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Where We Stopped Last Time

LSE optimisation problem defined by those two error terms

Edata(f ) =
∑

Ω

[ u · Ix + v · Iy + It ]2

Esmooth(f ) =
∑

Ω

( ux+1,y − uxy )2 + (ux ,y+1 − uxy )2

+ (vx+1,y − vxy )2 + (vx ,y+1 − vxy )2

Calculate labeling function f which minimizes

Etotal(f ) = Edata(f ) + λ · Esmooth(f )
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Least-Square Error Optimization

Least-square error (LSE) optimization follows a standard scheme:

1 Define an error or energy function.

2 Calculate derivatives of this function with respect to all the
unknown parameters.

3 Set derivatives equal to zero and solve this equational system
with respect to the unknowns. The result defines a minimum
of the error function.
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Agenda

1 Horn-Schunck Algorithm

2 Used Initializations and Approximations

3 Two Examples

4 Gradient Flow

5 Lucas-Kanade Algorithm
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Derivatives

We exclude t from the following formulas; we simply use I (x , y)

∂Edata

∂uxy
(u, v) = 2 [Ix (x , y) uxy + Iy (x , y) vxy + It (x , y)] Ix (x , y)

∂Edata

∂vxy
(u, v) = 2 [Ix (x , y) uxy + Iy (x , y) vxy + It (x , y)] Iy (x , y)

∂Esmooth

∂uxy
(u, v) = − 2 [(ux+1,y − uxy ) + (ux ,y+1 − uxy )]

+ 2 [(uxy − ux−1,y ) + (uxy − ux ,y−1)]

= 2 [(uxy − ux+1,y ) + (uxy − ux ,y+1)

+ (uxy − ux−1,y ) + (uxy − ux ,y−1)]
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Simplifications

1
4 ·
∂Esmooth

∂uxy
(u, v) = 2

[
uxy −

[
1
4 (ui+1,j + ux ,y+1 + ui−1,j + ux ,y−1)

]]
Let ūxy be the mean value of 4-adjacent pixels

1
4

∂Esmooth

∂uxy
(u, v) = 2 [uxy − ūxy ]

1
4

∂Esmooth

∂vxy
(u, v) = 2 [vxy − v̄xy ]

Use λ instead of λ/4
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Equational System

Setting derivatives equal to zero:

0 = λ [uxy − ūxy ]

+ [Ix (x , y) uxy + Iy (x , y) vxy + It (x , y)] Ix (x , y)

0 = λ [vxy − v̄xy ]

+ [Ix (x , y) uxy + Iy (x , y) vxy + It (x , y)] Iy (x , y)

A linear equational system for 2NcolsNrows unknowns uxy and vxy

7 / 40



Horn-Schunck Used Conventions Examples Gradient Flow Lucas-Kanade

Iterative Solution Scheme

An example of a Jacobi method, starting with some initial values:

1 Initialization step: Values u0
xy and v0

xy

2 Iteration Step 0: Calculate means ū0
xy and v̄0

xy and values u1
xy

and v1
xy

3 Iteration Step n: Use values unxy and vnxy to compute means
ūnxy and v̄nxy ; use those to calculate values un+1

xy and vn+1
xy

Proceed for n ≥ 1 until a stop criterion is satisfied
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Solution

The solution is as follows:

un+1
xy = ūnxy − Ix(x , y) ·

Ix(x , y)ūnxy + Iy (x , y)v̄nxy + It(x , y)

λ2 + I 2
x (x , y) + I 2

y (x , y)

vn+1
xy = v̄nxy − Iy (x , y) ·

Ix(x , y)ūnxy + Iy (x , y)v̄nxy + It(x , y)

λ2 + I 2
x (x , y) + I 2

y (x , y)
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Pseudocode Horn-Schunck 1

Use “odd” and “even” arrays for u- and v -values

1: for y = 1 to Nrows do
2: for x = 1 to Ncols do
3: Compute Ix(x , y), Iy (x , y), and It(x , y) ;
4: Initialize u(x , y) and v(x , y) (in even arrays);
5: end for
6: end for

ū and v̄ denote means at 4-adjacent pixels

α(x , y , n) =
Ix (x , y) ūnxy + Iy (x , y) v̄nxy + It (x , y)

λ2 + I 2
x (x , y) + I 2

y (x , y)
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Pseudocode Horn-Schunck 2

Threshold T is the maximum number of iterations (e.g. T = 7)

1: Select weight factor λ; select T > 1; set n = 1;
2: while n ≤ T do
3: for y = 1 to Nrows do
4: for x = 1 to Ncols {in alternation for even or odd arrays}

do
5: Compute α(x , y , n);
6: Compute u(x , y) = ū − α(x , y , n) · Ix (x , y , t) ;
7: Compute v(x , y) = v̄ − α(x , y , n) · Iy (x , y , t) ;
8: end for
9: end for

10: n := n + 1;
11: end while
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Agenda

1 Horn-Schunck Algorithm

2 Used Initializations and Approximations

3 Two Examples

4 Gradient Flow

5 Lucas-Kanade Algorithm
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Possible Initializations

1. Initialization with value 0 at all positions of uxy and vxy

Suggested for the original Horn-Schunck algorithm

We have non-zero values u1
xy and v1

xy if Ix(x , y) · It(x , y) 6= 0 and
Iy (x , y) · It(x , y) 6= 0

2. Initialization with point Q on straight line in uv -space, at all
positions of uxy and vxy
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Approximations for Ix , Iy , and It

Ix (x , y , t) = 1
4

[
I (x + 1, y , t) + I (x + 1, y , t + 1)
+I (x + 1, y + 1, t) + I (x + 1, y + 1, t + 1)

]
−1

4

[
I (x , y , t) + I (x , y , t + 1)
+I (x , y + 1, t) + I (x , y + 1, t + 1)

]

Iy (x , y , t) = 1
4

[
I (x , y + 1, t) + I (x , y + 1, t + 1)
+I (x + 1, y + 1, t) + I (x + 1, y + 1, t + 1)

]
−1

4

[
I (x , y , t) + I (x , y , t + 1)
+I (x + 1, y , t) + I (x + 1, y , t + 1)

]

It (x , y , t) = 1
4

[
I (x , y , t + 1) + I (x , y + 1, t + 1)
+I (x + 1, y , t + 1) + I (x + 1, y + 1, t + 1)

]
−1

4

[
I (x , y , t) + I (x , y + 1, t)
+I (x + 1, y , t) + I (x + 1, y + 1, t)

]
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Masks for Approximations for Ix , Iy , and It
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As in original Horn-Schunck algorithm; many more options
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Pyramidal Horn-Schunck Algorithm

Use a regular image pyramid for input frames I (., ., t)

Processing starts at a selected level (of lower resolution)

Obtained results are used for initializing optic flow values at a
lower level (of higher resolution)

Repeat until full resolution level of original frames is reached
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1 Horn-Schunck Algorithm
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4 Gradient Flow

5 Lucas-Kanade Algorithm
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Test Data for Comparative Performance Analysis in 1983

Two subsequent frames of the “Hamburg taxi sequence” (6 frames
in total), published in 1983
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Visualization of Results in 1995

Use of color key or shown as a needle map
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Test Data for Comparative Performance Analysis in 2007

Two subsequent frames of the first sequence (100 frames long) of
Set 2 of EISATS, published online in 2007; synthetic data provide
ground truth of exact local displacements
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Visualization of Results in 2008

Ground truth and result of a pyramidal Horn-Schunck algorithm
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Ground Truth

Images recorded in an airplane were and are often used to estimate
distances on the ground, or even for 3D reconstruction of whole
landscapes or cities.

For evaluating results it was common practice to identify
landmarks on the ground, such as corners of buildings, and to
measure distances or positions of those landmarks.

This was the ground truth, to be compared with the values
calculated based on the images recorded in an airplane.

The term is now in general use for denoting measured data,
considered to be fairly accurate, thus useful for evaluating
algorithms supposed to provide the same data.
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Optic-Flow Line

We identify point Q on the optic-flow line in uv -space

It = u · Ix + v · Iy intersects axes at (−It/Ix , 0) and (0,−It/Iy )

Vector on this line: [−It/Ix , 0]> − [0,−It/Iy ]> = [−It/Ix , It/Iy ]>
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Orthogonal Vector a

Vector a = [ax , ay ]> from O to Q is orthogonal to this line:

a · [−It/Ix , It/Iy ]> = 0

Thus
ax · (−It/Ix) + ay · (It/Iy ) = 0

and
It(ax · Iy ) = It(ay · Ix)

Assuming It 6= 0 at considered p = (x , y), we have ax Iy = ay Ix or

a = c · g◦

for some c 6= 0, where g◦ denotes the unit vector of g = [Ix , Iy ]>
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Point Q Identifies Gradient Flow

Thus: vector a is a multiple of the gradient g

In other words: Point Q identifies gradient flow
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Unit Vector

Vector a = [a1, a2, . . . , an]>

Magnitude of the vector equals ||a||2 =
√
a2

1 + a2
2 + . . .+ a2

n

Unit vector
a◦ =

a

||a||2
is of magnitude 1 and specifies the direction of vector a

Product a◦ · a◦ = ||a◦||2 · ||a◦||2 · cos 0 = 1

27 / 40



Horn-Schunck Used Conventions Examples Gradient Flow Lucas-Kanade

What Constant c?

Vector a = c · g◦ satisfies the optic flow equation u · g = −It

c · g◦ · g = c · ||g||2 = −It

Thus we have c and altogether

a = − It
||g||2

g◦

as vector representation of point Q

We can use point Q (i.e. gradient flow) for initializing the u and v
arrays prior to the iteration
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Lucas-Kanade Algorithm

Optic flow equation specifies line u · Ix + v · Iy + It = 0 for p ∈ Ω
Consider straight lines defined by pixels in a neighborhood
Assume: not parallel, defined by about the same motion
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Method of Linear Least Squares

This method is applied in cases of overdetermined equational
systems.

The task is to find a solution which minimizes the sum of squared
errors (called residuals) caused by this solution, for each of the
equations.

For example, we only have n unknowns, but m > n linear equations
for those; in this case we use a linear least-squares method.
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Simple Case: Two Lines

Pixel locations p1 and adjacent p2

Assume that 2D motion u is identical at p1 and p2

But different unit gradients g◦1 = (gx1, gy1)> and g◦2 = (gx2, gy2)>

Optic flow equation u> · g◦ = − It
||g||2 at both pixels:

u> · g◦1(p1) = − It
||g||2

(p1)

u> · g◦2(p2) = − It
||g||2

(p2)

Using bi on the right-hand side:

ugx1 + vgy1 = b1

ugx2 + vgy2 = b2
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Matrix Form

[
gx1 gy1

gx2 gy2

] [
u
v

]
=

[
b1

b2

]
Solvable if matrix on the left is invertible (i.e., non-singular):[

u
v

]
=

[
gx1 gy1

gx2 gy2

]−1

·
[
b1

b2

]
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More Pixels in a Neighborhood

There are errors involved when estimating Ix , Iy , and It
Image data are noisy anyway

gx1 gy1

gx2 gy2
...

...
gxk gyk


[
u
v

]
=


b1

b2
...
bk


Write as

G︸︷︷︸
k×2

u︸︷︷︸
2×1

= B︸︷︷︸
k×1

Solve for k ≥ 2 in the least-square error sense:

G>Gu = G>B

u = (G>G)−1G>B

Done. G>G is a 2× 2 matrix while G>B is a 2× 1 matrix
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Example

Let

G>G =

[
a b
c d

]
then

(G>G)
−1

=
1

ad − bc

[
d −b
−c a

]

The rest is simple matrix multiplication
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Lucas-Kanade Algorithm

1 Decide for local neighborhood of k pixels and apply uniformly
in frames

2 At frame t, estimate Ix , Iy and It

3 For each p in Frame t, obtain the equational system and solve
it in the least-squares sense

Possibly smooth frames first, e.g. with Gaussian filter with a small
standard deviation such as σ = 1.5
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Weights for Contributing Pixels

Weight all the k contributing pixels by positive weights wi

Current pixel has the maximum weight

W = diag[w1, ..., wk ] a k × k diagonal matrix of weights

W>W = WW = W2

Task: solve the equation

WGu = WB

(WG)>WGu = (WG)>WB

G>W>WGu = G>W>WB

G>WWGu = G>WWB

G>W2Gu = G>W2B
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Solution with Weights

u = [G>W2G]−1G>W2B

We only accept solutions for cases where eigenvalues of matrix
G>G (unweighted case) or G>W2G (weighted case) are greater
than a chosen threshold, for filtering out “noisy” results
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Example

Optic flow calculated with original Lucas-Kanade algorithm;
k = 25 for a 5× 5 neighborhood
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Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.

R. Klette. Concise Computer Vision.
c©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that’s fine.
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