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Photometric Stereo Method

Stereo Vision: one light source and multiple static or mobile cameras

Now: one static camera and multiple static light sources (indoor)

Light sources are switched on and off while taking images

Defines photometric stereo method (PSM), example of shape from shading

We describe

1 Gradient space (for modelling reflectance maps)

2 Lambertian reflectance (e.g. human skin is approximate Lambertian)

3 3-light-source PSM (3PSM) for deriving surface gradients

4 How surface gradients can be mapped into a 3D shape
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3PSM Example

Three input images for PSM; the hand is not allowed to move when taking
these images. Reconstructed surface (in 1994) by 3PSM
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Agenda

1 Gradient Space

2 Light Source and Lambertian Reflectance

3 3PSM

4 Integration of Gradient Fields
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Surface Gradients and Normals

Gradient of surface Z = f (X ,Y ) in 3D space

∇Z = grad Z =

[
∂Z

∂X
,
∂Z

∂Y

]>

Example: A plane Z = aX + bY + c , then gradient [a, b]>

Normal of surface Z = f (X ,Y )

n =

[
∂Z

∂X
,
∂Z

∂Y
, 1

]>
= [a, b, 1]>

Going away from the image plane by having value +1 in third component

We use of a and b for denoting X - and Y -components of a normal
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Unit normal

Unit normal (of length 1)

n◦ = [n1, n2, n3]> =
n

||n||2
=

[a, b, 1]>√
a2 + b2 + 1

Y
X

Z

n

P

o

1

1

1

Gaussian sphere: radius 1, centered at origin O

Slant σ: angle between vector n◦ and Z -axis

Tilt θ: angle between vector from O to P = (X ,Y , 0) and X -axis

Unit normal n◦ uniquely represented by spherical coordinates (σ, θ)
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Gradient Space

ab-space of gradient or normal coordinates a and b

Point (a, b) in gradient space represents gradient [a, b]> in XYZ space

Example

Plane Z = aX + bY + c in XYZ space

(a, b) in gradient space represents all planes parallel to the given plane

(i.e., for any c ∈ R)
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Orthogonal Normals

Given: n1 = [a1, b1, 1]> in XYZ space (say: direction to a light source)

Task: characterize normal n2 = [a2, b2, 1]> orthogonal to n1

(say: directions where surface points are “just” not illuminated anymore)

Dot product of both vectors:

n1 · n2 = a1a2 + b1b2 + 1 = ||n1||2 · ||n2||2 · cos
π

2
= 0

Given a1 and b1 define a straight line γ : a1a2 + b1b2 + 1 = 0 in gradient
space with unknowns a2 and b2:

1 the line incident with origin o = (0, 0) and point p is orthogonal to
line γ

2

√
a2

1 + b2
1 = d2((a1, b1), o) = 1/d2(p, o)

3 p and (a1, b1) are in opposite quadrants
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Dual Straight Line

Line γ is uniquely defined by these three properties on page before

Line γ is called the dual straight line to normal n1 or to (a1, b1)

Any direction n2 orthogonal to n1 is located on γ

n

n

2

1

X

ZY

γ

b

a

(a ,b )
22

(a ,b )11

o

p
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Agenda

1 Gradient Space

2 Light Source and Lambertian Reflectance

3 3PSM

4 Integration of Gradient Fields
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Point-Light Source Assumptions

1 A light source L is identified with a single point in R3

2 Light source emits light uniformly in all directions; with intensity

EL

(i.e. integral over energy distribution curve of light source L in visible
spectrum of light)

3 Light source “not very close” to objects of interest (objects are
“small” compared to the distance to the light source); in direction

sL = [aL, bL, 1]>

relatively to illuminated surfaces

Model is abstract: an existing light source actually

Illuminates only a limited range
It has a particular energy distribution curve L(λ)
It has a geometric shape
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Illuminated and Recorded Point on a Surface

Surface normal n, direction s to light source, viewing directions vi

Lambertian reflector

Light source

Projection center
of camera

n
s

v1

v2

v3
v4

α

Lambertian reflector: Radiant intensity observed from an diffusely
reflecting surface is directly proportional to the cosine of angle α (i.e.
viewing direction does not matter as long as point is visible)
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Recall Inner Vector Product and Albedo

Normal nP = [a, b, 1]> at a visible and illuminated surface point P

1 Inner vector product:

s> · nP = ||s||2 · ||nP ||2 · cosα

defines
cosα =

s> · nP

||s||2 · ||nP ||2
2 Emitted light at a point P is scaled by

η(P) = ρ(P) · EL

π

where π is the spatial angle of a halfsphere
ρ(P) is the albedo (i.e. surface reflectance) at P, with 0 ≤ ρ(P) ≤ 1
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Lambert’s Cosine Law

Emitted light at surface point P, called the reflectance at P:

R(P) = η(P) ·
s>L · nP

||sL||2 · ||nP ||2

= η(P) · aLa + bLb + 1√
a2
L + b2

L + 1 ·
√

a2 + b2 + 12

Reflectance R(P) ≥ 0 is a second-order curve in unknowns a and b

η(P) depends on energy EL and albedo ρ(P)
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Reflectance Maps

A reflectance map is defined in ab gradient space

Reflectance map assigns a reflectance value to gradient value (a, b)
assuming that the given surface reflectance is uniquely defined by the
gradient value (as it is the case for Lambertian reflectance)

Lambertian Reflectance Map:
Point P with albedo ρ(P) and gradient (a, b)

1 nP = sL:
α = 0 and cosα = 1; curve degenerates into R(P) = η(P), the
maximal possible value; value η(P) at point (aL, bL) in gradient space

2 nP orthogonal to sL:
surface point P is “just” not illuminated anymore; nP is on the dual
straight line to sL; α = π/2 and cosα = 0; curve degenerates into
R(P) = 0, the minimal possible value; value 0 along the straight line
dual to (aL, bL) in gradient space
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Isolines in a Lambertian Reflectance Map

-10
a b

+10

-10

+10
R

0.0

1.0

-10

+10

+10

-10

b

a

Duality between straight line and direction to light source

For R(P) between 0 and η(P), the curve is either parabolic or hyperbolic
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Agenda

1 Gradient Space

2 Light Source and Lambertian Reflectance

3 3PSM

4 Integration of Gradient Fields
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Recovering Surface Gradients

One static camera (on a tripod) and three different point-light sources at
directions si , for i = 1, 2, 3

Reflectance map value Ri (P) uniformly scaled by constant c > 0 (due to
distance between object and camera) and mapped into monochromatic
value ui in the image

Capture three images, turn only one light source on at a time

Point P maps at the same pixel position into three intensity values

ui = Ri (P) =
η(P)

c
·

s>i · nP

||si||2 · ||nP ||2

defining three second-order curves in gradient space, which (ideally)
intersect at (a, b), where nP = [a, b, 1]> is the normal at point P
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Albedo-Independent PSM

Consider surfaces with (approximate) Lambertian reflectance

We cannot assume that albedo ρ(P) is constant on a recorded surface

Coloring of surface points changes and thus also the albedo

We need to consider albedo-independent PSM

Example:

Human skin is approximate Lambertian but with changes in albedo

Non-Lambertian: e.g. specularities in open eyes
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Derivation of an Algebraic Solution

We have three equations

ui = Ei ·
ρ(P)

cπ
·

s>i · nP

||si||2 · ||nP ||2
for three light sources, with i = 1, 2, 3

1 Multiply first equation (i.e. i = 1) by u2 · ||s2||2
2 Multiply second equation (i.e. i = 2) by −u1 · ||s1||2
3 Add both; this results into

ρ(P) · nP · (E1u2||s2||2 · s1 − E2u1||s1||2 · s2) = 0

Thus: vector nP is orthogonal to this difference of vectors s1 and s2

4 Assume ρ(P) > 0. If using Images 1 and 3, we have that

nP · (E1u3||s3||2 · s1 − E3u1||s1||2 · s3) = 0
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The Solution

nP is collinear with the cross product

(E1u2||s2||2 · s1 − E2u1||s1||2 · s2)× (E1u3||s3||2 · s1 − E3u1||s1||2 · s3)

This uniquely defines the unit normal n◦P pointing away from the camera

Needed:

1 Directions to light sources

2 Relative intensities of light sources (no absolute measurements Ei )
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Calibration Sphere

Calibration sphere: Uniform albedo and Lambertian reflectance

Use mean intensities in recorded calibration sphere images for estimating
energy ratios between intensities Ei of the three light sources

Illustration of detected iso-intensity “lines” with expected noisiness
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Direction to Light Sources by Inverse PSM

Calibration of directions si to the three light sources

We apply inverse photometric stereo:

Use of a Lambertian calibration sphere with uniform albedo

Place sphere about at location of objects (to be modelled)

1 Identify the circular border of the imaged sphere

2 Calculate surface normals (of the sphere) at more than three points P
(say, at about 100) projected into pixel positions within the circle
How?

3 Identify direction si by least-square error optimization using the
3PSM solution equations

4 We have values ui and normals nP ; solve for unknown direction si
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Example: Human Faces

3PSM is of reasonable accuracy for recovering the albedo values of a
human face

Face recovered by 3PSM (at University of Auckland in 2000)

Closed eyes avoid the recording of specularity
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Agenda

1 Gradient Space

2 Light Source and Lambertian Reflectance

3 3PSM

4 Integration of Gradient Fields
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Discrete Gradient Field

Integration: Discrete fields of gradients into a surface

Integration is not unique even when dealing with smooth surfaces

Result only determined up to an additive constant

Ill-Posedness of Discrete Integration

Results of PSM are discrete and erroneous surface gradient data

Surfaces often “non-smooth” (e.g. polyhedral)

Example: Camera looks onto a stair case, orthogonal to the front faces;
recovered normals point straight towards camera

Densities of recovered surface normals do not correspond uniformly to
local surface slopes
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Global Integration

Gradient vector estimated at any p ∈ Ω

Task: map this uniform and dense gradient vector field into a surface in
3D space which is likely to be the actual surface which caused the
estimated gradient vector field

Depth values Z (x , y) define labels at pixel locations (x , y)

Back to a labeling problem with error (or energy) minimization

Data term

Edata(Z ) =
∑

Ω

[(Zx − a)2 + (Zy − b)2] + λ0

∑
Ω

[(Zxx − ax)2 + (Zyy − by )2]

Smoothness term

Esmooth(Z ) = λ1

∑
Ω

[Z 2
x + Z 2

y ] + λ2

∑
Ω

[Z 2
xx + 2Z 2

xy + Z 2
yy ]
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Notation

Zx and Zy

first-order partial derivatives of Z

ax and by

first-order partial derivatives of a and b

Zxx , Zxy = Zyx , and Zyy

second-order partial derivatives of Z

λ0 ≥ 0 controls consistency between surface curvature and changes in
available gradient data

λ1 ≥ 0 controls smoothness of surface

λ2 ≥ 0 controls smoothness of surface curvature
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Total Energy, MRF Model, and Two Algorithms

Determine surface Z (i.e. the labeling function) such that total error (or
total energy)

Etotal(Z ) = Edata(Z ) + Esmooth(Z )

is minimized; derivatives in Esmooth define MRF again

Two Algorithms

Frankot-Chellappa algorithm is for λ0 = λ1 = λ2 = 0, thus not using the
second part of the data constraint and no smoothness constraint at all

Wei-Klette algorithm also uses second-order derivatives (curvature) and
smoothness optimization
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Optimization problem can be solved by using the theory of projections
onto convex sets

Gradient field (ax ,y , bx ,y ) is projected onto the nearest integrable gradient
field in the least-square sense, using the Fourier transform for optimizing in
the frequency domain

2D DFT of surface function Z (x , y)

Z(u, v) =
1

|Ω|
∑

(x ,y)∈Ω

Z (x , y) · exp

[
−i2π

(
xu

Ncols
+

yv

Nrows

)]

Inverse transform

Z (x , y) =
∑

(u,v)∈Ω

Z(u, v) · exp

[
i2π

(
xu

Ncols
+

yv

Nrows

)]

i =
√
−1 and u and v represent frequencies in 2D Fourier domain
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Relevant Fourier Pairs and Parseval’s Theorem

Zx(x , y) ⇔ iu Z(u, v)

Zy (x , y) ⇔ iv Z(u, v)

Zxx(x , y) ⇔ −u2 Z(u, v)

Zyy (x , y) ⇔ −v 2 Z(u, v)

Zxy (x , y) ⇔ −uv Z(u, v)

Define the appearance of considered derivatives of Z in frequency domain

A(u, v) and B(u, v) be Fourier transforms of gradients A(x , y) = ax ,y and
B(x , y) = bx ,y , respectively

Parseval’s Theorem

1

|Ω|
∑

Ω

|Z (x , y)|2 =
∑

Ω

|Z(u, v)|2
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Optimization in Frequency Domain

In conclusion to Parseval’s Theorem: Equivalence of optimization problem
in spatial domain to optimization problem in frequency domain

Minimize, where sums are for (u, v) ∈ Ω:∑
Ω

[
(iuZ− A)2 + (ivZ− B)2

]
+ λ0

∑
Ω

[(
−u2Z− iuA

)2
+
(
−v 2Z− ivB

)2
]

+ λ1

∑
Ω

[
(iuZ)2 + (ivZ)2

]
+ λ2

∑
Ω

[(
−u2Z

)2
+ 2 (−uvZ)2 +

(
−v 2Z

)2
]
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Start of Solution Process

Above expression expanded into∑
Ω

[
u2ZZ? − iuZA? + iuZ?A + AA?

+v 2ZZ? − ivZB? + ivZ?B + BB?
]

+λ0

∑
Ω

[
u4ZZ? − iu3ZA? + iu3Z?A + u2AA?

+v 4ZZ? − iv 3ZB? + iv 3Z?B + v 2BB?
]

+λ1

∑
Ω

(
u2 + v 2

)
ZZ?

+λ2

∑
Ω

(
u4 + 2u2v 2 + v 4

)
ZZ?

? denotes the complex conjugate, and sums for (u, v) ∈ Ω
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Optimization in Frequency Space

Differentiating the above expression with respect to Z? and setting the
result to zero, we can deduce the necessary condition for a minimum of
the cost function

For each (u, v) ∈ Ω we have(
u2Z + iuA + v 2Z + ivB

)
+ λ0

(
u4Z + iu3A + v 4Z + iv 3B

)
+λ1

(
u2 + v 2

)
Z + λ2

(
u4 + 2u2v 2 + v 4

)
Z = 0

A rearrangement of this equation yields[
λ0

(
u4 + v 4

)
+ (1 + λ1)

(
u2 + v 2

)
+ λ2

(
u2 + v 2

)2
]

Z(u, v)

+i
(
u + λ0u3

)
A(u, v) + i

(
v + λ0v 3

)
B(u, v) = 0
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Solution

Solve the above equation except for (u, v) 6= (0, 0):

Z(u, v) =
−i
(
u + λ0u3

)
A(u, v)− i

(
v + λ0v 3

)
B(u, v)

λ0 (u4 + v 4) + (1 + λ1) (u2 + v 2) + λ2 (u2 + v 2)2

Result

This is the Fourier transform of the unknown surface function Z (x , y)
expressed as a function of the Fourier transforms of the given gradients
A(x , y) = ax ,y and B(x , y) = bx ,y
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Algorithm Part 1: Forward Transform

1: input gradients a(x , y), b(x , y); parameters λ0, λ1, and λ2

2: for (x , y) ∈ Ω do
3: if (|a(x , y)| < cmax & |b(x , y)| < cmax) then
4: A1(x,y)=a(x,y); A2(x,y)=0;
5: B1(x,y)=b(x,y); B2(x,y)=0;
6: else
7: A1(x,y)=0; A2(x,y)=0;
8: B1(x,y)=0; B2(x,y)=0;
9: end if

10: end for
11: Calculate Fourier transform in place: A1(u,v), A2(u,v);
12: Calculate Fourier transform in place: B1(u,v), B2(u,v);
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Algorithm Part 2: Optimize in Frequency Domain

1: for (u, v) ∈ Ω do
2: if (u 6= 0 & v 6= 0) then

3: ∆ = λ0

(
u4 + v 4

)
+ (1 + λ1)

(
u2 + v 2

)
+ λ2

(
u2 + v 2

)2
;

4: H1(u, v) = [(u + λ0u3)A2(u, v) + (v + λ0v 3)B2(u, v)]/∆;
5: H2(u, v) = [−(u + λ0u3)A1(u, v)− (v + λ0v 3)B1(u, v)]/∆;
6: else
7: H1(0, 0) = average depth; H2(0, 0) = 0;
8: end if
9: end for
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Algorithm Part 3: Backward Transform

1: Calculate inverse Fourier transform of H1(u,v) and H2(u,v) in place:
H1(x,y), H2(x,y);

2: for (x , y) ∈ Ω do
3: Z (x , y) = H1(x , y);
4: end for
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Example 1

Image triplet of a Beethoven statue used as input for 3PSM
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Example

Left: Recovered surface using the Frankot-Chellappa algorithm

Right: Recovered surface using the Wei-Klette algorithm with λ0 = 0.5
and λ1 = λ2 = 0
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Comments

Constant cmax eliminates gradient estimates which define angles with the
image plane close to π/2

A value such as cmax = 12 is an option

Real parts are stored in arrays A1, B1, and H1, and imaginary parts in
arrays A2, B2, and H2

Average height can be estimated for the visible scene

Parameters λ0, λ1 and λ2 should be chosen based on experimental
evidence for the given scene
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Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.

R. Klette. Concise Computer Vision.
c©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that’s fine.
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