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Abstract. A critical component of diagramming sketch tools is their ability to 
reliably recognise hand-drawn diagram components. This is made difficult by 
the presence of both geometric shapes and characters in diagrams. The goal of 
our research is to improve sketch recognition by improving the accuracy in 
grouping and classifying strokes in a diagram into text characters and shapes. 
We have done this by identifying the most significant features of strokes that 
can be used to distinguish shapes from text using a decision tree based parti-
tioning technique. Implementation and evaluation of this new “shape divider” 
using these features against InkKit’s existing divider and the Microsoft divider 
has shown that our divider is more accurate at dividing text and shape strokes 
and can therefore improve overall sketch recognition. 
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1. Introduction 

Computers can be used to produce formal diagrams e.g. software designs, user inter-
face designs, CAD specifications, hierarchy charts and so on. However, in the begin-
ning of a project it can be better to use pen and paper.  The reason is that these simple, 
human-centric design tools are far more flexible which encourages creativity and in 
turn this produces better designs in the end.  However a computer offers easy editing 
and distribution features and greater formality to the look of a diagram and so some-
times the important pen and paper design stage is overlooked.   

Imagine being able to sketch diagrams directly onto a computer screen and have 
them accurately translated into formalized representations. The Tablet PC supports 
sketching of characters and recognition of these but has much weaker support for 
general diagram drawing and accurate recognition. InkKit [8] is a sketch tool for the 
Tablet PC that has been designed to bridge the gap between pen and paper and com-
puters.  InkKit allows you to sketch any type of diagram using the Tablet PC’s stylus.  
Its recognition engine then identifies each component of the diagram and transforms it 
into a formal, tidy version in a specified format such as HTML or a Word drawing ob-
ject. InkKit has been used as a foundation for this research. 
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2. Motivation 

A critical part of diagramming sketch 
tools is being able to reliably recognise 
the hand-drawn diagram components.  
The purpose of this Masters project is 
to improve the recognition algorithms 
that currently exist.  

One of the reasons why recognising 
a diagram is difficult, is because we are 
dealing with words and shapes at the 
same time.  Figure 1, shows a typical 
user interface design that can be used  

Fig 1. Sketch of a user interface design       to highlight this problem. For example,  
 
what is it that makes the circles in front of the words “Male” and “Female” circles in-
dicating radio buttons and not the letter o? 

The existing InkKit system automatically divides the ink into words and shapes, 
and then recognises the words using the Tablet Operating System recognizer and 
shapes using a variant of Rubine’s algorithm [5].  Once the basic shapes and words 
have been recognised they are combined back together to suggest the most probable 
diagram component.  This method of dividing the words and shapes is preferred over 
using a modal interface to separate the two as it preserves human’s natural sketching 
approaches used on pen and paper [3]. The aim of our research has been to greatly 
improve the algorithm that divides the ink into either text or drawing as this is the 
area where we can expect the most improvement in diagram recognition [8].   

Most sketch recognition mechanisms measure various features of the strokes in a 
sketch to guide its recognition. This is also evident in the recognition engine of Ink-
Kit. However what is lacking is a definitive, principled set of the most significant fea-
tures that can be used to provide an accurate division of the shape and text strokes in a 
sketch. Therefore our goal is to find these features in order to improve division of 
shape and text strokes and in doing so improve the accuracy of sketch recognition as a 
whole. 

We first detail the methodology we have used to identify the most significant fea-
tures of sketches that will aid division of strokes. Section 4 will briefly describe the 
selected feature set and then detail the experiment conducted to identify which fea-
tures from the set are significant. The implementation and evaluation of the resulting 
divider of shape and text strokes is presented in Section 5. Finally we conclude with a 
discussion of the results and suggestions for future work. 

 

3. Methodology 

In this section we provide an overview of the approach we have used beginning with 
the investigation of possible sketch features, how feature data is collected and ana-
lysed, and the implementation and evaluation of the resulting divider of text and 
shape strokes. 



Feature Discovery 

Our first step was to identify all the possible features that could be useful in distin-
guishing between text and shape strokes in a sketched diagram. The origin of these 
features were from (1) related work in sketch recognition; (2) stroke features we felt 
may be useful in classifying strokes; (3) and stroke features from newly available 
hardware. Many stroke features have been documented by past work to be significant 
to solving various sketch recognition problems [2, 5, 6], and several of these features 
we have already implemented in InkKit’s existing recognition engine [8]. Therefore it 
was in our interest to include as many of these features as possible in our investiga-
tion. Newly available hardware allows us to consider features that have not been 
widely studied before such as pen pressure and tilt.  

 

Data Collection 

We wanted to determine which features are actually the most significant to use when 
dividing text and shape strokes. This enables us to sample and use only those features 
when classifying strokes in InkKit’s divider and not the myriad of other features that 
have little or no effect on stroke classification. To be able to test which are important 
features and which aren’t we collected measurements of each feature from sketches 
and compiled these measurements into a dataset. 

We identified a set of diagrams to be used for our experiment that displayed a wide 
range of common characteristics of diagrams. This allowed us to sample our stroke 
feature set on a realistic group of diagrams so that we are more likely to achieve a 
more accurate identification of significant features. 

The next step was to get people to sketch examples of this set of diagrams using 
InkKit on Tablet PC’s.  We needed to collect diagram sets from as many people as 
possible to avoid bias in our samples of individual variation that may occur in their 
sketching. Once these diagrams were collected we processed them by calculating all 
stroke features identified from each stroke of each diagram. The resulting data was 
then collated into a dataset ready for statistical analysis. 

 

Analysis 

Once all the sketches were collected and processed into a dataset they were analysed 
to determine the features of strokes that are significant and should be used to divide 
text and shape strokes. We wanted to use a formal technique for this analysis so that 
we would gain a clear, accurate and principled view of the degree of significance each 
feature has in distinguishing between shapes and text in a hand-drawn diagram. 

The use of trees has become a common and effective way to assist in decision 
making problems, our decision being whether to classify a stroke in a diagram sketch 
as a text or shape stroke. A tree-based partitioning technique was used to analyse the 
dataset and construct a classification tree [1, 7]. A classification tree has decision vari-
ables at each node, which would correspond to the most significant features found, 
and a classification label at each leaf, which would be either text or shape in our case 
(see Figure 2). Employing this technique allowed us to clearly identify significant fea-



tures to help division, and also provided us with the most optimal combination of fea-
tures for implementation.  

Implementation & Evaluation 

Once the significant stroke features had been identified through formal statistical 
analysis a new shape divider was implemented for InkKit. InkKit’s existing divider 
remains as we wanted to compare its performance and the Tablet PC Microsoft di-
vider to our new shape divider. We evaluated these three divider implementations to 
determine which is more accurate at dividing text and shape strokes. 

4. Experiment 

All the possible stroke features that may be helpful in distinguishing text from shape 
strokes were compiled together into a feature set. They came from related work in 
sketch recognition [2, 5, 6, 8]; features we thought may be significant; and the discov-
ery of features from newly available Tablet PC hardware. We attempted to include as 
many features of strokes as possible to ensure that all avenues would be explored by 
the statistical analysis and the most significant features could be identified – 52 fea-
tures were selected in all.  The 52 features can be grouped into seven categories, size, 
time, intersections, curvature, pressure, Tablet Operating System recognition values 
and others.  

Our stroke feature set was then analysed to discover which of these features pro-
vide the greatest contribution to dividing text and shape strokes in a diagram. We de-
scribe this experiment beginning with the collection and processing of data from a 
range of sketched diagrams, then analysing this data using a tree-based partitioning 
technique that consequently constructs a classification tree containing the most sig-
nificant features for division of text and shape strokes. This process allowed us to 
draw conclusions as to which features are most significant to division. 

Data Collection & Processing 

To perform a full analysis of the feature set sketched diagrams were collected from as 
many people as possible. A set of nine diagrams were identified to be used for analy-
sis, illustrated in Table 1. In compiling this set we looked for examples of shapes and 
text that would represent those typical of a wide range of diagram types and therefore 
would allow us to identify the most significant features of strokes for division to be 
identified for a general-purpose, reusable shape divider. Our diagram set includes ba-
sic shapes and text, complex shapes, composite shapes and various combinations and 
ordering of shapes and text. Sketches were gathered from 26 people. Each person 
completed a set of 9 sketches. Each sketch was then processed to obtain the 52 fea-
tures from our feature set, forming a final dataset ready for statistical analysis with 
1519 observations in all. We manually categorized each stroke as SHAPE or TEXT as 
base data for the statistical analysis. 



Table 1. The Diagram Set 

Shape Description Example Sketch 
Circle 

 
Button: rectangle with label “Button” inside it. 

 
Text: “Hello how are you”, without punctuation. 

 
Radio-text: radio button with label “Hello world” next to it. 
Text-radio: same as radio-text above but label written be-
fore radio button (spatial ordering is the same).  
Combo box: rectangle with a triangle inside. 

 
Resistor: spiked line, from electrical diagrams. 

 
Hexagon: six-sided polygon. 

 
Connector: two rectangles with a line connecting them in 
the middle.  

 

Analysis 

The analysis of the dataset was performed using the R statistical package, pre-release 
Version 2.5.0 [9]. The dataset was used as training data for the rpart function [7] 
which applies a tree-based partitioning technique to identify the significant features to 
use as decision variables in a binary classification tree and determines how to split 
those features so that they can accurately classify strokes as either text or shape 
strokes. For each feature rpart is provided with each example stroke’s feature data e.g. 
length, average speed, curvature, average pressure value etc, and the known classifi-
cation of the stroke i.e. SHAPE or TEXT. From the total training set the rpart function 
constructs a binary classification tree starting with the most significant feature, then 
the next, then the next and so on. 

 

Results 

The binary classification tree resulting from our rpart analysis of our full training set 
is shown in Figure 2. Eight different features of strokes, named in each node of the 
classification tree, were identified from the feature set as being significant for divid-
ing shape from text strokes, each one is described in Table 2. The majority of these 
features are measuring some element of size, as five out of eight of the features come 
from this category. Features of time have also registered their importance as making 
up two out of eight of the significant features. Also one feature of curvature has been 
identified as important to the division of shape and text strokes. 

This resultant decision tree is used to classify strokes into SHAPE or TEXT. For 
example, consider classifying a given stroke. First we sample its bounding box width. 
If its bounding box width is >= 1848 we follow the left branch of the tree. We then 
measure its total angle. If its total angle is < 10.1 the left branch is taken once again 
and the stroke is classified as a SHAPE. Taking another stroke, we calculate its 



 

Fig 2. Classification tree for text and shape divider 

Table 2. Description of the significant features identified in the classification tree 

Feature Description 
Bounding box width  Width of the bounding box of the stroke. 
Distance from last 
stroke   

Distance the pen travels between the current stroke and the previ-
ous stroke.  

Distance to next stroke Distance the pen travels between the current stroke and the next 
stroke.  

Amount of ink inside  Amount of ink inside the strokes bounding box. 
Perimeter to area Ratio of perimeter to area of the strokes convex hull. 
Time till next stroke  The time between the current stroke and the next stroke in the 

sketch.  
Speed to next stroke  Speed (distance/time) between the current stroke and the next 

stroke in the sketch.  
Total angle  Total angle traversed by the stroke. 

 
bounding box width and if this is < 1848 we follow the right hand side branch. We 
then calculate the strokes distance from the last stroke, and if this is < 2554 we again 
follow the right hand side branch. We then calculate its distance to the next stroke, 
and if this is < 1647, we classify the stroke as TEXT.  

5. Implementation and Evaluation 

A new shape divider based on the classification tree from Figure 2 was implemented 
in InkKit, as an alternative to InkKit’s existing divider and the Microsoft Tablet PC 
divider. An evaluation was carried out comparing the three dividers performance us-
ing our example diagrams to establish which would be able to divide text and shape 
strokes most accurately, i.e. with the lowest misclassification rate, where the misclas-
sification rate is a measure of the proportion of strokes that were incorrectly classi-
fied.  
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The dividers were used to divide the original training set of diagrams shown in Ta-
ble 1 and also a new set of diagrams that included more complex diagrams exhibiting 
characteristics not considered previously. The new diagram set consisted of a directed 
graph, musical notes, check boxes and a crossed out word. Results were compiled 
based on the proportion of strokes that were correctly or incorrectly classified as text 
or shape strokes. The level of accuracy of each divider was then assessed from these 
results to ultimately determine if our new shape divider did in fact perform better. 

Using the training set of diagrams, the percentage of shape and text strokes that 
were misclassified for each divider is shown in Figure 3. The Microsoft divider has 
the highest percentage of misclassified shape strokes at 75.7% and the lowest percent-
age of misclassified text strokes, where no text strokes were incorrectly classified at 
all. The new divider has the lowest proportion of misclassified shape strokes when 
compared with the other dividers at 10.8%, and the second lowest proportion of mis-
classified text strokes at 8.8%. The InkKit divider has a very high misclassification 
rate for shape strokes at 67.4%, coming in as the second highest of all dividers, how-
ever in contrast it has a low percentage of misclassified text strokes at 10.3%, how-
ever when compared with the other dividers, InkKit’s rate of misclassification for text 
strokes is the highest. All dividers showed much greater accuracy in classifying text 
strokes than shape strokes.   

Using the new diagram set the percentage of misclassified shape and text strokes 
for each of the three dividers are shown in Figure 4. The Microsoft divider once again 
has the worst rate of misclassification of shape strokes where 93.1% were incorrectly 
classified. It has the best percentage of misclassified text strokes at 1.4%. This fol-
lows the pattern shown in the evaluation results for the training diagram set shown in 
Figure 3.  Also following the results of the first evaluation, our new divider has the 
lowest misclassification rate for shape strokes at 42.1%, although this is still very 



high. The new divider has the highest percentage of misclassified text strokes at 
21.4% however this is only a little above InkKit at 17.2% for text strokes. InkKit’s 
rate of misclassification for shape strokes comes in at 80.8%. Again, all dividers show 
a greater degree of accuracy in classifying text strokes than shape strokes. 

 

6. Conclusion 

Eight features out of the 52 that were in the feature set were found to be significant to 
dividing text and shape strokes. These features were mostly measures of size and 
time, with one measuring curvature. The evaluation shows that overall the new shape 
divider was the most accurate at dividing the training set of diagrams when compared 
with the InkKit divider and the Microsoft divider. For the new diagram set it was con-
siderably better at classifying shape strokes and marginally the worst at classifying 
text strokes. Overall, when compared with the InkKit and Microsoft dividers, the new 
divider was more accurate at dividing the new diagram set as well. Therefore we can 
conclude that the features selected can be used to improve the accuracy of division of 
text and shape strokes in a sketched diagram. 
 

7. Future Work 

The classification tree approach has worked well at combining the significant features 
together for more accurate division of strokes into character text and geometric 
shapes. Future work in this area could involve experimenting with other algorithms 
such as using Hidden Markov Models [4] for a more robust divider.   
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