# Image Recording and Calibration<sup>1</sup>

Stereo Vision

(80 min lecture)

See Material in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014

ccv.wordpress.fos.auckland.ac.nz

<sup>&</sup>lt;sup>1</sup>See last slide for copyright information.

#### Cameras in a Test Vehicle



Examples of mounted cameras inside or on top of the vehicle

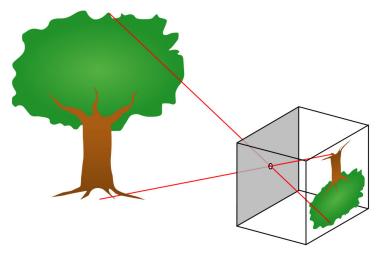
Stereo Vision

# Agenda

- 1 Image Recording
- Camera Calibration
- Stereo Vision
- 4 Stereo Matching (Brief Intro)

## Pinhole Camera

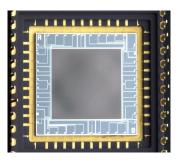
Light rays pass through the pinhole and create a top-down projection



[Image by Pbroks13 in the public domain]

# Recording Today: Matrix Sensors

Digital camera uses one or several matrix sensors for recording an image



Edges of individual sensor cells (phototransistors) are  $1.4\mu m$  to  $20\mu m$ 

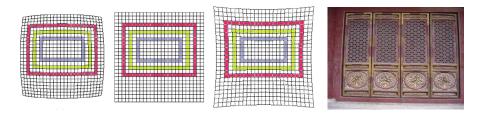
Produced in charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) technology

**Aspect Ratio.** Each phototransistor is an  $a \times b$  rectangular cell Ideally, the aspect ratio a/b should be equal to 1 (i.e. square cells)

#### Lens Distortion

Optic lenses contribute radial lens distortion to the projection process Barrel transform or pincushion transform

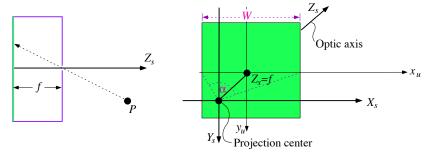
Stereo Vision



Left to right: Barrel transform, ideal rectangular image, pincushion transform, and projective and lens distortion combined in one image

#### Model of a Pinhole Camera

Theoretical model for light projection through a small hole Diameter of the hole is assumed to be "very close" to zero The hole is the projection center



Left: Sketch of an existing pinhole camera ("shoebox camera") Point P projected onto an image plane at distance f behind the hole

Right: Model of a pinhole camera,

Image (width W, viewing angle  $\alpha$ ) between world and projection center

# 3D Sensor Coordinates, Image Plane, Focal Length

#### 3D Sensor Coordinates

In figure above: Right-hand  $X_s Y_s Z_s$  camera coordinate system Subscript "s" comes from "sensor" (also, e.g., laser range-finder, or radar)

 $Z_s$ -axis points into the world; is the *optic axis* 

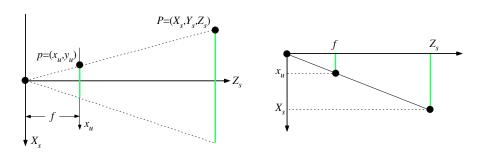
#### Image Plane

This model excludes the consideration of radial distortion Thus: undistorted projected points in image plane with coordinates  $x_u$ ,  $y_u$ 

#### **Focal Length**

Distance f between  $x_u y_u$  plane and projection center is the focal length

# Central Projection



Left: Central projection in the  $X_sZ_s$  plane for focal length f

Right: Illustration of ray theorem for  $x_u$  to  $X_s$  and f to  $Z_s$ 

# Central Projection Equations

 $X_s Y_s Z_s$  camera coordinates represent points in the 3D world

Visible point  $P = (X_s, Y_s, Z_s)$  mapped into  $p = (x_u, y_u)$  in the image plane

#### Ray theorem of elementary geometry

f to  $Z_s$  is the same as  $x_{ij}$  to  $X_s$ 

f to  $Z_s$  is the same as  $y_{ij}$  to  $Y_s$ 

$$x_u = \frac{fX_s}{Z_s} \qquad \qquad y_u = \frac{fY_s}{Z_s}$$

By knowing  $x_{\mu}$  and  $y_{\mu}$  we cannot recover all three values  $X_s$ ,  $Y_s$ ,  $Z_s$ 

# The Principal Point

Optic axis intersects the image somewhere close to its center xy image coordinate system: Coordinate origin in the upper left corner

Stereo Vision

#### **Principal Point**

Intersection point  $(c_x, c_y)$  of optic axis with image plane in xy coordinates

$$(x,y) = (x_u + c_x, y_u + c_y) = (\frac{fX_s}{Z_s} + c_x, \frac{fY_s}{Z_s} + c_y)$$

Pixel location (x, y) in 2D xy image coordinates has 3D camera coordinates  $(x - c_x, y - c_v, f)$  in  $X_s Y_s Z_s$  system

**Camera calibration** has to provide  $c_x$ ,  $c_y$ , and f (and more)

# Two-Camera Systems

3D geometry of a scene can be measured by using more than one camera Stereo vision or binocular vision: use of two or more cameras

#### Two Examples of Two-Camera Systems: For Car or Quadcopter



Left: A stereo camera rig on a suction pad with indicated base distance b Right: Stereo camera system integrated into a quadcopter

#### Base Distance

#### Camera calibration

needs to ensure that we have virtually two identical camera

Base distance b

the translational distance between projection centers of both cameras

Also to be calibrated

Figure on page before:

Suction pad: Base distance of about 500 mm

Quadcopter: Base distance of 110 mm

#### Result of Camera Calibration

Two virtually-identical cameras perfectly aligned as illustrated below



We describe each camera by using the model of a pinhole camera

# Canonical Stereo Geometry

 $X_s Y_s Z_s$  camera coordinate system for the left camera

Projection center of the left camera is at (0,0,0)

Projection center of the right camera is at (b, 0, 0)

#### We have

- 1 Two coplanar images of identical size  $N_{cols} \times N_{rows}$
- 2 Parallel optic axes
- 3 An identical effective focal length f
- 4 Collinear image rows (i.e., row y in one image is collinear with row y in the second image)

# Central Projection in Both Cameras

A visible 3D point  $P = (X_s, Y_s, Z_s)$  in the  $X_s Y_s Z_s$  coordinate system of the left camera is mapped into undistorted image points

Stereo Vision

$$p_{uL} = (x_{uL}, y_{uL}) = (\frac{f \cdot X_s}{Z_s}, \frac{f \cdot Y_s}{Z_s})$$
$$f \cdot (X - h) f \cdot Y$$

$$p_{uR} = (x_{uR}, y_{uR}) = (\frac{f \cdot (X_s - b)}{Z_s}, \frac{f \cdot Y_s}{Z_s})$$

in the left and right image plane, respectively

Those two equations are used for stereo vision:

- 3 input parameter  $x_{uL}$ ,  $x_{uR}$ , and  $y_{uL} = y_{uR}$  (same row)
- 3 parameters  $X_s$ ,  $Y_s$ , and  $Z_s$  to be computed

# Agenda

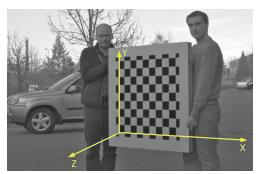
- Image Recording
- 2 Camera Calibration
- Stereo Vision
- 4 Stereo Matching (Brief Intro)

#### World Coordinates

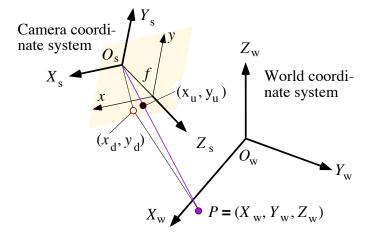
Cameras and 3D objects in the scenes are in one  $X_w Y_w Z_w$  world coordinate system

 $X_s Y_s Z_s$  camera coordinate system needs to be related to the chosen world coordinates

Pose (= position + direction) of world coordinate system at a particular moment during a camera calibration procedure



# Left-hand Camera and Right-hand World Coordinates



 $x_d$  and  $y_d$  are distorted (by lens distortion) coordinates in the image

#### Affine Transform

Affine transform in 3D space: Maps straight lines into straight lines, does not change distance ratios between 3 collinear points is a linear mapping defined by matrix multiplication and translation

**Example:** First translation  $\mathbf{T} = [t_1, t_2, t_3]^{\top}$  then rotation

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \mathbf{R}_1(\alpha) \cdot \mathbf{R}_2(\beta) \cdot \mathbf{R}_3(\gamma)$$

Eulerian rotation angles  $\alpha$ ,  $\beta$ ,  $\gamma$ 

$$\mathbf{R}_{1}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix} \qquad \mathbf{R}_{2}(\beta) = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$\mathbf{R}_{3}(\gamma) = \begin{bmatrix} \cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{2}(\beta) = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix}$$

# Coordinate Transform

World and camera coordinates to be transformed into each other

E.g. point  $P_w = (X_w, Y_w, Z_w)$  in 3D space in world coordinates into a representation  $P_s = (X_s, Y_s, Z_s)$  in camera coordinates

Coordinate  $P_w = (X_w, Y_w, Z_w)$  or vector notation  $P_w = [X_w, Y_w, Z_w]^{\top}$ (e.g. as measured for calibration points)

$$[X_s, Y_s, Z_s]^{\top} = \mathbf{R} \cdot \begin{bmatrix} [X_w, Y_w, Z_w]^{\top} + \mathbf{T} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \cdot \begin{bmatrix} X_w + t_1 \\ Y_w + t_2 \\ Z_w + t_3 \end{bmatrix}$$

Rotation matrix **R** and translation vector **T** to be specified by calibration

# Resulting Equational System

By multiplying the matrix and the vector we obtain that

$$X_s = r_{11}(X_w + t_1) + r_{12}(Y_w + t_2) + r_{13}(Z_w + t_3)$$

$$Y_s = r_{21}(X_w + t_1) + r_{22}(Y_w + t_2) + r_{23}(Z_w + t_3)$$

$$Z_s = r_{31}(X_w + t_1) + r_{32}(Y_w + t_2) + r_{33}(Z_w + t_3)$$

# Projection from World Coordinates into an Image

Point  $P_w = (X_w, Y_w, Z_w)$  in 3D scene is projected into a camera and visible at image point (x, y) in the xy coordinate system (we ignore radial distortion;  $Z_s = f$  for image points)

$$\begin{bmatrix} x - c_{x} \\ y - c_{y} \\ f \end{bmatrix} = \begin{bmatrix} x_{u} \\ y_{u} \\ f \end{bmatrix} = f \begin{bmatrix} X_{s}/Z_{s} \\ Y_{s}/Z_{s} \\ 1 \end{bmatrix}$$

$$= f \begin{bmatrix} \frac{r_{11}(X_{w}+t_{1})+r_{12}(Y_{w}+t_{2})+r_{13}(Z_{w}+t_{3})}{r_{31}(X_{w}+t_{1})+r_{32}(Y_{w}+t_{2})+r_{33}(Z_{w}+t_{3})} \\ \frac{r_{21}(X_{w}+t_{1})+r_{22}(Y_{w}+t_{2})+r_{23}(Z_{w}+t_{3})}{r_{31}(X_{w}+t_{1})+r_{32}(Y_{w}+t_{2})+r_{33}(Z_{w}+t_{3})} \end{bmatrix}$$

 $(c_x, c_y, 0)$  is the principal point in undistorted image coordinates

### Intrinsic and Extrinsic Parameters

Camera calibration specifies intrinsic (i.e., camera-specific) and extrinsic parameters of a given one- or multi-camera configuration

## **Intrinsic (or internal) parameters** are

- focal length
- dimensions of the sensor matrix
- sensor cell size
- 4 aspect ratio of sensor height to width
- 6 radial distortion parameters
- 6 coordinates of the principal point
- scaling factor

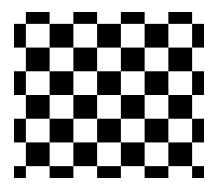
#### Extrinsic (or external) parameters are

those of the applied affine transforms for identifying poses of cameras in a world coordinate system

# A User's Perspective on Camera Calibration

Camera-producer specifies some internal parameters (e.g. the physical size of sensor cells), often not accurate enough for computer vision

#### Calibration Board



2D checkerboard pattern as commonly used for camera calibration the corners of squares are the calibration points

# A Quick Guide

Exact measurement of positions of calibration points

Used calibration points are recorded and localized in images

Projected positions in the image grid are compared with measured positions using a *projection model* (e.g. see Page 23 for a model example):

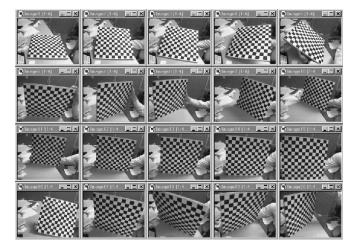
Stereo Vision

- **1** Calibration points  $P_{w,i}$  are mapped into image points  $p_i = (x_i, y_i)$
- 2 Identify correspondences between  $P_{w,i}$  and  $p_i$
- Insert coordinates of corresponding points into model equations
- Solve a set of non-linear equations for involved intrinsic and extrinsic parameters by some error minimisation scheme

When calibrating a multi-camera system, all cameras need to be exactly time-synchronized, especially if the calibration rig moves during the procedure

## Calibration Software

#### Calibration software is available online, e.g. provided by J.-Y. Bouget

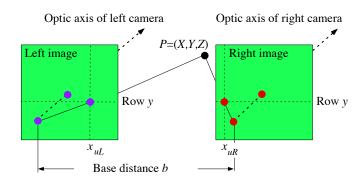


See www.vision.caltech.edu/bouguetj/calib\_doc/ or the OpenCV library

# Mapping into Canonical Stereo Geometry

Warp recorded image pairs such that it appears that they are recorded in canonical stereo geometry (CSG) by a pair of identical cameras

Stereo Vision



This process is called *geometric rectification*; it can be done by using intrinsic and extrinsic parameters as obtained by camera calibration

## Example 1: Two "non-CSG" Input Images



Recorded pair of images before and after rectification Recording:  $b \approx 10$  m, different viewing directions, definitely not CSG

## Example 2: Trinocular "CSG-Recording"



Three cameras installed with goal to match canonical stereo geometry Base distances: left to middle:  $\approx$ 40 cm, middle to right:  $\approx$ 30 cm



Rectified middle view shows on the left barrel transform correction

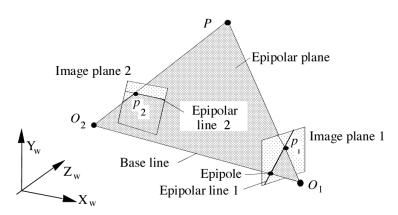
Stereo Vision

# Agenda

- 1 Image Recording
- 2 Camera Calibration
- 3 Stereo Vision
- 4 Stereo Matching (Brief Intro)

# **Epipolar Geometry**

Two cameras in general poses with projection centers  $O_1$  and  $O_2$ 



Stereo Vision

Point  $P_w = (X_w, Y_w, Z_w)$  projected into  $p_1$  and corresponding  $p_2$ 

# Simplifying the Task of Stereo Correspondence Analysis

Starting at point  $p_1$  in Image 1, find the corresponding point  $p_2$  in Image 2

Three non-collinear points in 3D space define a plane Points  $O_1$ ,  $O_2$  and point  $p_1$  define an epipolar plane

*Epipolar line* = intersection of an image plane with an epipolar plane

#### Observation

Search for point  $p_2$  can proceed along the epipolar line in Image 2

# Canonical Epipolar Geometry

**Given:** Canonical stereo geometry with a left and a right camera Visible 3D point P defines an epipolar plane which intersects both image planes in the same row

Stereo Vision

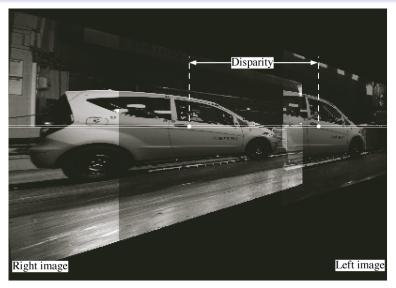
## **Epipolar Line = Same Image Row**

**In undistorted coordinates:** Start at  $p_1 = (x_u, y_u)$  in one camera, search for corresponding point in image row  $y_u$  in the other camera

In image coordinates: E.g., start at a pixel  $p_L = (x_L, y)$  in the left image, search for corresponding pixel  $p_R = (x_R, y)$  in the right image

In this case:  $x_R < x_I$ 

# Disparity

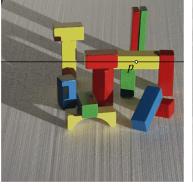


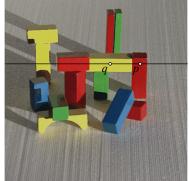
Two corresponding points define a disparity  $x_L - x_R$ 

## $x_L \geq x_R$

A stereo pair recorded in the early 1990s with the goal to ensure CSG:

Stereo Vision





Corresponding point q to a point p in left image is left of this point in the right image

## Triangulation for Canonical Stereo Geometry

*Now:* We have all together for going from stereo-image input data to recovered 3D points  $P = (X_s, Y_s, Z_s)$  in camera coordinates

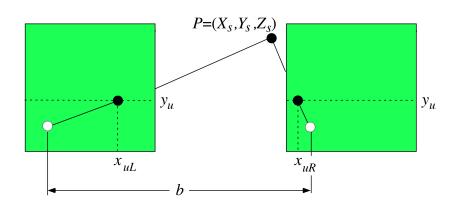
Have: Base distance b > 0 and unified focal length f

#### Central projection equations for left and right camera

$$p_{uL} = (x_{uL}, y_u) = (\frac{f \cdot X_s}{Z_s}, \frac{f \cdot Y_s}{Z_s})$$

$$p_{uR} = (x_{uR}, y_u) = (\frac{f \cdot (X_s - b)}{Z_s}, \frac{f \cdot Y_s}{Z_s})$$

# The Triangle



Stereo Vision

#### Solution

Eliminate  $Z_s$  from both equations

$$Z_s = \frac{f \cdot X_s}{x_{uL}} = \frac{f \cdot (X_s - b)}{x_{uR}}$$

Stereo Vision

Solve for  $X_s$ 

$$X_s = \frac{b \cdot x_{uL}}{x_{uL} - x_{uR}}$$

By using  $X_s$  we also obtain

$$Z_s = \frac{b \cdot f}{x_{uL} - x_{uR}}$$

By using  $Z_s$  we also derive that

$$Y_s = \frac{b \cdot y_u}{x_{uL} - x_{uR}}$$

with  $y_{\mu} = y_{\mu L} = y_{\mu R}$ 

### Summary

#### Observation

Two corresponding pixels  $(x_L, y) = (x_{\mu L} + c_{\chi L}, y_{\mu} + c_{\nu L})$  $(x_R, y) = (x_{IIR} + c_{XR}, y_{II} + c_{VR})$ identify its joint pre-image  $P = (X_s, Y_s, Z_s)$  in 3D space using the triangulation formulas on the page before

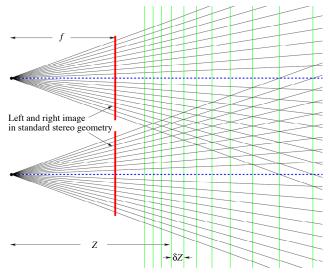
#### **Examples**

Disparity  $x_{ul} - x_{uR} = 0$  then pre-image  $P = (X_s, Y_s, Z_s)$  is "at infinity" The larger the disparity  $x_{ul} - x_{uR}$  the closer is P to the cameras

Stereo Vision

Integer coordinates in images, thus integer disparities  $x_{ul} - x_{uR}$  as well

#### Locations of Reconstructed Points P



Potentially at points where lines cross (which pass through pixel locations)

#### Agenda

- 1 Image Recording
- 2 Camera Calibration
- Stereo Vision
- 4 Stereo Matching (Brief Intro)

### A Stereo Pair: Two Rectified Images



Start at p and search along the epipolar line for a corresponding q How to detect q?

A correct q would be to the right of the shown q

## A Difficult Problem and Approximate Solutions

How to detect pairs of corresponding pixels in a stereo pair?

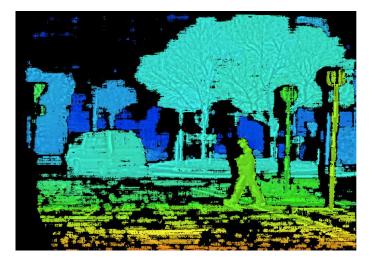
#### Stereo Matchers

Hundreds of techniques have been proposed for detecting "similar" pixels, typically combined with assuming constraints (e.g. adjacent pixels should have about the same disparity) for supporting an optimisation strategy

#### Two Examples of Stereo Matchers

Semi-global matching (SGM) and its variant, iterative SGM (iSGM)

#### SGM Disparity Map for the Shown Stereo Pair

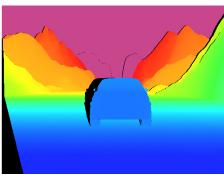


Color: Color-encoded disparity values at pixel locations Black: Pixel location without assigned disparity value

## Ground Truth for Synthetic Data

Useful for evaluating the accuracy of a stereo matcher





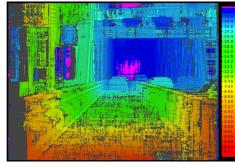
Left: Original rendered image from Set 2 of EISATS Right: Disparity map, here illustrating ground truth (Note: Use of a different color key)

# iSGM Depth Map

#### Each disparity defines (via triangulation) a depth or distance value

Stereo Vision





Left: One of the two input images

Right: Depth map using the color key as shown on the right distances are in meters

# Copyright Information

This slide show was prepared by Reinhard Klette with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations. However, *all the material* is copyrighted.

- R. Klette. Concise Computer Vision.
- ©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that's fine.