include the user interface
design software Silk [LM96] and The Electronic Cocktail
Napkin [DG01, Gro96] for architecture design. Both of
these tools provide some form of recognition of hand
drawn diagrams. Rubine’s work [Rub91, Rub91a] in
gesture recognition has been used by many other sketch
recognition systems. It involves using a linear classifier
for single stroke ink recognition. Rubine reported a 96.8%
success rate. However, further experiments that re-
implement Rubine’s algorithm have been lower 86%
[Pli04] and 84% [You05]. Despite this his algorithm has
been widely adopted [CGH03, CMP05, DHT00, FP07,
LM95, LNHL00, PA03a, Pli04, You05] with various
alterations to the feature set reported. Recognition for
many diagram domains have been explored including
CALI [FPJ02] for general shape recognition, a
mechanical engineering design tool [SSD01], Tahuti
[HD02] for UML class diagrams and SketchREAD
[AD04] a multi domain recognition tool.

However, little rigorous analysis has been applied when

identifying the features and algorithms to be used in each
recognition technique. Typically feature and algorithm
selection is made heuristically [Rub91a, SSD01, YC03].
Fonseca et al [FJ01, FJ00, FPJ02, JF99] report using
percentile graphics for each possible feature which show
the statistical distribution of feature values for different
shape classes. This is one of the few ink feature sets that
is scientifically-based.

Our previous work [Pat07, PPGI07] looked at using

formal techniques to identify a feature set for dividing
text and shape strokes in diagrams. We built a dataset of
1519 strokes from various types of diagrams. This dataset
was then analysed using a statistical partitioning
technique which constructed a decision tree. The resulting
tree contained the eight most significant features chosen
from a set of 46 candidate features.

However, there were limitations of this work stemming

from problems with collecting unbiased, high quality
data. Participants were asked to copy diagrams from pre-
drawn figures on paper. This may have caused some bias
in the timing data obtained as we would expect
participants to copy diagrams much faster than when
constructing their own from scratch (and timing was
identified as one of the important features). Also many of
the diagrams that the data was obtained from were not
complete, but were composed of one single diagram
component as shown in Figure 1a as opposed to a full
diagram such as Figure 1b. This would have influenced
some of the information obtained regarding stroke
relationships. It was also clear that a more efficient

method of collecting, labelling and managing large
amounts of data was required.

Wolin et al [WSA07] designed a tool for more efficient

labelling of ink data using a stylus. Their tool is able to
complete three main tasks; stroke fragmentation
(automatic and manual), stroke grouping and symbol
labelling. They claim that fragmenting strokes is
important before labelling as users may draw more than
one symbol using a single stroke. Fragmenting can also
help divide strokes into primitives i.e. lines and arcs.
Stroke grouping is for the opposite problem of labelling
components made of more than one stroke. Once these
tasks have been performed labelling the symbol in the
sketch can be carried out efficiently. Their tool also
allows for multiple labels to be applied to a stroke. Their
usability study showed that overall the user interface was
intuitive and easy to use. Possible improvements that
were discussed were that better support is required for
using multiple labels and that undo/redo is helpful in such
an interface. Although this tool has very useful features
for labelling sketches it only covers one stage of the
overall data collection and management process.

a. Single diagram
component

b. Full diagram

Figure 1

There are very few databases of hand drawn sketches
available. Oltmans et al [OAD04] describe their
experiences in collecting sketch data while building an
Experimental Test Corpus of Hand Annotated Sketches
(ETCHA Sketches). The process of constructing this
database included collecting sketches and then labelling
the primitive shapes within the sketches. Their data
covers four domains including circuit diagrams, family
trees, floor plans and geometric configurations; however
there is no text included in these sketches. Participants
were asked to label their diagrams themselves. As
different recognition problems require slightly different
data from each sketch four possible types of labels were
identified: (a) “Best in isolation” labels for a single stroke
classifier, second, (b) context based labels, and (c) “Is a”
and (d) “Can be a” labels where a group of labels are
assigned to a stroke for example a slightly curved line is a
line and an arc.

Hse and Newton [HN04] have also compiled a test

corpus of sketches. They asked their participants to sketch
examples of 13 different symbols, which are
predominately basic shapes such as rectangles and circles.
This dataset has similar problems to our previous work

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

 [Pat07, PPGI07] as only one single diagram component
is drawn for each sketch. In this case data concerning
stroke relationships in a full diagram are lost. In addition
there is no writing included in any of these examples.

These databases provide a good start to building a

repository of data for sketch recognition research however
there are many other domains to consider and limitations
to overcome. In addition there is still the lack of a tool
that can support all aspects of data collection and
management.

3. Requirements

The fundamental requirement of our tool is that it
minimises the time and effort taken when carrying out ink
data collection and management tasks. In order to meet
this requirement our tool must provide support for data
collection, labelling and dataset generation, as well as
meeting common user interface requirements.

The tool must support the collection of data in an

unbiased manner to ensure its quality. By unbiased we
mean the method of collection used follows as closely as
possible to the natural practice of drawing diagrams so
that the data obtained provides a true representation of
typical diagrams. In terms of quantity, it must have the
ability to manage large amounts of data and ensure that
this data collection is fully extensible, for example when
adding new features to measure. In addition the data must
be easily extractable in a variety of formats for third party
analysis tool purposes.

The user interface requires basic functions of (sketch)

draw, erase and select. Also functions to open and save a
project (using xml files) are necessary. A project can
contain many participants who can sketch many diagrams
(see Figure 2). There should be pre-defined templates for
each diagram type which contain a diagram name and
instructions to participants on what to sketch. This way
each participant sees the same information before
sketching their diagrams which helps to keep these
variables constant. Also pre-defined labels for each
diagram template are required. These are defined by the
user based on the type of diagram that is being collected.

A representative usage scenario for creating a new

project is as follows. The researcher opens the application
and is prompted to either open an existing project or
create a new one. They choose to create a new project and
give it a name. They are then prompted to define
templates for the types of diagrams that they wish to
collect. For example they want to collect organisation
diagrams and user interface designs so they create two
templates where they define a name and instructions on
how to construct each diagram. They also define labels
for each diagram type, for example for organisation
diagrams labels may include “person”, “connectors” and
“text”. The researcher is then free to begin collecting
sketches.

Figure 2: Class diagram. A Project can have many
Participants. A Project is defined by one or many
Templates where each Template describes the type of
diagram to be collected (this includes pre-defined
Labels). Participants can draw many Diagrams. Each
Diagram is based on a pre-defined Template.

As mentioned earlier our tool must support the

collection of multiple sketches from many participants. A
tab view with a drawing area for each diagram defined by
the project templates and written instructions on how to
construct these diagrams would be an ideal way to display
what participants are required to sketch. Editing facilities
such as select and erase are available when drawing these
diagrams. When a participant is finished the sketches are
viewable but not editable.

A representative usage scenario for collecting sketches

is as follows. The participant reads the instructions and
draws the diagrams defined by the instructions in the
drawing area. If there is more than one diagram required
each one will have a separate tab. When the participant is
ready to complete a new diagram they can switch tabs to
complete the remaining diagrams in the same manner.

Once sketches have been collected each component of

the sketch must be labelled. Automatic and manual
labelling is available. We begin by supporting automatic
labelling of shape and text strokes using our “sketch
divider” [Pat07, PPGI07], which categorises ink as text or
a shape. This will be extended later with further
recognition and categorisation algorithms. Manual
labelling can be used to correct the automatic parser and
add further information. A hierarchy of labels should be
pre-defined in the diagram template. A hierarchy is used
so that enough information is available for different
recognition problems. For example one stroke in a
diagram maybe labelled as a circle which will
automatically imply that it can also be labelled as a shape
stroke for more general recognition problems. Strokes
should also be numbered for unique identification at a
later stage.

When enough sketches are collected and labelled they

can be turned into a dataset. This involves calculating a
number of features for each stroke in each sketch and
outputting a dataset file. The interface should make it
easy to select which participants/diagrams/features should

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

.

be included in the dataset and the format of the output
file. The dataset can then be imported into data mining
tools such as R [RDC06] and Weka [WF05] to be
analysed for the development of new recognisers.

4. Prototype Usage Example

We illustrate a sample usage scenario of our sketch data
capture prototype. A user wants to create a corpus of
sketches for the domain of family tree/organisation charts.

When the application starts a dialog is shown giving

the researcher the option of either creating a new project
or opening an existing project. If they choose to begin a
new project they first specify template diagrams on which
this project is based.

Figure 3: Add template form

A template provides information on a diagram type that
the researcher wishes to collect. It consists of a name,
instructions on how to draw a diagram and a set of labels
to describe the components of that diagram. A dialog box
(Figure 3) is displayed asking them to define a template
by specifying this information.

4.1 Data Collection

Once the templates have been specified the researcher
may begin collecting sketches from participants. Using
the tools menu they can click on Data Collector which
will take them to a screen similar to that shown in Figure
4. Figure 4 shows a list box (a) which lists the ID
numbers of the participants who have contributed to the
project. Clicking on each ID number will show the
diagrams that the corresponding participant has drawn.

In the middle of the screen (b) is the drawing area as

shown in Figure 4. There is one tab for each diagram.
Clicking on each tab will also change the text area (c) to
display the correct instructions for drawing that diagram
(as specified by the researcher when creating the diagram
templates shown in Figure 3).

All data collected is saved to xml files. This includes

project information such as the diagram templates, all the
raw stroke data for each participant and the corresponding
labels applied to these strokes as discussed in the next
section.

4.2 Labelling Data

Once a diagram has been drawn the strokes can be
labelled. Using the tools menu the user (researcher or
participant) can select the Labeller which will take them
to a screen similar to that shown in Figure 5.

The user interface for the Labeller has the same list box

(a) showing the participant ID’s and tabs for each
diagram. The drawing area (b) on each tab is un-editable
except for changing the colour of the stroke. Pressing the
auto parse button (c) will automatically parse the current

Figure 4: Data collector form Figure 5: Labeller form showing a diagram labelled using

 the automatic parser.

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

diagram using our divider [Pat07, PPGI07] into shape and
text strokes. It colours the strokes according to the colour
map shown in the tree view box (d) e.g. text strokes are
red and shape strokes are black.

The user can also manually label strokes by selecting

the correct label from the tree view component and
clicking on the stroke/strokes that require this label. These
labels are those specified when defining the template for
that diagram type as seen in Figure 3. The stroke is then
coloured to match the deepest label in the tree as shown in
Figure 6. We have chosen this hierarchical labelling
structure to allow more than one label to be applied to a
stroke without manually specifying each one.

Figure 6: Labeller form showing a diagram labelled
manually.

4.3 Dataset Generation

The final step to this data collection process is to
generate a dataset. To generate a dataset the researcher
selects Dataset Generator from the tools menu. A screen
similar to that shown in Figure 7 will appear.

There are three steps to generating a dataset; first we

must choose which stroke features we want to measure,
then which diagrams we are interested in measuring and
finally the format for the output file.

A list of possible features is displayed in a list box (a).

This list is dynamically generated to ensure that the
feature set is fully extensible. There is a check box (b) to
enable the user to select or deselect all features with ease.
Only those features selected are calculated in the dataset.

All the diagrams that are part of the current project are

displayed in another list box (c). It has a tree structure
showing which diagrams each participant has drawn. A
quick select list (d) is available to enable the user to select
or deselect all the diagrams or easily choose only certain
diagram types. Only the diagrams that have been selected
are included in the dataset.

The final combo box (e) shows the file format options

for the dataset. This currently includes .xls, .csv and .arff

Figure 7: Dataset generator form

 (Weka format [WF05]). However, more output options
can be added.

Once all the desired selections have been made the user
clicks on the generate dataset button. Each selected
feature will be calculated for each stroke in the selected
diagrams with the results written to the chosen output file.
Figure 8 shows an example dataset (using the .xls format)
for the organisation diagram in Figure 6. There are extra
pieces of information added to each stroke including the
participant ID of the person who drew the diagram, the
diagram name, the stroke ID and the labels applied to that
stroke.

Figure 8: Example dataset

The resulting dataset can then be analysed by data

mining tools to determine the most significant features
and algorithms for any given sketch recognition problem.
For example, Figure 9 shows the data from Figure 8 being
analysed by Weka [WF05] to construct a decision tree for
recognising basic shapes.

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

Figure 9: Decision tree analysis in Weka [WF05]

5. Evaluation

A usability study was used to test how intuitive our tool
is to use, in particular the data collection and labelling
interfaces. For the data collection interface we wanted to
determine how easy it is for participants to sketch
diagrams using the provided instructions. Then for the
labeller we are interested in how efficiently we can label
the collected diagrams with the existing interface.

5.1 Data collection

Six students from a computer science and software
engineering background participated in the study. Half of
the participants use pen input on a computer frequently
and half had used pen input only occasionally or once
before.

The participants were asked to draw two types of

diagrams, an organisation chart and a graph as shown in
figure 10. They were given very specific instructions on
how to construct these diagrams. However, at this stage
we were not interested in evaluating the way we present
problems to participants to sketch, we were only testing
the usability of the interface.

We observed the participants as they completed each

task and then asked them to complete a short
questionnaire. The questionnaire focused on learning how
easy it was for participants to complete the tasks with our
software on a Tablet PC.

All participants strongly agreed that creating the

diagrams was easy given the environment and also agreed
that the interaction tools (hardware and software) helped
them to complete each task.

All of the participants agreed that they understood the

tasks they were to perform. Although we were not
evaluating the way that the tasks were presented this

feedback gives us a positive indication that the style used
to display instructions to the user on how to complete

a. Organisation diagram b. Graph
Figure 10: Diagrams collected for the usability study

each task is effective. We will evaluate this aspect of data
collection further in the future.

Five of the six participants, were neutral when asked if
editing and checking the diagrams was easy. This is
because most completed the task without a need to edit
the diagram as the tasks were easy to understand and
presented with clear instructions as discussed previously.
The sixth participant strongly agreed that editing and
checking the diagrams was easy.

Three participants, after completing the first task,

almost used the participant list box by accident to
navigate to the next task. However before clicking in the
wrong place they quickly realised that they needed to use
the tabs to switch tasks. The names of the tabs could
include the label “Task n” before the diagram name and
have a larger font to make this selection obvious.

Also one participant was unsure where the instructions

for the second task were as they did not realise that the
text area would change to display the instructions
corresponding to the selected tab. We intend to simply
include the text area within the tab to make it clear which
instructions belong to which task.

5.2 Labelling

We were also interested in evaluating how efficient our
labeller is to use. After collecting all the diagrams from
the participants we labelled each sketch and measured
how long this process took.

To label all 12 diagrams (two diagrams per participant)

it took approximately seven minutes. An extra minute
was used to double check all the diagrams and another 2.5
minutes for the dataset to be generated using all 45
features in our current feature set. This is a total of
approximately 10.5 minutes to label all diagrams and
generate a dataset of 476 strokes. In comparison,
manually labelling the data for our previous work with 26
participants and 1519 strokes took approximately a 1-2
days work.

When labelling the diagrams we found that the

automatic parser using our text-shape divider [Pat07,

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

PPGI07] to give preliminary labels to the diagram was
especially helpful given the amount of text that was in the
diagrams.

One possible improvement that could be made is to

allow all the diagrams of the same type to be labelled
together. For example label all the organisation diagrams
first, and then label all the graph diagrams, rather than
labelling all the diagrams for each participant. This may
make the labelling process more efficient as it minimises
the cognitive load required when switching tasks and
allows for familiarity with labelling one type of diagram.
Modifying the participant list box, shown in Figure 5(a),
to display by diagram types as an alternative to participant
would allow the user to navigate through each sketch as
required.

6. Discussion

The tool we have presented provides a framework for
the processes involved in data collection and management
of sketches. The modularity allows for existing and future
tools to be easily included to provide more functionality
or to build on the current functions. For example the
sketch labelling tool presented by Wolin et al [WSA07]
could easily replace the labeller that exists in our tool.

Our objective is to develop this tool into a framework

for building recognisers. In addition to the data collection
and management support that exists, a framework would
involve building a library of common recognition and
feature selection algorithms and an automated evaluator
for the recogniser.

The feature selection algorithms would first be used to

determine the best feature set to use for the required
recognition problem. The chosen feature set could then be
applied to various recognition algorithms, resulting in a
collection of recognisers.

These recognisers could be ranked using an automated

evaluator. This would involve using each recogniser on
the sketches collected and determining their accuracy by
comparing the recognition results with the labels
previously applied to the diagram. Using this evaluator
we could identify the most accurate recogniser as the one
with the best recognition rate in comparison to the other
recognisers.

These recognisers could also be added to the labeller

for automatically parsing diagrams to apply stroke labels
and continue the cycle.

7. Conclusion

We have described the key requirements for a sketched
diagram digital ink capture tool for assembling a corpus
of quality ink data. We have developed and evaluated a
prototype authoring tool enabling such a corpus to be

assembled. Preliminary evaluation results indicate the tool
provides a good environment for capturing and
categorising ink data for further analysis. We are using
this analysis to inform our development of higher
precision sketch recognition algorithms for diagram-based
sketching tools.

Our prototype is available for download from

http://www.cs.auckland.ac.nz/~rpat088/

References

[AD04] ALVARADO C. DAVIS R.: SketchREAD: a
multi-domain sketch recognition engine. Proceedings
of the 17th annual ACM symposium on User interface
software and technology (2004), pp. 23-32.

[BK03] BAILEY B. P. KONSTAN J. A.: Are Informal
Tools Better? Comparing DEMAIS, Pencil and Paper,
and Authorware for Early Multimedia Design. In CHI
(2003), pp. 313-320

[Bla90] BLACK A.: Visible planning on paper and on
screen: The impact of working medium on decision-
making by novice graphic designers. Behaviour and
information technology, 4, 9 (1990), pp. 283-296.

[CGH03] CHEN Q., GRUNDY J. HOSKING J.: An E-
whiteboard application to support early design-stage
sketching of UML diagrams. Human Centric Computer
Languages and Environments (2003), pp. 219-226

[CMP05] CHUNG R., MIRICA P. PLIMMER B.:
InkKit: A Generic Design Tool for the Tablet PC. In
CHINZ (2005), pp. 29-30

[DHT00] DAMM C. H., HANSEN K. M. THOMSEN
M.: Tool support for cooperative object-oriented
design: Gesture based modelling on and electronic
whiteboard. In CHI (2000), pp. 518-525

[DG01] DO E. Y. L. GROSS M.: Thinking with
Diagrams in Architectural Design. Artificial
Intelligence Review, 15, (2001), pp. 135-149

[FJ01] FONSECA M. J. JORGE J. A.: Experimental
Evaluation of an on-line Scribble Recognizer. In
Pattern Recognition Letters (2001), pp. 1311–1319.

[FJ00] FONSECA M. J. JORGE J. A.: Using Fuzzy
Logic to Recognize Geometric Shapes Interactively. In
Proceedings of the 9th International Conference on
Fuzzy Systems (FUZZ-IEEE), (2000)

[FPJ02] FONSECA M. J., PIMENTEL C. E. JORGE J.
A.: CALI: An Online Scribble Recogniser for
Calligraphic Interfaces. In AAAI Spring Symposium
on Sketch Understanding (2002)

[FP07] FREEMAN I. PLIMMER B.: Connector
Semantics for Sketched Diagram Recognition. In
AUIC (2007), pp, 71-78

[Goe95] GOEL V. Sketches of thought. In The MIT
Press, (1995)

[Gro96] GROSS M.: The Electronic Cocktail Napkin-a
computational environment for working with design
diagrams. Design Studies, 1, 17 (1996), pp. 53-69

[HD02] HAMMOND T. DAVIS R.: Tahuti: A
Geometrical Sketch Recognition System for UML
Class Diagrams. In AAAI Spring Symposium on
Sketch Understanding (2002)

http://www.cs.auckland.ac.nz/~rpat088/

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

[HN04] HSE H. NEWTON A. R.: Sketched Symbol
Recognition using Zernike Moments. International
Conference on Pattern Recognition (2004), pp. 367-370

[JF99] JORGE J. A. FONSECA M. J.: A Simple
Approach to Recognise Geometric Shapes
Interactively. In Proceedings of the Third Int.
Workshop on Graphics Recognition (GREC), (1999)

[LM95] LANDAY J. MYERS B.: Interactive sketching
for the early stages of user interface design. In CHI’95
Mosaic of Creativity (1995), pp. 43-50

[LM96] LANDAY J. MYERS B.: Sketching
storyboards to illustrate interface behaviors. In CHI '96
(1996), pp. 193-194

[LNHL00] LIN J., NEWMAN M. W., HONG J. I.
LANDAY J. A.: Denim: Finding a tighter fit between
tools and practice for web design. In CHI 2000 (2000),
pp. 510-517

[OAD04] OLTMANS M., ALVARADO C. DAVIS R.:
ETCHA Sketches: Lessons learned from collecting
sketch data. In AAAI Fall Symposium on Making Pen-
Based Interaction Intelligent and Natural. (2004)

[Pat07] PATEL R.: Exploring better techniques for
diagram recognition. University of Auckland, (2007),
MSc

[PPGI07] PATEL R., PLIMMER B., GRUNDY J.
IHAKA R.: Ink Features for Diagram Recognition. In
4th Eurographics Workshop on Sketch-Based
Interfaces and Modeling (2007)

[Pli04] PLIMMER B. Using Shared Displays to
Support Group Designs; A Study of the Use of
Informal User Interface Designs when Learning to
Program. University of Waikato, (2004), PhD

[PA03] PLIMMER B. E. APPERLEY M.: Evaluating a
Sketch Environment for Novice Programmers. In
SIGCHI (2003), pp. 1018-1019

[PA03a] PLIMMER B. E. APPERLEY M.: Freeform:
A Tool for Sketching Form Designs. In BHCI (2003),
2, pp. 183-186

[RDC06] R DEVELOPMENT CORE TEAM. R: A
language and environment for statistical computing. R
Foundation for Statistical Computing, (2006)

[Rub91] RUBINE D. H. The automatic recognition of
gestures. Carnegie Mellon University, (1991), PhD

[Rub91a] RUBINE D. H.: Specifying gestures by
example. In Proceedings of Siggraph '91 (1991), pp
329-337

[SSD01] SEZGIN T. M., STAHOVICH T. DAVIS R.:
Sketch based interfaces: early processing for sketch
understanding. In Proceedings of the 2001 workshop
on Perceptive user interfaces (2001), pp. 1-8

[WF05] WITTEN I. H. FRANK E. Data Mining:
Practical machine learning tools and techniques.
Morgan Kaufmann, (2005).

[WSA07] WOLIN A., SMITH D. ALVARADO C.: A
Pen-based Tool for Efficient Labeling of 2D Sketches.
In 4th Eurographics Workshop on Sketch-Based
Interfaces and Modeling (2007)

[You05] YOUNG M. InkKit: The Back End of the
Generic Design Transformation Tool. In University of
Auckland, (2005), BEng

[YC03] YU B. CAI S.: A domain-independent system
for sketch recognition. Proceedings of the 1st
international conference on Computer graphics and

interactive techniques in Australasia and South East
Asia (2003), pp. 141-146.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

