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it is well known that the theory of inductive inference contributes 1o 2 theory of
interpolation in the discrete case: One investigates algorithms, which, from given
values of & function, compute new ones (see [Gol, [Ba), [Fel, [Thil, [Biu] et 4l.). In
this diserete interpolation theory, such algorithms assign, to certain local informa-
dions, constructive, global informations, i.e., one realizes mappings of the form
@ BN = N; the values in range © (hypotheses) are interpreted in 2 suitable ef-
fective numbering 5: N - Pa', where Pa' denotes the set of partially recursive
functions. Detailed studies of such inference operators are to be found, e.g., 10
(KILA),

Al the same time, it is well known that this inductive recognition 15 4 very special
case of the one used in mathematical statistics. However, on the one hand, in
mathematical statistics one finds hardly any constructive elements (global informa-
tion, i.e., inductively determined laws mean here parameters of distributions), on
the other hand, inductive inference restricts itsell a priori 10 recursive objects
(haws mean here computing procedures, Godel numbers etc.). f

Diserete mathematics, however, has already had for quite 4 wi:ulr. a much more
far reaching concept of law, namely that of 4 constructively described null set.

In this paper, we want to discuss some aspects of a theory of inference OpErators,
in which the used hypotheses are constructively described null sets, For the saks
'{f simplicity, we explain our ideas using the example of the set :E-l' Jncfu:aMr func-
tions on N, which we shall identify with the set X (X = 10, 17) ﬂ““ﬁ"’““ﬂ":dﬂ
With values in X; we assume further p(0) = p(1) = 4 and denote the.pr

Measure on Xw h‘j" : ..
Following (Ma], [Ja], (Seb, we call a set ® & X & recunsive null sct, L%
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. exists a recursive sequential test for I, i.e., a ¥ with the following properties -
- I ble.

(RI) Y= N x X*and ]"m‘cnumera ;

(R2) If welet[¥,] =g {p:[iPlE Y}-X=, then @[Y/]) s 2-.

(R3) If we let My = gor n.' [F[],. then Ty = . :
Moreover, following [Sch], we shall call % a totally recursive null set, if ther,

exists a recursive sequential test ¥ for 9, such that the f-:-il?wing holds:

(T4) The function f with /(i) = 4 f([¥.]) is computable in the sense of recursiye
analysis.

What are the general implications, if one pursues inductive recognition by
recursive null sets, i.e., if one considers inference operators @: X« — N, for which
h & range @ is interpreted by an effective numbering g of recursive sequential tests
(null sets)?

For this, we let AKZ(D, §) =4 {&: §€domain @ A § € B=@()} (" is here
shorthand notation for: £ is an element of the null set, described by the sequential
test S0()).

(I) The results of the theory of inductive recognition carry over. (According to
[Sch], given any recursive § € X, there is a totally recursive sequential test ¥ with
Ry = {5})

(IT) The types of realizations of @ are very similar to those discussed in inductive
inference. (Identification by numbering, limit recursion, etc.; see [So], [Go].)

(IIT) The weaker concept of law allows also the nontrivial recognition of certain
nonrandom and nonrecursive objects,

(IV) The fusion of statistics and constructive mathematics, seen as a goal by
[Sch), is completed.

In order to illustrate (I} (IV) we formulate here some statements about a certain
type of recognition, using regular null sets. As in [McN], we call M = X= regular,
if there exist regular W, ¥, = X*(1 = i < n) such that M = |5y Wy, Since
recursive null sets are, topologically speaking, G, sets (i.e.. countable intersections
of open sets), we shall consider from now on regular G sets. From [StWa] we know

Lewas 1. The following statements are equivalent ;
(2) M is a regular Gy set;

(B) there are regular W, V, = X*(1 < i = n), which are totally disordered with
respect to the initial word relation such that M = | ey W VY

ﬁ:;c:} there is a finitely determined acceptor W = [Z, X, [, z,) and a 7 = BZ, such
frear

M=1$3Z(ZeB n UddD) 1 Z' # @)}
where :I':‘c"f:'l = 4ot 2, 1)) << fzg, &(1)-- 2(m)) and U(T) = {27 cardin: Lln) = 7]

= W}
This immediately implies
THEOREM 2. Every regular Gy null zet is fotally recursive.

Let R be the family of all regular Gy null sets and R = g 'rJ R let 4 be an effec-
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: fall recursive null sets (which ex; 3
e nﬂmbﬂﬂng (o] : ; ICh exists accord
;'m. generally recursive function F: X* - N. we shall ccrnsil{l;;t;]?::l]’ [Sch)). For

(*) ANG) = {&15 = lim F(p) n As)e 4 & & 6(d(s)

[ s .E':-d h‘_':" F b.:l'lﬂ]jmlt T d
ﬂf‘aﬂ laws I'EC-I!_}EHI 1 procedure, (H(:FEEE A
of M.) This definition was made, following the method “G }'E-' ?:FE:]TT;P: f:lnaulm
Definition (*) does not force us to leave the regular Gy null sets bec;ug.;-, ﬂ;amp £,

LEMMA 3 (STAIGER). B(M) € R for M e R,
Further let AN = yo¢ {AN(F): F generally recursive} and N, =, e\ AN,

COROLLARY 4. Tt = N
Through identification by enumeration one has
THEOREM 5. Given any effective 3: N — R, one can find effectivel
» ¥ a generall
recursive F such that My = AN(F) for Re =4ee L B v
[n the proof one uses the fact that the property p-Xo [\ M+ @ forpe X*and
regular M < X'® can be decided. This, too, explains why we restrict ourselves

here to regular null sets.
Let Ny be the union of all totally recursive null sets. A comparison with % e

gIvEs
THEOREM 6. Tt 2 Ny
One can prove the stronger result: If £ = 01 ... 0717 ... is an element of a regular

set M < X¢, then a(M) > 0.
Because of Corollary 4 we have, therefore, for the set Al = X« of generally

TECUrSIVE SEqUEnCes
THeEOREM 7. A\, # @, since it is well known that Al = Ny (see [Sch]).

Thus, on the one hand, one has recognitions of type AN for nonrecursive, non-
random sequences; on the other hand, not all recursive sequences are JN-recogniz-

able,
We ask ourselves now whether there exists a universal AN-recognition for Ng.

To this effect, we prove
THEOREM 8. The property of a regular Gy set to be a null set is decidable.

By Lemma 1, it suffices to decide the property g([V )< lfor FelX * regular

and totally disordered.

To this end we use
LEMMA 9 (Paz, WECHSUNG). If ¥ < X* is totally disordered and if F:‘s"ﬂccepred
F] then one can effectively find

by the finite determined automaton % = X, Z, 1. zo, V) =
Polynomials g and h of degree card Z with rational coefficients, such that fi([V]) =

8Q7)- (h(2-1)1,

Thus one hag

ey =



B
-

ROLF LINDNER
474

ruct an effective B:N — R such that S(N) = R,
5 and Lemma 3

CoroLLARY 10. One can const

Hence Wwe conclude from Theorem -

TueoreM 11. One can construct a universal generally recursive F: X* — N such
that .rl'jN{F]-_—l:ﬂR-.

At the same time 0ne has

TueoreMm 12, One can consiruct a totally recursive sequential test Y sueh that
N = RNy |

For the proof one uses the following lemma, which goes back to [Sch], because
of Theorem 2.

Lemma 13. Given any effective 8:N = R, one can find a totally recursive sequential
test ¥ such that B 5 = Ty

This is another confirmation of Theorem 6, if one uses

THEOREM 14 (ScHNORR). Given any totally recursive fest Y, one can effectively
construct a & € AI\Ry.

Since there exists an effective numbering of all acceptors of regular G; null sets
such that the state numbers of the numbered automata increase, Theorem 8 im-
plies the following sharpening of Corollary 10.

TreoREM 15. One can give an effective Occam numbering B:N— RforR.

For the strategy F: X* — N, constructed in Theorem 11, we even get now that
Ao @(£) is a weight-minimal regular G null set for every £ € M p. By this, complexity
in the discovered laws becomes accessible to investigation.

The theorems formulated here for the case of JN-realizations of inference
operators confirm sufficiently (I}—(IV) and suggest how to continue the investiga-
tions for other types of realizations (GH', GN*, etc.; see [Ba]) and for other classcs

F'f m{!l sets constructively described. This will be done in a subsequent paper which
15 being prepared.
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