
Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

Surface Model

The frontier of a 1- or 0-region of voxels splits in general into
frontiers of a finite number of 2-regions; we will consider only
2-regions here. (In terms of the grid cell model, we only
consider 6-regions rather than 18- or 26-regions.)

The frontier of a 2-region of voxels consists of 2-cells (faces),
1-cells (edges), and 0-cells (vertices). Each frontier edge is
incident with at least two frontier faces. Note that it is also
possible that one frontier edge is incident with four frontier

faces, or one frontier vertex with six frontier edges. The shown
example is a 2-region.

Page 1 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

Frontier Graph

Consider the frontier faces to be the nodes of an undirected
graph [F,A] (we call it frontier graph assuming a frontier of a
2-region) which are connected by an edge iff the frontier faces
share a frontier edge.

In this figure, only those nodes are shown where midpoints of
frontier faces are visible, and only those edges where both
endnodes are shown.

Theorem 1 (K. Voss, 1993) All nodes in a frontier graph [F,A] are
of degree 4.

Page 2 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

Faces of Frontier Graphs

We assume local cyclic orders for this graph, defined by
clockwise orientations (looking from the outside onto the
frontier of the 2-region).

A frontier graph of a simply-connected 2-region is planar, and
its cycles are of length 3, 4, 5, or 6.

These are all possible angles of a frontier of a 2-region.

Cycles in the frontier graph, which are not ‘around’ one angle,
are always of length 4.

Conclusion: we have uniformity of the degree of nodes (i.e.,
always four edges for each face), but not uniformity of cycle
length.

Page 3 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

FILL Algorithm

The FILL procedure discussed in Lecture 03, can also be applied
to visit all nodes (i.e., all frontier faces) of a frontier graph.

For each voxel (x, y, z) we consider a 6-tuple representing its six
faces (in a fixed order, such as top face first (which is in the
plane Z = z + 0.5), then the one in the plane X = x− 0.5, then
the one in the plane Y = y + 0.5, then the one in the plane
X = x + 0.5, then the one in the plane Y = y − 0.5, and finally
the bottom face (which is in the plane Z = z − 0.5). The
algorithm is as follows:

(1) We start at one frontier face f of one voxel p with a new label
L (e.g., write this label into the position of this face at voxel p)
and put f into a stack.

(2) If the stack is empty, then stop.

(3) Pop f out of the stack, label with L all frontier faces that are
edge-adjacent to f and have not yet been labeled, and put these
frontier faces into the stack.

(4) Go to Step (3).

This algorithm does not attempt to minimize the number of
accesses to frontier faces to determine whether they have
already been labeled; each frontier face will be accessed four
times, including the first visit, when the face is labeled.

Page 4 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

In Lecture 25 we discussed that a frontier graph can be visited
in form of a Hamilton path if the 2-region is a simple arc or
curve. However, this is not possible anymore for the general
case of arbitrary 2-regions.

The following algorithm requires at most two visits to each
face, including the first visit.

Artzy-Herman Algorithm (1981)

We consider three circuits in the frontier graph that represents
the faces of a single 3-cell.

There are three circuits, each of which is parallel to one of the
coordinate planes. Each face has two outgoing and two incoming
edges defined by the orientation of these circuits.

Page 5 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

We assume a closed 2-region M of voxels in the 3D grid.

Let [F,A] be the frontier graph in which each node represents a
frontier face of M .

Two nodes f1 and f2 are adjacent in this graph (we write f1Af2)
iff the corresponding faces are 1-adjacent.

Each f ∈ F is incident with one 3-cell I(f) in M and with one
3-cell O(f) in M .

f1Af2 iff

(1) O(f1) = O(f2) (so that I(f1) and I(f2) are 1-adjacent) or

(2) O(f1) and O(f2) are 2-adjacent (so that I(f1) and I(f2) are
also 2-adjacent) or

(3) O(f1) and O(f2) are both 2-adjacent to the same 3-cell in M

(i.e., I(f1) = I(f2)).

Assume that the figure on the previous pages illustrates a voxel
I(f). If we start at any face f in the frontier of M , the two
outgoing edges of f on I(f) point to two frontier faces called
the out-faces of f , and the two incoming edges are outgoing
edges of two in-faces of f .

Page 6 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

The Artzy-Herman algorithm for tracing all faces of a 3D
frontier:

1. Create a list F of faces and push f0 into F ; create a queue Q

of faces, and push f0 into Q; create a list L of labeled faces,
and push f0 twice into L.

2. While the queue Q is not empty:

(a) pop face f out of Q (and delete it from Q),

(b) for both out-faces g of f , do the following:
i. if g is on L, delete it from L,

ii. otherwise, push g into F , push g into Q, and push g into
L.

This frontier tracing algorithm makes use of the directed graph
structure of the shown circuits.

We accumulate all of the frontier faces of M in the list F . The
queue Q implies a breadth-first access order; using a stack
instead implies a depth-first access order.

We can return to a face at most twice; the second copy of f0 on L

is removed when we enter Step 2.b.i for the first time.

Page 7 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

Example

Assume we only have one voxel in M , and consider the figure
on page 5. We have six frontier faces: t (top), l (left), r (right), c

(close), d (distant), and b (bottom). We start with face t.

Initialization: In Step 1 we create list F = [t], queue Q = [t], and
list L = [t, t].

Loop

In Step 2.a we pop out f = t and have Q = ∅.

In Step 2.b we identify l and d as being the out-faces of f = t.

First visit of l: Face l is not on L, we cannot delete it there; so
we obtain F = [l, t], Q = [l], and L = [l, t, t].

First visit of d: Face d is not on L; we obtain F = [d, l, t],
Q = [d, l], and L = [d, l, t, t].

Page 8 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

Loop

In Step 2.a we pop out f = d and have Q = [l].

In Step 2.b we identify l and b as out-faces of f = d.

Second visit of l: Face l is on L; we delete it there and have
L = [d, t, t].

First visit of b: Face b is not on L; we obtain F = [b, d, l, t],
Q = [b, l], and L = [b, d, t, t].

Loop

In Step 2.a we pop out f = b and have Q = [l].

In Step 2.b we identify c and r as out-faces of f = b.

First visit of c: Face c is not on L; we obtain F = [c, b, d, l, t],
Q = [c, l], and L = [c, b, d, t, t].

First visit of r: Face r is not on L; we obtain F = [r, c, b, d, l, t],
Q = [r, c, l], and L = [r, c, b, d, t, t].

Loop

In Step 2.a we pop out f = r and have Q = [c, l].

In Step 2.b we identify d and t as out-faces of f = r.

Second visit of d: Face d is on L; we delete it there and have
L = [r, c, b, t, t].

First visit of t: Face t is on L; we delete it there and have
L = [r, c, b, t].

Page 9 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

Loop

In Step 2.a we pop out f = c and have Q = [l].

In Step 2.b we identify t and r as out-faces of f = c.

Second visit of t: Face t is on L; we delete it there and have
L = [r, c, b].

Second visit of r: Face r is on L; we delete it there and have
L = [c, b].

Loop

In Step 2.a we pop out f = l and have Q = ∅.

In Step 2.b we identify b and c as out-faces of f = l.

Second visit of b: Face b is on L; we delete it there and have
L = [c].

Second visit of c: Face c is on L; we delete it there and have
L = ∅.

Final Result

We stop here and have F = [r, c, b, d, l, t] — all the faces of the
frontier.

Page 10 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

Efficiency and Time Complexity

It is sufficient to represent only three faces for each voxel: faces
in planes X = x + 0.5, Y = y + 0.5, and Z = z + 0.5.

It is possible to implement list L in a way such that deletion and
insertion only takes a constant time (based on coordinates and
labeling of faces of voxels).

It is also possible to identify both out-faces of a given frontier
face in constant time (based on coordinates and membership of
voxels in the given 2-region).

Thus, if n is the number of frontier faces, the algorithm runs in
O(n) time, visiting each frontier face twice.

Page 11 March 2005



Algorithms
for Picture Analysis Lecture 26: 3D Frontier Tracing

Coursework

Related material in textbook: Section 8.4.1.

A.26. [6 marks] Implement a frontier tracing algorithm (either
the non-optimized FILL algorithm, or the Artzy-Herman
algorithm).

As input pictures, generate digitized spheres and cubes (Gauss
digitization) at some grid resolution (say, at least 64× 64× 64).

Visualize the traced frontiers. (Hint: you may use standard 3D
visualization software for this.) For example, you should be
able to generate a picture as follows:

Page 12 March 2005


