
Exploring Better Techniques for Diagram Recognition

Rachel Patel1, Beryl Plimmer1, John Grundy1, 2, Ross Ihaka3

1Department of Computer Science

2Department of Electrical and Computer Engineering
3Department of Statistics
University of Auckland

Private Bag 92019, Auckland, New Zealand
{rpat088@ec, beryl@cs, john-g@cs, ihaka@stat}.auckland.ac.nz

Abstract. A critical component of diagramming sketch tools is their ability to
reliably recognise hand-drawn diagram components. This is made difficult by
the presence of both geometric shapes and characters in diagrams. The goal of
our research is to improve sketch recognition by improving the accuracy in
grouping and classifying strokes in a diagram into text characters and shapes.
We have done this by identifying the most significant features of strokes that
can be used to distinguish shapes from text using a decision tree based parti-
tioning technique. Implementation and evaluation of this new “shape divider”
using these features against InkKit’s existing divider and the Microsoft divider
has shown that our divider is more accurate at dividing text and shape strokes
and can therefore improve overall sketch recognition.

Keywords: Human Computer Interaction, Pattern Recognition

1. Introduction

Computers can be used to produce formal diagrams e.g. software designs, user inter-
face designs, CAD specifications, hierarchy charts and so on. However, in the begin-
ning of a project it can be better to use pen and paper. The reason is that these simple,
human-centric design tools are far more flexible which encourages creativity and in
turn this produces better designs in the end. However a computer offers easy editing
and distribution features and greater formality to the look of a diagram and so some-
times the important pen and paper design stage is overlooked.

Imagine being able to sketch diagrams directly onto a computer screen and have
them accurately translated into formalized representations. The Tablet PC supports
sketching of characters and recognition of these but has much weaker support for
general diagram drawing and accurate recognition. InkKit [8] is a sketch tool for the
Tablet PC that has been designed to bridge the gap between pen and paper and com-
puters. InkKit allows you to sketch any type of diagram using the Tablet PC’s stylus.
Its recognition engine then identifies each component of the diagram and transforms it
into a formal, tidy version in a specified format such as HTML or a Word drawing ob-
ject. InkKit has been used as a foundation for this research.

mailto:rpat088@ec1
mailto:john-g@cs3,%20ihaka@stat4%7D.auckland.ac.nz

2. Motivation

A critical part of diagramming sketch
tools is being able to reliably recognise
the hand-drawn diagram components.
The purpose of this Masters project is
to improve the recognition algorithms
that currently exist.

One of the reasons why recognising
a diagram is difficult, is because we are
dealing with words and shapes at the
same time. Figure 1, shows a typical
user interface design that can be used

Fig 1. Sketch of a user interface design to highlight this problem. For example,

what is it that makes the circles in front of the words “Male” and “Female” circles in-
dicating radio buttons and not the letter o?

The existing InkKit system automatically divides the ink into words and shapes,
and then recognises the words using the Tablet Operating System recognizer and
shapes using a variant of Rubine’s algorithm [5]. Once the basic shapes and words
have been recognised they are combined back together to suggest the most probable
diagram component. This method of dividing the words and shapes is preferred over
using a modal interface to separate the two as it preserves human’s natural sketching
approaches used on pen and paper [3]. The aim of our research has been to greatly
improve the algorithm that divides the ink into either text or drawing as this is the
area where we can expect the most improvement in diagram recognition [8].

Most sketch recognition mechanisms measure various features of the strokes in a
sketch to guide its recognition. This is also evident in the recognition engine of Ink-
Kit. However what is lacking is a definitive, principled set of the most significant fea-
tures that can be used to provide an accurate division of the shape and text strokes in a
sketch. Therefore our goal is to find these features in order to improve division of
shape and text strokes and in doing so improve the accuracy of sketch recognition as a
whole.

We first detail the methodology we have used to identify the most significant fea-
tures of sketches that will aid division of strokes. Section 4 will briefly describe the
selected feature set and then detail the experiment conducted to identify which fea-
tures from the set are significant. The implementation and evaluation of the resulting
divider of shape and text strokes is presented in Section 5. Finally we conclude with a
discussion of the results and suggestions for future work.

3. Methodology

In this section we provide an overview of the approach we have used beginning with
the investigation of possible sketch features, how feature data is collected and ana-
lysed, and the implementation and evaluation of the resulting divider of text and
shape strokes.

Feature Discovery

Our first step was to identify all the possible features that could be useful in distin-
guishing between text and shape strokes in a sketched diagram. The origin of these
features were from (1) related work in sketch recognition; (2) stroke features we felt
may be useful in classifying strokes; (3) and stroke features from newly available
hardware. Many stroke features have been documented by past work to be significant
to solving various sketch recognition problems [2, 5, 6], and several of these features
we have already implemented in InkKit’s existing recognition engine [8]. Therefore it
was in our interest to include as many of these features as possible in our investiga-
tion. Newly available hardware allows us to consider features that have not been
widely studied before such as pen pressure and tilt.

Data Collection

We wanted to determine which features are actually the most significant to use when
dividing text and shape strokes. This enables us to sample and use only those features
when classifying strokes in InkKit’s divider and not the myriad of other features that
have little or no effect on stroke classification. To be able to test which are important
features and which aren’t we collected measurements of each feature from sketches
and compiled these measurements into a dataset.

We identified a set of diagrams to be used for our experiment that displayed a wide
range of common characteristics of diagrams. This allowed us to sample our stroke
feature set on a realistic group of diagrams so that we are more likely to achieve a
more accurate identification of significant features.

The next step was to get people to sketch examples of this set of diagrams using
InkKit on Tablet PC’s. We needed to collect diagram sets from as many people as
possible to avoid bias in our samples of individual variation that may occur in their
sketching. Once these diagrams were collected we processed them by calculating all
stroke features identified from each stroke of each diagram. The resulting data was
then collated into a dataset ready for statistical analysis.

Analysis

Once all the sketches were collected and processed into a dataset they were analysed
to determine the features of strokes that are significant and should be used to divide
text and shape strokes. We wanted to use a formal technique for this analysis so that
we would gain a clear, accurate and principled view of the degree of significance each
feature has in distinguishing between shapes and text in a hand-drawn diagram.

The use of trees has become a common and effective way to assist in decision
making problems, our decision being whether to classify a stroke in a diagram sketch
as a text or shape stroke. A tree-based partitioning technique was used to analyse the
dataset and construct a classification tree [1, 7]. A classification tree has decision vari-
ables at each node, which would correspond to the most significant features found,
and a classification label at each leaf, which would be either text or shape in our case
(see Figure 2). Employing this technique allowed us to clearly identify significant fea-

tures to help division, and also provided us with the most optimal combination of fea-
tures for implementation.

Implementation & Evaluation

Once the significant stroke features had been identified through formal statistical
analysis a new shape divider was implemented for InkKit. InkKit’s existing divider
remains as we wanted to compare its performance and the Tablet PC Microsoft di-
vider to our new shape divider. We evaluated these three divider implementations to
determine which is more accurate at dividing text and shape strokes.

4. Experiment

All the possible stroke features that may be helpful in distinguishing text from shape
strokes were compiled together into a feature set. They came from related work in
sketch recognition [2, 5, 6, 8]; features we thought may be significant; and the discov-
ery of features from newly available Tablet PC hardware. We attempted to include as
many features of strokes as possible to ensure that all avenues would be explored by
the statistical analysis and the most significant features could be identified – 52 fea-
tures were selected in all. The 52 features can be grouped into seven categories, size,
time, intersections, curvature, pressure, Tablet Operating System recognition values
and others.

Our stroke feature set was then analysed to discover which of these features pro-
vide the greatest contribution to dividing text and shape strokes in a diagram. We de-
scribe this experiment beginning with the collection and processing of data from a
range of sketched diagrams, then analysing this data using a tree-based partitioning
technique that consequently constructs a classification tree containing the most sig-
nificant features for division of text and shape strokes. This process allowed us to
draw conclusions as to which features are most significant to division.

Data Collection & Processing

To perform a full analysis of the feature set sketched diagrams were collected from as
many people as possible. A set of nine diagrams were identified to be used for analy-
sis, illustrated in Table 1. In compiling this set we looked for examples of shapes and
text that would represent those typical of a wide range of diagram types and therefore
would allow us to identify the most significant features of strokes for division to be
identified for a general-purpose, reusable shape divider. Our diagram set includes ba-
sic shapes and text, complex shapes, composite shapes and various combinations and
ordering of shapes and text. Sketches were gathered from 26 people. Each person
completed a set of 9 sketches. Each sketch was then processed to obtain the 52 fea-
tures from our feature set, forming a final dataset ready for statistical analysis with
1519 observations in all. We manually categorized each stroke as SHAPE or TEXT as
base data for the statistical analysis.

Table 1. The Diagram Set

Shape Description Example Sketch
Circle

Button: rectangle with label “Button” inside it.

Text: “Hello how are you”, without punctuation.

Radio-text: radio button with label “Hello world” next to it.
Text-radio: same as radio-text above but label written be-
fore radio button (spatial ordering is the same).
Combo box: rectangle with a triangle inside.

Resistor: spiked line, from electrical diagrams.

Hexagon: six-sided polygon.

Connector: two rectangles with a line connecting them in
the middle.

Analysis

The analysis of the dataset was performed using the R statistical package, pre-release
Version 2.5.0 [9]. The dataset was used as training data for the rpart function [7]
which applies a tree-based partitioning technique to identify the significant features to
use as decision variables in a binary classification tree and determines how to split
those features so that they can accurately classify strokes as either text or shape
strokes. For each feature rpart is provided with each example stroke’s feature data e.g.
length, average speed, curvature, average pressure value etc, and the known classifi-
cation of the stroke i.e. SHAPE or TEXT. From the total training set the rpart function
constructs a binary classification tree starting with the most significant feature, then
the next, then the next and so on.

Results

The binary classification tree resulting from our rpart analysis of our full training set
is shown in Figure 2. Eight different features of strokes, named in each node of the
classification tree, were identified from the feature set as being significant for divid-
ing shape from text strokes, each one is described in Table 2. The majority of these
features are measuring some element of size, as five out of eight of the features come
from this category. Features of time have also registered their importance as making
up two out of eight of the significant features. Also one feature of curvature has been
identified as important to the division of shape and text strokes.

This resultant decision tree is used to classify strokes into SHAPE or TEXT. For
example, consider classifying a given stroke. First we sample its bounding box width.
If its bounding box width is >= 1848 we follow the left branch of the tree. We then
measure its total angle. If its total angle is < 10.1 the left branch is taken once again
and the stroke is classified as a SHAPE. Taking another stroke, we calculate its

Fig 2. Classification tree for text and shape divider

Table 2. Description of the significant features identified in the classification tree

Feature Description
Bounding box width Width of the bounding box of the stroke.
Distance from last
stroke

Distance the pen travels between the current stroke and the previ-
ous stroke.

Distance to next stroke Distance the pen travels between the current stroke and the next
stroke.

Amount of ink inside Amount of ink inside the strokes bounding box.
Perimeter to area Ratio of perimeter to area of the strokes convex hull.
Time till next stroke The time between the current stroke and the next stroke in the

sketch.
Speed to next stroke Speed (distance/time) between the current stroke and the next

stroke in the sketch.
Total angle Total angle traversed by the stroke.

bounding box width and if this is < 1848 we follow the right hand side branch. We
then calculate the strokes distance from the last stroke, and if this is < 2554 we again
follow the right hand side branch. We then calculate its distance to the next stroke,
and if this is < 1647, we classify the stroke as TEXT.

5. Implementation and Evaluation

A new shape divider based on the classification tree from Figure 2 was implemented
in InkKit, as an alternative to InkKit’s existing divider and the Microsoft Tablet PC
divider. An evaluation was carried out comparing the three dividers performance us-
ing our example diagrams to establish which would be able to divide text and shape
strokes most accurately, i.e. with the lowest misclassification rate, where the misclas-
sification rate is a measure of the proportion of strokes that were incorrectly classi-
fied.

93.1

42.1

80.8

1.4

21.4
17.2

0

10

20

30

40

50

60

70

80

90

100

Microsoft New InkKit
Divider Type

%
 M

is
cl

as
si

fie
d

St
ro

ke
s

 .

% Misclassified Shapes
% Misclassified Text

75.7

10.8

67.4

0.0

8.8 10.3

0

10

20

30

40

50

60

70

80

90

100

Microsoft New InkKit
Divider Type

%
 M

is
sc

la
ss

ifi
ed

 S
tr

ok
es

 .

% Misclassified Shapes
% Misclassified Text

Fig 3. Percentage of misclassified shape and Fig 4. Percentage of misclassified shape and
text strokes for each divider using the text strokes for each divider using the new
training diagram set diagram set

The dividers were used to divide the original training set of diagrams shown in Ta-
ble 1 and also a new set of diagrams that included more complex diagrams exhibiting
characteristics not considered previously. The new diagram set consisted of a directed
graph, musical notes, check boxes and a crossed out word. Results were compiled
based on the proportion of strokes that were correctly or incorrectly classified as text
or shape strokes. The level of accuracy of each divider was then assessed from these
results to ultimately determine if our new shape divider did in fact perform better.

Using the training set of diagrams, the percentage of shape and text strokes that
were misclassified for each divider is shown in Figure 3. The Microsoft divider has
the highest percentage of misclassified shape strokes at 75.7% and the lowest percent-
age of misclassified text strokes, where no text strokes were incorrectly classified at
all. The new divider has the lowest proportion of misclassified shape strokes when
compared with the other dividers at 10.8%, and the second lowest proportion of mis-
classified text strokes at 8.8%. The InkKit divider has a very high misclassification
rate for shape strokes at 67.4%, coming in as the second highest of all dividers, how-
ever in contrast it has a low percentage of misclassified text strokes at 10.3%, how-
ever when compared with the other dividers, InkKit’s rate of misclassification for text
strokes is the highest. All dividers showed much greater accuracy in classifying text
strokes than shape strokes.

Using the new diagram set the percentage of misclassified shape and text strokes
for each of the three dividers are shown in Figure 4. The Microsoft divider once again
has the worst rate of misclassification of shape strokes where 93.1% were incorrectly
classified. It has the best percentage of misclassified text strokes at 1.4%. This fol-
lows the pattern shown in the evaluation results for the training diagram set shown in
Figure 3. Also following the results of the first evaluation, our new divider has the
lowest misclassification rate for shape strokes at 42.1%, although this is still very

high. The new divider has the highest percentage of misclassified text strokes at
21.4% however this is only a little above InkKit at 17.2% for text strokes. InkKit’s
rate of misclassification for shape strokes comes in at 80.8%. Again, all dividers show
a greater degree of accuracy in classifying text strokes than shape strokes.

6. Conclusion

Eight features out of the 52 that were in the feature set were found to be significant to
dividing text and shape strokes. These features were mostly measures of size and
time, with one measuring curvature. The evaluation shows that overall the new shape
divider was the most accurate at dividing the training set of diagrams when compared
with the InkKit divider and the Microsoft divider. For the new diagram set it was con-
siderably better at classifying shape strokes and marginally the worst at classifying
text strokes. Overall, when compared with the InkKit and Microsoft dividers, the new
divider was more accurate at dividing the new diagram set as well. Therefore we can
conclude that the features selected can be used to improve the accuracy of division of
text and shape strokes in a sketched diagram.

7. Future Work

The classification tree approach has worked well at combining the significant features
together for more accurate division of strokes into character text and geometric
shapes. Future work in this area could involve experimenting with other algorithms
such as using Hidden Markov Models [4] for a more robust divider.

References

1. Breiman, L., et al., Classification and Regression Trees. 1984, New York: Chapman & Hall
/ CRC Press.

2. Fonseca, M.J., C.e. Pimentel, and J.A. Jorge. CALI: An Online Scribble Recogniser for Cal-
ligraphic Interfaces. in AAAI Spring Symposium on Sketch Understanding. 2002: IEEE.

3. Plimmer, B., Using Shared Displays to Support Group Designs; A Study of the Use of In-
formal User Interface Designs when Learning to Program, in Computer Science. 2004, Uni-
versity of Waikato.

4. Rabiner, L.R., A tutorial on hidden Markov models and selected applications in speech rec-
ognition, in Readings in speech recognition. 1990, Morgan Kaufmann Publishers Inc.

5. Rubine, D.H. Specifying gestures by example. in Proceedings of Siggraph '91. 1991: ACM.
6. Sezgin, T.M., T. Stahovich, and R. Davis. Sketch based interfaces: early processing for

sketch understanding. in Proceedings of the 2001 workshop on Perceptive user interfaces.
2001. Orlando, Florida: ACM Press.

7. Venables, W.N. and B.D. Ripley, Modern Applied Statistics with S. Forth ed. 2002, New
York: Springer.

8. Young, M., InkKit: The Back End of the Generic Design Transformation Tool 2005, Univer-
sity of Auckland.

9. R Development Core Team. R: A Language and Environment for Statistical Computing.
2006, Vienna. Austria, R Foundation for Statistical Computing.

