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QUESTIONS     raised in this book

• Do high resolution images support curvature estimation
that is based on definitions in differential geometry?
(majority of corner detectors is based on heuristics)

• Do these estimates converge towards the true curvature
value assuming an increase in grid resolution?

• What kind of applications are supported by (or: require)
curvature estimations?



Option 1: derivative of tangent angle



A: Curvature Estimation from points



Option 2: radius of osculating circle



B: Curvature Estimation using DSSs

Approximation points defined by maximum-length DSSs



B: Curvature Estimation using DSSs



C: Using a Global Constant  k = a.n

Approximation points defined by constant a and length n



Option 3: derivative of the curve

Requires a parametric representation (x(t),y(t))of curves



D: second order curves
Algorithm M2003
by Majed Marji



E: spline interpolation



Curvature Estimation for 2D Curves
• DSS curvature estimators have in general a good

overall performance, even for low resolutions,
    but fail for multigrid convergence especially in

cases of convex curves (in difference to DSS based
length estimation!)

• Using a global constant seems to support multigrid
convergence, but there is no proof

• Spline interpolation using DSS seems to be
convergent, and it converges faster than when using
a global constant (thus: our recommendation), but
no proofs either



Curvature Estimators for Digital Surfaces
Normal Curvature – use any cutting plane that is aligned with the
surface normal at a point, then calculate the planar curvature…

NOTE: There is a minimum and a maximum normal curvature
associated with each point on a C1 surface (Gauss).



Curvature for Digital Surfaces

Mean Curvature:

Gaussian Curvature:



F: Two-Cut Mean Theorem
Take the mean of the estimated curvature for any two 
orthogonal normal curvature cut planes (basic theorem).

This is valid  for any two orthogonal normal cut planes!



G: Three Cut Mean Approach
Take the mean of the estimated curvature for any three 
equally spaced (i.e. 60 degree angle) normal cut planes
                                                       (theorem?; it works).

It works  for any three equally spaced normal cut planes!



We can compensate for cut planes that do not align with
the surface normal… (Meusnier, 18th century)

Compensated Two-Cut Approach

This technique works for both the two and three cut method.



H: Gaussian Curvature & Triangle Mesh

This known estimator applies for all adjacency counts greater than two!



I: Mean Curvature & Triangle Mesh

This known estimator applies for all adjacency counts greater than two!



Scale Invariance

• Gaussian and Mean curvature are translation and
rotation invariant, but not scale invariant.

• However, in shape analysis we are often interested in
scale invariance.

• We introduced a scale invariant measure, similarity
curvature.



Similarity Curvature

Shading code for similarity curvature (while
noting that the first term in R(p) represents
ellipsoidal patches and the second term
represents hyperbolic patches):

J. Rugis and R. Klette, PSIVT 2006

The similarity curvature is given by:



Example:
Similarity Curvature for Torus

A shaded torus and its cross-section.

Note: The outer region of a
torus is ellipsoidal while the
inner region is hyperbolic.



Curvature Maps
We produce curvature maps by projecting the shading coded curvature values
onto a 2D image plane. Similarity curvature maps:

Test scene depth map, similarity curvature map, and extracted spherical bump patches.



Application:
The Digital Michelangelo Project

A number of Michelangelo’s statues,
including the David, were digitized by a
team from Stanford University in ≤ 2000.
Since then, those data are a popular
research subject (see SIGGRAPHs).

• The David dataset contains ~ 1.1x109 points.

• We created mean curvature map images, one for each of the over
6,300 individual scans of the statue. Original intention: support
alignments. It works. But surface rendering was more exciting:



Mean Curvature Map Images of David

Dark: concave. Light: convex. Gray: planar.



Compensated 3 Cut   or   Mean Curvature & Triangle Mesh:  about same

Curvature texture (rough chisel marks) in the base of the statue.



But: our Compensated 3 Cut Approach is faster

Piece of tree trunk in the statue (back of one leg).



Curvature texture in the base of the statue.

Scan height: ~140mm     Scan resolution: ~0.3mm.



Simplified Common Model

Flat shading of triangle
mesh.

Simplification: about 15 : 1 reduction in resolution



Smooth shading of triangle
mesh.

Simplified Common Model
Simplification: about 15 : 1 reduction in resolution



Why Curvature Maps for Surface Rendering?
3D surface model: provides accurate surface geometry
     (note: unification of scans also based on matching
      curvature maps) and the “basic” surface rendering

Curvature maps provide additional surface micro-geometry 
     information (basically at pixel or even subpixel level)

Mapping such curvature maps into “valleys” or “hills” for
    enhancing normal-based surface rendering (e.g. for “a 
    shadow of a 2-pixel-diameter hill” is impractical at 
    this level of resolution.

We simply add curvature maps as “surface texture” for
enhanced pseudo-photorealism.



Projecting Surface Curvature Maps

With a strip of projected
surface curvature.

J. Rugis, SIGGRAPH 2006

We project curvature map images onto a simplified mesh model.



Projecting Surface Curvature Maps

The standard lighting model
(single point light source for each
scans) with two overlapping scans.

What about overlapping scans with the standard lighting model?



Projecting Surface Curvature Maps
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The new lighting model gives
seamless scan strip overlap.

J. Rugis, SIGGRAPH 2007

We handle overlapping scans by using a new lighting model.



Curvature is a valuable image analysis property.
Still there are open issues to be analyzed (e.g.,
proof of n-cut method, n ≥ 3).

But: curvature maps calculated via image analysis
are also very useful for improved near photo-
realistic and accurate 3D surface visualization.

And: calculated curvature maps add new
knowledge to the historic analysis (kind of chisel
used by Michelangelo etc.).

Conclusions


