Scheduling

Levels of scheduling 4.2.2
Scheduling algorithms 5.3

Scheduling of processes

Which processes should be picked to run?

Different solutions for different needs.

Batch systems
Keep the machine going

Time-sharing systems

Keep the users going

Real-time systems (including multimedia, virtual reality etc)

Always deal with the important things first

Operating Systems 415.340/341 OH33.1



Levels of scheduling

Batch systems

Very long-term scheduler

can this user afford it?

administrative decisions - students can’t enter jobs between
10pm and 6am

Long-term scheduler

may enforce administrative decisions

which jobs (currently spooled) should be accepted into the
system

need to know about resource requirements

How many CPU seconds? (need a way of encouraging
users to try to be accurate in their estimation)

How many files, tapes, pages of output?

invoked when jobs leave the system

Medium-term scheduler

if things get out of balance

suspend this process and swap it out

Short-term scheduler

which of the runnable jobs should go next

Operating Systems 415.340/341 OH33.2



Time-sharing systems

No long-term and medium-term scheduler
unless there is a batch submission mode

users perform this task

Real-time systems

Priorities are really important.
Real-time processes must be handled within certain times.

Other processes will suffer delays rather than the real-time
processes.

Medium-term scheduling can be important to maintain
adequate response for the real-time processes.

What do most processes spend most of their time doing?

Bursts of CPU and IO activity.

Scheduling algorithms 5.3
FCES - again

Simple - no time wasted to determine which process should run
next

Operating Systems 415.340/341 OH33.3



Round-robin scheduling is FCFS with time slices

What is wrong with treating every process equally?

One way to tune this is to change length of the time slice.
What effect does a long time slice have?

What effect does a short time slice have?

What is the 80% rule?

Should we have different length time slices for different
processes?

What behaviour do we get if we give CPU intensive processes
long time slices?

What behaviour do we get if we give CPU intensive processes
short time slices?

SJF - shortest job first

actually shortest next CPU burst
Optimal - minimum average wait time.
Unfortunately how do we know?

We may have this information at the long-term scheduling
phase of a batch system.

We could use the previous CPU bursts of this process to predict
its coming behaviour.

Another form of shortest job first

How much longer does each job need to complete?
Get processes out of the system as quickly as possible.

Operating Systems 415.340/341 OH33.4



Under this mechanism, processes which hog the CPU lose their
positions to those which don't.

A form of priority.
In this case the longer the CPU burst the worse the priority.

Other systems preserve priorities

Set before a process runs

When a new process arrives it is placed in the position in the
ready queue corresponding to its priority.

It is possible to get starvation

Priorities can vary over the life of the process

The system makes changes according to the process’ behaviour
CPU usage, IO usage, memory requirements

Aging

Priorities sometimes are used to allocate percentages of
process time

e.g. a process of a worse priority might be scheduled after five
processes of a better priority.

This prevents starvation, but better priority processes will still
run more often.

Operating Systems 415.340/341 OH33.5



A common way to do this is with multiple priority queues

Some systems keep processes on the same queue
others move processes from queue to queue

Some are absolute - worse priority queues only run a process if
no better queues have any waiting

Some have different selection strategies

Some allocate different time slices

Processes can be moved from queue to queue because of their
behaviour

CPU intensive processes are commonly put on worse priority
queues

What behaviour does this encourage?

Processes which haven’t run for a long time can be moved to
better priority queues

Multiple processors
We presume all processes can run on all processors
(not always true)

Maintain a shared queue

Let each processor select the next process from the queue

Or let one processor determine which process goes to which
processor

Operating Systems 415.340/341 OH33.6



