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Frames in a Video Sequence

Sequence of images or video frames

Time difference δt between two subsequent frames

Example: δt = 1/30 s means

30 Hz (read: “hertz”) or 30 fps (read: “frames per second”)

I (., ., t) is the frame at time t with values I (x , y , t)
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3 The Horn-Schunck Algorithm

4 Optic Flow Constraint
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Projected Motion

P = (X ,Y ,Z ) projected at t · δt into p = (x , y) in I (., ., t)

Camera: focal length f , projection centre O, looks along optic axis

Ideal model defines central projection into xy image plane

Projection of motion v · δt into displacement d in the image plane
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2D Motion

Assumptions: motion of P between t · δt and (t + 1) · δt

1 linear

2 with constant speed

Local displacement:
Projection d = (ξ, ψ)> of this 3D motion

Visible displacement:
The optic flow u = [u, v ]> from p = (x , y) to p = (x + u, y + v)

Often: optic flow not identical to local displacement
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2D Motion 6= Optic Flow

Rotating barber’s pole: sketch of 2D motion (without scaling
vectors) and sketch of optic flow, an optical illusion

Lambertian sphere: rotation but not visible

Moving light source: “textured” static object and a moving light
source (e.g., the sun) generate optic flow
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Vector Fields

Rotating rectangle: around a fixpoint, parallel to the image plane:

Motion maps: vectors start at time t and end at time t + 1

To be visualized by using a color key

Dense if vectors at (nearly) all pixel locations; otherwise sparse

Difficult to infer the shape of a polyhedron from a motion map
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Color Key

Colors represent direction of vector (start at the center of the disk)

Saturation represents magnitude of the vector, with White for “no
motion”
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Example 1 for Horn-Schunck-Algorithm

Subsequent frames taken at 25 fps

Color-coded motion field calculated with basic Horn-Schunck
algorithm

Sparse (magnified) vectors are redundant information
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Example 2 for Horn-Schunck-Algorithm

Two frames of video sequence

Color-coded motion field calculated with basic Horn-Schunck
algorithm
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Aperture Defined by Available Window

Sitting in a waiting train and assuming to move because the train
on the next track started to move

A program only “sees” both circular windows at time t (left) and
time t + 1 (right); it concludes an upward shift and misses the shift
diagonally towards the upper right corner
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Camera Aperture

Visible motion defined by the aperture of the camera

Images taken at times t, t + 1, and t + 2

Inner rectangles: we conclude an upward translation with minor
rotation

Three images: indicate a motion of this car to the left

Ground truth: car is actually driving around a roundabout
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Gradient Flow

Due to aperture problem: local optic flow detects gradient flow

2D gradient ∇x ,y I = (Ix(x , y , t), Iy (x , y , t))>

Ix and Iy are partial derivatives of I (., ., t) w.r.t. x and y

True 2D motion d: diagonally up
Identified motion: projection of d onto gradient vector

14 / 32



Local Displacement Aperture Problem Horn-Schunck Optic Flow Constraint Optimization Problem

Agenda

1 Local Displacement vs Optic Flow

2 Aperture Problem and Gradient Flow

3 The Horn-Schunck Algorithm

4 Optic Flow Constraint

5 Optimization Problem

15 / 32



Local Displacement Aperture Problem Horn-Schunck Optic Flow Constraint Optimization Problem

Origin of the Algorithm

The algorithm was published in

B.K.P. Horn and B.G. Schunck. Determining optic flow. Artificial
Intelligence, vol 17, pp. 185–203, 1981

as a pioneering work for estimating optic flow.

We discuss this algorithm in detail
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Taylor expansion

Difference quotient

φ(x)− φ(x0)

x − x0
=
φ(x0 + δx)− φ(x0)

δx

of function φ converges into differential quotient

dφ (x0)

dx

for δx → 0. First-order Taylor expansion:

φ (x0 + δx) = φ (x0) + δx · dφ (x0)

dx
+ e

where error e equals zero if φ is linear in [x0, x0 + δx ]
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Taylor expansion for 1D Case

General 1D Taylor expansion:

φ (x0 + δx) =
∑

i=0,1,2,...

1

i !
· δx i · d

iφ (x0)

dix

with 0! = 1, i ! = 1 ·2 ·3 · . . . · i for i ≥ 1, and di is the ith derivative
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3D Taylor Expansion

In our case of the frame sequence:

I (x + δx , y + δy , t + δt)

= I (x , y , t) + δx · ∂I∂x (x , y , t) + δy · ∂I∂y (x , y , t)

+ δt · ∂I∂t (x , y , t) + e

Assumption 1.
Let e = 0, i.e. function I (., ., .) behaves like linear for small values
of δx , δy , and δt
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Simplifications

Assumption 2.
δx and δy model the motion of one pixel between t and t + 1

Assumption 3.
Intensity constancy assumption (ICA)

I (x + δx , y + δy , t + δt) = I (x , y , t)

Results into

0 = δx · ∂I

∂x
(x , y , t) + δy · ∂I

∂y
(x , y , t) + δt · ∂I

∂t
(x , y , t)

Optic Flow Equation:

0 =
δx

δt
· ∂I

∂x
(x , y , t) +

δy

δt
· ∂I

∂y
(x , y , t) +

∂I

∂t
(x , y , t)
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Horn-Schunck Constraint

Take changes in x- and y -coordinate during δt as optic flow
u(x , y , t) = (u(x , y , t), v(x , y , t))>

Horn-Schunck Constraint or Optic Flow Equation:

0 = u (x , y , t) · ∂I

∂x
(x , y , t) + v (x , y , t) · ∂I

∂y
(x , y , t) +

∂I

∂t
(x , y , t)

Short form:

0 = uIx + vIy + It
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The uv Velocity Space

Straight line
−It = u · Ix + v · Iy = u · ∇x ,y I

in uv velocity space, with optic flow vector u = [u, v ]>
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Inner or Dot Vector Product

Vectors a = (a1, a2, . . . , an)> and b = (b1, b2, . . . , bn)>

Dot Product or Inner Product:

a · b = a1b1 + a2b2 + . . .+ anbn

a · b = ||a||2 · ||b||2 · cosα

||a||2 =
√

a2
1 + a2

2 + . . .+ a2
n

α: angle between both vectors, 0 ≤ α < π
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What We Have So Far

Ix , Iy and It are estimated in given frames

(u, v) for pixel (x , y , t) is a point on the given straight line

But: where on this straight line?
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Labeling Model and First Labeling Constraint

Labeling Model:

Labeling function f assigns label (u, v) to all p ∈ Ω in I (., ., t)

Possible set of vectors (u, v) ∈ R2 defines the set of labels

First Constraint for Labeling f :

data error or data energy

Edata(f ) =
∑

Ω

[ u · Ix + v · Iy + It ]2

needs to be minimized, with u · Ix + v · Iy + It = 0 in the ideal case
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Second Labeling Constraint

One option: motion constancy within pixel neighborhoods at time t

Smoothness Constraint, defined for

smoothness error or smoothness energy

Esmooth(f ) =
∑

Ω

u2
x + u2

y + v 2
x + v 2

y

where ux is the 1st order derivative of u with respect to x , and so
forth.
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The Optimization Problem

Calculate labeling function f which minimizes

Etotal(f ) = Edata(f ) + λ · Esmooth(f )

where λ > 0 is a weight

Example: λ = 0.1

Total Variation (TV):
Search for an optimum f in the set of al possible labelings

Error terms apply L2-penalties, thus a TV-L2 optimization problem
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Least-Square Error Optimization

Least-square error (LSE) optimization follows a standard scheme:

1 Define an error or energy function.

2 Calculate derivatives of this function with respect to all the
unknown parameters.

3 Set derivatives equal to zero and solve this equational system
with respect to the unknowns. The result defines a minimum
of the error function.
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Task: LSE for Error Function Defined by Both Constraints

We assume that all pixels have all their four 4-adjacent pixels also
in the image.

Edata(f ) =
∑

Ω

[ u · Ix + v · Iy + It ]2

Esmooth(f ) =
∑

Ω

( ux+1,y − uxy )2 + (ux ,y+1 − uxy )2

+ (vx+1,y − vxy )2 + (vx ,y+1 − vxy )2

Now we have all prepared for solving the LSE problem
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Copyright Information

This slide show was prepared by Reinhard Klette
with kind permission from Springer Science+Business Media B.V.

The slide show can be used freely for presentations.
However, all the material is copyrighted.

R. Klette. Concise Computer Vision.
c©Springer-Verlag, London, 2014.

In case of citation: just cite the book, that’s fine.
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