Implementation lecture 1

Languages for OS implementation

Device control

Choosing a language:

can it do it?
does it help?

data structures we need

control structures we need

provide level of safety

(does our code do what we think it should?)
does it hinder?

what about documentation?

Data structures

An operating system is a large collection of tables joined
together by little bits of code.

tables, queues, messages, semaphores, files

Operating Systems 340/341 OH31.1

Program structures

communication

thread control

control of critical sections
and synchronisation
exception handling

interrupt handling

Programming environments

Some of the requirements we listed above can be helped by the
programming environment rather than just the programming
language.

It could be argued that UNIX with its standard collection of
editors, compiler compilers, code checkers (lint), source code
control systems etc, etc makes an ideal environment in which to
develop operating systems.

(It has been the standard for several years, after all.)

What language do you know which you wouldn’t mind writing
an operating system with?

Operating Systems 340/341 OH31.2

Common OS programming languages

Assembly language
anything which can be done
Forth
easily extensible
incredibly compact - embedded systems
C/CH+
very expressive
excellent compilers
Oberon
safely extensible
ADA
real-time features
Why stop with one?
OOOS - object oriented operating systems
Java?

JavaOS$S

Operating Systems

340/341 OH31.3

HotJava, HotJavaViews and Java Applications

Java API

Java — [FA

avals

Hardware

C and Assembler Code

The kernel for Java contains the low-level functions required by
the Java Virtual Machine.

BootingExceptions Threads
Memory Management Monitors
File System Timing
Native Code Library Management
Interrupts DMA
Debugging

Miscellaneous Platform Control

Operating Systems 340/341 OH31.4

Why Implement JavaOS in Java?

e Java is portable, easy to write, and easy to debug
e Runtime checking provides a robust system

* Services can be extended at runtime

e Single address space enables high performance with full
security

e Minimal overhead

Devices

Scanner, mouse, stereo sound system, virtual reality goggles,
various disk / tape drives, windows, keyboard etc.

Very different:
speed
few chars/sec to many millions chars/sec
unit of transfer
bits, bytes, records, blocks
data representation
e.g. different encodings on tape

protocols of network cards

Operating Systems 340/341 OH31.5

operations
input or output certainly but also
rewind a mouse?
recalibrate a window?

control
different signals to get/put data
control and status operations

error conditions

We would like some uniform method to deal with devices.

Device independence.

All deal with streams of data

Device table

It makes sense to store device information in a table.

Each device entry (device descriptor), leads to routines which
control the device.

Typically reading and writing, initializing or opening the device,
shutting down or closing

Also status, what it is doing (for what process?)

Request queue.

Typically a call to open a file or a device makes

a connection between the file information block and the
device descriptor

Operating Systems 340/341 OH31.6

Need the device name, and possibly volume (or file name) in
the open call.

May need other information to set the device up in a particular
way.

what size buffers, access method etc

In UNIX devices are included in the file system
/dev/tty, /dev/cdrom, /dev/modem

The file attributes include information saying it is a device and
what type of device.

Reading or writing commands make sense for all devices.

Other control information is specific and is nornally handled
with some catch-all command - DOIO.

UNIX ioctl

Operating Systems 340/341 OH31.7

