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Keypoint, Descriptor, Feature

A keypoint and a descriptor define a feature

Examples: SIFT, SURF, and ORB

BRIEF and FAST are needed for defining ORB

Features are tracked over time: KLT, particle filter, or Kalman
filter are possible tools

Left: DoG scale space keypoints
Right: Keypoints with disks of influence (radius = scale where
keypoint has been detected 3 / 85
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Invariance

Images are taken under varying illumination, different viewing
angles, at different times, under different weather conditions, and
so forth

When taking an aerial shot from an airplane, we do have a random
rotation of shown objects, and isotropy (rotation invariance) is of
interest

In outdoor scene analysis, we often request types of invariance with
respect to some operations, such as illumination changes or
recording images at different distances to the object of interest
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Keypoint

A keypoint (or interest point) is defined by some particular image
intensities “around” it, such as a corner

A keypoint can be used for deriving a descriptor

Not every keypoint detector has its particular way for defining a
descriptor

A descriptor is a finite vector which summarizes properties for the
keypoint

A descriptor can be used for classifying the keypoint

Keypoint and descriptor together define a feature
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Four Examples

Four of the keypoint detectors in OpenCV: FAST, ORB, SIFT, SURF
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Keypoints Defined in LoG or DoG Scale Space

Recall: DoG for scale σ and scaling factor a > 1 for combining
two subsequent layers in Gaussian scale space:

Dσ,a(x , y) = L(x , y , σ)− L(x , y , aσ)

Use initial scale σ > 0; apply scaling factors an, n = 0, 1, 2, . . . for
generating a finite number of Layers n in DoG scale space
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3D Data Array and Disk of Influence

Layers Dσ,an , n = 0, . . . ,m, define a 3D data array

Each array position (x , y , n) in this 3D array has 17 or 26 adjacent
array positions

Array position (x , y , n) and those 17 or 26 adjacent positions
define the 3D neighborhood of (x , y , n)

A keypoint is detected at p = (x , y) if there is a Layer n,
0 ≤ n ≤ m, such that Dσ,an(x , y) defines a local minimum or local
maximum within the 3D neighborhood of (x , y , n)

With a detected keypoint in the original image I at a pixel location
p = (x , y), we also have the scale σ · an where it has been detected

This scale defines the radius of the disk of influence for this
keypoint p
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Keypoints at Subpixel Accuracy

Keypoints detected in scale space in a layer defined by scale σ · an

Are at pixel locations (i.e. with integer coordinates)

1 Interpolate a 2D second-order polynomial g(x , y) to the
detected keypoint and its four 4-adjacent neighbors

2 Take the derivatives of g(x , y) in x- and y -direction

3 Solve the resulting equational system for a subpixel-accurate
minimum or maximum
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Corresponding Keypoints

Given: Sets of keypoints in subsequent frames

Compare detected sets of keypoints in two subsequent frames of an
image sequence using locations and descriptors

Find corresponding keypoints

There will be outliers which have no corresponding keypoint

Inliers have corresponding points

Correspondence e.g. also a (global) set problem (not only a
point-by-point problem): There is a global pattern of keypoints,
and we want to match this global pattern with another global
pattern of keypoints
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SIFT Example

Sets of SIFT keypoints in original and demagnified image (not a
time sequence)

RANSAC-match of corresponding keypoints
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Random Sample Consensus

RANSAC is an iterative estimation technique of parameters of an
assumed mathematical model

Given is a set of data, called inliers, which follow the model, but
there is also additional data, called outliers, which do not follow
the model

For applying RANSAC, the probability of selecting inliers needs to
be reasonably high

Example 1: Inliers and outliers as a noisy representation of a
straight line y = ax + b

Task: estimate a and b (an alternative to Hough transform)

Example 2: Sets of keypoints in two different images; the model is
a geometric transform (example of a matching problem), e.g. an
affine transform
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Test

Need a test for evaluating whether data satisfy or fit the
parametrized model

Here: keypoint p in one image I is mapped by parametrized affine
transform onto q in other image J

Test: If there is a keypoint r in J at distance d2(q, r) ≤ ε then we
say that p satisfies the given parametrized affine transform

Tolerance threshold ε > 0 determines whether data fit the model
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RANSAC Algorithm

Initialization: select random subset S of given data as inliers; fit
the model by estimating model parameters

Test: Test the parametrized model for all the other data

Define consensus set: All the data which satisfy the model go
into a consensus set

Cardinality check: Compare the cardinality of the consensus set
against the cardinality of all data

Stop criterion: Percentage is reasonably high

Refined model: Otherwise, estimate updated model parameters
based on consensus set

Continue with refined model: if cardinality of newly established
consensus set does not increase then go back to initialization step
and select another random subset S
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RANSAC for Feature Matching

Feature defined by keypoint and descriptor

Initial set S can be three randomly selected keypoints in image I

Search for three keypoints with reasonably matching descriptors in
image J

Estimate affine transform: Point p = (x , y , 1) in homogeneous
coordinates in image I is mapped into q = (u, v , 1) in image J u

v
1

 =

 r11 r12 t1
r21 r22 t2
0 0 1

 x
y
1


u = r11x + r12y + t1

v = r21x + r22y + t2

Six unknowns, solvable for non-collinear points p1, p2, and p3 in I
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Three Pairs

y

x

p2 p3

p1
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xq2

q3

q1

Definition of an affine transform by three pairs of points in images
I (on the left) and J
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Consensus Set

For calculated affine transform A(p) = q, we apply A now to all
the keypoints p in I

We obtain points A(p) in J

Point p goes into the consensus set if there is a keypoint q in J in
a Euclidean distance less then ε > 0 to A(p) with a “reasonable”
match of descriptors, defining the expected image qp of p in J

Obviously, initially used points p1, p2, and p3 pass this test
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Update

In general, consensus set now with more than just 3 points in I

Update the affine transform by calculating (using linear
least-squares) the optimum transform for all the established pairs p
in I and qp in J

Defines a refined affine transform

Value ε cannot be “very small”; this would not allow to move away
from the initial transform (for a better match between both sets of
keypoints)
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Scale-Invariant Feature Transform

We detect keypoints in DoG or LoG scale space

For keypoint p ∈ Ω, we also have scale σ · an which defines the
radius rp = σ · an of the disk of influence for this keypoint

Taking this disk, centered at p, in all layers of the scale space, we
define a cylinder of influence for the keypoint

Intersection of this cylinder with the input image is a disk of radius
rp centered at p

Eliminating Keypoints with Low Contrast or on an Edge.
Detected keypoints in low contrast regions are removed by
calculating the contrast value at the point

For deciding whether keypoint p is on an edge, consider gradient
4I (p) = [Ix(p), Iy (p)]>: If both components differ significantly in
magnitude then we conclude that p is on an edge
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Keypoints at Corners

Another option: take only keypoints at a corner in the image

A corner can be identified by eigenvalues λ1 and λ2 of the Hessian
matrix at pixel location p

If magnitude of both eigenvalues is “large” then we are at a corner;
one large and one small eigenvalue identifies a step-edge, and two
small eigenvalues identify a low-contrast region

After having already eliminated keypoints in low-contrast regions,
we are only interested in the ratio

λ1
λ2

=
(Ixx + Iyy )2 + 4Ixy

√
4I 2xy + (Ixx − Iyy )2

(Ixx + Iyy )2 − 4Ixy
√

4I 2xy + (Ixx − Iyy )2

for deciding corner versus edge
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Descriptors

Descriptor d(p) for remaining keypoint p:

Scale-invariant feature transform (SIFT) aims at rotation
invariance, scale invariance (actually addressing “size invariance”,
not really invariance w.r.t. scale σ), and invariance w.r.t.
brightness variations

Rotation-Invariant Descriptor. Disk of influence with radius
rp = σ · an in layer Dσ,an(x , y) is analyzed for a main direction
along a main axis and

then rotated such that the main direction coincides with a (fixed)
predefined direction

Examples: Use main axis defined by moments, or just gradient
vector at p

24 / 85



Feature Keypoints Correspondence Examples of Features Evaluation Tracking

Main Axis Method of SIFT

SIFT applies a heuristic approach

For locations (x , y) in the disk of influence in layer
L(x , y) = Dσ,an(x , y), centered at keypoint p, a local gradient is
approximated by using

m(x , y) =

√
[L(x , y + 1)− L(x , y − 1)]2 + [L(x + 1, y)− L(x − 1, y)]2

θ(x , y) = atan2 ([L(x , y + 1)− L(x , y − 1)], [L(x + 1, y)− L(x − 1, y)])

Directions are mapped onto 36 counters, each representing an
interval of 10 degrees

Counters have initial value 0; if a direction is within the 10 degrees
represented by a counter, then the corresponding magnitude is
added to the counter

Altogether, this defines a gradient histogram
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Dominant Direction

Local maxima in counter values, being at least at 80% of the
global maximum, define dominant directions

If more than one dominant direction, then the keypoint is used in
connection with each of those dominant directions

Rotate disk of influence such that detected dominant direction
coincides with a (fixed) predefined direction
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Brightness Invariance

Describe disk of influence in the input image (and not for the layer
where the keypoint has been detected)

In general: we could apply any of the transforms discussed before
for removal of lighting artifacts

SIFT calculates features for gradients in the disk of influence by
subdividing this disk into square windows; for a square window in
the input image we generate a gradient histogram as defined above
for identifying dominant directions, but this time for intervals of 45
degrees, thus only eight counters, each being the sum of gradient
magnitudes
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4× 4 Gradient Histograms

Keypoint

Radius

y

x

Square containing a disk of influence, gradient map, and sketches
of detected gradients and of 16 gradient histograms
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Scale Invariance

Partition the rotated disk of influence in the input image into 4× 4
squares (geometrically “as uniform as possible”)

For each of the 16 squares we have a vector of length 8
representing the counter values for the gradient histogram for this
square

By concatenating all 16 vectors of length 8 each we obtain a vector
of length 128

This is the SIFT descriptor dSIFT (p) for the considered keypoint p
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SURF Masks and the Use of Integral Images

Detector speeded-up robust features (SURF) follows similar ideas
as SIFT

Designed for better run-time performance

Utilizes the integral images Iint and simplifies filter kernels

1

-2 00

1

-1

-11

1

0

Illustration for σ = 1.2, the lowest scale, and 9× 9 discretized and
cropped Gaussian second-order partial derivatives and
corresponding filter kernels in SURF
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SURF Masks

Two of the four used masks (or filter kernels) are illustrated above

SURF’s masks for x-direction and the other diagonal direction are
analogously defined

Size of the mask corresponds to the chosen scale

After 9× 9, SURF uses then masks of sizes 15× 15, 21× 21,
27× 27, and so on
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Values in Filter Kernels

Values in those filter kernels are either 0, -1, +1, or -2

Values -1, +1, and +2 are constant in rectangular subwindows W
of the mask

This allows us to use integral images for calculating time-efficiently
the sum SW of all intensity values in W

It only remains to multiply the sum SW with the corresponding
coefficient (i.e., value -1, +1, or -2)

Sum of those three or four products is then the convolution result
at the given reference pixel for one of the four masks
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Scales and Keypoint Detection

Value σ = 1.2 is chosen for the lowest scale (i.e. highest spatial
resolution) in SURF

Convolutions at a pixel location p in input image I with four masks
approximate the four coefficients of the Hessian matrix

Four convolution masks produce values Dxx(p, σ), Dxy (p, σ),
assumed to be equal to Dyx(p, σ), and Dyy (p, σ)

S(p, σ) = Dxx(p, σ) · Dyy (p, σ)− [cσ · Dxy (p, σ)]2

as an approximate value for the determinant of the Hessian matrix
at scale σ

With 0 < cσ < 1 is a weighting factor which could be optimized
for each scale; SURF uses constant cσ = 0.9

Keypoint p detected by a local maximum of a value S(p, σ) within
a 3× 3× 3 array of S-values, analogously to keypoint detection in
LoG or DoG scale space

33 / 85



Feature Keypoints Correspondence Examples of Features Evaluation Tracking

SURF Descriptor

SURF descriptor is a 64-vector of floating point values

Combines local gradient information, similar to the SIFT descriptor

Uses weighted sums in rectangular subwindows (known as
Haar-like features

Windows around the keypoint for simple and more time-efficient
approximation of gradient values
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FAST, BRIEF, ORB

Oriented robust binary features (ORB) based on binary robust
independent elementary features (BRIEF) and keypoint detector
FAST; both together characterize ORB

Binary Patterns

BRIEF reduces a keypoint descriptor from a 128-vector (such as
defined for SIFT) to just 128 bits

Given floating-point information is binarized into a much simpler
representation

Same idea has been followed when designing the census transform,
when using local binary patterns (LBPs), or when proposing simple
tests for training a set of classification trees
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LBP and BRIEF

0
q
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q
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p

1
p

2
p

3
p

Pixel location p and 16 pixel locations q around p; s(p, q) = 1 if
I (p)− I (q) > 0; 0 otherwise;
s(p, q0) · 20 + s(p, q1) · 21 + . . .+ s(p, q15) · 215 is LBP code at p

BRIEF uses an order of random pairs of pixels within a square
neighborhood; here four pairs (pi , qi ), defining
s(p0, q0) · 20 + s(p1, q1) · 21 + s(p2, q2) · 22 + s(p3, q3) · 23
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BRIEF

LBP defined for a selection of n pixel pairs (p, q), selected around
the current pixel in some defined order in a (2k + 1)× (2k + 1)
neighborhood (e.g., k = 4 to k = 7)

After Gaussian smoothing defined by σ > 0 in the given image I

Order of those pairs, parameters k and σ define a BRIEF descriptor

Smoothing can be minor (i.e. a small σ) and the original paper
suggested a random order for pairs of pixel locations

Scale or rotation invariance was not intended by the designers of
the original BRIEF
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FAST

Features from an accelerated segment test FAST: corner by
considering image values on digital circle around given p

p

1
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34
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r
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34

2

16 image values on a circle of radius ρ = 3
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Cornerness test

Pixels p, q, and r are at intersections of edges; directions of those
edges are indicated by the shown blue lines

Cornerness test

Value at center pixel needs to be darker (or brighter) compared to
more than 8 (say, 11 for really identifying a corner and not just an
irregular pixel on an otherwise straight edge) subsequent pixels on
the circle, and “similar” to values of remaining pixels on circle
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Harris versus FAST

Left: Detected corners using the Harris detector
Right: Corners detected by FAST
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Corner Detector by Harris and Stephens

This Harris detector uses first-order derivatives of smoothed
L(., ., σ), for some σ > 0

G(p, σ) =

[
L2
x(p, σ) Lx(p, σ)Ly (p, σ)

Lx(p, σ)Ly (p, σ) L2
y (p, σ)

]
Eigenvalues λ1 and λ2 of G represent changes in intensities in
orthogonal directions in image I

For small a > 0 (e.g., a = 1/25) consider cornerness measure

H(p, σ, a) = det(G)− a · Tr(G)

H(p, σ, λ) = λ1λ2 − a · (λ1 + λ1)

One large and one small eigenvalue (such as on a step edge), then
H(p, σ, a) remains reasonably small
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Back to FAST: Time Efficiency

First: compare value at center pixel against values at locations 1,
2, 3, and 4 in this order

If still possible that the center pixel passes the cornerness test, we
continue with testing more pixels on the circle

Original FAST paper proposes to learn a decision tree for time
optimization

FAST detector in OpenCV (and also the one in libCVD) applies
SIMD instructions for concurrent comparisons, which is faster then
the use of the originally proposed decision tree

Non-maxima Suppression

For a detected corner, calculate maximum difference T between
value at center pixel and values on discrete circle being classified as
“darker” or “brighter” such that we still detect this corner

Non-maxima suppression deletes then in the order of differences T
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ORB

ORB also for oriented FAST and rotated BRIEF

Combines keypoints defined by extending FAST and an extension
of descriptor BRIEF

1 Multi-scale detection following FAST (for scale invariance),
calculates a dominant direction

2 Applies calculated direction for mapping BRIEF descriptor
into a steered BRIEF descriptor (for rotation invariance)

Authors of ORB suggest ways for analyzing variance and
correlation of components of steered BRIEF descriptor

Test data base can be used for defining a set of BRIEF pairs
(pi , qi ) which de-correlate the components of the steered BRIEF
descriptor for improving the discriminative performance of the
calculated features
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Multi-Scale, Harris Filter, and Direction

Define discrete circle of radius ρ = 9

(Above: FAST illustrated for discrete circle of radius ρ = 3)

Scale pyramid of input image is used for detecting FAST keypoints
at different scales

Harris filter. Use cornerness measure (of Harris detector) to select
T “most cornerness” keypoints at those different scales, where
T > 0 is a pre-defined threshold for numbers of keypoints

Moments m10 and m01 of the disk S , defined by radius ρ, specify
direction

θ = atan2(m10,m01)

By definition of FAST it can be expected that m10 6= m01

Let Rθ be the 2D rotation matrix about angle θ
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Descriptor with a Direction

Pairs (pi , qi ) for BRIEF, with 0 ≤ i ≤ 255, are selected by a
Gaussian distribution within the disk used (of radius ρ)

Form matrix S which is rotated into

Sθ = RθS = Rθ

[
p0

q0

. . .

. . .
p255

q255

]
=

[
p0,θ

q0,θ

. . .

. . .
p255,θ

q255,θ

]

Steered BRIEF descriptor calculated as the sum
s(p0,θ, q0,θ) · 20 + . . .+ s(p255,θ, q255,θ) · 2255, where s is defined as
above

By going from original BRIEF to the steered BRIEF descriptor,
values in the descriptor become more correlated
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256 BRIEF Pairs

For time-efficiency reasons, a used pattern of 256 BRIEF pairs
(generated by a Gaussian distribution) is rotated in increments of
2π/30, and all those patterns are stored in a look-up table

This eliminates the need for an actual rotation; the calculated θ is
mapped on the nearest multiple of 2π/30
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Evaluation of Features

Evaluate feature detectors with respect to invariance properties
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Caption

Rotated image; the original frame from sequence bicyclist from
EISATS is 640× 480 and recorded at 10 bit per pixel

Demagnified image

Uniform brightness change

Blurred image

49 / 85



Feature Keypoints Correspondence Examples of Features Evaluation Tracking

Feature Evaluation Test Procedure

Four changes: rotation, scaling, brightness changes, and blurring;
select sequence of frames, feature detector and do

1 Read next frame I , which is a gray-level image
2 Detect keypoints p in I and their descriptors d(p) in I
3 Let Nk be the number of keypoints p in I
4 For given frame, generate four image sequences

1 Rotate I around its center in steps of 1 degree
2 Resize I in steps of 0.01, from 0.25 to 2 times the original size
3 Add scalar to pixel values in increments of 1 from -127 to 127
4 Apply Gaussian blur with increments of 2 for σ from 3 to 41

5 Feature detector again: keypoints pt and descriptors d(pt)
6 Nt = number of keypoints pt for transformed image
7 Descriptors d(p) and d(pt) to identify matches between

features in I and It
8 Use RANSAC to remove inconsistent matches
9 Nm = number of detected matches
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Repeatability Measure

Repeatability R(I , It)

Ratio of number of detected matches to number of keypoints in
the original image

R(I , It) =
Nm

Nk

Report means for selected frames in test sequences

Use OpenCV default parameters for the studied feature detectors
and a set of 90 randomly selected test frames
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Repeatability Diagram For Rotation
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Repeatability Diagram For Scaling
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Repeatability Diagram For Brightness Variation
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Repeatability Diagram For Blurring
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Discussion of the Experiments

Invariance has certainly its limits

If scaling, brightness variation, or blurring pass some limits then we
cannot expect repeatability anymore

Rotation is a different case; here we could expect invariance close
to the ideal case (of course, accepting that digital images do not
rotate as continuous 2D functions in R2

Detector Time per frame Time per keypoint Number Nk

SIFT 254.1 0.55 726
SURF 401.3 0.40 1,313
ORB 9.6 0.02 500

Mean values for 90 randomly selected input frames

Third column: numbers of keypoints for the frame used for
generating the transformed images
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Summary

SIFT is performing well (compared to SURF and ORB) for
rotation, scaling, and brightness variation, but not for blurring

All results are far from the ideal case of invariance

If there is only a minor degree of brightness variation or blurring,
then invariance can be assumed

Rotation or scaling leads already to significant drops in
repeatability for small angles of rotation, or minor scale changes

There was no significant run-time difference between SIFT and
SURF

There was a very significant drop in computation time for ORB,
which appears (judging from this comparison) as a fast and
reasonably competitive feature detector
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Example
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Caption

Top: Tracked feature points in a frame of a stereo video sequence
recorded in a car

Middle: Tracked feature points are used for calculating the motion
of the car; this allows to map 3D points provided by stereo vision
into a uniform 3D world coordinate system

Bottom: Stereo matcher iSGM has been used for the shown
example (example of a disparity map for the recorded sequence).
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Example of an Application Scenario

A car, which is called the ego-vehicle because it is the reference
vehicle where the considered system is working in, in distinction to
“other” vehicles in a scene

This ego-vehicle is equipped with a stereo vision system and it
drives through a street, providing reconstructed 3D clouds of
points for each stereo frame at time t

After understanding the motion of the ego-vehicle, these 3D clouds
of points can be mapped into a uniform 3D world coordinate
system supporting 3D surface modeling of the road sides

For understanding the motion of the ego-vehicle, we track detected
features from Frame t to Frame t + 1, being the input for a
program calculating the ego-motion of the car

61 / 85



Feature Keypoints Correspondence Examples of Features Evaluation Tracking

Tracking is a Sparse Correspondence Problem

Binocular stereo
Point or feature correspondence is calculated between images taken
at the same time; the correspondence search is within an epipolar
line; thus, stereo matching is a 1D correspondence problem

Dense Motion (i.e. optic flow) Analysis
Point or feature correspondence is calculated between images
taken at subsequent time slots; movements of pixels not
constrained to be along one straight line; dense motion analysis is
a 2D correspondence problem

Feature Tracking
A sparse 2D correspondence problem
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Tracking and Updating of Features

Theoretically, its solution could also be used for solving stereo or
dense motion analysis

But there are different strategies for solving a dense or a sparse
correspondence problem

In sparse correspondence search we cannot utilize a smoothness
term, and need to focus more at first on achieving accuracy based
on the data term only

We can use global consistency of tracked feature point patterns for
stabilizing the result
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Tracking with Understanding 3D Changes

Pair of 3D points Pt = (Xt ,Yt ,Zt) and
Pt+1 = (Xt+1,Yt+1,Zt+1), projected at times t and t + 1 into
pt = (xt , yt , f ) and pt+1 = (xt+1, yt+1, f ), respectively, when
recording a video sequence

Z -ratio

ψZ =
Zt+1

Zt

We can derive X - and Y -ratios

ψX = Xt+1

Xt
= Zt+1

Zt
· xt+1

xt
= ψZ

xt+1

xt

ψY = Yt+1

Yt
= Zt+1

Zt
· yt+1

yt
= ψZ

yt+1

yt
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Update Equation

Xt+1

Yt+1

Zt+1

 =

ψX 0 0
0 ψY 0
0 0 ψZ

 ·
Xt

Yt

Zt


Knowing ψZ and ratios xt+1

xt
and yt+1

yt
allows us to update the

position of point Pt into Pt+1

Assuming that Pt and Pt+1 are positions of a 3D point P, from
time t to time t + 1, we only have to

1 decide on a technique to track points from t to t + 1

2 estimate ψZ
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Initial Position and Z -Ratios

If an initial position P0 of a tracked point P is known then we may
identify its 3D position at subsequent time slots

Without having an initial position, we only have a 3D direction Pt

to Pt+1, but not its 3D position

Stereo vision is the general solution for estimating Z -values or
(just) ratios ψZ

We can also estimate ψZ in a monocular sequence from
scale-space results

Now: how to track points from t to t + 1?
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Lucas-Kanade Tracker

Image I

y

x

Image J

y

x

t h

p p

Wp

Wp,a

Template or base window Wp in base image I compared with a
match window Wp,a in match image J
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Sketch

Shown case: dissimilarity vector a is a translation t and a scaling
of height h into a smaller height

Figure indicates that a disk of influence is contained in Wp

Pixel location p in J is the same as in I ; it defines the start of the
translation

Lucas-Kanade Tracker

Match template Wp, being a (2k + 1)× (2k + 1) window around
keypoint p = (x , y) in a base image I , with windows Wp,a in a
match image J

Method should be general enough to allow for translation, scaling,
rotation and so forth between base window Wp and match window
Wp,a in J

Vector a parametrizes the transform from p into a new center
pixel, and also the transformation of window W into a new shape
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Newton-Raphson Iteration

Task: Calculate a zero of a smooth unary function φ(x), for
x ∈ [a, b], provided that we have φ(a)φ(b) < 0

Inputs are the two reals a and b

We also have a way to calculate φ(x) and the derivative φ′(x) (e.g.
approximated by difference quotients), for any x ∈ [a, b]

Calculate a value c ∈ [a, b] as an approximate zero of φ:

1: Let c ∈ [a, b] be an initial guess for a zero.
2: while STOP CRITERION = false do
3: Replace c by c − φ(c)

φ′(c)
4: end while

Derivative φ′(c) is assumed to be non-zero; if φ has a derivative of
constant sign in [a, b] then there is just one zero in [a, b]
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Comments

Initial value of c can be specified by (say) a small number of
binary-search steps for reducing the run-time of the actual
Newton-Raphson iteration

A small ε > 0 is used for specifying the STOP CRITERION
“|φ(c)| ≤ ε”

Method converges in general only if c is “sufficiently close” to the
zero z

If φ′′(x) has a constant sign in [a, b], then we have the following: if
φ(b) has the same sign as φ′′(x) then initial value c = b gives
convergence to z , otherwise chose initial value c = a
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Figure

A smooth function φ(x) on an interval [a, b] with φ(a)φ(b) < 0

Assume that we start with c = x1

Tangent at (x1, φ(x1)) intersects x-axis at x2 and defined by

x2 = x1 −
φ(x1)

φ′(x1)

Have φ′(x1) 6= 0. Now continue with c = x2 and new tangent, etc.
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Convergence and Valleys

For initial value x1, sequence x2, x3, . . . converges to zero z

If start at c = x0 then the algorithm would fail

Note that φ′′(x) does not have a constant sign in [a, b]

We need to start in the “same valley” where z is located

We search for the zero in the direction of the (steepest) decent

If we do not start in the “same valley” then we cannot cross the
“hill” in between

Following the Newton-Raphson Iteration.

Lucas-Kanade tracker uses approximate gradients which are robust
against variations in intensities

For window matching, an error function E is defined based on an
LSE optimization criterion
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Translation

Simplest case: only a translation t = [t.x , t.y ]> such that
J(x + t.x + i , y + t.y + j) ≈ I (x + i , y + j), for all i , j , with
−k ≤ i , j ≤ k , defining relative locations in template Wp

Simplifying notation: assume that p = (x , y) = (0, 0), and we
use W or Wa instead of Wp or Wp,a, respectively

Case of translation-only: approximate a zero (i.e. a minimum) of
the error function

E (t) =
k∑

i=−k

k∑
j=−k

[J(t.x + i , t.y + j)− I (W (i , j))]2

where t = [t.x , t, y ]> and W (i , j) = (i , j)
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Goal for General Warps

Tracker not just for translations but for general warps defined by
an affine transform, with a vector a parametrizing the transform

Let J(Wa(q)) be the value at that point Wa(q) in J which results
from warping pixel location q = (i , j), with −k ≤ i , j ≤ k ,
according to parameter vector a

Warping will not map a pixel location onto a pixel location, thus
we also apply some kind of interpolation for defining J(Wa(q))

Translation with a = [t.x , t.y ]> : for q = (i , j) we have
Wa(q) = (t.x , t.y) + q and J(Wa(q)) = J(t.x + i , t.y + j)

General case: calculate dissimilarity vector a which minimizes error
function

E (a) =
∑
q

[J(Wa(q))− I (W (q))]2
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Iterative Steepest-Ascent Algorithm

Assume: we are at a parameter vector a = [a1, . . . , an]>

Similarly to mean-shift algorithm for image segmentation, calculate
(as partial step) shift ma = [m1, . . . ,mn]> which minimizes

E (a + ma) =
∑
q

[J(Wa+ma(q))− I (W (q))]2

Solving this LSE optimization problem:

Consider Taylor expansion (analog to deriving the Horn-Schunck
constraint) of J(Wa(q)) with respect to dissimilarity vector a and a
minor shift ma

J(Wa+ma(q)) = J(Wa(q)) + m>a · grad J · ∂Wa

∂a
+ e

Assume e = 0, thus linearity of values of image J in the
neighborhood of pixel location Wa(q)
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LSE Optimization Problem

Second term on the right-hand side is a scalar: product of shift
vector ma, derivative grad J of the outer function (i.e. the usual
image gradient), and the derivative of the inner function

Window function W defines a point with x- and y -coordinates;
derivative of W with respect to locations identified by a:

∂Wa

∂a
(q) =

[
∂Wa(q).x

∂x
∂Wa(q).x

∂y
∂Wa(q).y

∂x
∂Wa(q).y

∂y

]

This is the Jacobian matrix of the warp; minimization problem now:

∑
q

[
J(Wa(q)) + m>a · grad J · ∂Wa

∂a
− I (W (q))

]2
Follow standard LSE optimization for calculating optimum shift ma
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LSE Procedure

1 Calculate the derivative of this sum with respect to shift ma

2 Set this equal to zero
3 Obtain the equation (with 2× 1 zero-vector 0)

2
∑

q

[
grad J ∂Wa

∂a

]> [
J(Wa(q)) + m>a · grad J · ∂Wa

∂a − I (W (q))
]

= 0

2× 2 Hessian matrix

H =
∑
q

[
grad J

∂Wa

∂a

]> [
grad J

∂Wa

∂a

]
Solution defines optimum shift vector ma

m>a = H−1
∑
q

[
grad J

∂Wa

∂a

]>
[I (W (q))− J(Wa(q))]

from given parameter vector a to updated vector a + ma
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Analogy to the Newton-Raphson Iteration

1 Start with an initial dissimilarity vector a

2 New vectors a + ma are calculated in iterations

3 Follow the steepest ascent

Possible stop criteria

1 Error value or length of shift vector ma is below a given ε > 0

2 A predefined maximum of iterations
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Example: Translation Case

Only translation a with Wa(q) = [t.x + i , ty + j ]>, for q = (i , j)

Jacobian matrix

∂Wa

∂a
(q, a) =

[
∂Wa(q).x

∂x
∂Wa(q).x

∂y
∂Wa(q).y

∂x
∂Wa(q).y

∂y

]
=

[
1 0
0 1

]
Hessian matrix (approximated by products of first-order derivatives)

H =
∑
q

[
grad J

∂Wa

∂a

]> [
grad J

∂Wa

∂a

]
=
∑
q

 (∂J∂x )2 ∂J2

∂x∂y

∂J2

∂x∂y

(
∂J
∂y

)2


Steepest ascent

grad J · ∂Wa

∂a
= grad J

and
I (W (q))− J(Wa(q)) = I (W (q))− J(q + a)
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Altogether (for Translation)

m>a = H−1
∑
q

[
grad J

∂Wa

∂a

]>
[I (W (q))− J(Wa(q))]

=

∑
q

 (∂J∂x )2 ∂J2

∂x∂y

∂J2

∂x∂y

(
∂J
∂y

)2
−1∑

q

[grad J]> [I (W (q))− J(q + a)]

1 Approximate derivatives in image J around the current pixel
locations in window W

2 This defines the Hessian and the gradient vector

3 Then a sum of differences for identifying the shift vector ma
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Lucas-Kanade Algorithm

Given is an image I , its gradient image grad I , and a local
template W (i.e. a window) containing (e.g.) the disk of influence
of a keypoint

1: Let a be an initial guess for a dissimilarity vector
2: while STOP CRITERION = false do
3: For the given vector a, compute the optimum shift ma as

defined above
4: Let a = a + ma

5: end while
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Line 3

Line 3 in the algorithm requires calculations for all pixels q defined
by template W ; basically the main steps:

1 Warp W in I into Wa(q) in J

2 Calculate the Jacobian matrix and its product with grad J

3 Compute the Hessian matrix

The algorithm performs magnitudes faster than an exhaustive
search algorithm for an optimized vector a

Program for Lucas-Kanade algorithm available in OpenCV
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Dents and Hills

Assume that error values are defined on the plane, and for different
values of a they describe a “hilly terrain”, with local minima,
possibly a uniquely defined global minimum, local maxima, and
possibly a uniquely defined global maximum

Blue point “cannot climb” to global maximum; red point is already
at local maximum; yellow dot can iterate to global peak
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Drift

There is also the possibility of a drift

The individual local calculation can be accurate, but the
composition of several local moves may result in significant errors
after some time, mainly due to the discrete nature of the data
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Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.

R. Klette. Concise Computer Vision.
c©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that’s fine.
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