Exam Preparation, Questions ${ }^{1}$

For Chs. 1-10 of

Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014
${ }^{1}$ See last slide for copyright information.

Agenda

(1) Chapter 1
(2) Chapter 2
(3) Chapter 3
(4) Chapter 1
(5) Chapter 5
© Chapter 6
(7) Chapter 7
(2) Chapter 8
(9) Chapter 9
(10) Chapter 10

1.1-1.3: Basics

1.1. Show the correctness of

$$
\sigma_{I}^{2}=\left[\frac{1}{|\Omega|} \sum_{(x, y) \in \Omega} I(x, y)^{2}\right]-\mu_{I}^{2}
$$

1.2. How was the contrast $C(I)$ defined, for image I. How does the contrast change when applying a local mean or local median operator?
1.3. What are phase and magnitude values of the complex numbers $z_{1}=5-4 i, z_{2}=0$, and $z_{3}=7 i$, for $i=\sqrt{-1}$?

1.4-1.6: Fourier Transform

1.4. How is the 2D DFT defined for an $N \times N$ image I ? What is the value $\mathbf{I}(0,0)$ in frequency space?
1.5. Why are powers of the Mth root of unity located on the unit circle in the complex plane?
1.6. Assume an $N \times N$ image as input for the 2D DFT, for even N. Prove that a multiplication with $(-1)^{x+y}$ in the spatial domain causes a shift by $N / 2$ (both in row and column direction) in the frequency domain.

1.7-1.9: Color

1.7. How is the $x y$ color space of CIE defined? Start with explaining the meaning of tristimulus values X, Y, and Z, and end with a graphical sketch of the xy-diagram.
1.8. Define the RGB color space. Where are the gray-levels located? How is saturation and intensity defined for one of those colors? What are the saturation values for gray-levels?
1.9. How is hue defined for a color in RGB space? You do not need to provide a formula; just give an informal explanation how to define a hue value for RGB colors.

Agenda

(1) Chapter 1
(2) Chapter 2
(3) Chapter 3
(4) Chapter 4
e Chapter 5
© Chapter 6
(7) Chapter 7
© Chapter 8
(9) Chapter 9
(10) Chapter 10

2.1-2.3

2.1. Linear local operators are those which can be defined by a convolution. Classify the following whether they are linear operators or not: box, median, histogram equalization, sigma-filter, Gauss filter, and LoG.
2.2. Equalization of color pictures is an interesting area of research. Discuss why the following approach is expected to be imperfect: do histogram equalization for all three color (e.g., RGB) channels separately; use the resulting scalar pictures as color channels for the resulting image.
2.3. Derive the formula for linear scaling from given values $u_{\text {min }}$ and $u_{\text {max }}$.

2.4-2.6

2.4. Specify exactly how the integral image can be used for minimizing run time for a box filter of large kernel size.
2.5. Following the derivation of a Laplace mask in the lecture, what could be a filter kernel for the quadratic variation (instead of the one derived for the Laplace operator)?
2.6. The sigma-filter replaces $I(p)$ by $J(p)$ as defined in the lecture. The procedure uses the histogram $H(u)$ computed for values u in the window $W_{p}(I)$ which belong to the interval $[I(p)-\sigma, I(p)+\sigma]$. Alternatively, a direct computation can be applied:

$$
J(p)=\frac{\sum_{q \in Z_{p, \sigma}} I(q)}{\left|Z_{p, \sigma}\right|}
$$

where $Z_{p, \sigma}=\left\{q \in W_{p}(I): I(p)-\sigma \leq I(q) \leq I(p)+\sigma\right\}$. Analyze possible advantages of this approach for small windows.
$2.7-2.8$
2.7. What is the "symmetry property" in the frequency domain, and why do we have to ensure the validity of this property when designing a Fourier filter?
2.8. Sketch, as in the figure

filter curves in the frequency domain which might be called "exponential low-emphasis filter" and "ideal band-pass filter".

2.9-2.11

2.9. Specify the 2D Gauss function (the zero-mean version is sufficient). Describe how a discrete filter mask (for smoothing) can be derived from this function.
2.10. How is a LoG scale space defined? How is a DoG scale space defined?
2.11. How is the gradient for an image I defined, and how is the output of the Sobel operator related to the gradient? Demonstrate values of the Sobel operator for examples of 3×3 image windows.

Agenda

(1) Chapter 1
(2) Chapter 2
(3) Chapter 3
(4) Chapter 4
(5) Chapter 5
© Chapter 6
(7) Chapter 7
(8) Chapter 8
(0) Chapter 9
(10) Chapter 10

3.1

3.1. Consider 6-adjacency in images, for pixel location $p=(x, y)$: In an even row (i.e. y is even) use

$$
A_{6}^{\text {even }}=A_{4} \cup\{(x+1, y+1),(x+1, y-1)\}
$$

and in an odd row use

$$
A_{6}^{\text {odd }}=A_{4} \cup\{(x-1, y+1),(x-1, y-1)\}
$$

Consider the case on the left in the figure. Discuss the result. Consider a chess-board type of binary image. What is the result?

3.2-3.4

3.2. Explain why using 4-adjacency alone for a binary image leads to topological problems. Explain why using 8-adjacency alone is also not a topologically sound solution.
3.3. What is a component or region in an image?
3.4. Specify a way for defining K-adjacency for a gray-level image? How is K-adjacency motivated by Euclidean topology in the plane? Assume "black > gray > white; is the black line crossing "on top" of the gray line? How many black, fray, or white components in the example below:

3.5-3.9

3.5. What is the stop criterion in the border tracing algorithm of Voss?
3.6. Why is the number of pixels on a border not a multi-grid convergent estimator for the perimeter of a digitized set?
3.7. Specify two ways how to define curvature at a point on a continuous arc in the Euclidean plane.
3.8. Select a simple (e.g. 4×4) gray-level image, a pixel adjacency set A, and explain the concept of a co-occurrence matrix by using the chosen example.
3.9. Define moments of order $a+b$ for a set $S \subset \Omega$ and a given image I defined on Ω. How is the centroid of S defined? Assume that l is equal to 0 everywhere in S. What is the centroid of S in this case?

$3.10-3.11$

3.10. Why is the straight-line representation $y=a x+b$ not suitable for defining a parameter space for detecting line segments in an image? Which representation has been suggested by Duda and Hart instead?
3.11. Assume that we only map two pixel locations from an image into the $d \alpha$-Hough space. Sketch the resulting Hough space and explain how the straight line is detected defined by those two pixel locations. - Now assume that we have a "noisy line segment" in the image. How can this line segment be detected in Hough space?
3.12. Explain how image gradient information can be used to enhance accuracy and speed of circle detection using the concept of the Hough transform.

Agenda
(1) Chapter 1
(2) Chapter 2
(3) Chapter 3
(4) Chapter 4
(5) Chapter 5
(6) Chapter 6
(9) Chapter 7
(8) Chapter 8
(9) Chapter 9
(10) Chapter 10

4.1-4.4

4.1. What is the aperture problem for detecting local displacements (i.e. 2D motion) in an image?
4.2. Describe cases where 2D motion (projected into an image) does not correspond to the visible optical flow.
4.3. Calculate the coefficients of the Taylor expansion of the function $I(x, y, t)=2 x^{2}+x y^{2}+x y t+5 t^{3}$ up to derivatives of the $3^{r d}$ order.
4.4. What is the optical flow equation (also known as Horn-Schunck constraint)? Specify the defined straight line in $u v$-velocity space.

4.5-4.7

4.5. When presenting the optical flow problem as a labeling problem, defined by data-cost and smoothness-cost terms, what are those two terms in case of the Horn-Schunck algorithm?
4.6. Explain as a general concept how LSE optimization is used for solving a minimization problem such as defined by the Horn-Schunck approach towards optical flow? What is LSE standing for?
4.7. Provide a pseudo-code for the Horn-Schunck algorithm based on the mathematical solution

$$
\begin{aligned}
u_{x y}^{n+1} & =\bar{u}_{x y}^{n}-I_{x}(x, y) \cdot \frac{I_{x}(x, y) \bar{u}_{x y}^{n}+I_{y}(x, y) \bar{v}_{x y}^{n}+I_{t}(x, y)}{\lambda^{2}+I_{x}^{2}(x, y)+I_{y}^{2}(x, y)} \\
v_{x y}^{n+1} & =\bar{v}_{x y}^{n}-I_{y}(x, y) \cdot \frac{I_{x}(x, y) \bar{u}_{x y}^{n}+I_{y}(x, y) \bar{v}_{x y}^{n}+I_{t}(x, y)}{\lambda^{2}+I_{x}^{2}(x, y)+I_{y}^{2}(x, y)}
\end{aligned}
$$

4.8-4.10

4.8. For a given pixel location p, let Q be the point in $u v$-velocity space where the straight line defined by the optic-flow equation intersects with the line in direction $\left[I_{x}, I_{y}\right]^{\top}$. Derive (step by step) a solution for Q (i.e an expression in terms of I_{x}, I_{y}, and I_{t}).
4.9. What is the basic idea behind the Lucas-Kanade algorithm? How does this work for two adjacent pixels, and how for a whole neigborhood of k pixels?
4.10. Show for the Lucas-Kanade algorithm that the matrix inversion in the equation

$$
\mathbf{u}=\left(\mathbf{G}^{\top} \mathbf{G}\right)^{-1} \mathbf{G}^{\top} \mathbf{B}
$$

fails if image gradients in the selected neighborhood are parallel to each other. Is this possible to happen for real image data?

Agenda

(1) Chapter 1
(2) Chapter 2
(3) Chapter 3
© Chapter 4
(5) Chapter 5
© Chapter 6
(7) Chapter 7
(8) Chapter 8
(9) Chapter 9

Chapter 10

5.1-5.4

5.1. Specify one technique for image binarization which is more advanced than just using one given global threshold T.
5.2. Assume that segments are generated by seed growing. How to ensure independence of generated segments from the choice of a selected seed in a segment?
5.3. Specify a pseudo-code for the recursive labeling of all pixels in a defined region (defined by an equivalence relation on the given image).
5.4. Describe the basic ideas behind mean-shift image segmentation. An informal description is sufficient.

5.5-5.7

5.5. Assume that we only use gray-levels in a 1D feature space. Specify a variant of a mean-shift segmentation algorithm for this particular case.
5.6. Define the image segmentation problem as a labeling problem, specified by a data-cost term and a smoothness-cost term. Provide one example of a relevant data term.
5.7. Describe the message-update process (either just by an informal explanation, or by providing the update equation and explaining the symbols involved in your equation) of belief-propagation.
5.8. The lectures suggested to replace the simple Potts smoothness term by an alternative smoothness term in BP segmentation. For example, if μ_{1} and μ_{2} are the intensity means in adjacent segments, then constant c in equation

$$
E_{\text {smooth }}(I-h)=E_{\text {smooth }}(a)= \begin{cases}0 & \text { if } a=0 \\ c & \text { otherwise }\end{cases}
$$

can be replaced by a term where c is scaled in dependency of difference $\left|\mu_{1}-\mu_{2}\right|$.
Specify and discuss modified smoothness functions based on this equation which include data characteristics into the smoothness term.

5.9-5.10

5.9. Consider the dissimilarity measure \mathcal{D} defined by equation

$$
\mathcal{D}(A, B)=\frac{|(A \cup B) \backslash(A \cap B)|}{|A \cup B|}
$$

Show that this measure satisfies the following two properties of a metric d on a base set S :
(1) $f=g$ iff $d(f, g)=0$
(2) $d(f, g)=d(g, f)$
for all $f, g, h \in S$. Here, S is the family of sets of pixels. Optional: A proof of the triangularity property would give you additional marks.
5.10. What is "temporal consistency" when segmenting a sequence of images, and give one example of a procedure which might help to ensure this type of temporal consistency.

Agenda

(1) Chapter 1
(2) Chapter 2
(3) Chapter 3
© Chapter 4
(5) Chapter 5
(6 Chapter 6
(3) Chapter 7
(8) Chapter 8
© Chapter 9
(10) Chapter 10
6.1-6.5
6.1. List five properties of high-quality cameras which are of importance for their use in computer vision applications.
6.2. What is the purpose of the Bayer pattern?
6.3. How to use a "Color Checker" for testing color accuracy of a given color camera?
6.4. Characterize (by means of a graphical sketch or informally by words) the barrel transform and the pincushion transform.
6.5. How is "linearity" defined for a gray-level camera?
6.6-6.8
6.6. Provide a graphical sketch of the model of a pinhole camera (including 2D camera and 3D coordinates) and specify the central projection equations. How are those equations in homogeneous coordinates?
6.7. What is the principal point of a camera? How are pixel locations (x, y) and undistorted coordinates $\left(x_{u}, y_{u}\right)$ related to each other?
6.8. Define canonical stereo geometry (also known as "standard stereo geometry'). Specify epipolar lines and epipoles for this geometry.

6.9-6.10

6.9. How to calculate the point of intersection for two lines $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$, for $c_{1} \neq c_{2}$, using their homogeneous representation? Specify the point at infinity on the line $31 x+5 y-12=0$. (Note: this is defined by intersecting with the line at infinity.) Calculate the intersection point of this line with the line $31 x+5 y-14=0$ at infinity.
6.10. The fundamental matrix \mathbf{F} describes binocular stereo geometry (in the general case, not only for standard stereo geometry). Specify the fundamental matrix \mathbf{F} for canonical stereo geometry.

6.11

6.11. Consider a camera defined by the following 3×4 camera matrix:

$$
\mathbf{C}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Compute the projections of the following 3D points (in world coordinates) with this camera:

$$
\mathbf{P}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{P}_{2}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right], \mathbf{P}_{3}=\left[\begin{array}{l}
3 \\
2 \\
1 \\
1
\end{array}\right] \text {, and } \mathbf{P}_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

6.12-6.14

6.12. When calibrating a camera, we map points $\left(X_{w}, Y_{w}, Z_{w}\right)$ in 3D world coordinates into pixel coordinates (x, y). List and briefly describe the sequence of coordinate transforms involved in this process.
6.13. What are intrinsic and extrinsic camera parameters? Give a general definition and provide examples for both types of parameters.
6.14. Show that the matrix \mathbf{F}, defined by the (ideal) relation $p_{R}^{\top} \cdot \mathbf{F} \cdot p_{L}=0$ (in homogeneous coordinates) between corresponding points, specifies a line $\mathbf{F} \cdot p_{L}$ in the image plane of the right camera.

Agenda
(1) Chapter 1
(2) Chapter 2
(3) Chapter 3
(4) Chapter 4
(5) Chapter 5
(6) Chapter 6
(7) Chapter 7
(8) Chapter 8
(9) Chapter 9
(10) Chapter 10

7.1-7.3

7.1. What is the Euler characteristic $\chi(S)$ if S is a surface of a torus, a surface of a sphere, a surface of a cube, and a Moebius band? Which of those surfaces is orientable, and which not?
7.2. Consider a surface $Z=f(X, Y)$. How is the gradient and the surface normal defined for Z ? What is the unit normal? How to represent the unit normal by tilt and slant on the Gaussian sphere?
7.3. Consider the $a b$ gradient space. What is the dual straight line to a gradient (a, b) in this space? What is the meaning of the dual straight line when modeling surface reflectance in gradient space with respect to a given light source?

7.4-7.7

7.4. Describe how 2^{n} different light planes are generated by using n projected binary patterns which follow the Gray code.
7.5. By using a 2D sketch for illuminating a surface point $P=\left(X_{s}, Y_{s}\right)$ and recording this point in a (1D) camera, describe how the coordinates X_{s} and Y_{s} can be calculated based on known system parameters.
7.6. How is "disparity" and "base distance" defined for a general two-camera system?
7.7. Consider a 3D point $P=\left(X_{s}, Y_{s}, Z_{s}\right)$ mapped into two corresponding points $p_{u L}$ and $p_{u R}$ in the left and right image in canonical stereo geometry. Derive step by step the 3D reconstruction formulas for X_{s}, Y_{s}, and Z_{s}.

7.8-7.9

7.8. Discuss the meaning of the non-linear distribution of depth layers (defined by integer disparities) for possible accuracies in depth calculations when using stereo vision.
7.9. Describe the workflow when applying 3PSM for shape recovery.
7.10. Provide a graphical sketch for a surface point illuminated by an ideal point-light source and recorded by a camera, and specify Lambertian reflectance by a formula, and also explain informally what the formula means for surface reflectance.
7.11. Provide a graphical sketch of a Lambertian reflectance map, showing the direction to the light source, the dual straight line to this direction (note: it has to follow defined geometric constraints), and a sketch of a few more isolines.

7.12-7.14

7.12. Describe the Lambertian reflectance map in spherical coordinates on the Gaussian sphere (hint: isointensity curves are circles in this case). Use this model to answer the question why two light sources are not yet sufficient for identifying a surface normal uniquely.
7.13. What is a possible way to calibrate the direction to a light source by using inverse PSM?
7.14. How to obtain a simply-connected surface patch (in 3D coordinates) based on a given dense gradient field for this surface patch and by applying local integration along a defined integration path?

7.15-7.16

7.15. Specify a data term and a smoothness term for specifying global integration (of a given dense gradient field) by following the Markov random-field model, i.e. for minimizing the error or energy $E_{\text {total }}(Z)=E_{\text {data }}(Z)+E_{\text {smooth }}(Z)$.
7.16. Why the statement "We also use Parseval's theorem..." when introducing the gradient-field integration algorithms (with deriving solutions in frequency space)?

Agenda

(1) Chapter 1
(2) Chapter 2
(3) Chapter 3
© Chapter 4
(5) Chapter 5
© Chapter 6
(3) Chapter 7

8 Chapter 8
(9) Chapter 9
(10) Chapter 10

8.1-8.4

8.1. Why are SSD, SAD, and AD not recommended data cost functions for stereo matching? Give three reasons.
8.2. What is the "3D data cost matrix"? Why is there a region in this matrix identified by the comment "Constrained disparity range"?
8.3. Describe the census data cost function as an application of the Hamming distance between two vectors.
8.4. How is the stereo matching strategy "The winner takes all" defined? Refer to the 3D data cost matrix when describing this strategy.

8.5-8.6

8.5. What is a "confidence measure" for stereo analysis? How does this approach differ from performance evaluation based on comparing with given disparity (or depth) ground truth? Specify two different confidence measures for stereo analysis results.
8.6. Outline the general dynamic programming methodology. Why does it make no sense to ask for a dynamic programming solution for "The winner takes all"?

8.7

8.7. Are the shown graphs G_{1} or G_{2} epipolar profiles which represent disparity vectors?

G_{1}
G_{2}

If so, which disparity vector? In reverse: Given are the disparity vectors

$$
\begin{aligned}
& \mathbf{d}_{1}=\left[f_{4}, f_{5}, \ldots, f_{16}\right]^{\top}=[1,0,1,2,3,0,1,1,0,1,2,3,2]^{\top} \\
& \mathbf{d}_{2}=\left[f_{4}, f_{5}, \ldots, f_{16}\right]^{\top}=[4,3,2,1,0,1,2,4,1,2,3,2,2]^{\top}
\end{aligned}
$$

Draw the epipolar profiles defined by those two disparity vectors. Which profiles and which vectors satisfy the ordering constraint?

8.8-8.10

8.8. Consider the following rectified stereo pair of images:

Assume the AD data-cost function and "The winner takes all" or DPM with ordering constraint. Describe the expected outcome of those two stereo matchers.
8.9. What was the motivation for suggesting the penalty

$$
c_{2}(p, q)=\frac{c}{|B(p)-B(q)|}
$$

for DPM with smoothness term?
8.10. How is the 3D data cost matrix used (repeatedly) for multi-scanline DPM with smoothness constraint (also known as semi-global matching)?

Agenda

(1) Chapter 1
(2) Chapter 2
(3) Chapter 3
© Chapter 4
(5) Chapter 5
© Chapter 6
(7) Chapter 7
(8) Chapter 8
(9) Chapter 9
(10) Chapter 10

9.1-9.3

9.1. Explain the concept of "invariance w.r.t. changes in the scene", at first briefly in general words, and then by means of a positive and a negative example.
9.2. How are keypoints defined in LoG or DoG scale space? What is the "disk of influence" of a keypoint detected this way? How can this disk of influence be used for calculating sparse 3D flow?
9.3. Explain the general outline of RANSAC, and illustrate the general concept for detecting a straight segment in a given "noisy image" of a straight segment. Structure your presentations into "initialization", "test", "consensus set", "cardinality check", "stop criterion", and "refined model".

9.4-9.7

9.4. How can RANSAC be used for estimating an affine transform between two sets of points in the plane?
9.5. Describe the selection procedure for keypoints for SIFT, and which descriptor is used for this image feature. Mention the motivations for the individual steps.
9.6. What are similarities, and what are differences between local binary patterns (LBP) and the BRIEF descriptor?
9.7. How to define a "repeatability measure" for a given feature detector and a given image sequence?

9.8-9.9

9.8. Explain the Newton-Raphson iteration scheme for detecting a zero of a smooth unary function. How has the basic idea of this scheme be followed in the design of the Lucas-Kanade tracker? Describe in general, no formulas needed.
9.9. Explain the general outline of a particle filter. Structure your presentation into "definition of particle space", "initialization", "update model", "dynamic model (generation of clouds of particles)", "observation model (weights of particles)", "condensation", and "decision for winning particles".

$9.10-9.11$

9.10. For lane-border detection it was suggested in the lectures to generate a bird's-eye view by using a homography, defined by four marked points being corners of a trapezoid in the image, but actually corners of a rectangular region on the road. Specify this homography.
9.11. In which way did the discussed lane-border detection technique specify the general steps of a particle filter? No formulas needed, just an informal description is fine; but using formulas for supporting your discussion is also a possibility (but then used parameters need to be specified).

9.12-9.15

9.12. What is the equation of a continuous linear dynamic system, and what is the equation of a discrete linear dynamic system (not considering noise or control). How are both equations related to each other.
9.13. A discrete linear system with control and noise is defined by two equations for \mathbf{x}_{t} and \mathbf{y}_{t}. Name all the symbols in those two equations.
9.14. When predicting the system state at time t (for time t), which knowledge is available at that moment for performing this prediction?
9.15. Which error is minimised by the optimal Kalman gain? Describe in words rather than giving just a formal expression.

Agenda

(1) Chapter 1
(2) Chapter 2
(3) Chapter 3
(4) Chapter 4
(3) Chapter 5
© Chapter 6
(7) Chapter 7
© Chapter 8
(0) Chapter 9
(10) Chapter 10

10.1-10.4

10.1. Explain the terms "classifier", "weak classifier", and "strong classifier". What does it mean "to train" a classifier? What is "supervised learning"?
10.2. When is $\mathrm{PR}>\mathrm{RC}$ for an object detector? When is $\mathrm{MR}>\mathrm{FPPI}$?
10.3. Which HoG descriptor results for a bounding box in which all pixels have constantly the same value?
10.4. Explain (in general, and by means of examples) how integral images can be used for a time-efficient calculation of sums S_{W} as defined in Equation (10.7) in the book.

10.5-10.7

10.5. Provide a pseudo-code for a procedure for sliding masks of stepwise increased sizes through a placed window in a given image. Now embed this procedure into a main program describing the move of the placed window through the whole image (with calling the procedure for every position of the placed window).
10.6. Explain how AdaBoost is used to derive a strong classifier from a set of given week classifiers.
10.7. Explain the meaning of the multiplications in the sum in Equation (10.16) in the book. Why do we start the iteration with weights $\omega_{1}(i)=1 / m$, and not, for example, with weights $\omega_{1}(1)=0.1$, $\omega_{1}(2)=0.2, \omega_{1}(3)=0.3$, and so forth? Why do we stop with the iteration when arriving at $W_{a(T)} \geq 0.5$? Could we also already stop when arriving at $W_{a(T)} \geq 0.45$? Or when arriving at $W_{a(T)} \geq 0.55$?

10.8-10.11

10.8. Why is there a minus sign in Equation (10.40) in the book?
10.9. Describe how to train a random forest. Why is it called "random"?

Do the trees of the forest grow during training, or are they already of defined structure when beginning with the training of a forest? Which constraints in the training process define leaf nodes?
10.10. In the given description of a Hough forest, objects are parametrised by the object's centroid. Modify the definition of a Hough forest for the case where objects are parametrised by a vertical line segment (say, their vertical "main axis", with given endpoints for this axis).
10.11. Explain the meaning of entries in Table 10.2 in the book.

Copyright Information

This slide show was prepared by Reinhard Klette with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations. However, all the material is copyrighted.
R. Klette. Concise Computer Vision.
(C)Springer-Verlag, London, 2014.

In case of citation: just cite the book, that's fine.

