Implementation lecture 2

IO requests
Installing devices

Dealing with disks - Ch 12

More on device tables

Some systems provide multilevel device tables.

e.g. All printers do similar things, therefore specific printer
drivers can be called from a shared printer interface.

Other examples:
displays
keyboards
modems
disk drives
sound systems

This way less code needs to be provided by the manufacturers
of the device.

In some cases none at all.

Operating Systems 340/341 OH32.1



10 requests

A link has been made between the process’s file information
block and the corresponding entry in the device table.

When we get an 1O request (we will refer to this as a doio call)

it includes what sort of access (data transfer, control or
status)

after checking (can this device do that? are the parameters
ok?)

may need to connect it to the list of requests for that device
(we will refer to these as IORB - 1O request blocks)

may also check access rights of the caller
could have been done at Open time.

Not necessarily performed in FIFO order.

eventually the request is handled
this uses the upper half of the device handling routines
initiate 10
may block waiting for the results
or may return to the caller

errors or results are passed back

Operating Systems 340/341 OH32.2



What about the lower half

The bit started when the device has done its job and the output
buffer can be used again or the input buffer is now full.

Interrupt driven

Interrupt handler restarts the top half.
I am now ready for the next character.
Your data is in the buffer.

Also has to have error handling code.

What sort of things can go wrong?
® No paper

¢ CRC error

 No such sector

e bad phone connection

* device not responding

Sometimes the error has to go to the user.

Sometimes the device should try again
started by the interrupt handler
needs to keep track of where it is up to in error recovery
finite number of retries

what about an error in error recovery?

Operating Systems 340/341 OH32.3



e.g. A write operation in UNIX

write(fd, buffer, count)
get file table entry from fd
check accessibility
lock inode
if a block doesn’t exist for the current position
allocate one - updates the inode
while not all written
if not writing a complete block
read the block in
put the data in the block’s buffer
delay write the block
update file offset, amount written
update file size

unlock the inode

But the device doesn’t get called from this routine.

Delay write the block

buffers shared by system

write doesn’t occur until another process is to use the buffer for
a different block (LRU replacement)

kernel informs the disk driver that it has a buffer (size of a disk
block) to write

Operating Systems 340/341 OH32.4



starts the disk write but does not wait

disk controller interrupts on completion and releases the
buffer, it goes on the free list

advantage?

if a process wants to access this information it is already in
memory

e.g. process writes some more and it fits in the same block
disadvantage?

information is not written immediately

sync forces buffers to write

delayed writes are different from but similar to asynchronous
writes

Buffer pool or cache

Type “free” and see how memory is being used on your UNIX
system.

total used free shared buffers cached
Mem: 31176 6336 24840 6008 548 2756
-/+ buffers: 3032 28144
Swap: 24188 0 24188

total used free shared buffers cached
Mem: 31112 30612 500 21388 196 10716
-/+ buffers: 19700 11412

Swap: 24188 2896 21292

Operating Systems 340/341 OH32.5



These buffers are used for all block device 1O.
super blocks - info about what is on the disk
inodes - info about each file
index blocks - where is the file
programs being read in

file data

Installing devices

Plug and play

don’t want to have to recompile OS

don’t want to have to restart the OS

don’t want to have to turn the computer off
So

device must identify itself to the system

type, requirements - interrupts, memory access, DMA
channel

system attempts to meet the resource requirements

this may entail changing the allocations to other
devices

loads device drivers automatically
initializes device automatically

removes device drivers when device is switched off or no
longer present

Operating Systems 340/341 OH32.6



More on disks

Still essential

even though we now have a much main memory as disk
space < 10 years ago

Disks devices are shared
Lots of requests

Want to maximise the throughput, minimise the average
response and the variance.

tracks
surfaces
cylinders
D sectors
platters
boom
heads

U

Seek and rotational latency

Disk scheduling algorithms

FCES - first come first served
fair - not efficient

SSTF - shortest seek time first
not fair (starvation)

more efficient

Operating Systems 340/341 OH32.7



SCAN - like SSTF but only move in until reach the centre and
then out

outside tracks are discriminated against

N-step SCAN

only services requests which were present at the start of the
sweep

stops new requests slowing down older ones

C-SCAN - circular SCAN

always goes one way and then zooms back to the beginning
Choosing one - depends on the load on the system.

Also depends on file layout - e.g. directories in the centre.

Some disk devices do the scheduling for you.

Operating Systems 340/341 OH32.8



