Processes lecture 3

The end of a process - 4.3.2
UNIX state transitions

Context switching - 4.2.3

Process termination

All resources must be accounted for
may be found in the PCB or other tables must be searched
e.g. devices, memory, files
just reduce usage count on shared resources
memory, libraries, files/buffers

(can this shared library be released from memory
now?)

if the process doesn’t tidy up e.g. close files, then
something else must

accounting information is updated
was this a login process?
remove the user from the system

notify the relatives?

Operating Systems 340/341 OH21.1



UNIX stopping

Usually call exit(termination status)
open files are closed - including devices
memory is freed
accounting updated
state becomes “zombie”
children get “init” as a step-parent

parent is signalled (in case it is waiting or will wait)

after the parent retrieves the termination status the PCB is
freed

Two reasons to stop

by completing normally
forcibly stopped by another process or the OS

Stopping normally

must call an exit routine

this does all the required tidying up

what if it doesn’t call exit and just doesn’t have a next
instruction?

Operating Systems 340/341 OH21.2



Forced stops

only certain processes can stop others
parents
owned by the same person
same process group
why do they do it?
work no longer needed
somehow gone wrong
OS also stops processes
usually when something has gone wrong
exceeded time

tried to access some prohibited resource

Cascading termination

Some systems don’t allow child processes to continue when the
parent stops.

UNIX process state diagram

Operating Systems 340/341 OH21.3



Context switching

What is the context?
registers
memory - including dynamic elements such as call stack
files, resources

but also things like caches, TLBs - these are normally lost

The context changes as the process executes.

Leaving user level code to enter the kernel

This changes the context - some people refer to this as a context
switch as well.

Normally “context switch” means the change from one process
running to another.

Three ways to change context from user level to system level
System calls
Exceptions

Interrupts

Operating Systems 340/341 OH21.4



System calls

special instruction to change the processor’s mode and jump to
a predefined address

system call - supervisor call - change mode to kernel

We saw the need for two modes for the processor to operate in
earlier in the course.

problem /supervisor, user/kernel

System call interface

Usually there are not different entry points for each system call.

Go to the same place and a table is used to pass the call to the
correct handler.

So the system call instruction e.g. chmk, needs information as
to which system call

Frequently over 100 system calls in an OS.

The information as to which one can be passed as a parameter -
maybe placed on a kernel stack by the instruction itself.

Passing parameters into system calls
registers

with actual parameters or a pointer to the parameters
stack

just like an ordinary function call

Operating Systems 340/341 OH21.5



It may require some memory mapping trickery to access the
address space of the process.

In monolithic kernels it is common to have the kernel shared
across the page tables of all processes.

Some architectures make this almost compulsory.

The top half of memory is commonly reserved for the OS. A lot
of 32-bit systems allow 2 gigabytes of virtual address for their
processes.

Care with checking the parameters

Especially pointers to chunks of memory.
e.g.
write(toFile, fromHere)

what check needs to be made on fromHere?

The process can read from it. Because if it can’t it is just putting
the output into a file which it can now read from.

and
read(fromFile, toHere)

what check needs to be made on toHere?

The process can write to it. Otherwise the OS will dump on some
memory which is not under the control of this process.

Operating Systems 340/341 OH21.6



Getting the results

registers
deposit on the calling stack

directly into a user level data structure

UNIX system calls

Most system calls are hidden away inside user level library
routines

(The C library has over 300 functions which call about 150
different real system calls)

This means the call from within the program is just a normal
function call.

Parameters pushed on the stack.
Possibly some library level work before...
System call instruction is performed
now in kernel mode at the system call interface
previous context is saved
which system call
move the parameters to the kernel stack
ordinary jump to the code to handle this call

check the parameters and whether the process has the correct
permissions

Operating Systems 340/341 OH21.7



if ok perform the system call

if not or if errors start handling the errors

else

the saved context of the process may be altered
this is one way returning results

return from the system call instruction (e.g. rei)
back to library code

possibly handle errors

normal return to the original call

Exceptions
Process/thread does something wrong e.g.
Divide by zero
access invalid memory
attempt to perform illegal instruction
Causes a trap to a particular OS function to handle

Possibly pass the exception back to the

Interrupts

Special case of the clock interrupt
How much time has this process had - in user/kernel modes?

Updates the time values for the process.

Operating Systems 340/341 OH21.8



