
Tracking 3D Changes LK Basics LK Algorithm

Feature Tracking1

Lecture 24

See Related Material in
Reinhard Klette: Concise Computer Vision

Springer-Verlag, London, 2014

1See last slide for copyright information.
1 / 33

Tracking 3D Changes LK Basics LK Algorithm

Agenda

1 Tracking of Features

2 Understanding 3D Changes

3 Lucas-Kanade Basics

4 Lucas-Kanade Algorithm

2 / 33

Tracking 3D Changes LK Basics LK Algorithm

Example

3 / 33

Tracking 3D Changes LK Basics LK Algorithm

Caption

Top: Tracked feature points in a frame of a stereo video sequence
recorded in a car

Middle: Tracked feature points are used for calculating the motion of the
car; this allows to map 3D points provided by stereo vision into a uniform
3D world coordinate system

Bottom: Stereo matcher iSGM has been used for the shown example
(example of a disparity map for the recorded sequence).

4 / 33

Tracking 3D Changes LK Basics LK Algorithm

Example of an Application Scenario

A car, which is called the ego-vehicle because it is the reference vehicle
where the considered system is working in, in distinction to “other”
vehicles in a scene

This ego-vehicle is equipped with a stereo vision system and it drives
through a street, providing reconstructed 3D clouds of points for each
stereo frame at time t

After understanding the motion of the ego-vehicle, these 3D clouds of
points can be mapped into a uniform 3D world coordinate system
supporting 3D surface modeling of the road sides

For understanding the motion of the ego-vehicle, we track detected
features from Frame t to Frame t + 1, being the input for a program
calculating the ego-motion of the car

5 / 33

Tracking 3D Changes LK Basics LK Algorithm

Tracking is a Sparse Correspondence Problem

Binocular stereo
Point or feature correspondence is calculated between images taken at the
same time; the correspondence search is within an epipolar line; thus,
stereo matching is a 1D correspondence problem

Dense Motion (i.e. optic flow) Analysis
Point or feature correspondence is calculated between images taken at
subsequent time slots; movements of pixels not constrained to be along
one straight line; dense motion analysis is a 2D correspondence problem

Feature Tracking
A sparse 2D correspondence problem

6 / 33

Tracking 3D Changes LK Basics LK Algorithm

Tracking and Updating of Features

Theoretically, its solution could also be used for solving stereo or dense
motion analysis

But there are different strategies for solving a dense or a sparse
correspondence problem

In sparse correspondence search we cannot utilize a smoothness term, and
need to focus more at first on achieving accuracy based on the data term
only

We can use global consistency of tracked feature point patterns for
stabilizing the result

7 / 33

Tracking 3D Changes LK Basics LK Algorithm

Agenda

1 Tracking of Features

2 Understanding 3D Changes

3 Lucas-Kanade Basics

4 Lucas-Kanade Algorithm

8 / 33

Tracking 3D Changes LK Basics LK Algorithm

Tracking with Understanding 3D Changes

Pair of 3D points Pt = (Xt ,Yt ,Zt) and Pt+1 = (Xt+1,Yt+1,Zt+1),
projected at times t and t + 1 into pt = (xt , yt , f) and
pt+1 = (xt+1, yt+1, f), respectively, when recording a video sequence

Z-ratio

ψZ =
Zt+1

Zt

We can derive X - and Y -ratios

ψX = Xt+1

Xt
= Zt+1

Zt
· xt+1

xt
= ψZ

xt+1

xt

ψY = Yt+1

Yt
= Zt+1

Zt
· yt+1

yt
= ψZ

yt+1

yt

9 / 33

Tracking 3D Changes LK Basics LK Algorithm

Update Equation

Xt+1

Yt+1

Zt+1

 =

ψX 0 0
0 ψY 0
0 0 ψZ

 ·
Xt

Yt

Zt

Knowing ψZ and ratios xt+1

xt
and yt+1

yt
allows us to update the position of

point Pt into Pt+1

Assuming that Pt and Pt+1 are positions of a 3D point P, from time t to
time t + 1, we only have to

1 decide on a technique to track points from t to t + 1

2 estimate ψZ

10 / 33

Tracking 3D Changes LK Basics LK Algorithm

Initial Position and Z -Ratios

If an initial position P0 of a tracked point P is known then we may identify
its 3D position at subsequent time slots

Without having an initial position, we only have a 3D direction Pt to
Pt+1, but not its 3D position

Stereo vision is the general solution for estimating Z -values or (just) ratios
ψZ

We can also estimate ψZ in a monocular sequence from scale-space results
(recall: ratios of square roots of areas of regions of influence)

Now: how to track points from t to t + 1?

11 / 33

Tracking 3D Changes LK Basics LK Algorithm

Agenda

1 Tracking of Features

2 Understanding 3D Changes

3 Lucas-Kanade Basics

4 Lucas-Kanade Algorithm

12 / 33

Tracking 3D Changes LK Basics LK Algorithm

Lucas-Kanade Tracker

Image I

y

x

Image J

y

x

t h

p p

Wp

Wp,a

Template or base window Wp in base image I compared with a match
window Wp,a in match image J

13 / 33

Tracking 3D Changes LK Basics LK Algorithm

Sketch

Shown case: dissimilarity vector a is a translation t and a scaling of height
h into a smaller height

Figure indicates that a disk of influence is contained in Wp

Pixel location p in J is the same as in I ; it defines the start of the
translation

Lucas-Kanade Tracker

Match template Wp, being a (2k + 1)× (2k + 1) window around keypoint
p = (x , y) in a base image I , with windows Wp,a in a match image J

Method should be general enough to allow for translation, scaling, rotation
and so forth between base window Wp and match window Wp,a in J

Vector a parametrizes the transform from p into a new center pixel, and
also the transformation of window W into a new shape

14 / 33

Tracking 3D Changes LK Basics LK Algorithm

Tracker follows Ideas of Newton-Raphson Iteration

Task: Calculate a zero of a smooth unary function φ(x), for x ∈ [a, b],
provided that we have φ(a)φ(b) < 0

Inputs are the two reals a and b

We also have a way to calculate φ(x) and the derivative φ′(x) (e.g.
approximated by difference quotients), for any x ∈ [a, b]

Calculate a value c ∈ [a, b] as an approximate zero of φ:

1: Let c ∈ [a, b] be an initial guess for a zero.
2: while STOP CRITERION = false do
3: Replace c by c − φ(c)

φ′(c)
4: end while

Derivative φ′(c) is assumed to be non-zero; if φ has a derivative of
constant sign in [a, b] then there is just one zero in [a, b]

15 / 33

Tracking 3D Changes LK Basics LK Algorithm

Comments

Initial value of c can be specified by (say) a small number of binary-search
steps for reducing the run-time of the actual Newton-Raphson iteration

A small ε > 0 is used for specifying the STOP CRITERION “|φ(c)| ≤ ε”

Method converges in general only if c is “sufficiently close” to the zero z

If φ′′(x) has a constant sign in [a, b], then we have the following: if φ(b)
has the same sign as φ′′(x) then initial value c = b gives convergence to z ,
otherwise chose initial value c = a

16 / 33

Tracking 3D Changes LK Basics LK Algorithm

Figure

A smooth function φ(x) on an interval [a, b] with φ(a)φ(b) < 0

Assume that we start with c = x1

Tangent at (x1, φ(x1)) intersects x-axis at x2 and defined by

x2 = x1 −
φ(x1)

φ′(x1)

Have φ′(x1) 6= 0. Now continue with c = x2 and new tangent, etc.
17 / 33

Tracking 3D Changes LK Basics LK Algorithm

Convergence and Valleys

For initial value x1, sequence x2, x3, . . . converges to zero z

If start at c = x0 then the algorithm would fail

Note that φ′′(x) does not have a constant sign in [a, b]

We need to start in the “same valley” where z is located

We search for the zero in the direction of the (steepest) descent

If we do not start in the “same valley” then
we cannot cross the “hill” in between

18 / 33

Tracking 3D Changes LK Basics LK Algorithm

Back to the Lucas-Kanade Tracker

Follows basic idea of the Newton-Raphson iteration

Lucas-Kanade tracker uses approximate gradients
which are robust against variations in intensities

For window matching, an error function E is defined
based on an LSE optimization criterion

For formal simplification, we just write
J(Wa(q)) instead of J(Wp,a(q)), and
I (W (q)) instead of I (Wp(q))

19 / 33

Tracking 3D Changes LK Basics LK Algorithm

Translation

Simplest case: only a translation t = [t.x , t.y]> such that
J(x + t.x + i , y + t.y + j) ≈ I (x + i , y + j), for all i , j , with −k ≤ i , j ≤ k,
defining relative locations in template Wp

Simplifying notation: assume that p = (x , y) = (0, 0), and we use W or
Wa instead of Wp or Wp,a, respectively

Case of translation-only: approximate a zero (i.e. a minimum) of the error
function

E (t) =
k∑

i=−k

k∑
j=−k

[J(t.x + i , t.y + j)− I (W (i , j))]2

where t = [t.x , t, y]> and W (i , j) = (i , j)

20 / 33

Tracking 3D Changes LK Basics LK Algorithm

Goal for General Warps

Tracker not just for translations but for general warps defined by an affine
transform, with a vector a parametrizing the transform

Let J(Wa(q)) be the value at that point Wa(q) in J which results from
warping pixel location q = (i , j), with −k ≤ i , j ≤ k, according to
parameter vector a

Warping will not map a pixel location onto a pixel location, thus we also
apply some kind of interpolation for defining J(Wa(q))

Translation with a = [t.x , t.y]> : for q = (i , j) we have
Wa(q) = (t.x , t.y) + q and J(Wa(q)) = J(t.x + i , t.y + j)

General case: calculate dissimilarity vector a which minimizes error
function

E (a) =
∑
q

[J(Wa(q))− I (W (q))]2

21 / 33

Tracking 3D Changes LK Basics LK Algorithm

Iterative Steepest-Descent Algorithm

Assume: we are at a parameter vector a = [a1, . . . , an]>

Similarly to mean-shift algorithm for image segmentation, calculate (as
partial step) shift ma = [m1, . . . ,mn]> which minimizes

E (a + ma) =
∑
q

[J(Wa+ma(q))− I (W (q))]2

Solving this LSE optimization problem:

Consider Taylor expansion (analog to deriving the Horn-Schunck
constraint) of J(Wa(q)) with respect to dissimilarity vector a and a minor
shift ma

J(Wa+ma(q)) = J(Wa(q)) + m>a · grad J · ∂Wa

∂a
+ e

Assume e = 0, thus linearity of values of image J in the neighborhood of
pixel location Wa(q)

22 / 33

Tracking 3D Changes LK Basics LK Algorithm

LSE Optimization Problem

Second term on the right-hand side is a scalar: product of shift vector ma,
derivative grad J of the outer function (i.e. the usual image gradient), and
the derivative of the inner function

Window function W defines a point with x- and y -coordinates; derivative
of W with respect to locations identified by a:

∂Wa

∂a
(q) =

[
∂Wa(q).x

∂x
∂Wa(q).x

∂y
∂Wa(q).y

∂x
∂Wa(q).y

∂y

]

This is the Jacobian matrix of the warp; minimization problem now:

∑
q

[
J(Wa(q)) + m>a · grad J · ∂Wa

∂a
− I (W (q))

]2
Follow standard LSE optimization for calculating optimum shift ma

23 / 33

Tracking 3D Changes LK Basics LK Algorithm

LSE Procedure

1 Calculate the derivative of this sum with respect to shift ma

2 Set this equal to zero
3 Obtain the equation (with 2× 1 zero-vector 0)

2
∑

q

[
grad J ∂Wa

∂a

]> [
J(Wa(q)) + m>a · grad J · ∂Wa

∂a − I (W (q))
]

= 0

(Approximation of the) 2× 2 Hessian matrix

H =
∑
q

[
grad J

∂Wa

∂a

]> [
grad J

∂Wa

∂a

]
Solution defines optimum shift vector ma

m>a = H−1
∑
q

[
grad J

∂Wa

∂a

]>
[I (W (q))− J(Wa(q))]

from given parameter vector a to updated vector a + ma
24 / 33

Tracking 3D Changes LK Basics LK Algorithm

Analogy to the Newton-Raphson Iteration

1 Start with an initial dissimilarity vector a

2 New vectors a + ma are calculated in iterations

3 Follow the steepest descent

Possible stop criteria

1 Error value or length of shift vector ma is below a given ε > 0

2 A predefined maximum of iterations

25 / 33

Tracking 3D Changes LK Basics LK Algorithm

Example: Translation Case

Only translation a with Wa(q) = [t.x + i , t.y + j]>, for q = (i , j)

Jacobian matrix

∂Wa

∂a
(q, a) =

[
∂Wa(q).x

∂x
∂Wa(q).x

∂y
∂Wa(q).y

∂x
∂Wa(q).y

∂y

]
=

[
1 0
0 1

]
Hessian matrix (approximated by products of first-order derivatives)

H =
∑
q

[
grad J

∂Wa

∂a

]> [
grad J

∂Wa

∂a

]
=
∑
q

 (∂J∂x)2 ∂J2

∂x∂y

∂J2

∂x∂y

(
∂J
∂y

)2

Steepest descent

grad J · ∂Wa

∂a
= grad J

and
I (W (q))− J(Wa(q)) = I (W (q))− J(q + a)

26 / 33

Tracking 3D Changes LK Basics LK Algorithm

Altogether (for Translation)

m>a = H−1
∑
q

[
grad J

∂Wa

∂a

]>
[I (W (q))− J(Wa(q))]

=

∑
q

 (∂J∂x)2 ∂J2

∂x∂y

∂J2

∂x∂y

(
∂J
∂y

)2
−1∑

q

[grad J]> [I (W (q))− J(q + a)]

1 Approximate derivatives in image J around the current pixel locations
in window W

2 This defines the Hessian and the gradient vector

3 Then a sum of differences for identifying the shift vector ma

27 / 33

Tracking 3D Changes LK Basics LK Algorithm

Agenda

1 Tracking of Features

2 Understanding 3D Changes

3 Lucas-Kanade Basics

4 Lucas-Kanade Algorithm

28 / 33

Tracking 3D Changes LK Basics LK Algorithm

Lucas-Kanade Algorithm

Given are images I and J, the gradient image grad J , and a local template
W (i.e. a window) containing (e.g.) the disk of influence of a keypoint

1: Let a be an initial guess for a dissimilarity vector
2: while STOP CRITERION = false do
3: For the given vector a, compute the optimum shift ma as defined

above
4: Let a = a + ma

5: end while

29 / 33

Tracking 3D Changes LK Basics LK Algorithm

Line 3

Line 3 in the algorithm requires calculations for all pixels q defined by
template W ; basically the main steps:

1 Warp W in I into Wa(q) in J

2 Calculate the Jacobian matrix and its product with grad J

3 Compute the Hessian matrix

The algorithm performs magnitudes faster than an exhaustive search
algorithm for an optimized vector a

Program for Lucas-Kanade algorithm available in OpenCV

30 / 33

Tracking 3D Changes LK Basics LK Algorithm

Dents and Hills

Assume that error values are defined on the plane, and for different values
of a they describe a “hilly terrain”, with local minima, possibly a uniquely
defined global minimum, local maxima, and possibly a uniquely defined
global maximum

Blue point “cannot climb” to global maximum; red point is already at
local maximum; yellow dot can iterate to global peak

31 / 33

Tracking 3D Changes LK Basics LK Algorithm

Drift

There is also the possibility of a drift

The individual local calculation can be accurate, but the composition of
several local moves may result in significant errors after some time, mainly
due to the discrete nature of the data

32 / 33

Tracking 3D Changes LK Basics LK Algorithm

Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.

R. Klette. Concise Computer Vision.
c©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that’s fine.

33 / 33

http://www.cs.auckland.ac.nz/~rklette

	Tracking of Features
	Understanding 3D Changes
	Lucas-Kanade Basics
	Lucas-Kanade Algorithm

