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Abstract. In this paper we present a comprehensive energy-based framework for the estimation and the seg-
mentation of the apparent motion in image sequences. The robust cost functions and the associated hierarchical
minimization techniques that we propose mix efficiently non-parametric (dense) representations, local interacting
parametric representations, and global non-interacting parametric representations related to a partition into regions.
Experimental comparisons, both on synthetic and real images, demonstrate the merit of the approach on different
types of photometric and kinematic contents ranging from moving rigid objects to moving fluids.
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1. Introduction

Among early vision problems, the estimation and the
segmentation of the apparent motion from an image se-
quence is particularly intricate. It is a two-fold problem
which lies at the heart of most tasks of video analysis. It
is thus a critical part of a number of computer vision ap-
plications such as motion detection in a scene, 3D mo-
tion and scene structure recovery, obstacle avoidance in
robotics, etc. (see for example, Mitiche and Bouthemy
(1996) for a review on motion analysis issues).

Stemming either from a discrete Markovian frame-
work or from a deterministic continuous one, energy-
based models are very appealing to handle in a
versatile way high-dimensional inverse problems. For
motion analysis purposes, such models have been thor-
oughly investigated. They usually rely on the bright-
ness constancy assumption (i.e., the image irradiance
of a physical point does not change within a certain
time interval) combined with some a priori knowledge

on the displacement field. This prior is either captured
locally by a smoothness term in the cost function
(Horn and Schunck, 1981), or defined more globally
as a parametric representation of the unknown motion
(Adiv, 1985; Ayer and Sawhney, 1995; Bergen et al.,
1992; Bouthemy and Francois, 1993). These two types
of prior have their own advantages and drawbacks.
Contrary to the local smoothing approach, the para-
metric modelization relies on large spatial supports of
estimation. This type of modelization is thus usually
dedicated to motion-based segmentation where areas
with kinematic meanings have to be extracted from the
images (Ayer and Sawhney, 1995; Bergen et al., 1992;
Bouthemy and Francois, 1993; Murray and Buxton,
1987), provided that such regions with consistent mo-
tions exist in the sequence at hand. This type of ap-
proach is also expected to be more reliable, provided
that the selected parameterization makes sense from
a physical point of view. Local non-parametric mod-
els are, in that sense, more versatile since they only
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capture smoothness assumptions on the desire solu-
tion. Besides, they are independent of any partition
of the image, and they can easily handle local fea-
tures of the motion field such as discontinuities (Black
and Rangarajan, 1996). For these reasons, they are
usually involved in dense motion estimation (Black and
Rangarajan, 1996; Cohen and Herlin, 1999; Kornprobst
et al., 1999; Mémin and Pérez, 1998a).

The limitations of each approach can be illustrated in
the case of images involving fluids. In sequences of this
nature, like those encountered in meteorology (atmo-
spheric satellite images) or fluid mechanics (videos of
wind tunnel or water tank experiments), it is common
to observe very low photometric contrasts. Although
the brightness constancy assumption can be turned into
a more appropriate “transport” model (Corpetti et al.,
2000; Schunck, 1986) in this specific context, the data
model will always be plagued by the absence of consis-
tent photometric information to rely on. In that case, the
parametric approach, with its use of extended estima-
tion supports, could seem more appropriate. However,
the physics of the scene makes its use delicate: in fluid
motions there is no real objects or motion regions with
borders, and the involved motions can be much more
complex than those captured by standard parametric
models.

Based on these preliminary remarks, we aim at mix-
ing a local non-parametric smoothing and a more global
parametric representation. We actually present two dif-
ferent (and not exclusive) methods to reach that goal.
The first one concerns a particular constrained mini-
mization technique used with an energy-based dense
motion estimation model. The second method deals
with an energy-based model for the joint estimation-
segmentation of the apparent motion. In both ap-
proaches, whose cost functions are partly the same, ro-
bust penalty functions are used to deal with the various
deviations from the selected models. We also propose
to build on the so-called “semi-quadratic” rewriting of
such robust functions with auxiliary weights, by using
the auxiliary weights as a device to couple the different
variables of the problem.

As already mentioned, energetic formulations can
be viewed either from a continuous angle or from a
discrete one. The former kind of approaches implies
continuous functionals, variational calculus, determin-
istic partial differential equations, and discretization
schemes (finite differences, finite elements), whereas
the latter type of formalism is often related to Markov
random fields and Bayesian inference. The two view-

points provide different insights into a given problem,
as well as different mathematical tools to cope with
the various issues at hand. Despite their differences, it
is known that these two types of approaches often lead
to very similar discrete implementations. Although our
setting relies more on a discrete philosophy, we shall
discuss the connection between the two points of view,
in terms of both models and algorithms.

The paper is divided into three main parts. In
Section 2 we focus on a robust energy-based model
for the incremental dense estimation of the apparent
motion field with preservation of its discontinuities.
To cope with the associated minimization we intro-
duce an efficient tailor-made hierarchical technique
which combines different and varying parameteriza-
tions of the unknown field. The compromise between
local dense methods and global parametric approaches
is thus introduced via the minimization process. In
Section 3 we show how the former energy function
can be extended to estimate at the same time a motion-
based segmentation of the scene. The resulting joint
estimation-segmentation model introduces another mix
between local smoothness and region-wise parameter-
ization. The global minimization is performed with a
natural extension of the hierarchical optimization tech-
nique developed in the previous part. The last part
(Section 4) is devoted to experimental results. The
two approaches are validated qualitatively and quan-
titatively on real world sequences of quite different na-
tures. Systematic comparisons are also provided on a
synthetic benchmark, including an assessment of the
sensitivity of the proposed techniques to the value of
the different parameters.

2. Robust Estimation of Dense Motion

The dense estimation of the apparent motion aims at
recovering a displacement field w = {ws, s ∈ S} over
the rectangular pixel lattice S, based on the luminance
function f (t) = { f (s, t), s ∈ S} at two consecutive
instants t and t + 1. Assuming the temporal constancy
of the brightness for a physical point between the two
images, one gets:

∀s ∈ S, f (s + ws, t + 1) = f (s, t), (1)

which is highly nonlinear w.r.t. the unknown displace-
ment vector ws at location s. A first-order expansion
of the left-hand-side provides the standard optic flow
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constraint equation (ofce):

∇ f (s, t + 1)T ws + f (s, t + 1) − f (s, t) = 0, (2)

where ∇ f stands for the spatial gradient of f . For
this approximation to be valid, the unknown displace-
ment ws should remain in the “domain of linearity”
of the luminance function at location s. This is par-
ticularly unlikely to hold around sharp edges (where
large gradients imply reduced linearity domains), and
for large displacements. These limitations are usually
circumvented by conducting an incremental estima-
tion through a multiresolution hierarchy of sequences
(Black and Anandan, 1996; Enkelmann, 1988). We,
too, stick to that multiresolution setup involving a pyra-
midal decomposition of the images. Even if we do
not make it explicit, we shall assume throughout to be
working at a given resolution of such a multiresolution
structure. One has to keep in mind that all definitions
and derivations are thus meant to be reproduced at each
resolution level according to a coarse-to-fine strategy.

2.1. Incremental Energy-Based Model

The incremental estimation assumes that a preliminary
estimate w = {ws, s ∈ S} of the unknown vector field is
available (e.g., from an estimation at lower resolution or
at previous instant). A refinement is sought in terms of
an increment field dw ∈ � ⊂ (R × R)S . Based on the
linearization of the constancy brightness assumption
(1) with respect to that increment, instead of the total
field as in (2), a robust energy-based refinement can be
defined as:

d̂w = arg min
dw∈�

[H1(dw) + H2(dw)], (3)

with (Black and Anandan, 1996; Mémin and Pérez,
1998a):

H1(dw)
�=

∑
s∈S

φ1([∇ f (s + ws, t +1)T dws

+ ft (s, ws)]
2), (4)

H2(dw)
�= α

∑
〈s,r〉∈C

φ2(‖(ws + dws)

− (wr + dwr )‖2). (5)

The first term constitutes the data-model which rules
the dependency between the unknown displacement

field and the data. The second term captures a smooth-
ness prior on the total displacement. It is made up of
a sum of local discrepancy penalties taken over the set
C of all the pairs of neighboring pixels (for a chosen
neighborhood system, which is often of first or sec-
ond order). The parameter α > 0 balances the contri-
butions of the two terms. In the data-model ft (s, ws)

�=
f (s + ws, t + 1)− f (s, t) denotes the displaced frame
difference, and φ1 and φ2 are two increasing concave
functions that soften the plain quadratic penalties such
as to limit the influence of large residuals. These two
functions make the model robust to large deviations
from the first-order smoothness assumption and from
the brightness constancy assumption respectively.

A so-called semi-quadratic formulation of penal-
ties of the form φ(.2), with φ concave, can be ob-
tained (Black and Rangarajan, 1996; Charbonnier et al.,
1997; Geman and Reynolds, 1992): if lim0+ φ′ < ∞,
and lim+∞ φ′ = 0, there exists an increasing function
ψ such that φ(x2) = minz∈(0,1][τ zx2 + ψ(z)], where
τ

�= limv→0+ φ′(v), i.e, φ(.2) is the inferior envelope
of a family of parabolas continuously indexed by an
auxiliary variable (or weight) z lying in (0, 1].1 The
minimizer is given by arg minz∈(0,1][τ zx2 + ψ(z)] =
1
τ
φ′(x2).
Using this reformulation result, the minimization

of H1 + H2 can be replaced by the minimization in
(dw, δ, β) of an augmented cost functionH �= H1+H2

with:

H1(dw, δ) =
∑
s∈S

[τ1δs[∇ f (s + ws, t + 1)T dws

+ ft (s, ws)]
2 + ψ1(δs)], (6)

H2(dw, β) = α
∑

〈s,r〉∈C
[τ2βsr‖(ws + dws)

− (wr + dwr )‖2 + ψ2(βsr )], (7)

where τ1
�= lim0+ φ′

1, τ2
�= lim0+ φ′

2, and δ = {δs, s ∈ S}
and β = {βsr , 〈s, r〉 ∈ C} are two sets of auxiliary vari-
ables lying within (0, 1] and respectively attached to the
pixel grid and to the edge grid. This new minimization
can then be led alternatively with respect to dw and
to the weights: the energy H is quadratic in dw and
the corresponding minimization amounts to a standard
weighted least squares problem; conversely, dw being
frozen, the best weights are obtained in closed form
(Mémin and Pérez, 1998a). The convergence of this
alternate scheme is guaranteed, to a global minimum
if φ(.2) is convex (Charbonnier et al., 1997), and to a
local minimum otherwise (Delanay and Bresler, 1998).
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In practice, the displaced frame f (s+ws, t +1) is com-
puted through a backward registration of f (s, t + 1)

associated with a bilinear interpolation. The spatial gra-
dients are then computed on this image with the deriva-
tive filters proposed in Viéville and Faugeras (1992).

This robust energy-based modeling provides a
generic dense estimator which can be applied to image
sequences of various natures provided that they contain
sufficient photometric contrast or texture. Wherever
this condition is not met within large areas, the ro-
bust smoothness term might not be strong enough to
propagate the estimates obtained at the border of these
regions toward inner locations where data cannot be ex-
ploited. However, the experiments reported in Section 4
demonstrate that this problem is effectively tackled by
the hierarchical piece-wise parametric minimization
we now introduce. Other gains will be obtained in terms
of global quality of estimates and computational load.

2.2. Piece-Wise Parametric Constraint

Let us assume that the pixel grid is divided into a col-
lection of patches. Let B �= {Bn, n = 1, . . . , N } be
this partition and E the edge set of the associated con-
nectivity graph.2 We consider piece-wise parametric
increment fields for this partition. They are defined as:

∀n = 1 . . . N , ∀s ∈ Bn, dws = �n(θn, s), (8)

where θn is a pn-dimensional parameter vector and
the �n’s are interpolation functions which can be dif-
ferent from one patch to another. The whole incre-
ment field can then be expressed dw = �(θ) with
θT = (θT

1 · · ·θT
N ) lying in parameter space �. The full-

rank function � is the interpolator between the reduced
subspace � and the original configuration space �. It
is a one-to-one mapping from � into the constrained
configuration subset Im� ⊂ �.

The constrained minimization of H in Im� is equiv-
alent to a new minimization defined on �:

min
dw∈Im�

H(dw, δ, β) = min
θ∈�

H(�(θ), δ, β)︸ ︷︷ ︸
�=H∗(θ,δ,β)

. (9)

The new energy functionH∗ is readily derived from the
original one (6–7). Denoting Cn

�= {〈s, r〉 ∈ C : 〈s, r〉 ⊂
Bn} the set of the neighboring pixel pairs included in
patch Bn , and Cnm

�= {〈s, r〉 ∈ C : s ∈ Bn, r ∈ Bm} the
set of neighboring site pairs straddling adjacent patches
Bn and Bm (see Fig. 1), one can show that this new

Figure 1. Image partitioning and associated notations: Example of
image partition B= {B1,B2,B3,B4,B5} (with examples of neigh-
boring pixel pairs belonging to C1, C13, and C24 respectively),
and associated adjacency graph with edge set E = {(1, 2), (1, 3),

(2, 3), (2, 4), (2, 5), (4, 3)}.

energy is similarly composed of two terms,H∗ = H∗
1 +

H∗
2, defined as:

H∗
1(θ, δ) =

N∑
n=1

∑
s∈Bn

τ1δs[∇ f (s + ws, t + 1)T

× �n(θn, s) + ft (s, ws)]
2 + ψ1(δs),

H∗
2(θ, β) = α

[ ∑
〈n,m〉∈E

∑
〈s,r〉∈Cnm

τ2βsr‖(ws + �n(θn, s))

− (wr + �m(θm, r))‖2 + ψ2(βsr )

+
N∑

n=1

∑
〈s,r〉∈Cn

τ2βsr ‖(ws + �n(θn, s))

− (wr + �n(θn, r))‖2 + ψ2(βsr )

]
. (10)

Note that the first term in the definition of H∗
2 is rem-

iniscent of the “skin and bones” model introduced by
Ju et al. (1996).

Minimizing H∗ provides a piece-wise parametric
increment field where different parameterizations are
combined. Note that, contrary to what is done in para-
metric segmentation approaches based on independent
region-wise parametric models, the different parameter
vectors θn’s interact here through the smoothness term
that enforces continuity at patch frontiers. In addition,
contrary to splines based methods (Musse et al., 1999;
Szeliski and Shum, 1996) for which parameters also
interact, the presence of a robust smoothness term al-
lows here to introduce spatial discontinuities between
patches via the variables βsr ’s lying along patches’
frontiers.

In the next section we show how this constrained
optimization can be easily embedded in a hierarchical
optimization framework.
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2.3. Hierarchical Constrained Optimization

We now consider a sequence of partitions. The con-
strained optimization previously described can be suc-
cessively used with each of these partitions, thus pro-
viding a hierarchical optimization scheme: the original
optimization problem of H is replaced by a succession
of constrained minimizations. Let {B�, � = L . . . 0} be
the family of partitions.3 Let E� and S�, � = L . . . 0,
be respectively the edge set and the N�-vertex set of the
associated connectivity graph. The interpolation func-
tions �� associated to the sequence of partitions are
chosen such that the size of �� �= Im�� decreases as
� increases.4

The constrained optimization in �� is equivalent to
the minimization of the new energy function:

H�(θ�, δ, β)
�= H(��(θ�), δ, β), (11)

defined, as concerns the unknown increment field, over
a reduced parameter space ��, whereas the unknown
weights δ and β, as well as the data f , and the field
w to be refined remain the same (i.e., defined on the
original grid S). A diagrammatic view of this setting is
given by:

(12)

Based on this family of energy functions H�, we
now define our minimization scheme as a recursive
sequence (from � = L to � = 0) of optimization prob-
lems of reduced complexity:

(θ̂ �, δ̂, β̂) = arg min
θ�,δ,β

H�(θ�, δ, β), � = L . . . 0, (13)

where the field to be refined at level �, w� �= w�+1 +
��+1(θ̂�+1), is deduced from the estimate at level � + 1,
and the initial field wL comes from an estimation at a
coarser resolution or from a given initialization.

Each of these successive minimizations is processed
in terms of iteratively reweighted least squares initial-
ized byθ� ≡ 0 and provides the increment field��(θ̂

�
).

The procedure is repeated until the finest level � = 0
is reached, and the motion field finally recovered is
wL +∑0

�=L ��(θ̂�), which is not piece-wise parametric
in general. This incremental minimization procedure

can be viewed as a hierarchical Gauss-Newton mini-
mization of

∑
s φ1([ f (s + ws, t + 1) − f (s, t)]2) +

α
∑

〈s,r〉 φ2(‖ws − wr‖2).5

Gauss-Newton techniques are second-order mini-
mization techniques that resort to an approximation of
the Hessian, which does not rely on the current residu-
als, as opposed to exact Newton technique. As a result,
the speed of convergence is high when the residuals
are small, but the process can be painfully slow, if
not divergent, when the residuals are large (Thisted,
1988). Nevertheless, as it is shown in experimental
Section 4, this latter behavior has not be observed for
the particular Gauss–Newton minimization we use. We
believe this is mainly due to the hierarchical setting
which helps keeping the residuals small by an effi-
cient guidance of the minimization process at the coarse
levels.

2.4. Linear Parameterizations and Energy
Minimization

So far, we let the nature of the parameterizations un-
specified. In practice, the interpolation functions are
chosen linear. The constrained increment field dw� =
��(θ�) thus obeys

∀n ∈ S�, ∀s ∈ B�
n, dws = Pn(s)θ

�
n, (14)

where Pn(s) is 2 by pn matrix. The corresponding
parameter spaces are �� = �N�

n=0R
pn . Standard para-

metric models used in motion analysis correspond
to pn = 2, 4, 6 or 8 [1, 5]. In this work we will
consider two possible parameterizations: the constant
model (2 parameters of translation and Pn(s) = [1 0

0 1])
and the affine model (6 parameters and Pn(s) =
[1 xs ys 0 0 0
0 0 0 1 xs ys

], where xs and ys stand for the coordi-
nates of pixel s). As reported in Section 4, we have
investigated different combinations of these two pa-
rameterizations. A simplified affine modeling with four
parameters has also been investigated in a previous
work (Mémin and Pérez, 1998b), where it appeared
as less interesting than the two models used here.
Also, as compared to more complex models, such as
the eight or twelve-parameter quadratic models, the
six-parameter affine model is known to provide the
best compromise between computational efficiency,
robustness, and versatility (Bouthemy and Francois,
1993).
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Introducing the linear parameterizations (14) within
the energies (10) yields

H�
1(θ

�, δ) =
∑
n∈S�

∑
s∈B�

n

τ1δs
[
∇ f

(
s + w�

s , t + 1
)T

× Pn(s)θ
�
n + ft

(
s, w�

s

)]2 + ψ1(δs),

H�
2(θ

�, β) = α

[ ∑
〈n,m〉∈E�

∑
〈s,r〉∈C�

nm

τ2βsr

∥∥(w�
s + Pn(s)θ

�
n

)
− (

w�
r + Pm(r)θ�

m

)∥∥2 + ψ2(βsr )

+
∑
n∈S�

∑
〈s,r〉∈C�

n

τ2βsr

∥∥(w�
s + Pn(s)θ

�
n

)
− (

w�
r + Pn(r)θ�

n

)∥∥2 + ψ2(βsr )

]
. (15)

The iteratively reweighted least squares minimiza-
tion applied to this energy function amounts to alter-
nate updates of the weights and of the parameter vec-
tors. The current parameter estimate θ� being fixed,
we know that the optimal weight values are directly
accessible. These values are:

∀n ∈ S�, ∀s ∈ B�
n, δs

= 1

τ1
φ′

1

[(
∇ f

(
s + w�

s , t + 1
)T

Pn(s)θ
�
n

+ ft
(
s, w�

s

))2]
, (16)

∀〈n, m〉 ∈ E�, ∀〈s, r〉 ∈ C�
nm, βsr

= 1

τ2
φ′

2

[∥∥(w�
s + Pn(s)θ

�
n

) − (
w�

r + Pm(r)θ�
m

)∥∥2]
,

(17)
∀n ∈ S�, ∀〈s, r〉 ∈ C�

n, βsr

= 1

τ2
φ′

2

[∥∥w�
s − w�

r + (Pn(s) − Pn(r))θ�
n

∥∥2]
. (18)

It is worth noting that according to (18), the discon-
tinuity variables βsr located into patches of B� (i.e.,
〈s, r〉 ∈ C�

n for some n ∈ S�) do not depend on the trans-
lational components of θ�. Indeed, the unity entries as-
sociated to these components in matrices Pn(s) cancel
themselves out in the matrix difference Pn(s) − Pn(r).
In the piece-wise constant case, the discontinuity vari-
ables therefore depend only on w�, and can be computed
right away within the first iteration at the current grid
level.

As soon as the values of all weights are computed and
frozen, the energy function H�(θ�, δ, β) is quadratic
with respect to θ�. Its minimization is equivalent to the

resolution of a linear system whose solution is searched
with a block-based Gauss-Seidel solver. Each single
update of this iterative process is obtained by solving
a linear equation in θ�

n for the current block B�
n . This

is detailed in the Appendix A for the two different pa-
rameterizations on B�

n .
Before explaining how the model can be enriched to

deal with a joint segmentation process, it is worth dis-
cussing the connection between the discrete model we
have presented and its possible continuous counterpart.

2.5. Continuous Formalization

A continuous version of the discrete energy (6–7),
which was derived by Taylor expansion around the cur-
rent displacement field, corresponds to the functional∫∫

S
(τ1δ(x)[∇ f̃ (x)T dw(x) + f̃t (x)]2 + ψ1(δ(x))) dx

+ α

∫∫
S
(τ2β(x)‖∇(w(x) + dw(x))‖2 + ψ2(β(x))) dx,

(19)

where w and dw are, momentarily, two C1-vector fields
over the continuous plane domain S ⊂ R

2, δ and β

are two scalar fields on the same domain, and ∇ f̃
�=

∇ f (. + w, t + 1), f̃t
�= f (. + w, t + 1) − f (., t). The

problem of minimizing this half-quadratic functional
can be addressed in terms of alternate minimization
(Deriche et al., 1995). For fixed dw, the Euler-Lagrange
equations provide the optimal expression of functions
δ and β (using ψ ′(z) = −τ zφ′−1

(τ z)):

δ = 1

τ1
φ′

1[(∇ f̃ T dw + f̃t )
2], and

(20)

β = 1

τ2
φ′

2[‖∇(w + dw)‖2].

The natural discretization of the first equation, which
consists in taking the values of δ, f̃t , and ∇ f̃ at pixel
locations x = s ∈ S, is readily obtained and yields
exactly the same update rule as the one stemming from
the minimization of the discrete energyHw.r.t. {δs}s∈S .
The same discretization scheme can be adopted for the
second equation (as in Nesi, 1993). However, if the
gradients are approximated by finite differences on the
grid, it is simpler to have the function β discretized on
the same edge lattice. The corresponding discretized
update is then the same as the one that minimizes H
w.r.t. {βsr }〈s,t〉.
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The weight functions δ and β being fixed, one has
to deal with the minimization of a quadratic functional
of dw. This can be conducted first by writing down the
Euler-Lagrange equations as a necessary condition of
optimality:

τ1δ∇ f̃ ∇ f̃ T dw − ατ2div[β∇(w + dw)]

= −τ1δ f̃t∇ f̃ . (21)

If w, dw, and δ are discretized on S, while β, ∇w, and
∇dw are discretized on the edge grid, and the diver-
gence operator is approximated by first-order central
difference on S, this partial differential equation leads
to a linear system which coincides with the one to be
solved for minimizing H in dw.

We see that a standard discretization based on
finite difference turns the minimization of the conti-
nuous functional into the same problem as the one
issuing from the minimization of the discrete en-
ergy H. The continuous formalism, however, allows
more flexibility in the choice of the discretization
schemes since the discretization step is “delayed”:
whereas the discrete modeling sticks right away to
the pixel grid discretization, the variational approaches
offer other choices, especially when the finite ele-
ment method is used (within Euler-Lagrange formal-
ism (Cohen and Herlin, 1999), or apart from it (Schnorr
et al., 1996)). In many cases, however, the discretiza-
tion of the original continuous model is made as
simple as possible w.r.t. the pixel grid, thus yield-
ing in fine the same discrete problems to be solved
as those associated with the minimization of discrete
energies.

As concerns the constrained minimization scheme
introduced in Section 2 when dealing with the dis-
crete energy H, it can be viewed in the continuous
framework as a Galerkin technique for solving the lin-
ear system that arises from the discretization of (21).
Denote Adw = b this system. Provided that the in-
terpolator � (Eq. (8)) from the reduced configuration
subspace � into the complete configuration space � is
linear, the standard coarse-to-fine multigrid approach
(Hackbusch, 1985) relies on the resolution in � of the
so-called Galerkin system �T AT A�θ = �T AT b. The
solution of this equation is obviously the minimizer of
the quadratic energy ‖A�θ − b‖2. In other terms it
corresponds to the minimizer of ‖Adw − b‖2 within
subspace Im�. In the case of the simple discretization
scheme mentioned earlier,H and ‖Adw−b‖2 coincide
up to an additive term independent from dw, and solv-

ing the Galerkin system above provides the minimizer
in θ of the reduced energy H∗.

The whole approach to dense motion estimation
we have introduced in this section could thus have
been equivalently formulated in a continuous fash-
ion, as it is done in related works (Cohen and Herlin,
1999; Deriche et al., 1995; Schnorr et al., 1996). How-
ever, this does not hold for the augmented estimation-
segmentation model to be presented.

3. Joint Estimation-Segmentation

In the previous section we have described a general hi-
erarchical method to estimate dense motion fields. We
shall see with experimental results that this approach
provides a family of hierarchical motion estimators
which give good results on sequences involving a va-
riety of motions. Before reporting these experiments,
we now introduce an extension of the model to couple
the estimation process with a motion-based partition of
the image.

Motion estimation and motion-based segmentation
are two tightly interwoven problems: a good estimation
of the motion field (or at least a sensible approxima-
tion of it) is required to obtain a good segmentation
of the different apparent motions present in the scene;
conversely, a good estimation of the motion field can-
not be obtained without an accurate estimation of the
frontiers of the different moving objects. It is therefore
natural to consider the resolution of these two problems
as a whole.

This has been considered in a number of different
ways and within a variety of methodological frame-
works. Nevertheless, two main classes of estimation-
segmentation approaches can be distinguished. The
first one consists in an unilateral coupling between
some motion estimate (such as sparse matchings, esti-
mate of contour motions, or dense motion estimate)
and a segmentation process (Adiv, 1985; Ayer and
Sawhney, 1995; Bouthemy and Francois, 1993; Huang
et al., 1995; Murray and Buxton, 1987; Oisel et al.,
2000). In this class of methods, the motion cues are first
extracted, and then used as the data on which the seg-
mentation is built. The second class of methods implies
a real coupling between the estimation of the motion
and the extraction of a motion-based partition of the im-
age within a joint procedure. This is usually achieved
using a global energy function depending on both enti-
ties. In this context, different kinds of interactions have
been recently proposed. In Stiller (1997) the frontiers
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of the partition capture in a binary way the discontinu-
ities of the dense displacement field under estimation.
The motion field is thus smoothed independently from
one region of the current partition to another. There is
no piece-wise parametric representation on which the
segmentation relies. In Black and Jepson (1996) the
interaction consists in a cooperation between a dense
motion field and a region-wise parametric polynomial
flow. As in our approach, the motion is encouraged to
have some similarity with the piece-wise parametric
field associated with the segmentation. Nevertheless,
the partition results from an early photometric process-
ing, and is kept fixed afterward. The coupled model we
propose is similar to the one proposed in Chang et al.
(1997). In Chang et al. (1997) however, the DFD-based
cost term involves a plain quadratic penalization and no
Gauss-Newton like incremental linearizations are con-
sidered. This results in a huge computation load and
leads sometimes to bad results.

The estimation-segmentation coupling we consider
here thus belongs to the class of joint approaches. We
aim at building, through a global discrete energy func-
tion, a cooperative method to estimate simultaneously
a dense motion field and a motion-based segmentation.
The associated minimization is solved with an exten-
sion of the hierarchical optimization scheme described
in Section 2.

3.1. Compound Energy

Let R �= {R1 · · ·Rp} be a partition of S into an un-
known number p of connected regions. We shall call
“boundary” between regions Ri and R j the set ∂Ri j

�=
{〈s, r〉 ∈ C : s ∈ Ri , r ∈ R j }, where we remind that C
is the set of all neighboring pixel pairs within pixel grid
S. The boundary set ∂Ri j is thus the set of the neigh-
boring pairs straddlingRi andR j ; it is non empty ifRi

and R j are adjacent for the graph on S. The set ∂R �=
∪〈i, j〉∂Ri j , where 〈i, j〉 denotes all pairs of neighbor-
ing regions of segmentation R, stands therefore for the
total frontier of the segmentation map.

The extension of the energy-based motion estimation
model of previous section is obtained by incorporating
two terms to the global energy function H.6 The first
one, H3, specifies the mode of interaction between the
segmentation and the rest of the estimation model (i.e.,
motion fields, weights, and data). The interaction we
designed involves the total motion field both at the fron-
tiers and inside the regions: the partition will interact
with the estimation process through the discontinuity

weights along these frontiers, and through a parametric
goodness-of-fit criterion inside each region. The sec-
ond energy term, H4, captures the a priori knowledge
about the segmentation configuration.

The energy componentH3 is composed of two terms.
The first term is proportional to the sum of the βsr ’s
averages on the individual boundaries ∂Ri j ’s. This
term favors low values (close to zero) of discontinu-
ity weights along the borders and guides the bound-
aries of the segmentation toward the most significant
motion discontinuities. This constitutes an extension
to an arbitrary partition of the original mechanism we
introduced in Mémin and Pérez (1998a) in the case of
a single closed curve. The second term enforces the
likeness with a parametric representation of the dense
motion field inside each region, via a robust penaliza-
tion of the discrepancies by a third robust function φ3.
Before semi-quadratic rewriting, this new compound
energy term reads:

µ1

∑
〈i, j〉

1

|∂Ri j |
∑

〈s,r〉∈∂Ri j

βsr︸ ︷︷ ︸
frontiers term

+ µ2

∑
i

∑
s∈Ri

φ3(‖ws + dws − P(s)ϕi‖2)︸ ︷︷ ︸
likeness term

, (22)

where µ1 and µ2 are positive parameters, P(s) is the
2 × 6 matrix defined in Section 2.4, and ϕi is the six-
component parameter vector of region Ri . Using the
semi-quadratic rewriting described in Section 2.1, we
get:

H3(dw,R,ϕ, β, η)
�= µ1

∑
〈i, j〉

1

|∂Ri j |
∑

〈s,r〉∈∂Ri j

βsr

+ µ2

∑
i

∑
s∈Ri

[τ3ηs‖ws + dws − P(s)ϕi‖2 + ψ3(ηs)]

(23)

with τ3
�= lim0+ φ′

3, ϕ
�= [ϕ1 · · ·ϕp], and η

�= {ηs,

s ∈ S} is the new set of auxiliary variables which will
be referred to as parametric likeness weights.

The energy termH4 captures a loose geometric prior
based on the Minimum Description Length (mdl) prin-
ciple (Leclerc, 1989):

H4(R)
�= λ|∂R|, (24)

for some λ > 0. This energy term favors short and
smooth segmentation frontiers.
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The whole energy function H �= H1 +H2 +H3 +
H4 has now to be minimized with respect to all the
unknowns. A direct minimization is obviously a very
intricate problem since the two main sets of unknowns
dw and R are interacting through H3. Nevertheless,
the minimization can be efficiently conducted through
an extension of the hierarchical minimization strategy
used for the motion estimation problem alone.

3.2. Hierarchical Optimization

As in Section 2.3, a family of finer and finer parti-
tions B�, � = L . . . 0, is specified and the optimization
problem is solved through a sequence of constrained
minimizations based on these partitions. At level �, the
problem is the joint estimation of an increment field
dw� which is piece-wise parametric w.r.t. B�, and a
partitioning R� of the elements of B�. Note that B� and
R� are two partitions of completely different nature.
As explained in Section 2.3, B� is a grid whose cells
shrinks as � → 0 and which supports the estimation of
the unknowns (i.e., the increment field dw and the seg-
mentation R) within a top-down scheme. Each region
of the partition R� is composed of one or several cells
of B�. This partition R� is aimed to break up the scene
into individual kinematic components. The precision
of this partition increases as � → 0. Also B� specifies
patches on which the unknown increment is paramet-
ric, with the parameter vectors on neighboring patches
interacting through the smoothness prior, whereas the
regions of R� support independent parametric repre-
sentations of the whole field. Let us also note that, even
if the increment field is constrained to be piece-wise
parametric on B�, the total dense motion field does not
respect this constraint in general.

In the adaptive version of the dense motion estima-
tion alone, the patches of variable sizes constituting B�

are expected to do, partly and temporary, the job of seg-
mentation. Now that the segmentation is explicitly and
properly handled by R�, an adaptive grid partitioning
seems less relevant. Hence, we chose for the B�’s the
simple nested family of 2� × 2�-block partitions. For
the same reason, it is sufficient to use the piece-wise
constancy constraint on the increment field, i.e., at level
�, the increment field over one patch of B�

n is equal to
a constant two-dimension vector denoted dw�

n .
At a given grid level �, the joint configuration subset

is denoted ��×ϒ� (see an instance of such constrained
configurations in Fig. 2). As in Section 2.3, each con-
strained configuration of �� is equivalently described

Figure 2. Multigrid setting and associated notations: (Left) exam-
ple of an increment field dw� and a segmentation R� in five regions,
constrained to lie on a 2 × 2 block partition B� of S; (Right) the
associated increment field and partition on reduced grid S�.

by a reduced increment field, dw� ∈ ��, lying on the
grid S�, with the one-to-one mapping from �� into ��

being denoted ��. In the same way, any constrained
partition of ϒ� is associated with a partition into con-
nected components of the reduced grid S�. If �� is
the set of such partitions, the corresponding mapping
from �� into ϒ� is denoted ��, with ϒ� = Im�� (see
Fig. 2).

The constrained optimization in �� × ϒ� is then
equivalent to the minimization of the new energy
function:

H�(dw�,R�,ϕ, δ, β, η)
�=H(��(dw�), ��(R�),ϕ, δ, β, η), (25)

defined over �� × ��, whereas the auxiliary variables,
the data, and the field to be refined are still defined
on the original grid S. The new diagram for the joint
setting is:

(26)

We now deal with the cascade of optimization prob-
lems of reduced complexity:

min
dw�,R�,ϕ,δ,β,η

H�(dw�,R�, ϕ, δ, β, η), � = L . . . 0.

(27)
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In the same way as in Section 2.3, the field w� that
is refined within this minimization process is defined
according to the minimizer at previous level � + 1:
w� = w�+1 + ��+1(d̂w

�+1
).7 Similarly, the final seg-

mentation R̂�+1 at previous level � + 1 is naturally
used to initialize the segmentation process at level �

through its “projection” [��]−1 ◦ ��+1(R̂�+1) which
is well defined since the nestedness of the grids B�

implies the nestedness of the segmentation subsets ϒ�

(ϒ�+1 = Im��+1 ⊂ ϒ� = Im��).
As with motion estimation alone, the new multigrid

function H� turns out to be composed of four terms
similar to those of H:H� = H�

1 +H�
2 +H�

3 +H�
4. The

detailed expression of these different terms is provided
in Appendix B.

3.3. Alternate Minimization

The joint minimization defined in Eq. (27) is conducted
in turn w.r.t. the dense motion estimation variables (the
increment dw and the auxiliary weight sets β and δ) and
the segmentation variables (the partition R, the region-
based motion parameters ϕ, and the auxiliary variable
set η). We now review the different minimizations to
be alternated.

3.3.1. Dense Motion Field Update (Free Variables:
dw�, β, δ; Fixed Variables:RR�, ϕ, η). The reduced
segmentation R� and the parametric likeness weights
η being fixed, one has to solve:

(d̂w�, β̂, δ̂) = arg min
(dw�,β,δ)

[
H�

1 + H�
2 + H�

3

]
. (28)

Apart from the interaction term H�
3, this is the same

problem as in Section 2.3, and one can again resort to
iteratively reweighted least squares. The different steps
of this alternate optimization are as follows.

• The increment field dw� being fixed, let 〈s, r〉 ∈ C
be a pair of neighboring pixels and denote by m and
n the block numbers (possibly identical) such that
s ∈ B�

m and r ∈ B�
n . From the βsr ’s point of view,

the only change with respect to motion estimation
case (17–18) occurs if 〈s, r〉 straddles two neigh-
boring regions of ��(R�). The optimal value of the
discontinuity weights is given by:

∀i, ∀〈s, r〉 ⊂ Ri , βsr

= 1

τ2
φ′

2

[∥∥(w�
s + dw�

n

) − (
w�

r + dw�
m

)∥∥2]
, (29)

∀〈i, j〉, ∀〈s, r〉 ∈ ∂Ri j , βsr

= 1

τ2
φ′

2

[∥∥(w�
s + dw�

n

) − (
w�

r + dw�
m

)∥∥2

+ µ1

τ2|∂Ri j |
]
. (30)

For a pixel pair in between two neighboring regions,
(30) implies that the optimal value is decreased as
compared to the segmentation-free case (17–18) due
to the shift by µ1

τ2|∂Ri j | in the argument of the decreas-
ing function φ′

2. The compound energy thus favors
low discontinuity weights along the border of current
segmentation.

• The data weights δ being only involved in H�
1, the

update rule directly stems from (16) with piece-wise
constant parameterization:

∀n ∈ S�, ∀s ∈ B�
n, δs

= 1

τ1
φ′

1

[(
∇ f

(
s + w�

s , t + 1
)T

dw�
n + ft

(
s, w�

s

))2]
.

(31)

• When the weights β and δ are frozen, the energy
functionH� is quadratic with respect to dw�. Its min-
imization is equivalent to the resolution of a linear
system which is very similar to the one obtained with
the hierarchical estimation of motion alone (with
constant model). The only change comes from the
influence of the segmentation-based parametric field
to which the dense increment field is related within
H�

3. See Appendix B.

3.3.2. Segmentation Update (Free Variables:RR, ϕ, η;
Fixed Variables: dw, β, δ). The minimization ofH�

w.r.t. the unknown segmentation R� and associated pa-
rametersϕ, and w.r.t. the parametric likeness weightsη,
is conducted in the same alternate minimization spirit.

• First the segmentation is fixed, and the weights ηs’s
and the motion parameters ϕi ’s are estimated using
iterated reweighted least squares. For a given region
R�

i ∈ R�, the update of the motion parameter vector
results from least squares regression

ϕi =
[ ∑

n∈R�
i

∑
s∈B�

n

ηs P(s)T P(s)

]−1

×
∑
n∈R�

i

∑
s∈B�

n

ηs P(s)T
(
w�

s + dw�
n

)
, (32)



Hierarchical Estimation and Segmentation of Dense Motion Fields 139

Figure 3. Local deformation of the segmentation: Example of local update changing segmentation R= ��(R�) into R′ = ��(R′�) (with
� = 2), by passing one boundary block of region Ri in adjacent region R j .

while the parametric likeness weights are updated
according to:

∀n ∈ R�
i , ∀s ∈ B�

n, ηs

= 1

τ3
φ′

3

(∥∥w�
s + dw�

n − P(s)ϕi

∥∥2)
. (33)

• Afterwards, the segmentation R� is updated using
a two-step process. First global changes of the seg-
mentation (merging regions and creating new ones)
are conducted and then local changes of the segmen-
tation frontiers are considered.

The local updates consist in moving each point of
the border ∂R� within a small neighborhood such as
to make the energy decrease. Let R′� be the candidate
modified segmentation (Fig. 3). Assuming that the ad-
jacency graph of the segmentation remains the same in
this local deformation, the associated energy variation
is:

H�(R′�) − H�(R�) = λ2�(|∂R′�| − |∂R�|)

+
∑
〈i, j〉

[
µ1∣∣∂R�

i j

∣∣ ∑
〈s,r〉∈∂R�

i j

βsr− µ1∣∣∂R′�
i j

∣∣ ∑
〈s,r〉∈∂ R′�

i j

βsr

]

+
∑

i

[ ∑
n∈R′

i \Ri

∑
s∈B�

n

φ3
(∥∥w�

s + dw�
n − P(s)ϕi

∥∥2)
−

∑
n∈Ri \R′

i

∑
s∈B�

n

φ3
(∥∥w�

s + dw�
n − P(s)ϕi

∥∥2)]
. (34)

This local energy variation is easily computed. In prac-
tice, a new position is considered for each border ele-
ment of the current segmentation R�. If this position
corresponds to an energy decrease it is accepted and
the map is updated. In our experiments, a border ele-
ment is allowed to move one site forward or backward

in the direction perpendicular to the border. Let us note
that these displacements may be quite large since they
actually correspond to 2� pixels. Therefore, the opti-
mal motion parameters associated with the new region
Ri may substantially changed and should be ideally
re-estimated. Instead of such a joint update of region
geometry and parameterization, we chose a cheaper
alternate minimization: we keep all the motion param-
eters fixed during a complete visit (one iteration) of
all the boundary elements; then the different motion
parameters are re-estimated at the same time for the
whole segmentation. Each step makes the global en-
ergy decrease, which guarantees the convergence to a
local minima.

Beside local deformations, global updates allow to
change at once a whole region as well as the topology of
the segmentation (number and connectivity of regions).
In this work we only consider global transformations
based on the creation of new regions and the merging
of adjacent regions.

The merging of two adjacent regions consists in re-
moving their common boundary, when this yields a
global energy decrease. R� being the current segmen-
tation, the energy variation associated with the merg-
ing of two regions i and j is derived in the same way
as for the local deformation step, except that one has
to compute the new parametric model associated with
R�

i ∪ R�
j to determine the actual energy of the new

segmentation. This is done for each pair of adjacent
regions. The boundary leading to the greatest energy
decrease is removed and the corresponding regions are
merged. This process is repeated until a complete sta-
bility is reached.

The inclusion of a new region could be done at ran-
dom. It is much more effective to devise a data-driven
mechanism based on a simple assessment of the loca-
tions whose dynamic content is not well explained by
the current segmentation. We propose to conduct this
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search of good candidates for new regions by classi-
fying the parametric likeness weights ηs’s within two
classes (outliers and inliers) according to both their in-
dividual values and those carried by their neighbors.
A classic way of achieving such a contextual image
classification is to minimize w.r.t. labeling x� = {x�

n ∈
{0, 1}, n ∈ B�} the following cost function:

∑
n∈S�

∑
s∈B �

n

1

2σ 2
(
x�

n

) [
m

(
x�

n

) − ηs
]2

+ log σ
(
x�

n

) +
∑
〈n,m〉

δ
(
x�

n, x�
m

)
, (35)

where δ(·) is the delta Kronecker function. The param-
eters σ(0) and m(0) (respectively σ(1) and m(1)) stand
for the standard deviation and the mean of the outlier
class (respectively the inlier class). The values of these
parameters have been learned on typical examples.
Based on this learning, they were fixed to m(0) = 0.05,
m(1) = 0.98, and σ(0) = 0.5, σ(1) = 0.05 in all the
experiments. The minimizer is searched with the deter-
ministic icm algorithm (Besag, 1986). If a sufficiently
large region of connected outliers is recovered (at least
64 pixels in our experiments) and if turning this set into
a new region yields an energy decrease, the new region
is effectively incorporated within the current segmen-
tation.

Global deformations obviously involve far more
computations than local deformations. In practice, we
only use the global transformations at the beginning of
each level �. They provide quickly sensible segmen-
tations which are then only refined through frontiers
updates.

Concerning the global procedure, let us recall that
it is multiresolution (based on a pyramid of images),
and hierarchical within each resolution. As concerns
the initialization at the coarser resolution, the initial
motion field is set to zero and associated with a parti-
tion composed of a unique region (the whole image).
Since we face a non-convex minimization problem,
the results depend on the initialization. Nevertheless
as will be shown in the experiments of Section 4, we
did not observe a strong dependency to the initializa-
tion in practice, and the choice of the simple initial-
ization above turned out to yield consistently satis-
factory results. As for the global convergence of the
method, the dense motion estimation process and the
motion segmentation process that are alternated have
to be discussed separately. Since the computation of
the motion field is performed through the hierarchical

Gauss-Newton minimization presented in Section 2.4,
it exhibits the convergence properties and limitations
already discussed. At fixed motion field, each of the el-
ementary minimizations w.r.t. the different ingredients
of the segmentation, leads to a decrease of the global en-
ergy. This guarantees that this part of the whole proce-
dure converges toward a local minima. Again, although
the complete method may fail to converge due to the
Gauss-Newton nature of the dense motion computa-
tion, we never observed in practice divergent sequences
of iterates, even within the intensive tests conducted on
synthetic data for a wide range of parameter values.

3.4. Continuous Point of View

As opposed to the dense motion estimation alone, the
joint estimation-segmentation is not easy to express
within a continuous formalism. The reason is twofold.

First, it is a complicated issue in its own to simply
specify and manipulate partitions of the continuous im-
age plane. A general and rigorous definition implies
the use of an unknown number of pieces of Jordan
curves, connected at junction points (Mumford and
Shah, 1989). Another way consists in using a known
number of interacting level sets (Samson et al., 1999;
Yezzi et al., 1999). Both approaches are complex and
lack flexibility. Hence, it seems to be no continuous
counterpart to labeling the discrete pixel grid into dif-
ferent regions.

We can nevertheless write down a continuous analog
of the interaction term (23) as:

µ1

∑
〈i, j〉

∫
∂Ri j

β(x(s)) ds + µ2

∑
i

∫∫
Ri

× [τ3η(x)‖w(x) + dw(x) − P(x)ϕi‖2 + ψ3(η(x))︸ ︷︷ ︸
�=Fi (x)

] dx.

(36)

The Euler-Lagrange equation for the compound func-
tional provides conditions on functions β and η which
are the continuous counterpart of the discrete update
rules (29–30) and (33). Besides, changing the second
surface integral in (36) into a curvilinear one with
Green theorem (as in Zhu and Yuille (1996), shows
that each boundary ∂Ri j evolves as a snake driven by
an internal force which depends on the chosen prior,
and an external force:

−∇β(x) + (Fj (x) − Fi (x))ni j (x), (37)
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where ni j is the normal to the frontier ∂Ri j directed
toward the interior of Ri .

Our interaction mechanism based on the disconti-
nuity auxiliary variables could as well be considered
in case region borders are implicitly defined in terms
of level sets. The mechanism we introduce thus of-
fers a new way to deal with the generic issue of joint
anisotropic diffusion and segmentation, in both discrete
and continuous frameworks.

The second reason for which it seemed more natu-
ral to let our estimation-segmentation approach within
the discrete realm is related to the choice of the
minimization technique. Using segmentations of the
discrete pixel grid enables us to extend in a very sim-
ple way the efficient hierarchical minimization scheme
previously introduced for the estimation alone.

4. Experimental Results

In this section we present results of dense motion es-
timation with and without joint motion-based segmen-
tation. In both cases, quantitative comparisons are pre-
sented on a synthetic sequence. As for experiments on
real data, the segmentation-free motion estimation is
demonstrated on sequences that seem not to admit any
simple region-wise parametric description. The adap-
tive compromise between local dense representation
and more global parametric one which is offered by the
hierarchical minimization allows us to get interesting
results on fluid sequences for instance. At the opposite,
the parametric description used in the joint estimation-
segmentation approach is more suited to scenes that
involve mostly rigid objects.

Note that in both approaches we selected Leclerc
estimator, φ(x2)

�= 1 − exp(−τ−1x2), for the different
robust functions (Leclerc, 1989). Also, in both cases we
chose the following stopping criterion for the iterative
estimation scheme at a given resolution/grid level:

#

{
s ∈ S :

‖dws(n + 1) − dws(n)‖
‖dws(n + 1)‖ < 0.01

}
< ε,

(38)

where dws(n) denotes the iterate at step n and point s.
In the motion estimation experiments ε has been fixed
to 1% of the number of points, whereas for the joint
segmentation-estimation method, a value of 5% was
sufficient to improve the accuracy of the motion field
on a synthetic benchmark.

4.1. Results of Dense Motion Estimation

The experiments have been carried out both on a syn-
thetic sequence—for which a ground truth is known and
comparative quantitative comparisons can be reported
(Barron et al., 1994)—and on real world sequences
(Fig. 4). The synthetic sequence is the well known
Yosemite sequence used in the comparative benchmark
of Barron et al. (1994). The real data are composed
of two particularly challenging sequences which in-
volve the highly deformable motion of fluid media. The
first one, named Depression, is a meteorological video
sequence involving large displacements. It includes a
through of low pressure and different moving clouds.
The second one, named Smoke, comes from fluid me-
chanics experiments with smoke undergoing complex
motion under poor lighting conditions.

The values of the parameters that define the hierar-
chical structure in these experiments were set as fol-
lows: the number of resolution levels was respectively
2 for Yosemite and Smoke, and 3 for Depression. The
number of grid levels was fixed to 6 for Smoke and to
5 for the two others.

As for the hierarchical constrained minimization,
both regular and adaptive partitions into square patches
have been considered. In the regular case, the partition
B� is composed of 2� × 2� square blocks and the as-
sociated adjacency graph is a regular lattice with the
same neighborhood system as the original grid. In the
adaptive case, the partition B�−1 is determined on-
line, based on the previous partition B� and on the
associated final estimate (θ̂ �, β̂ �, δ̂ �). The new par-
tition is obtained by dividing some of the elements of
B� according to a splitting criterion to be defined. It
seems natural to base this criterion upon the agree-
ment of the current motion estimate with the lumi-
nance conservation assumption, measured on block B�

n

by
∑

s∈B�
n
[ f (s + w�

s + Pn(s)θ̂ �
n, t + 1) − f (s, t)]2

(sum of squared registration errors), or, in linearized
form:

∑
s∈B�

n
[∇ f (s+w�

s , t+1)T Pn(s)θ̂�
n+ ft (s, w�

s)]
2.

Instead of using this quantity which has to be computed,
we use the final data weights δ̂s’s, which are func-
tion of the squares in the sum above according to (16).
Experimental evidence indicated that it is more appro-
priate to consider how uniform (instead of how good)
is the quality of the agreement within considered patch.
A block is thus divided into four sub-blocks if the
standard deviation of {δ̂ �

s , s ∈ B�
n} exceeds a given

threshold. In all the experiments this threshold is set
to 0.05.
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Figure 4. Sequences used in dense motion estimation experiments: (a) frames 0 and 14 of synthetic sequence Yosemite, size 288 × 224;
(b) frames 1 and 9 of satellite sequence Depression, size 256 × 256; (c) frames 10 and 14 of experimental fluid mechanics sequence Smoke, size
512 × 512.

As mentioned in Section 2.4, two different param-
eterizations corresponding respectively to 2 and 6 pa-
rameters are considered. We use them within three dif-
ferent combinations denoted M6, M2, and M62 where
subscripts indicate allowed parameterizations. Models
M6 and M2 deal with a single type of parameteriza-

tion. In these two cases the hierarchical minimization
is stopped when a certain minimal size (8×8, and 1×1
resp.) is reached by the smallest patches of the current
partition. In contrast, model M62 mixes different pa-
rameterizations in the following way: the affine model
is used for all blocks at least as large as 8 × 8, and the
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Figure 5. Dense motion estimation on Yosemite with M6 (affine constraint in the hierarchical minimization) and regular partitioning:
(a) histogram of the mean angular discrepancy for 1700 parameter triples; (b) surfaces of the mean angular error for α = 100 and α = 400;
(c) surfaces of the std. dev. of the angular error for α = 100 and α = 400.

constant model is used for blocks of size 4 × 4 and
less.

Following Barron et al. (1994), we provide quan-
titative comparative results on Yosemite. For each es-
timate, the angular deviation with respect to the real
flow is computed at “reliable” locations (the percent-
age of such locations is the “density” of the estimate;
it is 100% in our case). Let us note that in order
to stick to the experimental conditions reported in
the best recent studies on that sequence we consider
only a cropped sequence where the sky was removed.
To assess the performance of our motion estimation
technique on this sequence, we have compared its
three versions M6, M2, and M62, with regular par-
titioning, and for 1700 different parameter triples
(α, τ−1

1 , τ−1
2 ) ∈ [100, 420] × [2, 36] × [0.2, 1.1] with

sampling steps 20, 4, and 0.1, respectively in each
direction.

Figures 5–7(a) show the histograms of the mean an-
gular discrepancies obtained. Beside, we show also
for two extreme values of the smoothness parameter
the surfaces corresponding respectively to the mean
and the standard deviation of the angular discrepancy,
the two other parameters varying according to ranges
previously indicated. The best parameter combina-
tions are then compared with the adaptive partitioning
strategy.

In the case of regular grid partitioning, the M6

model performs less well than the two other versions.
Although slightly less stable the constant model within
M2 yields very good results. For a slightly increased
cpu time, the best results are provided by the mixed
model embedded in M62, as can be seen by com-
paring the three histograms in Figs. 5–7(a) for val-
ues exceeding 3◦ (i.e., last bar). Histogram 7(a) in-
dicates that with M62 almost 60% of the trials fall
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Figure 6. Dense motion estimation on Yosemite with M2 (constant constraint in the hierarchical minimization) and regular partitioning:
(a) histogram of the mean angular discrepancy for 1700 parameter triples; (b) surfaces of the mean angular error for α = 100 and α = 360;
(c) surfaces of the std. dev. of the angular error for α = 100 and α = 360.

below an average angular error of 2 degrees. To out-
line the quality of these results, we superimposed on
the histogram in Fig. 7(a) the best results reported in
the state-of-the-art literature. The proposed method is
able to outperform these other techniques for a wide
range of variations of its three parameters. It is also
interesting to notice in the surface plots in Figs. 5–7(b)
and Figs. 5–7(c) the low sensitivity of the method

Table 1. Best results on Yosemite for the three versions of our approach, along with associated
parameters and cpu times.

Regular partition Adaptive partition

Model Parameters µ σ cpu µ σ cpu

M6 α = 400, τ1 = 3.0, τ2 = 0.3 2.04◦ 1.57◦ 63 s 1.81◦ 1.34◦ 46 s

M2 α = 360, τ1 = 4.5, τ2 = 0.2 1.81◦ 1.33◦ 145 s 2.46◦ 1.74◦ 41 s

M62 α = 360, τ1 = 3.0, τ2 = 0.8 1.73◦ 1.33◦ 199 s 1.93◦ 1.33◦ 65 s

with respect to the parameter τ1 of the data robust
penalty.

For the three different versions of our model,
as well as for the two types of partitioning strate-
gies, the best mean angular error (µ), the associ-
ated standard deviation (σ ), and the set of parameters
for which they have been obtained are gathered
in Table 1. This table also lists the corresponding
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Table 2. Comparative results on Yosemite: the first part of the table
corresponds to results reported by Barron et al. (1994), where ref-
erences to the compared methods are to be found; the second part
gathers results reported more recently in the referenced literature,
on a cropped sequence without sky.

Technique µ σ density

Horn and Schunck (original) 31.69◦ 31.18◦ 100%

Horn and Schunck (modified) 9.78◦ 16.19◦ 100%

Uras et al. 8.94◦ 15.61◦ 100%

Lucas and Kanade 4.28◦ 11.41◦ 35.1%

Fleet and Jepson 4.63◦ 13.42◦ 34.1%

Without sky

Bab-Hadiashar and Suter (1998) 1.97◦ 1.96◦ 100%

Lai and Vemuri (1998) 1.99◦ 1.41◦ 100%

Ju et al. (1996) 2.16◦ 2.0◦ 100%

Black and Jepson (1996) 2.29◦ 2.25◦ 100%

Mémin and Pérez (1998a) 2.34◦ 1.45◦ 100%

Szeliski and Coughlan (1994) 2.45◦ 3.05◦ 100%

Black (1994) 3.52◦ 3.25◦ 100%

Figure 7. Dense motion estimation on Yosemite with M62 (mix of affine and constant constraints in the hierarchical minimization) and regular
partitioning: (a) histogram of the mean angular discrepancy for 1700 parameter triples; (b) surfaces of the mean angular error for α = 100 and
α = 360; (c) surfaces of the std. dev. of the angular error for α = 100 and α = 360.

cpu times measured on a Sun Ultra Sparc
(200 Mhz).

In order to give elements of comparison, Table 2 re-
calls some of the results presented by Barron et al. (see
corresponding references therein). They concern an
adaptation of Horn and Schunck’s algorithm, the best
full-density algorithm (Uras et al.) and the two algo-
rithms yielding the best results, but with reduced densi-
ties (Lucas and Kanade, Fleet and Jepson). In the lower
part of the table, we include the results obtained by
other authors on the same sequence with sky removed.

It appears in Table 1 that the adaptive partition-
ing provides a noticeable speed up as compared to
the regular partitioning. Except for M6, this acceler-
ation is obtained at the cost of a slight loss of qual-
ity, at least on that synthetic sequence and in view
of the angular discrepancy criterion. At that point, we
would like to stress out that this discrepancy measure
used to assess the quality of motion fields should be
interpreted with caution due to its global nature (it
is just a mean). In particular this criterion does not
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Figure 8. Results on satellite sequence Depression: (a) one frame; (b) motion field estimated with M2 and regular partitioning (cpu time:
105 s); (c) motion field estimated with M6 and adaptive partitioning (cpu time: 24 s).

allow to evaluate the critical ability of a particular
method to locate and preserve discontinuities. For in-
stance, the adaptive M6 model, which gives better re-
sults “in average”, is not able to estimate accurately
the motion around spatial discontinuities-due to the
crude partition on which it lies. The mixed model M62

with adaptive grids performs better from that point
of view, which will prove useful in real world cases.
Nevertheless one must keep in mind that the use of
adaptive grids requires the tuning of a supplementary
parameter.

Note that in the case of M2 associated with a regular
subdivision, the results are improved as compared to the
pure top-down multigrid method we had introduced in
Mémin and Pérez (1998a). Hierarchical Gauss-Newton
with its successive inter-level warping performs better
on this particular example.

We now turn to the real world sequences described
at the beginning of the section. Figure 8 presents for
Depression the final motion fields respectively esti-
mated by M2 with the regular division and M6 with
the adaptive division. The two vector fields are dis-
played the same way, namely sub-sampled by 6 and
magnified by 4. We can notice that with the regu-
lar piecewise constant constraint on increments, the
flow is drastically under-estimated and over-smoothed
as compared to the one produced with the adaptive
affine constraint. As a consequence, local features of
interest such as the depression center in the left upper
corner of the image are concealed with M2 whereas,
with M6, this depression center is clearly visible and
may be easily identified in an automatic way. This
real example demonstrates that the use of the model
M6, as well as the use of the adaptive partitioning not
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Figure 9. Results on experimental fluid mechanics video Smoke: (a) one frame; (b) final partition; (c–f) four consecutive motion fields estimated
with M62 and adaptive partitioning.

only reduces the computational load but can also result
in improved results, contrary to what we observed on
Yosemite.

The sequence Smoke is all the more difficult an
example since it implies large displacements (up to
20 pixels) and low photometric gradients. The fi-
nal estimation partition obtained with M62 for one
image of the sequence is given in Fig. 9(b) along
with four consecutive motion fields estimated from
the sequence. Visually, the estimates obtained seem
compliant with the apparent dynamics of the fluid
flow. In addition, the estimation turns out to be quite
stable in time despite the absence of any temporal
link.8

The whole multiresolution/hierarchical algorithm
converges quickly, with only ten or so low cost it-
erations at each level. Also, as thoroughly assessed
with the synthetic data, the technique exhibits a low

sensitiveness to parameter values within large ranges
of variation. This confirms the observations that have
been made in Mémin and Pérez (1998a) for the con-
stant model associated with the pure top-down multi-
grid method and in Hellier et al. (2001) for an extension
of the adaptive M6 model to the registration of volumic
MR brain images (with the adaptive partitioning be-
ing in addition driven by anatomical structures). In the
latter study the dedicated technique proved in addition
capable to deal with complex inter-patient topological
changes.

4.2. Results of Joint Estimation-Segmentation

In the case of the joint estimation-segmentation
approach, we also report comparative results on
Yosemite for comparison purpose. We then consider
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Figure 10. Sequences used in motion estimation-segmentation experiments: (a) frames 1 and 4 of outdoor sequence Parking lot, size 224×224;
(b) frames 1 and 2 of indoor sequence Calendar, size 256 × 256.

two real-world sequences (Fig. 10). The first sequence
is a Parking lot sequence which involves two cars mov-
ing in the foreground while the camera pans the scene.
The second one, named Calendar, includes several
moving objects (a calendar moving vertically and a toy
train pushing a ball) and a horizontal panning of the
camera.

As for the parameter values, the number of res-
olution levels was respectively 2 for Calendar and
Yosemite and 1 for Parking lot. The number of grid
levels was fixed to 6 for Calendar and to 5 for the two
others. Most of the energy parameters were kept
the same for the three sequences: α = 100, τ−1

1 = 5,
τ−1

2 = 0.3, τ−1
3 = 0.3, µ1 = 30. We only made sequence

dependent the parametric likeness parameter µ2 and the
segmentation a priori parameter λ.

To assess the performances and the stability of the
joint estimation-segmentation method we run it on a set

of 150 values of this couple (µ2, λ) within [10, 100]×
[2, 70]. The sampling step is 10 for µ2 and for λ it is 2
between 2 and 20 and 10 beyond. Figure 11 shows the
surface of the obtained mean angular discrepancy and
the corresponding histogram.

Table 3. Dense motion segmentation vs.
joint estimation-segmentation on Yosemite
with λ = 12 and µ2 = 70.

Model µ σ

Estimation-segmentation

Parametric estimate 1.58◦ 1.21◦

Dense estimate 1.92◦ 1.59◦

Dense estimation only

M2 regular 2.91◦ 3.17◦
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Figure 11. Joint segmentation-estimation on Yosemite for different parameter values: (a) histogram of the mean angular discrepancy for 150
parameter triples (µ2, λ); (b) corresponding surface of the mean angular discrepancy.

Figure 12. Joint motion estimation-segmentation on Yosemite: (a) segmentation initialization at the coarsest level � = 4; (b–d) final segmen-
tations at grid levels � = 4, 2, 0; (e) final dense field estimate; (f) final parametric field estimate (cpu time ∼8 mn).

In Table 3, we compare the best results obtained on
Yosemite by the joint estimation-segmentation method
(λ = 12 and µ2 = 70) to those obtained with the dense
estimation alone. The motion parameters and the con-
vergence criteria (with ε = 5%) were the same. The

final fields obtained by the joint approach, as well as
some successive segmentations are shown in Fig. 12.
Both the parametric and dense motion fields jointly ob-
tained significantly improve the mean angular error, as
compared to the dense estimation alone. A dense field
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Figure 13. Joint motion estimation-segmentation on Parking lot: (a) segmentation initialization at level � = 4, (b–d) final segmentations at
grid levels � = 3, 2, 0; (e) final dense field estimate; (f) final parametric field estimate (cpu time ∼4 mn).

of better quality is thus obtained along with a compact
piecewise parametric field that approximates it very
well. It is worth noting that this piecewise representa-
tion of the motion field further enhances the ability of
the hierarchical dense motion estimator to extrapolate
nicely over large occlusion areas. In Yosemite, the dis-
placement of the region exiting on the left of the image
plane due to the large divergent motion is particularly
well recovered.

As for the segmentation itself, two things can be
noticed. First, although the segmentation process only
interacts indirectly with the data through the dense mo-
tion field under estimation, it is able to split the scene
into pieces that make sense from the tri-dimensional
point of view (i.e., the different image segments corre-
spond to different motions, depths, or orientations). For
instance the partitioning of the mountains in Yosemite

and of the front car in Parking lot are consistent with
the three-dimensional structures of these rigid objects.
Secondly, the boundaries of the segmented regions fit
correctly the discontinuities of the apparent motion.
See for example the crest of both the foreground and
the background mountains in Yosemite, the front car in
Parking lot, and the train engine and the rolling ball in
Calendar.

Finally, let us outline that the joint motion
estimation-segmentation is not very sensitive to the ini-
tialization. As shown in Figs. 12 and 14, it is indeed
able to recover meaningful partitions of the displace-
ment field from rather poor initializations.

Rough estimates of the computation times (code
not hand-optimized) obtained on a 200 Mhz Sun
Ultra Sparc are also given in the captions of
Figs. 12–14.
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Figure 14. Joint motion estimation-segmentation on Calendar: (a) partition initialization at level � = 4; (b–d) final segmentations at grid levels
� = 4, 2, 0; (e) final dense field estimate; (f) parametric field estimate (cpu time ∼8 mn).

5. Conclusion

In this paper, we have presented a comprehensive
energy-based framework for the incremental esti-
mation and segmentation of apparent motion fields.
Using robust cost functions, a dense discontinuity-
preserving motion estimation technique has first been
introduced, and a special care has been dedicated to
its algorithmic implementation: a hierarchical con-
strained minimization framework is proposed which
allows to mix different increment parameterizations
with respect to a regular or an adaptive parti-
tioning of the image. The ability of the resulting
method to recover intricate non-rigid motions has
been especially demonstrated on sequences involving
moving fluids. For situations where a motion-based
segmentation of the sequence makes sense and is

of interest, the previous model has been extended
to simultaneously handle both tasks. A dense esti-
mation as well as a parametric representation of the
same motion field are thus jointly recovered in an
alternate and cooperative way. Of particular inter-
est here, we propose a simple mechanism of inter-
action between a dense discontinuity-preserving esti-
mation process and a segmentation process, through
the auxiliary variables that appear in the half-quadratic
formulation of robust cost functions. We believe that
this mechanism could be used elsewhere (e.g., simul-
taneous restoration-segmentation of still images), and
could probably be considered (and theoretically stud-
ied) from the continuous standpoint of anisotropic
diffusion.

The dense motion estimation technique we pro-
pose constitutes a generic tool whose flexibility allows
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the design of “specialized” versions dedicated to spe-
cific motion estimation (or more generally registra-
tion) problems. It has been, for example, adapted to
the problems of 3D brain image registration Hellier
et al. (2001) and of dense stereo matching (Oisel
et al., 2000). Based on the promising results it al-
ready produced on challenging fluid sequences (as
reported in Section 4), we have also started to in-
vestigate the incorporation of new modeling ingre-
dients related to this very specific kind of dynami-
cal contents (Corpetti et al., 2000; Mémin and Pérez,
1999).

Concerning the joint estimation-segmentation tech-
nique, further research directions include the design
of more sophisticated or complete interaction mech-
anisms (e.g., to take into account photometric dis-
continuities as a useful cue, or to handle explic-
itly the problem of occlusions at borders of motion
regions).

Appendix A

Gauss-Seidel Iteration for Dense Motion Estimation
under Parametric Constraint

For the sake of concision, we shall denote ∇ f̃ (s)
�=

∇ f (s+w�
s , t + 1) the spatial gradient in the second im-

age, displaced according to w�, and f̃t (s) = ft (s, w�
s)

the displaced frame difference. S is partitioned accord-
ing to B� = {B�

1 . . .B�
N�

}. Let B�
n be the current block

in the iterative visits performed by the Gauss-Seidel
solver. One has simply to minimize H� with respect to
θ�

n , the total field outside B�
n being frozen. The fraction

of energy actually concerned is:

H�
n
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θ�

n, δ, β
) �= τ1

∑
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δs
[
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s + Pn(s)θ

�
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)
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w�
r + Pn(r)θ�

n

)∥∥2
, (39)

where C�
∂n

�= ∪mC�
nm is the set of pairs in C straddling

the border of B�
n . The increment field in the neigh-

borhood of B�
n is a mix of various parameterizations

relative to the different parts of the (possibly irregular)

grid S�. However, the only thing of actual interest when
updating θ�

n is the total field wr
�= w�

r + Pm(r)θ�
m at any

location r in any neighboring block B�
m . As a conse-

quence, in the following computations, the neighboring
parameterizations do not appear explicitly in the regu-
larization part of the update. Their are simply hidden
within the total field on the neighboring patches. Let-
ting the partial derivative of this piece of energy vanish
yields:

∂H�
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] = 0. (40)

A compact vector formulation of this equation can be
achieved by introducing the following matrices and
vectors indexed respectively by the pixels of block B�

n ,
the neighbor pairs inside the block, and those straddling
the border of the block:
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...
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,
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where I2
�= [ 1 0

0 1 ], as well as the following block-wise
and border-wise averages:
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Linear Eq. (40) then reads:[
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The direct resolution of this linear system provides
the updated value of parameter vector θ�

n . In this equa-
tion, matrices An , Cn and C∂n , and vectors θ̄

�

n and θ̄
�

∂n
depend on the type of parameterization associated with
blockB�

n . Let us give their expressions (when simplified
forms are available) for the two different parameteri-
zations.

For constant model, Pn ≡ I2, yielding AT
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with An
�= AT

n �n An .
For affine model, Pn(s) = I2 ⊗ e(s)T , with e(s)T �=

[1 xs ys], yielding the following expressions for the
matrices and vectors involved in Eq. (41):
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where C�
n(

•|•) (resp. C�
n(•−•)) contains pixel pairs of C�

n
lying along the x-direction (resp. y-direction).

Appendix B

Constrained Estimation-Segmentation at Grid Level �

Data term: Using the same block-wise notations as in
Appendix A, it is easy to get the following compact
expression:

H�
1(dw�, δ) =
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(43)

For each site of S�, one gets a sort of block-wise optical
flow expression involving aggregated observations.

Smoothing term: Considering the piece-wise con-
stant constraint on the increment field, the prior energy
can be written as Mémin and Pérez (1998a):

H�
2(dw�, β) = H2(0, β) + τ2

∑
〈n,m〉

[
βnm

∥∥dw�
n − dw�

m

∥∥2

+ 2
(
dw�

n − dw�
m

)T
�w

�

nm

]
, (44)

with βnm
�= ∑

〈s,r〉∈C�
nm

βsr and �w
�

nm
�= ∑

〈s,r〉∈C�
nm

βsr (w�
s − w�

r ).



154 Mémin and Pérez

Parametric likeness term: R� ∈ �� being the cur-
rent partition of S� with associated parameter vector
ϕ = (ϕi ), we denote R = �(R�) the associated con-
strained partition of S and ∂Ri j the pieces of frontiers
between adjacent regions Ri and R j of R. We have:

H�
3(dw�,R�,ϕ, β, η)

= µ1

∑
〈i, j〉

1

|∂Ri j |
∑

〈s,r〉∈∂Ri j

βsr + µ2

∑
i

∑
n∈R�

i

∑
s∈B�

n

× [
τ3ηs

∥∥w�
s + dw�

n − P(s)ϕi

∥∥2 + ψ3(ηs)
]
, (45)

which, like previously, reduces to:

H3(dw�,R�,ϕ, β, η)

=H�
3(0,R�,ϕ, β, η)+ µ2

∑
i

∑
n∈Ri

[
znτ3

∥∥dw�
n

∥∥2

+ 2
(
dw�

n

)T
�w

�

n(ϕi )
]
, (46)

where zn
�= ∑

s∈B�
n
ηs and �w

�

n(ϕi )
�= ∑

s∈B�
n
ηs(w�

s −
P(s)ϕi ).

Segmentation a priori term: The reduced expression
of this term is:

H4(R�) = H�
4(Ψ

�(R�)) = λ2�|∂R�|. (47)

Gauss-Seidel iteration w.r.t. dw�
n: Setting to zero the

derivative of H� w.r.t. to dw�
n , one gets the same update

equation as in (42) (with dw�
n = θ�

n , for it is the constant
model), but with slightly modified definitions:

θ̄
�

∂n
�=

∑
m:C�

mn !=∅
(
βnmdw�

m − �w
�

nm

) − µ2τ3

ατ1
�w

�

n(ϕi )

b∂n + µ2τ3

ατ1
zn

,

(48)
γ

�= ατ2b∂n + µ2τ3zn

τ1
,

where now appears the parametric field of the region
Ri to whom block n belongs. For η ≡ 0 (which implies
zn = 0 and �w

�

n(ϕi ) ≡ 0), the expression coincides
with (42), as expected, since this amounts to removing
parametric goodness-of-fit energy term.

Notes

1. Function ψ is defined as ψ(z)
�= φ ◦ φ′−1

(τ z) − τ zφ′−1
(τ z)

(Charbonnier et al., 1997; Geman and Reynolds, 1992; Mémin
and Pérez, 1998a). It is strictly decreasing since ψ ′(z) =
−τφ′−1

(τ z) < 0.
2. In case B is a regular partition into square patches, the adjacency

graph is the N -site rectangular lattice with same neighborhood
system as the original lattice.

3. By reference to the standard multigrid techniques from numerical
analysis (Hackbusch, 1985) to which our hierarchical minimiza-
tion scheme is related we will say that � indexes grid levels. These
grid levels are not to be confused with the resolution levels: at each
level of resolution a complete sequence of grid levels from � = L
to 0 is deployed to conduct the minimization.

4. A natural way of building this hierarchy of parametric represen-
tations is to consider nested partitions where B � is made up from
the subdivision of elements of B �+1. This nested structure is eas-
ily obtained with regular subdivision schemes (based on square
or triangle tiling). It is more difficult to design irregular subdivi-
sion strategies. In Section 4, we shall introduce an adaptive way
to build square-based nested partitions.

5. When the constrained subsets are nested, i.e., ��+1 ⊂ ��, the
succession of minimizations can be conducted in a slightly dif-
ferent way: the final estimate at a given level is not directly inte-
grated in the main field to be refined at the next level, but simply
used as an initialization for the iterative minimization process.
More precisely, all w� fields in (13) are the same, equal to some
field w, while θ̂ �+1 is now used to define the initial increment
configuration at level � through (��)−1 ◦ ��+1(θ̂ �+1), which
makes sense since Im��+1 ⊂ Im��. In this version, described in
Mémin and Pérez (1998a), the spatio-temporal luminance deriva-
tives remain the same, i.e., computed with respect to f (s, t) and
f (s + ws , t + 1). In other terms, a single linearization of the
brightness constancy assumption is considered (for a given reso-
lution level), and the coarse-to-fine minimization turns out to be
a standard multigrid scheme (Hackbusch, 1985).

6. We still consider in the coming developments that an arbitrary
resolution level of the multiresolution setting is concerned.

7. As mentioned in Section 2.3, this hierarchical Gauss-Newton
minimization can be replaced by a classic multigrid minimization
when the constrained configuration subsets are nested, which is
the case here (��+1 ×ϒ�+1 ⊂ �� ×ϒ�): in this variant the final
estimate at level �+1 is projected at level � through [��]−1◦��+1

(resp. [��]−1 ◦ ��+1) and used as an initial configuration at that
level �.

8. The sequence and the estimated vector fields can be seen
at http://www.irisa.fr/vista/Demos/Demos.english.
html.
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