
Operating Systems 340/341 OH24.1

Concurrency lecture 3

Event counters

Classic problems part 2 - 6.5

Different sorts of problems

Monitors

Event counters - Reed and Kanodia 1977

Another way of providing safe concurrent programs.

This time with three operations (which don’t have to be atomic).

The event counter always starts at zero and has enough bits that
it never overflows.

advance(E):
E = E + 1;
if any processes awaiting the new value of E then

start these processes;

read(E):
return the value of E;

await(E, count):
if E < count then

put this process to sleep, awaiting E >= count;

program ProducerConsumerRelationship;
var

numberDeposited : eventcount;
numberReceived : eventcount;
numberBuffer : integer;



Operating Systems 340/341 OH24.2

procedure producerProcess;
var

i : integer;
nextResult : integer;

begin
i := 0;
while true do begin

calculate(nextResult);
i := i + 1;
await(numberReceived, i - 1);
numberBuffer := nextResult;
advance(numberDeposited)

end
end;

procedure consumerProcess;
var

i : integer;
nextResult : integer;

begin
i := 0;
while true do begin

i := i + 1;
await(numberDeposited, i);
nextResult := numberBuffer;
advance(numberReceived);
use(nextResult)

end
end;

begin
cobegin producerProcess; consumerProcess;
coend

end.



Operating Systems 340/341 OH24.3

Readers/Writers problem - 6.5.2

This is a common database problem. Since threads which only
want to read a value can run in parallel without interfering with
each other we should enable multiple readers access to a
shared area of data.

However since writer threads change this value only one such
thread should have access at a time.

Some solutions to this including the one in the textbook treat
readers as privileged threads and only allow access to the
resource to writer threads when there are no waiting readers.

Others give priority to the writers.

Either way leads to indefinite postponement.

You can try solving this without indefinite postponement and
which still allows multiple reader threads simultaneous access.

See Deitel’s “Operating Systems” 2nd edition.

Different sorts of problems

Correctly programming concurrent processes is difficult.

Using low level constructs like semaphores or event counters
are prone to mistakes.

What is wrong with this semaphore solution to the
producer/consumer problem?



Operating Systems 340/341 OH24.4

program ProducerConsumerRelationship;
var

exclusiveAccess : semaphore;
numberDeposited : semaphore;
numberBuffer : integer;

procedure producerProcess;
var

nextResult : integer;
begin

while true do begin
calculate(nextResult);
wait(exclusiveAccess);
numberBuffer := nextResult;
signal(exclusiveAccess);
signal(numberDeposited)

end
end;

procedure consumerProcess;
var

nextResult : integer;
begin

while true do begin
wait(numberDeposited);
wait(exclusiveAccess);
nextResult := numberBuffer;
signal(exclusiveAccess);
use(nextResult)

end
end;
begin

semaphoreInitialize(exclusiveAccess, 1);
semaphoreInitialize(numberDeposited, 0);

cobegin as usual...



Operating Systems 340/341 OH24.5

A fast producer will lose data.

This was from a very popular OS textbook (it was fixed up in the
second edition).

Another popular problem is forgetting to unlock or signal.

We want an automatic (more or less) way of helping
programmers lock and unlock.

Java tries to avoid or minimise problems by implementing a
form of monitor.

Monitors - 6.7 Brinch Hansen (1973) Hoare (1974)

You can think of a monitor as an object which only allows one
thread to be executing inside it.

It has:

the shared resource - it can only be accessed by the
monitor

publically accessible procedures - they do the work

a queue to get in

scheduler - which thread gets access next

local state - not visible externally except via access
procedures

initialization code

condition variables



Operating Systems 340/341 OH24.6

When a thread calls one of the monitor procedures the monitor
checks to see if any other thread is currently running inside.

if no

the thread can enter

if yes

the thread gets queued waiting to enter

Obviously mutual exclusion can be guaranteed by this scheme.

Here is an example in some Pascally like language which
includes monitors:

monitor Account;

var
money : real; { the shared resource }

procedure Deposit(amount : real);
begin

money := money + amount
end;

function Withdraw(amount : real) : boolean;
begin

if amount < money then begin
money := money - amount;
Withdraw := true

end
else

Withdraw := false
end;



Operating Systems 340/341 OH24.7

function Balance : real;
begin

Balance := money
end;

begin
money := 0.00

end.

There is no longer a problem with two threads trying to change
the account at the same time.

Unfortunately this is a very simple example - what happens
when a monitor routine needs a resource which is not currently
available? e.g. Producer/Consumer problem.

Condition variables

 In the producer/consumer problem we want to hold the
producer until there is some space in the buffer. When space is
available we want it to be able to proceed.

A condition variable is a queue which can hold threads. We
have wait and signal operations on condition variables.

wait(conditionVariable) puts the current thread to sleep on the
corresponding queue

signal(conditionVariable) wakes up one thread from queue (if
there are any waiting)



Operating Systems 340/341 OH24.8

There is no internal state kept of how many signals and waits
there have been.

Thus they are simpler than the similar instructions on
semaphores.

A signal with nothing waiting does nothing.

A wait always puts a thread to sleep.

e.g.

monitor SimpleBuffer;
var

buffer : integer;
bufferFree : boolean;
empty, full : conditionVariable;

procedure Insert(value : integer);
begin

if not bufferFree then
wait(empty);

buffer := value;
bufferFree := false;
signal(full)

end;



Operating Systems 340/341 OH24.9

function Retrieve : integer;
begin

if bufferFree then
wait(full);

Retrieve := buffer;
bufferFree := true;
signal(empty)

end;

begin
bufferFree := true

end.

But doesn’t signal mean we have two threads running in the
monitor?

Either we stop the thread which called signal or we don’t start
the new one until the current thread leaves the monitor. If we
don’t start the woken up thread until after the current thread
leaves, it may signal on other condition variables as well and we
have to make scheduling decisions.

It is also possible the running thread changes the conditions
again and the next thread shouldn't really run.

Java avoids this problem by only allowing one condition
variable per monitor and lets running threads run to
completion after notify()s and before a notified thread is
started.

It solves the second problem by recommending you have a
while loop with the conditional wait.



Operating Systems 340/341 OH24.10

Java has a single lock varible per object (it also has one per
class).

Synchronized methods must check this variable before allowing
entry.

Synchronized blocks check the same variable.
...
synchronized (anObject) {

do things to the object;
}

this way code in other objects can keep access synchronized.

How does the Java implementation of monitors differ from a
classical monitor?

signal is called notify()

It doesn’t provide condition variables.

wait() and notify() have a single queue for the whole object.

The object can have unsynchronized methods which are not
private.

Also fields which are not private. Not a good idea.


