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ABSTRACT: Digital manifolds play an important role in computer graphics, 3D image analysis, volume mod-
eling, process visualization, and so forth — in short, in all areas where discrete multidimensional data need
to be represented, visualized, processed, or analyzed. The objects in these areas often represent surfaces and
volumes of real objects. In this paper we discuss some applications of digital curves and surfaces to medical
imaging, implied by theoretical results on digital manifolds.

1 INTRODUCTION

Digital manifolds play an important role in various
facets of the modern information society. By becom-
ing a “digital society,” the complexity of synthetic
digital worlds is increasing. They often represent sur-
faces and volumes of real objects. This is for exam-
ple the case in such fields like medicine (e.g., or-
gan and tumor measurements in CT images, beating
heart, or lung simulations), bioinformatics (e.g., pro-
tein binding simulations), robotics (e.g., motion plan-
ning), engineering (e.g., finite elements stress simu-
lations), and security (biometrics). With the rapidly
growing variety of synthetic surfaces and volumes, it
is becoming critical to develop a relevant theory of
digital manifolds and based on it methods for resolv-
ing a wide range of problems.

In this paper we review some actual or possible ap-
plications in medical imaging implied by some the-
oretical results on digital manifolds. These applica-
tions include visualization of a digitized real object,
identification of its topological or geometric proper-
ties (such as its tunnels, gaps, skeleton, or boundary),
as well as certain metric properties. In Section 2 we
refer to some works providing a theoretical basis for
the above-mentioned applications that are discussed
in Section 3. We conclude with some remarks in Sec-
tion 4. An extensive bibliography is provided to facil-
itate interested readers.

2 THEORETICAL FOUNDATIONS
Theory of digital manifolds is a vivid topic of research
that is mainly driven by numerous practical applica-
tions. In this section we first briefly list and com-
ment some literature sources containing recent devel-
opments on the subject. Then we introduce several no-
tions playing an important role in research and related
to applications presented in the subsequent sections.

2.1 Research on Digital Curves and Surfaces

Before providing a brief overview of results on digi-
tal curves and surfaces, we recall a few basic notions.
Two 3-cells (voxels)c1 andc2 are calledα-adjacent
iff their intersectionc1 ∩ c2 contains anα-cell, where
α ∈ {0,1,2}. Alternatively, two grid pointsp1, p2 ∈
Z

3 are called 6-adjacentiff 0 < de(p1, p2) ≤ 1, 18-
adjacentiff 0 < de(p1, p2) ≤

√
2, and 26-adjacentiff

0 < de(p1, p2) ≤
√

3, wherede is the Euclidean dis-
tance.

Digital surfaces have been studied frequently over
the years. For example, (Kim 1983) defines digi-
tal surfaces inZ3 based on adjacencies of3-cells.
A mathematical framework (based on a notion of
“moves”) for defining and processing digital mani-
folds is proposed in (Chen & Zhang 1993).

For obtainingα-surfaces by digitization of surfaces
in R

3, see (Cohen-Or et al. 1996). It is proved in (Mal-
gouyres 1997) that there is no local characterization

1



of a 26-connected subsetS of Z
3 such that its com-

plementS consists of two 6-components and every
voxel of S is adjacent to both of these components.
(Malgouyres 1997) defines a class of 18-connected
surfaces inZ3, proves a surface separation theorem
for those surfaces, and studies their relationship to
the surfaces defined in (Morgenthaler & Rosenfeld
1981). (Bertrand & Malgouyres 1999) introduces a
class of “strong” surfaces and proves that both the
26-connected surfaces of (Morgenthaler & Rosenfeld
1981) and the 18-connected surfaces of (Malgouyres
1997) are strong. For further studies on 6-surfaces,
see (Chen et al. 1999). Digital surfaces in the con-
text of arithmetic geometry are studied in (Brimkov
et al. 2002). For various other topics related to digital
manifolds we also refer to (Chen 2004; Chen 2005).

In a recent paper (Brimkov & Klette 2004) two of
the authors provided the first definition of digital man-
ifolds of involving the notion of dimension in discrete
spaces (Mylopoulos & Pavlidis 1971). Accordingly, a
digital curve is one dimensional while a digital sur-
face is(n − 1)-dimensional set of voxels, wheren is
the dimension of the considered discrete space. The
definition allows classification of all digital manifolds
with respect to the type of their “gaps.” The concepts
of tunnels and gaps and their relevance to certain prac-
tical problems is discussed next.

2.2 Tunnels, Gaps, and Skeletons

A gapis an important notion in discrete geometry and
topology. Usually, gaps are defined through separabil-
ity as follows: Let a digital objectM bem-separating
but not(m− 1)-separating in a digital objectD. Then
M is said to havek-gapsfor anyk < m. A digital ob-
ject withoutm-gaps is calledm-gapfree. See Figure
1.

Homology groups in topology definetunnels, and
2-gaps are sometimes also discussed as being tunnels.
Information about the number of gaps or tunnels has
been a subject of interest in various disciplines, such
as digital topology (Fourey & Malgouyres 2002; Ma
& Wan 2000; Nakamura 2006; Srihari 1981), image
analysis (Kong & Rosenfeld 1989; Lohmann 1988;
Saha & Chaudhuri 1996), graph theory (White 1972),
and computational modeling of 3D forms (Desburg
et al. 2005). Gaps or tunnels are related to impor-
tant topological concepts such as Euler characteristic
and Betti numbers. See (Klette & Rosenfeld 2004) for
more details.

For various applications it is useful to obtain the
skeletonof a digital set. Skeletons represent the ba-
sic topological features of the considered object while
being easier to study. They are obtained by thinning
algorithms. For more details refer, e.g., to (Klette, G.
2006; Klette, G. & Pan 2004; Klette, G. & Pan 2005;
Kong 2004; Palagyi & Kuba 2003; Palagyi & Kuba

Figure 1:Left: From top to bottom: portions of arith-
metic lines defined by0 ≤ 3x − 5y < 3, 0 ≤ 3x −
5y < 5 (naive line), and0 ≤ 3x − 5y < 8 (standard
line). The first one has 1-gaps (and, therefore, also 0-
gaps; a 1-gap is pointed out by an arrow), the sec-
ond one has 0-gaps (one of them pointed out by an
arrow) but no 1-gaps, and the third one is gap-free.
Middle: Portion of an arithmetic plane defined by
0 ≤ 2x + 5y + 9z < 7. It has 2-gaps (and, therefore,
also 1- and 0-gaps). A 2-gap and a 1-gap are pointed
out by arrows.Right:Configuration of voxels (in two
different orientations) that features a 0-gap (pointed
out by an arrow).

1998; Palagyi et al. 2001).

3 APPLICATIONS TO VIZUALIZATION, PRO-
CESSING, AND STRUCTURAL ANALYSIS
OF DIGITIZED OBJECTS

In this section we briefly discuss possible applications
of digital manifolds, mainly in the area of medical
imaging.

3.1 Finding and Counting Gaps

Knowledge about gaps is important for ray tracing
or understanding of the topology of digitized 3D
sets. See (Kaufman 1987; Kaufman 1993; Kaufman
1987a; Kaufman & Shimony 1986). Assume, for ex-
ample, that an unknown closed continuous surfaceΓ
has been digitized, e.g., by a tomography scanner. Let
M be the resulting digital set of voxels. If now the
border∂(M) of M is determined in a way to con-
stitute a digital surface satisfying the proposed defini-
tions, one will have information about the type of pos-
sible gaps in that surface. The requirement for gap-
freeness of∂(M) is important when a discrete model
of a surface is traced through digital rays (e.g., for vi-
sualization or illumination purposes), since the pen-
etration of a ray through the surface causes a false
hole in it. Knowledge about the type of gaps of∂(M)
may predetermine the usage of an appropriate type of
digital rays for tracing the border in order to avoid
wrong conclusions about the topology of the original
continuous 3D set having the frontierΓ. Then, for the
purposes of surface reconstruction, one will be able
to faithfully model the geometry of the original 3D
set. This is of importance for 3D imaging, e.g., in
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medicine.
Information about gaps is also important for ensur-

ing correctness of representation for simulation pur-
poses. For example, a small hole in a heart surface
created by imperfections of the synthetic representa-
tion, while possibly insignificant (or simply unnotice-
able) for visualization, renders the synthetic surface
useless for blood flow simulation. Further, finite ele-
ment simulations may yield incorrect results if sur-
faces have singularities. Therefore, it is of primary
importance to have sound mathematical methods that
can assure correctness of key topological, geometric,
and metric properties of synthetic surfaces and vol-
umes.

In (Brimkov et al. 2006) the notion of gap was gen-
eralized to higher dimensions and the following for-
mula for the number of(n − 2)-dimensional gaps in
a digital objectS has been obtained. LetSk be the set
of k-cells ofS andsi = |Si|, 0 ≤ k ≤ n. Then

gn−2 = −2n(n− 1)sn + 2(n− 1)sn−1 − sn−2 + b,

where b is the number of221n−2-blocks of S (see
(Brimkov et al. 2006) for denotations, definitions, and
other details). In particular, the above formula counts
the number of 0-gaps and 1-gaps in digital 2D/3D dig-
ital objects. A computer program (based on simple
linear time algorithm) has been designed to compute
the number of 0- and 1-gaps as well as other object
parameters. The program also allows to visualize the
digital pictureS and interactively rotate it along the
Ox-, Oy-, andOz- axes so that the object can be seen
from different viewpoints.

3.2 Number of Tunnels
Several works address the more difficult and equally
important problem of computing the number of tun-
nels in a digital object. An algorithm from (Saha &
Chaudhuri 1996) computes the number of tunnels in
a 3 × 3 × 3 neighborhood of a point but not for the
whole region. Several other works (Basu 2005; Basu
et al. 2005; CHomP & CAPD; De Silva; Kaczynski
et al. 2004; Peltier et al. 2005) provide algorithms for
the problem, however, with no estimation of the com-
putational complexity.

Using a graph-theoretical approach, in (Li & Klette
2006) the authors present a computationally efficient
algorithm with a guaranteed polynomial worst case
running time. There is evidence that the same ap-
proach could provide an algorithm to compute homol-
ogy for digitized sets in arbitrary dimension.

3.3 Visualization, Skeletonization, and Measure-
ments

Some theoretical developments related to digital man-
ifolds are particularly relevant to the analysis of

curve-like structures in biomedical images. An on-
going research project (Klette, G. 2006) at the Uni-
versity of Auckland aims at analyzing confocal mi-
croscope images of human brain tissue (which con-
tain cells called astrocytes, see Figure 2, left). These
images have been taken layer by layer and consti-
tute a volume defined on a 3D regular orthogonal
grid. The curve-like structures have been obtained by
applying a thinning algorithm (see Figure 2, right).
(Klette, G. 2006) proposes a classification of voxels
in 3D skeletons of binarized volumes for subsequent
structural analysis and length measurements of dig-
ital arcs. For the former, a specific graph is associ-
ated with the skeleton (see Figure 3). The nodes of
the graph, calledjunctions, exhibit certain interesting
properties. However, within the proposed model they
are considered as singletons that constitute the set of
graph vertices. For the purposes of length measure-
ments, the digital curves are segmented into subse-
quent maximum-length digital straight-line segments,
and the total length of those is used to evaluate the
length of the curves. For more details we refer to
(Klette, G. 2006).

Figure 2: Example of an input data set composed of
42 slices of 256× 256 density images generated by
confocal microscopy from a sample of human brain
tissue.

Note that the arcs of the skeleton form one-
dimensional digital curves and as a whole the skele-
ton is a digital curve satisfying recent definitions from
(Brimkov & Klette 2004). These properties support
the segmentation process through a number of avail-
able efficient algorithms and, in turn, the curve length
measurements. Note that curve-like structures appear
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Figure 3:Right: A skeleton of the binarized volume
shown on the left.

Figure 4: Grey voxels constitute a junction.

Figure 5:Left: Portion of the skeleton from Figure 2
(junctions are shown as small black squares).Right:
A graph associated with the skeleton from the left.
Nodes are labeled by positive integers).

also in other biomedical images, for example in 3D
scans of blood vessels or in 3D ultrasound images.

3.4 Determination of Object Boundary
Another possible application of the theory of digital
manifolds is seen in designing new algorithms for de-
termining the border of a digital object. Because of
its importance, this problem has attracted consider-
able attention (see, e.g., (Daragon 2005; Kovalevsky
1989; Latecki 1988) and the bibliographies in those).

Our hypothesis is that one would benefit from an al-
gorithm that constructs the border as a digital surface
as defined in (Brimkov & Klette 2004). As already
discussed earlier, the reason for this is the knowledge
about the gaps in the surface.

If a digital object has been obtained by digitizing a
set with a “regular” shape (e.g., featuring convexity),
then, in practice, the border voxels indeed constitute
a digital surface satisfying those definitions. More-
over, for data compression purposes the obtained dig-
ital surface can be “linearized” by partitioning it into
polygonal portions of digital planes. The fact that
any digital plane is a digital surface explains why in
practice the requirement for two-dimensionality sup-
ports the minimization of the number of digital plane
patches. For more details we refer to (Klette & Sun
2001).

In some cases however it is possible that the border
voxels of a digital set do not constitute a digital sur-
face. This usually happens when the digital object has
a very complex and irregular structure. An illustration
of such a complexity is provided in Figures 6, 7, and
8. They present digitized images of a human brain tis-
sues, studied within the previously mentioned astro-
cyte project. In such cases, one possibility is to algo-
rithmically “repair” the set of border voxels in order
to make it two-dimensional. Some theoretical results
from (Brimkov & Klette 2004) suggest that such a
digitization always exists. Repairing digital objects in
order to achieve desired properties has been already
used by some researchers (e.g., (Siguara et al. 2005;
Latecki 1988)).

4 CONCLUDING REMARKS
The purpose of this paper was to introduce the reader
to ongoing research on properties of digital mani-
folds and related applications to medical imaging.
Mathematically sound foundations may guarantee
high quality rendering of objects, faultless simula-
tions (e.g., of organ functions), and computational ef-
ficiency of the image analysis and processing. In order
to achieve optimal effect, theoretical research should
go in parallel with applied work. Close collaboration
between specialist with diverse expertise will become
increasingly important.
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have been obtained by confocal microscopy and visu-
alized in voxel view mode.
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Figure 6.

Figure 8: Further enlargements of subvolumes of the
digital image of Figure 2.
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