Concurrency lecture 4

Dining Philosophers - 6.5.3
Equivalence of solutions

Problems with distributed systems - 18.2

Dining Philosophers

A philosopher thinks and eats.

5 philosophers sitting around a table.

5 forks - 1 shared between each pair of philosophers.

A philosopher needs the fork on either side in order to eat.
We don’t really want philosophers starving to death.

First attempted solution with semaphores.

fork : array[0..4] of semaphore

procedure philosopher (name : integer); { numbered O to 4

}

begin
while true do begin
think;
wait(fork[name]); { fork on the right }
wait(fork[(name + 1) mod 5]); { fork on the left }
eat;
signal(fork[name]);
signal(fork[(name + 1) mod 5])
end
end,;

Operating Systems 340/341 OH25.1



What will eventually happen?

So we try to stop all philosophers getting one fork.

while true do begin
think;
simultaneous_wait(fork[name],
fork[(name + 1) mod 5));
eat;
simultaneous_signal(fork[name],
fork[(hname + 1) mod 5])
end;

The simultaneous_wait and signal operations are supposed to
be atomic and block the thread until both forks are free.

No more deadlock. But the problem is still not solved.

Solutions:

use of states for the philosophers - thinking, hungry, eating

a hungry philosopher gets preference to over one which is
thinking

only allow 4 philosophers to pick up forks at any time

even philosophers pick up their right forks first, odd
philosophers pick up their left

Operating Systems 340/341 OH25.2



Unlike the textbook which focuses on control of the
philosophers I have a monitor solution which focuses on the
forks. It looks very similar to the attempted simultaneous wait
semaphore solution.

Why does this monitor solution work when the semaphore
version didn’t?

monitor ForkControl;

var
forkAvail : array[0..4] of boolean;
forkWait : array[0..4] of conditionVariable;

procedure getBothForks(name : integer);
begin
If not forkAvail[name] then
wait(forkWait[name]);
forkAvail[name] := FALSE;

if not forkAvail[(name + 1) mod 5] then
wait(forkWait[(name + 1) mod 5]);
forkAvail[(name + 1) mod 5] := FALSE
end,;

procedure putBackBothForks(name : integer);
begin
forkAvail[name] := TRUE;
forkAvail[(name + 1) mod 5] := TRUE;
signal(forkWait[name]);
signal(forkWait[(name + 1) mod 5]
end,;
begin
fori ;== 0to 4 do
forkAvail[i] := TRUE
end. { monitor ForkControl }

Operating Systems 340/341 OH25.3



Each philosopher looks like this:

procedure philosopher(name : integer);
begin
while TRUE do begin
think;
getBothForks(name);
eat;
putBackBothForks(name)
end
end;

I tested this in Java - note changes had to be made because
Java monitors don’t have condition variables.

/ *
ForkControl.java - monitor to keep control of the forks
in the Dining Philosophers' problem.
Written by Robert Sheehan.
01/09/97
*

public class ForkControl {
private boolean[] forkAvailable;

public ForkControl() {
forkAvailable = new
boolean[DiningPhilosophers.NUMBERY];
for (int i = 0; i < DiningPhilosophers.NUMBER; i++)
forkAvailable[i] = true;

}

Operating Systems 340/341 OH25.4



public synchronized void getBothForks(int name) throws
InterruptedException {
while (!forkAvailable[name])
wait();
forkAvailable[name] = false;

while (!forkAvailable[(name + 1) %
DiningPhilosophers.NUMBERY])

wait();

forkAvailable[name] = false;

}

public synchronized void putBackBothForks(int name) {
forkAvailable[name] = true;
forkAvailable[(name + 1) %
DiningPhilosophers.NUMBER] = true;
notifyAll(); // try it with notify()

}

relevant philosopher code:
public void run() {
while (true) {
think();
eat();

}
}

Operating Systems 340/341 OH25.5



private void think() {
output.appendText("\ngoing to sleep");

try {
sleep((int)(Math.random() * 1000 + 1000));

}
catch (InterruptedException e) {
output.appendText("\ninterrupted while thinking");

}
}

private void eat() {

try {
output.appendText("\ngetting forks");
controller.getBothForks(name);
output.appendText("\neating");
sleep((int)(Math.random() * 1000 + 1000));
output.appendText("\nreturning forks");
controller.putBackBothForks(name);

}

catch (InterruptedException e) {

output.appendText("\ninterrupted while eating");

}
}

The code for the entire program is available via my lecture
page on the web.

http:/ /www.cs.auckland.ac.nz/ ~robert-
s/415.340/lectures_1997.htm

Operating Systems 340/341 OH25.6



Equivalence of solutions

Last time you wrote a semaphore object in Java, using the idea
of monitors. This shows that monitors are at least as powerful as
semaphores.

To show equivalence we need to show we can produce a
monitor with semaphores.

A semaphore initialised to 1 is used to guard entrance to the
monitor.

Wait on entry, normally signal on exit.

Condition variables complicate things
Associate a semaphore with each condition variable.
Only signal the semaphore when something is actually waiting.

Need some way of querying the semaphore queue - a common
addition.

Or else keep track of this ourselves as well (no worries about
mutual exclusion).

If we wake up a thread waiting on a condition variable we don’t
signal the entrance semaphore as we leave.

When we look at messages we see that blocking receives are
equivalent to the other concurrency constructs as well.

Operating Systems 340/341 OH25.7



Distributed concurrency

Locks, semaphores and monitors require shared memory.

Doesn’t matter whether a single processor or multiprocessor.

Sometimes we need locks over resources which are available
network wide.

No shared memory.

Which means we are going to have to send messages.

A server or coordinator process to look after the resource.
Request - Reply - Release

A process wanting the resource or mutual exclusion requests it
with a message to the coordinator

and then blocks until it receives a reply.

When it receives the reply it has the resource and must send a
release message when it has finished.

Everything gets more complicated because communication
can be unreliable, some machines on the network might die
(but others stay functional).

Coordinator may use time outs if the resource isn’t released.
Then it can send a query to see if the current owner is still
active.

Operating Systems 340/341 OH25.8



If the coordinator fails need to have an election to see which
process should replace it.

The new coordinator needs to recreate a wait queue by polling
all processes to see if they need the resource.

Non-centralized
Timestamps
Logical clocks

Broadcasting requests and replying

Operating Systems 340/341 OH25.9



