Concurrency lecture 2

Hardware help 6.3
Semaphores 6.4

Classic problems

Hardware solutions

Test and Set instructions

Or equivalent atomic instructions

they appear indivisible - once started no other process can
interfere until completed

It works like this:
testAndSet(lockVariable)
returns the current value of the lockVariable

and sets the lockVariable to true

With this our lock can become
lock(resource Xx):
while (testAndSet(lock x))
no-op;

unlock(resource_Xx):
lock_x = false;

Operating Systems 340/341 OH23.1



Disabling context switches

Of course if we only had a single processor we can save
ourselves a lot of bother simply by disabling context switches.
Either by disabling interrupts or setting a flag before we enter
the critical section which stops context switching occurring.

We don’t do this on multiprocessors because it is too time
consuming and there are more elegant solutions.

Getting out of the spin

This spin lock is both simple and works, but not perfectly.
Ignoring the wasted processor cycles for a moment we don’t
have any way of guaranteeing that a process doesn’t wait
forever for the lock.

How could that happen?

It might just be very unlucky. We really want to ensure some
sense of fairness in our OS.

Fairness
Without priorities:

Each thread shouldn’t have to wait while another thread gets
access to the resource more than once.

Each thread should get access before any other thread which
requests it later.

Operating Systems 340/341 OH23.2



But with priorities:

Threads with higher priorities - should they get prior access to
resources? give pros and cons

Makes the priority mechanism more effective.
But can lead to indefinite postponement.

Priority mechanism can still work when selecting next
runnable thread.

It is also not usually nice to use spin locks especially if the
resource is not going to be available for a while. Instead we
prefer to put our threads to sleep.

So we are forced to construct some form of queueing associated
with our lock and also a way of putting waiting processes onto
this queue and waking them up when it is their turn to move on
from the lock.

The advantages are:
no waste of CPU cycles
possibly frees pages for other processes
orderly handling of all waiting threads

know how many threads are waiting for this resource

It is subtle, however, what could go wrong with the following?

Operating Systems 340/341 OH23.3



suspend(resource_X):
engueue(thisThread, queue_Xx);
reschedule; // another thread can now run

- like yield but the current thread is now waiting rather than
runnable

awaken(resource_X):
first = dequeue(queue_X);
makeRunnable(first);

and our lock and unlock are:

lock(resource_x):
If (testAndSet(lock x))
suspend(resource_X);

unlock(resource_Xx):
If not empty(queue_Xx)
awaken(resource_X);
else
lock_x = false;

It is possible to get indefinite postponement of unlucky threads,
caught between the testAndSet and the suspend.

We need mutual exclusion on the lock variable in order to
make the mutual exclusion work.

Actually we can do this with a spin lock because the lock
variable is only held for a very short period of time.

Operating Systems 340/341 OH23.4



Edsger Dijkstra and Semaphores (1965)

A semaphore is an integer count, two indivisible operations and
an initialization.

S a semaphore - the indivisible or atomic operations are:
V(S):

S=S+1;
P(S):

wait until S > 0;

S=S-1;

The count tells how many of a certain resource are available.

If the semaphore is initialized to 1 this is known as a binary
semaphore and works just like a simple lock.

To get a resource the thread calls P on the semaphore.

To return the resource the thread calls V.

Rather than calling the operations P and V (a little hard to
remember which is which) we will call them wait and signal.

To solve the problems we had earlier with spin locks it is
common to implement wait and signal like this:

signal(S):
If anything waiting on S then
start the first process on the S gueue

else
S=S+1;
wait(S):
If S < 1 then
put this process on the S queue
else
S=5-1;

Operating Systems 340/341 OH23.5



another common alternative is:

signal(S):
S=S+1;
If S < 1 then
start the first process on the S queue;

wait(S):
S=S-1;
if S < 0 then

put this process on the S queue;

S now keeps count of either the number of resources currently
available or the number of threads waiting for this resource.

How are the complex semaphore operations made atomic?

One way is with a simple spin lock using a TestAndSet
instruction.

Write a Java class which implements a semaphore.

public class Semaphore {
private int count;

public Semaphore(int count) {
this.count = count;

}
public synchronized void semSignal() {
count++;
if (count < 1) /I unnecessary
notify();
}

Operating Systems 340/341 OH23.6



public synchronized void semWait() {

count--;
if (count < 0) /I not good
try {
wait();

}

catch (InterruptedException e) {

System.err.printin("semaphore wait interrupted");

}
}

}

Classic problems

You have already seen the producer/consumer problem.

Lets see how we could solve this with semaphores:

program ProducerConsumerRelationship;

var
numberDeposited : semaphore;
numberReceived : semaphore;
numberBuffer : integer;

procedure producerProcess;
var
nextResult : integer;
begin
while true do begin
calculate(nextResult);
wait(numberReceived);
numberBuffer := nextResult;
signal(numberDeposited)

Operating Systems

340/341 OH23.7



end
end;

procedure consumerProcess;
var
nextResult : integer,;
begin
while true do begin
wait(numberDeposited);
nextResult := numberBuffer;
signal(numberReceived);
use(nextResult)
end
end;

begin
semaphorelnitialize(numberDeposited, ?);
semaphorelnitialize(numberReceived, ?);
cobegin
producerProcess;
consumerProcess;
coend
end.

What should the semaphores be initialized to?

The cobegin and coend pseudo instructions mean that any
statements in here can be executed in parallel. You can think of
them as starting up to separate threads.

Rewrite the above as a Java program.

Operating Systems 340/341 OH23.8



