
Algorithms
for Picture Analysis Lecture 25: 3D Components

Paths in 3D Pictures

A 2-path in the grid cell model (left) that corresponds with a
6-path in the grid point model (right).

A 2-path of 3-cells (left), a 1-path of 2-cells (middle), and a
0-path of 1-cells (right) in the 3D incidence grid (see page 1 in
Lecture 13).
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3D: Regions and Components

We recall important basic concepts from Lectures 01, 10, 13, and
14 on 3D pictures. A 3D picture is defined in an l ×m× n grid
Gl,m,n, which is embedded into the infinite 3D grid Z3. Assume
the grid cell model:

This is a set of voxels; it consists of one 0-component, two
1-components, and three 2-components.

An α-region is a finite α-component. The set in the figure above
is a 0-region (or a 26-region, if considered in the grid point
model). Note: an assumed infinite α-background of a picture is
not a region, but a component.

The FILL algorithm of Lecture 03 can also be applied for
labeling components in 3D pictures.
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3D: Borders and Boundaries

Let M be a set of voxels.

p ∈ M is an α-inner voxel of M iff Aα ⊆ M .

p ∈ M is an α-border voxel of M iff p is not an α-inner voxel of M .

The set on the previous page only contains border
voxels (for any α).

p ∈ M is an α-coborder voxel iff Aα(p) ∩M 6= ∅.

Assuming the grid point model, the α-boundary is the set of all
invalid α-edges.

Example: Assume a 10× 10× 10 cube of voxels. Independent of
α, it has 8× 8× 8 inner voxels.

Example: Now assume a digital sphere (say, Gauss digitization
in a grid of resolution 1/h). For reasonably large h, the family of
all 2-border voxels is a proper subset of the family of all
1-border voxels, and this is again a proper subset of the family
of all 0-border voxels. The set of all 0-border voxels forms a
2-region.
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Duality of Grid Point and Cell Model

(i) A 3-cell in the cell model corresponds to its center point,
which is a grid point in the grid point model. A 3-cell or a grid
point are two options for representing a voxel.

(ii) A 2-cell in the cell model, incident with two voxels p and q,
corresponds to the grid edge in the grid point model which
connects p and q.

It follows that the α-boundary corresponds to a set of 2-cells. In
fact, these are the 2-cells which define the frontier in the grid
cell topology.

Frontiers in the cell model have in general the benefit that
topological situations are easier to understand (compared to
boundaries in the grid point model).
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Marching Cubes

For example, the popular “marching cubes algorithms” which
construct triangulated surfaces with an intention that these are
“cutting” all invalid edges, have the basic problem that they do
not always lead to simple closed surfaces [i.e., topologically
equivalent to the surface of a sphere] even if the frontier of the
given set of voxels is such a simple closed surface.

Example of a look-up table:
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3D Frontiers

Virtual 0-, 1-, or 2-cells are used to define connectedness,
frontiers, and open or closed sets.

The frontier of a region M is formed by all those m-cells
(m = 0, 1, 2) which are both incident with a voxel (3-cell) in M ,
and with a voxel in M (i.e., which is not in M ).

Remember the grid cell topology (Lecture 13). The upper set is
neither closed nor open. In the bottom row, we have a closed
(on the left) and an open (on the right) set. The difference set
between closed and open set is the frontier, and it contains
2-cells, 1-cells, and 0-cells.
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Equivalence Theorems in 3D and nD

Theorem 1 For any 3D binary picture, the use of grid cell topology
can be replaced by the dual use of 6- and 26-adjacency such that the
resulting families of components of white or black voxels are identical
in both cases.

The first equivalence theorem in 2D, and this equivalence theorem in

3D can easily be generalized to nD, n ≥ 2, where we have the dual use

of 2n- and (3n − 1)-adjacency; see tutorials. For the generalization of

the concept of s-adjacency, from 2D to 3D, see the appendix of Lecture

10 (which allows to state an equivalence theorem similar to the second

equivalence theorem in 2D); s-adjacency can be generalized to nD by

considering space-filling truncated hypercubes, and (for representing

0-cells) regular polyhedra with 2n faces.

Grid cell topology and the Maximum-Value Rule (see page 4 in
Lecture 13) provide a way to implement “connected” and
“separated” as dual concepts for nD multilevel pictures (we
assume a total order of all voxel values):

a virtual m-cell c, with m < n, is labeled by the
maximum value of all voxels (i.e., n-cells) which are
incident with c.

Consider the union of all cells (e.g., for n = 3 use the geometric
representation as on page 3 in Lecture 13) having the same
label. This defines a partition of Rn into closed subsets which
pairwise intersect at frontier segments only.
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3D Frontier Grid

0-cells in the 3D picture grid

Gl,m,n

are mapped into voxels in the 3D frontier grid

Fl+1,m+1,n+1

(see page 4 in Lecture 14).

Whatever α we assume for a region in the 3D picture grid, its
cell representation in the 3D frontier grid will be 2-connected.

The 3D frontier grid is used as a “drawing board” for analyzing
individual regions, always just one at a time, and not for
representing several regions, or even the whole picture at one
moment.

Basically, at first the region under consideration is mapped into
F as being a closed set in the grid cell topology, with one voxel
for any 0-cell incident with a region’s voxel in G. However,
when analyzing these voxel sets in F we use the original picture
values for understanding local topological situations. (Note:
this remains basically the same as for the 2D grid, see Lecture
14).
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Local Circular Orders in 3D?

It is possible to introduce local circular orders ξ(p) at voxels p in
an adjacency graph [Z3, Aα].

For example, consider α = 6. We take first all four 6-adjacent
voxels in the same layer (defined by a constant z-coordinate) in
clockwise order, then the one on top, and finally the one below.

We start with one step from below to the voxel above.
According to the clockwise order in the layer of the voxel, we
pass now through an elementary 4-cycle in that layer, which we
leave to the pixel in the layer above. This results into an infinite
path (!).

The figure shows on the right one more example.
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Hamilton Path

A path that visits each node of a graph exactly once is called
Hamiltonian. For example, the infinite adjacency graphs [Z2, A4]
or [Z3, A6] both have a Hamiltonian path (as considered by G.
Cantor in the 19th century).

A graph that has a Hamiltonian circuit is called a Hamiltonian
graph. Of course, the graph needs to be finite in this case.

The 2-cells of the frontier of a simple 2-arc of 3-cells have a
Hamiltonian path with respect to 1-adjacency.
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The Need for a 3D Concept

Adjacency graphs [Z3, Aα] (α = 6, 18, 26) do not allow to
introduce a local circular order such that directed edges always
initiate a (finite) cycle.

In short: in case of 3D pictures we cannot apply the concept of
local circular orders.

A cycle through all 2-cells of a frontier would define a
Hamiltonian path in the 1-adjacency graph of all 2-cells of a
frontier. However, such a path does not exist in general.

(Open problem; Can we generalize the statement above, for
example in the following way: In general we have that any
adjacency graph [Z3, A], which cannot be embedded into an
adjacency graph [Z2, B] (e.g., as possible if A just defines one
infinite path [a “Cantor scan”] through all voxels in Z3), does
not allow to introduce a local circular order such that directed
edges always initiate a [finite] cycle.)
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Coursework

Related material in textbook: Sections 2.2.1 and 4.2.1.

A.25. [6 marks] Assume that we know that our input is a simple
2-arc of 3-cells, given by one of its two endvoxels p1 and a
sequence of voxels p2, p3, . . ., pm such that pi+1 is 2-adjacent to
pi, for i = 1, . . . ,m− 1. (The arc is simple iff any of the voxels
p2,...,pm−1 is only 2-adjacent to exactly two other voxels in the
arc, and any of the two endvoxels pi and pm is only 2-adjacent
to exactly one other voxel in the arc.)

Write a program which calculates a Hamiltonian path of all
2-cells (with respect to 1-adjacency of these 2-cells) of the
frontier of an arbitrary simple 2-arc of 3-cells. In your
accompanying text:

(i) Start with discussing a single 3-cell, which is a simple 2-arc of
(graph-theoretical) length 1.

(ii) Explain your representation of 2-cells in Z3.

(iii) Specify your choice of directional steps at “corner voxels” of
a 2-arc.
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