
Operating Systems 340/341 OH20.1

Process Life Cycle (part 1)

Birth

Life

Waiting/Sleeping

including the way it works in UNIX

Process States (Status in the notes)

Being created

Runnable

Waiting

Finishing

Different methods of creating processes

create process system call - takes a program name

copy process system call - a strange way of doing it but is
now very widespread thanks to UNIX

create a new terminal session

Operating Systems 340/341 OH20.2

Whichever way

• find a spare (or create a new) PCB

 what if there isn’t one?

• mark it “being created”

• generate a unique identifier

why isn’t a pointer good enough?

• get some memory or

at least fill in the page table entries

• set up PCB fields with initial values

priority, resource limits

• when all set up change the state to “runnable”

this could be done by inserting into a queue of
runnable processes

what about other resources?

some OSs carefully allocate resources before a process
runs

others leave this to the process to collect as it runs

Creating a thread

much easier

• find a spare (or create a new) thread data structure

• allocate some stack space

Operating Systems 340/341 OH20.3

fork

The UNIX (originally) fork call duplicates the currently running
process.

parent process - the one which made the call

child process - the new one

Traditionally memory was duplicated - the code was shared
even from earliest days.

Code for both
processes

Data for process A

Data for process B

Process A

Process B

Memory

Since they are exact (almost) copies they share the same
resources, in fact if they both write to a file their output will be
interleaved.

Open file information blocks will have the count of processes
using them increased by one.

Same thing with shared memory regions.

Operating Systems 340/341 OH20.4

Fork returns 0 in the child process and the child’s pid in the
parent.

How many processes are started up by the following code?

main()
{
int i;
i = 0;
while (i < 2) {
fork();
i++;

}
}

Usually calls to fork are followed by calls to exec in the child
process.

if (fork() == 0)
execl(“nextprog”, “nextprog”, 0);

which keeps the process the same but changes the program

exec

checks to see if the file is executable

saves any parameters in some system memory

releases currently held memory

loads the program

moves the saved parameters into the stack space of the
new program

Operating Systems 340/341 OH20.5

ready to run again

Fork used to always copy the data memory of the process.

If the child is going to do an exec this is a waste of effort.

Particularly bad with virtual memory.

So most systems now use a copy on write

vfork() - another solution which doesn’t make a copy

programmers use it when an exec is going to follow

How many processes are created by the earlier code if we use
vfork?

Back to our process/thread which is now runnable

The “dispatcher” part of the scheduler discussed in detail later
in the course chooses processes/threads to run from the
runnable queue (or queues).

The change from one process/thread running to another one
running on the same processor is usually referred to as a
“context switch”. Sometimes we also talk about a context switch
when a process performs a system call. More about that later
too.

Being runnable

On a single processor only one process/thread can run at a
time.

Many may however be runnable - either running or ready to
run.

Operating Systems 340/341 OH20.6

The process/thread itself cannot directly detect when it is not
running

it sees no difference between ready and running.

The OS sees things differently.

What causes the change from running to ready (or ready to
running)?

Cooperative multitasking

Either the process/thread tells the system that another process
can run now,

or the system uses a sneaky method hidden inside a system call
which all processes are supposed to call regularly to start
another process.

This does not mean a task will necessarily work to completion

in fact it is very unlikely. Why?

Preemptive multitasking

A clock interrupt causes the OS to check to see if the current
process/thread should continue

Each process/thread has a time slice

More about time slices later

Usually 10 - 100 milliseconds

W h a t a d v a n t a g e s / d i s a d v a n t a g e s d o e s p r e e m p t i v e
multitasking have over cooperative multitasking?

Operating Systems 340/341 OH20.7

control

predictability

critical sections

efficiency

A mixture

Some systems combine these methods

e.g. UNIX traditionally has not allowed preemptive
multitasking when a process has made a system call

Regardless, the condition (state) of the process/thread has to
be stored so that when it recommences nothing has changed -
in particular process registers

If changing processes the page table needs altering

rest of environment restored

If changing threads within the same process simply

restore registers including pc and the threads stack

Some systems have multiple sets of registers

eventually even these overflow and memory must be used to
store them

Operating Systems 340/341 OH20.8

Waiting or Sleeping

Not to be confused with Java’s wait() and sleep()

Processes seldom have all the resources they need when they
start

memory

data from files or devices e.g. keyboard input

and these things require time to get

process/thread waits

multiprogramming - no point in keeping the whole system
waiting

so

state is changed to waiting

may be more than one waiting state

short wait e.g. for memory vs

long wait e.g. for an archived file

this is important for scheduling decisions

removed from the ready queue

possibly entered on a queue for whatever it is waiting for

when the resource becomes available

state is changed to runnable

removed from the waiting queue

put back on the runnable queue

Operating Systems 340/341 OH20.9

Suspended

another type of waiting

ctrl-z in some UNIX shells

operators or OS temporarily stopping a process

allows others to run to completion more rapidly

or to preserve the work done is there is a system problem

UNIX waiting

the queue is associated with the hash value of a kernel
address

(waiting or suspended processes may be swapped out)

when the resource becomes available

originally used to scan whole process table

all things waiting for that resource are woken up

(may need to swap the process back in)

first one to run gets it

if not available when a process runs the process goes back
to waiting

a little like in Java

while (notAvailable)
wait();

