
www.mi.auckland.ac.nz 

Discrete Driver Assistance 

Reinhard Klette, 

Ruyi Jiang, Sandino Morales and Tobi Vaudrey 

The University of Auckland, New Zealand 

ISMM, Groningen, 25 August 2009 



www.mi.auckland.ac.nz 

Passive safety systems  (seat belt, air bag, ABS, ESP)  

are designed to minimize the consequences when a  
vehicle is already involved in a dangerous situation. 

Safety systems, that perceive the environment around 

them and act accordingly, are the next step to assure 
safe driving conditions. Cameras and computer vision 

offer potentially more flexibility for such  active safety 

systems  then using only radar, ultrasound, or LIDAR. 
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.enpeda..   
  Environment Perception and Driver Assistance 

DAS 
  Driver Assistance Systems 
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Active DAS are developed to 

(i)     predict     traffic situations 
(ii)    adapt       driving and car to  
                        current traffic situations  
(iii)   optimize   for safety 

Vision-based DAS applies one or multiple  
cameras for understanding the environment,  
to help achieve goals (i-iii). 
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Predicted space (corridor)  
  the car will drive in the next     2-3 seconds ≈
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The Ego-Vehicle 
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HAKA1    
  High  Awareness  Kinematic  Automobile  no. 1 
  test vehicle in the  .enpeda..  project 
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Yaw  ψ   
   steering angle 

Tilt and roll  
   often `disturbing’  
   ego-motion  
   components 
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ego-vehicle 
  the car where the system is operating in 

ego-motion 
  changes in yaw, tilt, roll and velocity  
                                           (on ground manifold) 
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Coordinate systems 
(car and one camera) 
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Camera and ground manifold 
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The Image Data 
  multi-camera, gray-level 
  currently         640 x 480      10 bit      25 Hz 

e.g., up to 7 cameras in or on top of HAKA1  



www.mi.auckland.ac.nz 

If human vision then it would be 
  allchromasia, tunnel vision, myopia (distance blur), ...  

Real-world data 
  noise, brightness differences, lighting artifacts, ... 
  any time of day, weather, traffic situation,... 
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Gray-level histograms 

Two corresponding 297 x 208 windows 

Photo-consitency is often violated 

: occlusions 
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Example of a more difficult situation 

Dense night traffic 

  no rain, no snow,... – it could be much worse 
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Size of input space       ≥ 614,4001024     stero pairs 

and ..... 

noise (e.g., photo-inconsistency)  -  no way to aim 

at a general optimization ! 
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Situation: brightness diff. 
Winner: belief-propagation 
(BP) stereo, preprocessed  
(residual, 3x3 mean, 40 iterations)  

sequence 
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Situation: close objects 
Winner: graph-cut stereo  

(GC) on preprocessed  
(residual, 3x3 mean, 40 iterations)  

sequence 
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Stereo Matching  (mainly discrete math.)  
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Camera calibration & stero vision  

see, e.g.,   
[J.-Y. Bouguet. Calibration Toolbox] 
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Stero matching 
  is a 1D (along epipolar line) correspondence problem 

x xM xM 

Δx

disparity - zero at infinity, finite range of disparities  
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Prediction error analysis     for stereo triples [R. Szeliski, 1999] 

  calculate disparities for base and match sequence 

  warp base intensities into third camera view,  

       based on calculated disparities  

  compare those virtual images with third images 

       (i.e., images of the third camera) 

       using the normalized cross-correlation measure 

N t( ) = 1
Ωt

Tt p( ) −µT ,t  Vt p( ) −µV ,t 
σ T ,tσV ,tp∈Ωt

∑
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Third                  Base (left) Match (right) 
40 cm left of base camera           about 30 cm apart from each other 

                 all three on one bar behind windscreen 
                 left and right images are rectified for stereo matching 

Three cameras in HAKA1 



www.mi.auckland.ac.nz 

Virtual view                                       Third view             
using Dynamic Programming           (reflections on screen cannot 
(DP)                                                  be predicted – but are constant  
                                                          for all comparisons) 

110 stereo frames   >   thus 110 NCC values 
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NCC curves for this stereo sequence 

Note: changes in rankings along the sequence 



www.mi.auckland.ac.nz 

Disparity Calculation 
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Disparity calculation as a labeling problem 
  minimization of an error function (known from MRFs) 

E Δ( ) = Dp Δ p( ) + C Δ p ,Δq( )
q∈A p( )
∑













p∈Ω
∑

labeling  Δ  for all pixels p  in  Ω
data term   D         e.g.  | L(x,y) – R(x- Δp,y) | 
continuity term  C  between adjacent pixels; often    

[V.Kolmogorov & R.Zabih, 2002] state that a minimization of E 
is NP-hard (but without giving any proof) 

C Δ p − Δq( )



www.mi.auckland.ac.nz 

Data term commonly assumes photo-consistency  
(which does not hold for DAS image sequences) 

BTW: a continuity term which enforces over-smoothing could allow a 
trivial solution; and this is not NP-hard 

Depth discontinuities at object or occlusion edges 
should not disappear due to C 
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Dominant paradigms for energy optimization 

Scanline optimization stereo matching 
    Dynamic programming stereo  
         single scanline (epipolar line) in one direction 
    Semi-global matching 
         multiple scanlines (DSLs) in both directions 

Belief propagation stereo matching 
    general BP paradigm applied to stereo vision 

Graph-cut stereo matching 
    general GC (of combinatorial optimization) applied to computer vision 

             [see paper in ISMM proceedings for outlines and references] 
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Dynamic programming stereo matching (DP) 

  Let  E(Δ) = EM(Δ),  and at stage m ≤ M, optimize 

DP with temporal propagation (DPt) 

   at  p  in frame  t, let disparity at  p  in frame  t-1 
   contribute with some percentage (e.g., as  20%) 

Em Δ( ) = Dx Δx( ) + C Δx ,Δ x̂( )
x̂∈A x( )
∑













x=1

m

∑
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Virtual view for DP and situation `close objects’ 
   Some streaking effects  
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Semi-global stero matching (SGM) 

For each pixel, optimize energy along digital rays 
starting at this pixel. Uniform weights for all rays. 
Possibly add further cost functions (e.g., for surface 
curvature, see [S. Hermann, R. Klette, E. Destefanis, 2009]). 

Data term: common functions are, for example, 
mutual information (SGM MI) using an entropy  
measure, or Birchfield-Tomasi (SGM BT) which is 
time-efficient and considers also interpolated values 
at subpixel positions. 
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Depth map for SGM MI and situation `night traffic’ 
   use of eight rays  
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Belief-propagation stereo matching 

General paradigm: message passing in a graph 
           Here in general: 4-adjaceny grid 

Messages: `support’ between adjacent pixels for 
        particular labels (disparities) 

Continuity function 
        - (simple) binary Potts-model 
        - truncated linear function 
        - truncated quadratic function 
                use of lower envelope algorithm (as designed for EDT) 

          quality improvement and speed-up by hierarchical implementation 

C Δ p − Δq( )
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Depth map for BP and situation `default conditions’ 
   quadratic cost function, 6 layers in the hierarchy 
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Graph-cut stereo matching 

  Min-cut between source  s  and target  t 

Two disparities 0 and 1 

Three disparities 0, 1 and 2 
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Virtual view for GC and situation `default conditions’ 
   creates somehow flat zones in depth map, and isothetic regions in V 
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Comments 

No global winner, situations define local winners 

Preprocessing of sequences sometimes useful 
                                              (esp. residual images) 

Methods considered to be time-inefficient a few years  
   ago are now candidates for real-time (25 Hz) stereo 
   processing  

Specialized hardware or processors are now common 
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Motion Analysis  (use of continuous models)  

The other early-vision correspondence subject:  
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Ground manifold 

Motion analysis 
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Motion analysis 
  is a 2D (in image plane) correspondence problem 

(x,y) 

(x+u,y+v) 

optic flow – aims at subpixel accuracy  

(x+u,y+v) 

(u,v) 

t t +1 
Color key at 25 Hz 
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Situation  
default conditions 

Optic flow technique  
TV L1 

[C.Zach,T.Pock, H.Bischof 2007] 

Some early interaction  
between optic flow  
techniques (often TV) 
and stereo matching 
[N. Slesareva, A. Bruhn, J. Weickert 
                DAGM 2005], ... 
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Lane Detection & Tracking 
Combining various techniques for   

Example of a special modul of vision-based DAS 
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    For intelligent cruise control or road modeling 
Lane departure warning in cars since 1990s 

                 [McCall, 2006: A complete review on lane detection methods] 

Various road conditions 
Plenty of road models  
    (parabolic, hyperbolic, linear, spline, clothoid, …) 

Sensor fusion  
    (camera, internal vehicle state, GPS, laser, radar) 
Tracking methods (Kalman filter, particle filter) 

     Ongoing challenges:  
         robustness and generalization (all kinds of  
         situations) 
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Curved & (sometimes) unmarked roads 
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New (weak) lane model 

bird’s eye view 

perspective view 
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Bird’s-eye view mapping 

Homography described by a 4x4 matrix 
(use of homogeneous coordinates) 

Four pairs of corresponding points determine 
a homography. 
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Bird’s-eye view sequence 



www.mi.auckland.ac.nz 

Edge detection (dominant vertical edges) 
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Row component  r   (RCDT) 
Column component  i  (CCDT) 

Distance transform (EDT) 
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EDT 

RCDT CCDT 
-50 … 50 

Original edge map 
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Information from RCDT  
  centerline, broken lane mark 
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Euclidean distance transform 
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RCDT (negative or positive) 
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Workflow of lane detection (10 Hz currently in HAKA1, 640x480) 
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Examples: no border or no marks on the left 
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Efficient tracking based on RCDT 
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Robust tracking from RCDT 
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Efficient lane tracking Robust lane tracking 
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Difficult situations   >  Corridor also based on trajectory 
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Corridor Detection and Tracking 
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Corridor 

 Two start points 

 Constant width (slightly larger than that of the 
ego-vehicle) 

 Smooth borders 

 Proceeds in driving direction if not curved due to 
lane borders 

 Constrained by lane borders (if possible) 
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Differences between lane and corridor 
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Workflow of corridor detection 
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Corridor detection with obstacle 

Next: improved ground manifold calculation 
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Corridor detection during lane crossing 
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Concluding comments 
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The  .enpeda..  point of view 

identify situations of traffic scenes 

calculate winner (mean) and steadiness (variance) 
      for highly ranked methods and situations 

calculate robustness by mean and variance across 

      identified situations  

adaptation while driving:   
       (1) real-time situation recognition 

       (2) select method  for the given situation 
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Stereo 

Further (good) stereo matching paradigms besides 
scanline optimization, BP and GC? 
Better ideas for temporal propagation/filtering? 

Motion 

Is there any competitive `discrete motion analysis’ ? 
For a start, see  
         [W. Trobin, T. Pock, D. Cremers, H. Bischof, ECCV 2008] 
               (an extension of graph-cut towards the continuous case) 
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More advanced modules for specific DAS tasks, 
certainly also with more interesting interactions with  
common areas of discrete mathematics, for 

- ground manifold modeling 
- ego-motion estimation 
- object tracking (pedestrians, cars, ..) 
- obstacle detection 
- free-space detection (the space possibly to drive in) 
- traffic sign recognition (not just speed or stop signs) 
... 

Vision-based DAS is the future.  
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The end. 




