Stereo and Motion Analysis

Reinhard Klette

The .*enpeda*.. Project The University of Auckland, New Zealand

Test vehicle HAKA1

Stereo Vision

An 1-dimensional Correspondence Problem Real-World Benchmarks Robustness on Challenging Data

Optical Flow

A 2-dimensional Correspondence Problem Real-World Benchmarks Reliability on Easy Data

Conclusions

Stereo: an 1-dimensional Correspondence Problem

Detect corresponding points along epipolar lines

Rectified stereo video data

recorded at 25 Hz and 10 bit from HAKA1

Colors encode disparities (distances)

use of an SGM stereo matcher (8 path, census, 3x9) [Simon Hermann 2011] **iSGM** Designed in New Zealand

[Simon Hermann and Reinhard Klette, ACCV 2012]

iSGM is an iterative stereo matcher that extends the integration strategy of SGM

SGM is a method applied since 2007 in industrial vision systems due to its robust performance and real-time capability.

The KITTI Vision Benchmark Suite

The K Bench A project of Kar and Toyota Tec	ITTI V mark Isruhe Institute Inological Instit	/ision Suite e of Technology tute at Chicago					CHICAGO 19 CHICAGO 19 Karlsruhe Institute of Technology			
home	setup	stereo	flow	odometry	object	tracking	raw data	submit your results		
Andreas Geiger (KIT) Philip Lenz (KIT) Christoph Stiller (KIT) Raquel Urtasun (TTI-C)										
Datas	et									
The stereo /	flow benchm	ark consists of	194 trainin	g image pairs and	195 test imag	e pairs, saved ir	loss less png fo	rmat. Our evaluation serv		

computes the average number of bad pixels for all non-occluded or occluded (=all groundtruth) pixels. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing disparity maps and flow fields.

- Download stereo/optical flow data set (720 MB)
- Download multi-view extension (20 frames per scene, all cameras) (17 GB)
- Download stereo/optical flow development kit (1 MB)

[Andreas Geiger et al. 2012]

Evaluation

Our evaluation table ranks all methods according to the number of non-occluded erroneous pixels at the specified disparity / end-point error threshold. All methods providing less than 100 % density have been interpolated using simple background interpolation as explained in the corresponding header file in the development kit. For each method we show:

iSGM for KITTI's good weather data (with ground truth)

Current Ranking on KITTI Stereo Page

Top-ranked methods can be considered to be equally good with respect to the KITTI reference index.

PCBP [Toyota Research Chicago] iSGM [.enpeda.. group, Auckland] SGM [German Air and Space Institute] SNCC [Honda Research]

Rank	Method	Setting	Out-Noc	Out-All	Avg-Noc	Avg-All	Density	Runtime	6 December 2012 Environment
1	PCBP		4.13 %	5.45 %	0.9 px	1.2 px	100.00 %	5 min	4 cores @ 2.5 Ghz (Matlab + C/C++)
Koichiro	Yamaguchi, Ta	mir Hazan, D	avid McAllest	er and Raqu	el Urtasun. <u>C</u>	ontinuous M	arkov Randon	n Fields for Ro	bust Stereo Estimation. ECCV 2012.
2	iSGM		5.16 %	7.19 %	1.2 px	2.1 px	94.70 %	8 s	2 cores @ 2.5 Ghz (C/C++)
Simon He	ermann and Rei	inhard Klette	e. <u>Iterative Se</u>	mi-Global M	atching for R	obust Drive	Assistance S	<u>ystems.</u> ACCV	2012.
3	SGM		5.83 %	7.08 %	1.2 px	1.3 px	85.80 %	3.7 s	1 core @ 3.0 Ghz (C/C++)
Heiko Hi	schmueller. <u>St</u>	ereo Process	sing by Semi-G	Global Match	ning and Mutu	ial Informati	ion. IEEE Tran	sactions on Pa	attern Analysis and Machine Intelligence 2008.

This task is practically solved with about 5% error

Rain: not KITTI but HCI/Bosch/ECCV 2012 data

SGM (standard)

iSGM

Bosch Robust Vision Challenge at ECCV 2012

Challenging Video Data

[Meister, S., Jähne, B., Kondermann, D., Optical Engineering, 2012] Decision by International Jury (no ground truth)

Microsoft Research:Simon Baker, Ph.D.Texas Instruments:Goksel Dedeoglu, Ph.D.Volkswagen Research Driver Assistance:Jan Effertz, Dr.Sony:Oliver Erdler, Dipl.Ing.Robert Bosch GmbH:Wolfgang Niehsen, Dr.The Foundry:Phil Parsonage, M.Sc.Robert Bosch GmbH:Stephan Simon, Dr.BMW Group:Christian Unger, M.Sc.

iSGM results for the 'Bosch Robust Vision Challenge' at ECCV 2012

[Simon Hermann 2012]

From the winning iSGM submission

No ground truth, decision by subjective evaluation of jury

More of this ..

Stereo matching is practically solved for easy data; we need to focus on **robustness** (= accuracy not only for easy but

also for challenging data)

Virtual Image

Example: BP techniques on 120 frames

BP on original data

BP on residuals w.r.t. smoothing

3D reconstruction using iSGM (5 fps)

Motion: a 2-dimensional Correspondence Problem

Detect corresponding points in the image plane

Middlebury College Optic Flow Data

Image 1

Image 2

Optical Flow - 2D Search

Original frames

Optical flow

[Simon Hermann and Reinhard Klette, ACCV 2012 workshop]

- fSGM is a discrete optic flow estimator
- It uses dynamic programming in combination with the SGM integration strategy
- Maps 1D (`disparity') labels 1-1 on 2D flow vectors
- Combines mid-scale flow analysis with large-scale analysis

fSGM submission to ACCV 2012 (10 fps)

fSGM on HCI data

Example of a frame of HCI data on which fSGM outperfoms variational methods

[Simon Hermann 2012]

fSGM and iSGM together win at ECCV 2012

Optical flow result is still far from being satisfying

Conclusions

Quality of stereo analysis results: about 90% where we want to be; the challenge is difficult data; the focus must shift to robustness (= accuracy also on difficult data)

Real-world benchmarks needed with minutes or even hours of recorded data; the `third-eye' method supports quantitative evaluation

Optic flow: about 60% only, even for easy data not yet satisfactory solved; robustness not yet the main focus, accuracy on easy data still of interest

[Thanks to Simon Hermann, Sandino Morales, and Yi Zeng]