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Motivation

Control of noisy systems: “Noisy data in, and, hopefully, less noisy data
out.”

Applications of Kalman filters:

1 tracking objects (e.g., balls, faces, heads, hands)

2 fitting Bezier patches to point data

3 economics

4 navigation

5 ...

6 many computer vision applications (e.g. stabilizing depth
measurements, feature tracking, cluster tracking, fusing data from
radar, laser scanner, and stereo-cameras)
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Continuous Equation of a Linear Dynamic System

A continuous linear dynamic system is defined by

ẋ = A · x

nD vector x ∈ Rn: specifies the state of the process

A is the constant n × n system matrix

Notation ẋ is short for the derivative of x with respect to time t

Signs and magnitudes of the roots of the eigenvalues of A determine the
stability of the dynamic system

Observability and controllability are further properties of dynamic systems

5 / 39



Applications Linear Systems Prediction Kalman Filter A few Comments Disparity Measurements

Example

Moving Object with Constant Acceleration

Video camera captures an object moving along a straight line

Object’s centroid is described by coordinate x on this line and

its motion by speed v and constant acceleration a

Process state x = [x , v , a]>; thus ẋ = [v , a, 0]> and

ẋ =

 v
a
0

 =

 0 1 0
0 0 1
0 0 0

 ·
 x

v
a


Eigenvalues of 3× 3 system matrix A:

det(A− λI) = −λ3

specifies identical eigenvalues λ1,2,3 = 0; system is “very stable”
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Discrete Equations of a Linear Dynamic System

Continuous system on Page 5 mapped into a time-discrete system

∆t is the time difference between time slots t and t + 1

For Euler number e, for any argument x :

ex = 1 +
∞∑
i=1

x i

i !

The state transition matrix for ∆t equals

F∆t = e∆tA = I +
∞∑
i=1

∆t iAi

i !

with an i0 > 0 such that Ai is zero everywhere, for all i ≥ i0

Equation defines a finite sum for a discrete system (we leave out ∆t):

xt = Fxt−1

Initial state x0 at time slot t = 0
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Discrete Linear System with Control and Noise

Consider noise and system control; the previous equation is replaced by

xt = Fxt−1 + But + wt

yt = Hxt + vt

with a control matrix B, applied to a control vector ut , system noise
vectors wt , observation matrix H, noisy observations yt , and observation
noise vectors vt

System noise and observation noise vectors are assumed to be mutually
independent

Control defines some type of system influence at time t which is not
inherent to the process itself
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Example

Continuation: Moving Object with Constant Acceleration

System vectors xt = [xt , vt , at ]
>, with at = a

State transition matrix F is defined by

xt+1 =

 1 ∆t 1
2 ∆t2

0 1 ∆t
0 0 1

 · xt =

 xt + ∆t · vt + 1
2 ∆t2a

vt + ∆t · a
a


Verify this by applying the equation given above for F∆t .
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Observation Matrix for this Example

We only observe the current location yt = [xt , 0, 0]>

This defines observation matrix H as used in the following equation:

yt =

 1 0 0
0 0 0
0 0 0

 · xt
Noise vectors wt and vt would be zero vectors under ideal assumptions

Control vector and control matrix are not used in the example
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Time-Discrete Prediction

Given: sequence y0, y1, . . . , yt−1 of noisy observations for a linear dynamic
system

Goal: estimate internal state xt = [x1,t , x2,t , . . . , xn,t ]
>, which is of the

system at time slot t

Minimize the estimation error

x̂t1|t2
is the estimate of state xt1 based on knowledge available at t2

Pt1|t2
is the variance matrix of the prediction error xt1 − x̂t1|t2

Goal: minimize Pt|t in some defined way
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Available Knowledge at Time of Prediction

Available knowledge at time t:

1 Estimate of state transition matrix F which is applied to the (“fairly
known”) previous state xt−1

2 Control matrix B which is applied to control vector ut , if there is a
control mechanism at all in the system

3 Understanding about system noise wt (e.g. modeled as a multivariate
Gaussian distribution) by specifying a variance matrix Qt and
expected values µi ,t = E [wi ,t ] = 0, for i = 1, 2, . . . , n

4 Observation vector yt for state xt

5 Observation matrix H (“how to observe yt”?)

6 Understanding about observation noise vt (e.g. modeled as a
multivariate Gaussian distribution) by specifying a variance matrix Rt

and expected values µi ,t = E [vi ,t ] = 0, for i = 1, 2, . . . , n
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Prediction and Filter

Key idea: not just one prediction after the other by applying available
knowledge; we define a filter which aims at updating our knowledge about
the system noise, based on experienced prediction errors and observations
so far, and we want to use the improved knowledge about the system noise
for reducing the prediction error

Basic issues, such as assuming an incorrect state transition matrix or an
incorrect control matrix, are not solved by the filter

Predict Phase of the Filter = first phase of the filter

Calculate the predicted state and predicted variance matrix, using assumed
state transition matrix F and control matrix B; also apply the system noise
variance matrix Qt :

x̂t|t−1 = Fx̂t−1|t−1 + But

Pt|t−1 = FPt−1|t−1F
> + Qt
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Update Phase of the Filter

= second phase of the filter

Calculate the measurement residual vector z̃t and the residual variance
matrix St :

z̃t = yt −Hx̂t|t−1

St = HPt|t−1H
> + Rt

using observation matrix H of the assumed model and observation noise
variance matrix Rt .

We aim at improving these noise matrices

Updated state-estimation vector (i.e., prediction at time t) by an
innovation step of the filter at time t:

x̂t|t = x̂t|t−1 + Kt z̃t

Goal: matrix Kt such that innovation step is optimal
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History

R. E. Kalman (born 1930 in Hungary) defined and published in
[R. E. Kalman. A new approach to linear filtering and prediction problems. J.

Basic Engineering, volume 82, pages 35–45, 1960] a recursive solution to the
linear filtering problem for discrete signals, today known as the linear
Kalman filter

Related ideas were also studied at that time by the US-American radar
theoretician P. Swerling (1929 – 2000)

The Danish astronomer T. N. Thiele (1838 – 1910) is also cited for
historic origins of involved ideas

Apollo 8 (December 1968), the first human spaceflight from Earth to an
orbit around the moon, would certainly not have been possible without the
linear Kalman filter
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Optimal Kalman Gain

Matrix
Kt = Pt|t−1H

>S−1
t

minimizes the mean square error E [(xt − x̂t|t)
2], which is equivalent to

minimizing the trace (= sum of elements on the main diagonal) of Pt|t

Matrix Kt is known as the optimal Kalman gain; it defines the linear
Kalman filter

Filter also requires an updated variance matrix

Pt|t = (I−KtHt)Pt|t−1

of the system noise for predict phase at time t + 1

P0|0 needs to be initialized at the begin of the filter process
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Example

Continuation: Moving Object now with Random Acceleration

The object is still assumed to move along a straight line

Now with random acceleration at between t − 1 and time t

For modeling randomness, we assume a Gauss distribution with zero mean
and variance σ2

a ; measurements of positions of the object are assumed to
be noisy; again we assume Gaussian noise with zero mean and variance σ2

y

State vector given by xt = [xt , ẋt ]
> where ẋt equals the speed vt

We have that

xt =

[
1 ∆t
0 1

] [
xt−1

vt−1

]
+ at

[
∆t2

2
∆t

]
= Fxt−1 + wt

with variance matrix Qt = var(wt)
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Example Continued

Using Gt = [ ∆t2

2 ,∆t]> we have that

Qt = E [wtw
>
t ] = GtE [a2

t ]G>t = σ2
aGtG

>
t = σ2

a

[
∆t4

4
∆t3

2
∆t3

2 ∆t2

]

Qt and Gt are also independent of t, thus just denoted by Q and G

At time t we measure the position of the object:

yt =

[
1 0
0 0

]
xt +

[
vt
0

]
= Hxt + vt

Observation noise vt has the variance matrix

R = E [vtv
>
t ] =

[
σ2
y 0

0 0

]
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Example Continued

If initial position x̂0|0 = [0, 0]> accurately known then use matrix

P0|0 =

[
0 0
0 0

]
otherwise (with a suitably large real c > 0)

P0|0 =

[
c 0
0 c

]
t = 1: Predict x̂1|0 and calculate variance matrix P1|0 by

x̂t|t−1 = Fx̂t−1|t−1

Pt|t−1 = FPt−1|t−1F
> + Q

Calculate auxiliary data z̃1 and S1 by update equations

z̃t = yt −Hx̂t|t−1

St = HPt|t−1H
> + R
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Example Continued

Calculate the optimal Kalman gain K1 and update x̂1|1:

Kt = Pt|t−1H
>S−1

t

x̂t|t = x̂t|t−1 + Kt z̃t

Calculate P1|1 to prepare for t = 2:

Pt|t = (I−KtH)Pt|t−1

Those calculations are basic matrix or vector algebra operations, easy to
implement, but numerically already rather complex
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Tuning the Kalman Filter

Specifications of variance matrices Qt and Rt , or of constant c ≥ 0 in
P0|0, influences the number of time steps of the Kalman filter such that
the predicted states converge to true states

Assuming a higher uncertainty (i.e., larger c ≥ 0, or larger values in Qt

and Rt), increases values in Pt|t−1 or St ; due to the use of the inverse S−1
t

in the definition of the optimal Kalman gain, this decreases values in Kt

and the contribution of the measurement residual vector in the update
equation

If we are totally sure about the correctness of the initial state z0|0 (i.e.,
c = 0), and that we do not have to assume any noise in the system and in
the measurement processes, then matrices Pt|t−1 and St degenerate to

zero matrices; the inverse S−1
t does not exist, and Kt remains undefined:

The predicted state is equal to the updated state; this is the fastest
possible convergence of the filter
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Alternative Model for Predict Phase

An estimate of the continuous model matrix A in ẋ = A · x supports the
use of equations

˙̂xt|t−1 = Ax̂t−1|t−1 + Btut

Pt|t−1 = APt−1|t−1A
> + Qt

and defines a modified matrix B, now for the impact of control on the
derivatives of state vectors

This modification in the predict phase does not have formal consequence
on the update phase
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1. Understanding the Situation

We go through the sequence of recommended steps when implementing a
Kalman-filter-based solution

Task: Design a Kalman filter for improving disparities calculated when
operating a stereo-vision system in a driving vehicle in a static environment

1. Understanding the situation

We assume an ego-vehicle driving in a static environment

Due to ego-motion, we experience some changes in disparities

Assume that every pixel is independent; we set up iconic Kalman filters
i.e., one Kalman filter at a pixel location p of the image
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2. Model the State Process

Disparity is constant in a totally static world (i.e. if also no ego-motion):
We have a scalar system state xt = dt = dt−1 and F∆t = 1

But: We have a moving platform

This disparity (i.e. the state) will change when the car is moving

The p = (x , y) pixel position will also change where we follow the
changing disparity

The car moves forward: corresponding pixels move outward from the
focus of expansion:

in human vision the retinal point where lines defined by translatory
motion meet, also assuming a corresponding direction of gaze
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Focus of Expansion

Overlay of two subsequently recorded frames. Five pairs of corresponding points

define translatory motion; extended into straight lines those meet at the focus of

expansion. The arrow illustrates outward motion. The length of the arrow

depends on the depth (or disparity) of the tracked surface point.
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Use of Control Variables

This is where we can use our control variables B and u

State (i.e. disparity) at time t defined by a disparity at time t − 1
at a pixel sliding along the line defined by translatory motion

Assume that ego-motion is given (e.g.) by inertial sensors
(providing velocity v and yaw ψ = amount of angle turned through)

This helps to derive a pixel’s translatory motion

Control Variables: We use B and u
We know the vehicle movement in real-world coordinates

Triangulate and backproject
pixel coordinates p = (x , y , d) plus disparity,
and real-world coordinates P = [X ,Y ,Z ]> (in vector format)
w.r.t. the ego-vehicle
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Specify Control Parameters

For each measurement, we apply the following process:

1 Transform coordinates (xt−1, yt−1) at time t − 1 into real-world
coordinates Pt−1, as being a standard in stereo vision

2 Predict the new position of Pt−1 at time t in real-world coordinates
using velocity v during ∆t and total yaw ψ at time t:

Rt =

cos(ψ) 0 −sin(ψ)
0 1 0

sin(ψ) 0 cos(ψ)

 and Tt =
v ·∆t

ψ

1− cos(ψ)
0

−sin(ψ)


3 Transform the new real-world coordinates Pt = RtPt−1 + Tt back to

pixel coordinates (xt , yt) using backprojection

Here, Rt is the rotation matrix in the XZ -plane, due to the total yaw, and
Tt is the translation matrix between times t and t − 1
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Summary for Control Parameters

Starting at pixel (x , y) and disparity d at time t − 1

this provides an estimated disparity d ′ at a pixel (x ′, y ′) at time t

identified with being the value of

F∆t x̂t−1|t−1 + Btut

at (x ′, y ′), where ut is defined by

yaw rate ψ̇(t) between t − 1 and t,
and velocity vt during ∆t

and matrix B is defined by

projection at time t − 1, affine transform, and
backprojection at time t

This may be implemented pixel by pixel, or for the whole image at once
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3. Model the Measurement Process

We are filtering our measurements directly (i.e. calculating the disparity)

Therefore, for the individual pixel:

y = y and H = 1
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4. Model the Noise

Disparity measurements have a Gaussian noise distribution in depth
direction (i.e., for sub-pixel measurements), and these can fluctuate to
either side (i.e. within an ellipsoidal region)

The main state error is in the depth direction (i.e. the above ellipsoid is
elongated into depth direction); thus we assume that

P = P = σ2
d

For our model, both the process and measurement noise (at a single pixel)
are scalars; therefore,

Q = qd and R = rd

(we could also assume that these values change between each iteration t)
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5. Test the Filter

The equations simplify at a single pixel as follows:

Predict:

x̂t|t−1 = as derived above using ut

Pt|t−1 = Pt−1|t−1 + qd

Update:

x̂t|t = x̂t|t−1 + Kt

(
yt − x̂t|t−1

)
Kt = Pt|t−1

(
Pt|t−1 + rd

)−1

Pt|t = (1− Kt) Pt|t−1
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6. Choose Logical Noise Parameters

For example, for measurement noise we may take rd = 1, considering to be
up to 1 pixel out in our measurement

If we want to filter out all moving objects, then a logical process
parameter is qd = 0.0001 (i.e., some small value portraying that we
assume the model is good)

This ends the description of an iconic Kalman filter approach
for disparity calculations

For testing you need stereo video data recorded in a driving car,
with known ego-motion parameters of the car

For example, check KITTI and EISATS for such data
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An Illustration of a Possible Improvement
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Caption to Figure on Page Before

The left images show original images of a cyclist on the road in front of the
ego-vehicle at times t − 1 and t (left image of a stereo pair in both cases)

The middle and right hand grids show the birds-eye views of depth maps
(i.e. object disparities projected into 3D coordinates), also known as
occupancy grids

The left-hand grid shows the results using no Kalman integration; the
right-hand grid shows results using the iconic filters and illustrates a
“sharpening” in detected object locations

Because we assumed a static world we can expect that there will be errors
on moving objects such as for the cyclist in this figure
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Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.

R. Klette. Concise Computer Vision.
c©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that’s fine.
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