
Operating Systems 340/341 OH22.1

Concurrency lecture 1

Why a problem? 6.1, 6.2

Software solutions 6.2.1, 6.2.2

Why a problem?

Multiprogramming (multitasking)

several threads/processes running at the same time.

using the same resources - accessing the same data
structures/objects

Some resources can only be safely used by one thread at a time.

They don’t work properly otherwise.

Wasn’t a problem before preemptive scheduling.

Multiprocessing makes things even worse.

Race conditions

Any situation where the order of execution of threads can cause
different results is known as a race condition.

Unless the programmer controls the progression of threads it is
impossible to predict the outcome.

Operating Systems 340/341 OH22.2

Critical sections

Need some way of locking threads out of critical sections.

Only one thread is allowed into the critical section at a time.

This is known as mutual exclusion.

Need to ensure:

threads are not kept waiting forever - starvation

Starvation can be caused in different ways

Deadlock where a cycle of threads hold locks which other
threads in the cycle need

indefinite postponement - priority too low or just unlucky

Software solutions

Not quite as simple as we would like:

We are going to put a simple lock around the critical section of
our code.

lock
critical section
unlock

Let’s say the shared resource used in the critical section is
resource_x and the boolean lock variable associated with this
resource is lock_x which has an initial value of false.
lock(resource_x);
critical section using resource_x
unlock(resource_x);

Operating Systems 340/341 OH22.3

our first attempt

lock(resource_x):
while (lock_x)

no-op;
lock_x = true;

unlock(resource_x):
lock_x = false;

no-op just means the thread keeps running - later we will have
to put the thread to sleep.

Locks like this are known as spin-locks or busy waits.

And no, it doesn’t work. Why not?

Either a context switch could occur straight after the while test
or

the same code could be performed simultaneously on a
multiprocessor.

A related question

In Java why do wait() and notify() calls have to be inside
synchronized methods?

Operating Systems 340/341 OH22.4

e.g.

while (!condition)
wait();

…
condition = false;
…

…
condition = true;
…
notify();

B T W

“Using notify wakes up the one that has been waiting the
longest”.

but

“You cannot choose which thread will be notified, so use this
form of notify only when you are sure you know which threads
are waiting for what at which time”.

from “The Java Programming Language” by Ken Arnold
and James Gosling

Simultaneously

All shared memory multiprocessors that I am aware of don’t
allow simultaneous access to the same word of memory. Two
writes don’t get interleaved, the hardware allows only one
processor access at a time.

Software solutions to locking critical regions require this level of
hardware assistance.

Operating Systems 340/341 OH22.5

Two thread solution based on the textbook - pg 169

There is now an array for each shared resource_x, flag_x and a
turn_x.

boolean[] flag_x = new boolean[2]; // both false initially
int turn_x = 0;

lock: performed by thread i, j is the other thread
flag_x[i] = true;
turn_x = j;
while (flag_x[j] && turn_x = j)

no-op;

unlock: performed by thread i
flag_x[i] = false;

This works but is severely limited by the fact that it only works
for two threads and they need to know about each other.

The general software solution is known as the bakery algorithm
- pg 171

Each thread is given a number indicating when it requests the
lock.

These are not unique so some other method of ordering e.g. pid
is necessary as well.

