
Algorithms
for Picture Analysis Lecture 19: The Length of a Digital Curve

Jordan Digitization

introduced by C. Jordan in the late 19th century for measuring
the contents of a set

Definition 1 Let S be a nonempty closed subset of R2. Let J−h (S) be
the union of all 2-cells (for grid resolution h > 0) that are completely
contained in the topological interior of S, and let J+

h (S) be the union
of all such 2-cells that have nonempty intersections with S. J−h (S) is
called the inner Jordan digitization of S and J+

h (S) the outer
Jordan digitization of S. For S ⊆ R3, we use 3-cells instead of
2-cells. For brevity, we denote J−1 and J+

1 with J− and J+,
respectively.

Inner and outer Jordan digitizations of a centered (i.e., midpoint
at grid point) disk, for three different grid resolutions h

in general, the difference between outer and inner Jordan
digitization can be transformed into a simple 1-curve by
deletion of a few 2-cells, thus providing an ideal input for our
MLP algorithm
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Relations between Digitizations

assume a curve γ in the plane:

J−h (γ) = ∅ ⊆ Rh(γ) ⊆ J+
h (γ)

where Rh is the grid-intersection digitization in Z2
h (set J+

h (γ)
may contain additional pixels compared to Rh(γ) if γ intersects
grid edges at mid points)

If S is a nonempty proper subset of R2 or of R3 with a smooth
frontier, we have J−h (S) ⊂ J+

h (S). Furthermore, the following is
true:

J−h (S) ⊆ Gh(S) ⊆ J+
h (S) for any S ⊆ R2 (S ⊆ R3)

One or both relations ⊆ in the left part of this equation can be
replaced by =, but both cannot if S has a smooth frontier.

Let S be a finite union of grid squares; then we have
J−(S) = G(S) = J+(S).

Types of Digital Sets

If S is, for example, a disk, square, or convex set (and similarly
in 3D) we call J−h (S), Gh(S), or J+

h (S) a digital disk, digital square,
or digital convex set, respectively, provided it is connected.

We call a connected set of grid points a digital disk and so forth
(with respect to a given digitization model), if there exists a disk
and so forth that has that connected set as its digitization.
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The topologic frontier of a simply connected compact set S in
the Euclidean plane is a simple curve γ : [0, 1] → R2.

We assume that γ is rectifiable (i.e., has a defined length).

We are interested in estimating the length (later in the lecture:
curvature) of γ from its digital representation.

Z2
h and Z3

h are grids (in the grid point model) with grid constant
0 < θ ≤ 1 and grid resolution h = 1/θ.

Z2
h consists of grid points with coordinates that are (θ · i, θ · j)

where i, j ∈ Z, and Z3
h consists of grid points with coordinates

that are (θ · i, θ · j, θ · k) where i, j, k ∈ Z.

Let digh(γ) be a digitization of γ in Z2
h (see definition of

multigrid convergence).

Common 2D Curve Digitization Models

(i) a cyclic 8-path ρh,8(γ) of grid points derived from
grid-intersection digitization of γ in Z2

h;

(ii) a cyclic 4-path of vertices of 2-cells on the frontier of the
Gauss digitization Gh(S) of S; and

(iii) the closed difference set (in R2) between the outer and inner
Jordan digitizations A = J+

h (S) and B = J−h (S).

Method (iii) is applicable for length estimator Emlp.
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Local Length Estimation

historically the first ones in picture analysis, applied to digital
curves defined by methods (i) or (ii); use of weighted distances
in fixed neighborhoods; potentially of interest for short arcs or
low-resolution curves; efficient linear online algorithms

the weights are chosen to approximate the Euclidean distance

(1) best linear unbiased estimator (BLUE) for length of γ ( actually
optimized for straight segments by L. Dorst an A.W.M.
Smeulders, 1987):

Echm(ρh,8(γ)) =
1
h
· (0.948 · ni + 1.343 · nd)

where ni is the number of isothetic steps and nd the number of
diagonal steps in the digital arc or curve. (The subscript “chm”
refers to the chessboard metric d8.)

(2) cornercount estimator (coc), where nc is the number of
odd-even transitions in the chain code of the digital arc or curve
(A.M. Vossepoel and A.W.M. Smeulders, 1982):

Ecoc(ρh,8(γ)) =
1
h
· (0.980 · ni + 1.406 · nd − 0.091 · nc)
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Length of a Straight Segment

suppose a DSS pq has been detected; the distance de(p, q) is
typically slightly smaller than the original length of the segment
γ prior to grid-intersection digitization

most probable original (mpo) length estimation method for DSSs
(L. Dorst and A.W.M. Smeulders, 1991):

Let n be the length of the DSS ρh,8(γ) = i(0), . . . , i(n− 1), and
let a/b be the best possible rational estimate of its slope, where b

is the length of the shortest period, which is the smallest
k ∈ {1, . . . , n} such that k = n or i(m + k) = i(m) for
0 ≤ m ≤ n− k − 1. a is the height difference in one period; for
example, if i(m) ∈ {0, 1} for all 0 ≤ m ≤ n− 1, then
a = i(0) + . . . + i(q − 1):

Empo(ρh,8(γ))) =
1
h
· (n

√
1 + (a/b)2)

In the figure: ρh,8(γ) = 0010010100100, n = 13, b = 8, and a = 3;
we have Empo(ρh,8(γ))) = 13.8840 . . . /h, compared to
de(p, q) = 13.6015 . . . /h
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DSS Estimators

(1) basic DSS estimator: segment a digital arc or curve into a
sequence of maximum-length DSSs; a length estimator EDSS is
then defined by the length of the resulting polygon or
polygonal arc (the segmentation into DSSs depends on the
method, the chosen starting point, and the direction in which
the arc or curve is traced)

(1.a) algorithm DR1995 (for 8-curves) defines the E8ss estimator

(1.a) algorithm K1990 (for 4-curves) defines the E4ss estimator

(2) refined DSS estimator: instead of using the length of the
polygonal curve, consider each edge of the polygonal curve as a
digitization of a straight segment, and use a refined length
estimation for such segments.

(2.a) algorithm DR1995 (for 8-curves) and sum the mpo length
estimates of the 8-DSSs; this defines the E8mp estimator
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Tangent Based Estimators

assume a curve γ(t) = (x(t), y(t)) in the plane, with a ≤ t ≤ b

speed of this parameterization:

v(t) = ‖γ̇(t)‖2 = ‖(ẋ, ẏ)‖2 = ‖(ẋ(t), ẏ(t))‖2

where

ẋ(t) =
dx(t)

dt
and ẏ(t) =

dy(t)
dt

Example: a circle is given by x = x(t) = r cos t and
y = y(t) = r sin t, for t ∈ [0, 2π), and

v(t) = ‖(−r sin t, r cos t)‖2 = r
√

sin2 t + cos2 t = r

is the speed of this parametrization

In Lecture 05 we considered a parametrizable Jordan curve or
arc γ, and defined its length L = ‖γ‖2 as follows, where
a ≤ t ≤ b:

L(t) =
∫ t

a

√
ẋ2 + ẏ2 ds =

∫ t

a

v(s) ds

Let ‖(ẋ, ẏ)‖ : [a, b] → R2 be the length of the tangent vector
associated with γ(t). Then the following can be approximated
by using discrete estimates of the products ‖(ẋ, ẏ)‖ dt:

L(γ) =
∫ b

a

‖(ẋ, ẏ)‖ dt
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The DSS (or 4-DSS) approximates the tangent line to γ, and the
normal is perpendicular to this line. For example, we consider
frontier tracing, and a 0-cell p as the center point of a
maximum-length DSS (or 4-DSS).

Left column: A DSS centered at p. Right column: A 4-DSS
centered at p. Upper row: estimation of n1; both estimated
tangential lines — and hence both estimated normals — are
identical. Lower row: estimation of n2; different estimated
tangential lines result in different estimated normals,
depending on how the estimator is defined.

Example: let S be the set of all 1-cells in the alternating
sequence of 0-cells and 1-cells along the chosen frontier,
calculate normal n(c) and local increment n0(c) based on DSSs;
the length estimator is

Etan(digh(γ)) =
∑
c∈S

n(c) · n0(c)
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Convergence of Length Estimators

We apply the general definition of multigrid convergence
(Lecture 06) to the problem of estimating the length L(γ) of an
arc or curve γ.

Assume that the estimate E is defined for all curves γ in a given
class (e.g., the class of all simple curves in the Euclidean plane)
and for all digitizations digh(γ) where h > 0. E is multigrid
convergent to L with respect to digitization model digh iff
E(digh(γ)) converges to L(γ) as h →∞ for any curve γ in the
class of interest.

More formally, we have the following:

|E(digh(γ))− L(γ)| ≤ κ(h)

where limh→∞ κ(h) = 0; the speed of convergence is O(1/κ(h)).

Example

estimator: Empo

class of curves: straight segments

digitization: grid-intersection digitization

result: superlinear convergence with κ in O(h−1.5)
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Multigrid Convergence Theorems

The local estimators chm and coc of the lengths of digitized arcs
or curves are not multigrid convergent (also indicated by
experiments reported in next lecture).

Given an algorithm for constructing a DSS approximation γh of
the h-frontier ϑh(S) of a simply connected digital set Gh(S), we
define εDSS(h) = εDSS/h as the maximum Hausdorff distance
between ϑh(S) and γh:

de(ϑh(S), γh) ≤ εDSS

h

Theorem 1 (R. Klette and J. Zunic, 2000) Let S be a convex
h-compact polygonal set in R2. Then there exists a grid resolution h0

such that, for all h ≥ h0, any DSS approximation γh of the h-frontier
ϑh(S) is a connected polygon with perimeter Ph that satisfies the
following inequality:

|L(ϑ(S))− Ph| ≤
2π

h

(
εDSS(h) +

1√
2

)
(S is called h-compact iff there is an h0 > 0 such that ϑh(S) is a
single (connected) curve for any h ≥ h0.)

Example: For εDSS = 1 (as, e.g., in case of algorithm DR1995)
we have εDSS(h) = 1/h, and we obtain

2π

h2
+

2π

h ·
√

2
≈ π

√
2

h
≈ 4.5

h
if h is large

(i.e., linear convergence speed for any [!] constant εDSS).
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Theorem 2 (F. Sloboda, B. Zatko, and J. Stoer, 1998) Let γ be a
convex planar curve that is contained in a simple 1-curve ρ in the
plane for grid resolution h ≥ 1. Then the MLP approximation of ρ is a
connected polygonal curve of length Ph that satisfies the following:

Ph ≤ L(γ) < Ph +
8
h

In other words, the convergence speed is upper bounded by 8/h

in this case. The determination of optimum error bounds (for
DSS and mlp) remains an open problem.

Theorem 3 (D. Coeurjolly and O. Teytaud, 2001) Let γ be a
simple C(2) curve with bounded curvature then both the estimated
discrete tangent direction and the tangent-based length estimate
Etan(digh(γ)) are multigrid convergent.

The speed of convergence and the maximum error bound for
these estimates have not yet been determined.
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Coursework

Related material in textbook: Sections 2.3.2, 2.3.4, 8.1.1, 10.1,
10.2.1, 10.2.2, 10.2.3, 10.2.6, and 10.3.2. Solve Exercise 2 on page
372.

A.19. [5 marks] Do Exercise 1 on page 372. (Note the similarity
with Exercise 6.2 in these lecture notes, where the convex hull
has been used for perimeter estimation). A solution to this
exercise requires that you already have implementations for
DSS or MLP length estimations at hand. However, note that
these can be downloaded (for free) from the net.
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Appendix: Proof of Theorem 1

Why do we request connectedness and h-compactness?

A simple convex polygon S for which Gh(S) splits into two
components (dark shaded rectangle: area where components
can be reconnected at a higher grid resolution).

Situations in which components cannot be connected for any
grid resolution can arise at a vertex with a small interior angle:

There is a ray with rational slope 1/5 “inside” the shown sector;
any grid resolution 5nh (n ≥ 1) leads to the same situation.
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We use two lemmas from integral geometry:

Lemma 1 If a convex planar polygonal set S is contained in a convex
planar set C, the perimeter P(S) of S is at most equal to P(C).

The ε-sausage of a curve γ (H. Minkowski, 1910) is the set of all
points p such that de({p}, γ) ≤ ε.

Lemma 2 The length of the outer frontier of the ε-sausage of the
frontier of a convex planar polygon S is P(S) + 2πε.
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We now prove Theorem 1.

S is h-compact for h ≥ h0, so Gh(S) is connected, and any DSS
approximation of ϑh(S) is a single (connected) polygonal curve.

(Proposition 1) At first we prove that there exists a constant
h1 ≥ 1 such that the following is true for all h ≥ h1:

de(ϑS, ϑh(S)) ≤ 1
h ·
√

2
(1)
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Suppose this Hausdorff distance was greater than (h ·
√

2)−1.
Then there would exist either

(A) at least one point p on ϑh(S) with a minimum Euclidean
distance to ϑS that is greater than (h ·

√
2)−1 or

(B) at least one point q on ϑS with a minimum Euclidean
distance to ϑh(S) that is greater than (h ·

√
2)−1.

(A): The circle with center p and radius (h ·
√

2)−1 would not
contain any point of ϑS; hence this circle would be either

(A1) disjoint from S or

(A2) completely inside of S.

Let p be on the frontier of a grid square with midpoint gh
ij . The

grid point gh
ij is inside the circle.

In case (A1), it follows that gh
ij cannot be in S (i.e., gh

ij is not in
Gh(S)). It follows that p cannot be on ϑh(S), which contradicts
our assumption.

In case (A2), p is on an h-edge incident with two h-squares with
midpoints that are both in the circle and thus in S; hence, in this
case, too, p cannot be on ϑh(S). Thus case (A) is impossible.
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(B): Because S is h-compact for h ≥ h0, the distance between q

and the nearest grid point can become arbitrarily small as
h →∞, while Gh(S) still remains connected. Thus, in case (B),
we must increase h so that h ≥ h1 ≥ h0 for some h1, which
represents the situation in which the minimum Euclidean
distance from q ∈ ϑS to ϑh(S) is less than or equal to (h ·

√
2)−1.

Only a finite number of vertices on the frontier of the polygonal
set S needs to be considered for such increases in h0. This
concludes the proof of Proposition 1.

(Proposition 2) The defined upper bound

de(ϑh(S), γh) ≤ εDSS

h

and Equation (1) and the triangle inequality for Hausdorff
distance imply the following:

de(ϑS, γh) ≤ de(ϑh(S), γh) + de(ϑS, ϑh(S)) ≤ εDSS

h
+

1
h ·
√

2
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(Proposition 3) Let ε = εDSS/h + 1/(h ·
√

2). Then the
perimeter of S and the length of γh differ by at most 2πε. (See V.
Kovalevsky and S. Fuchs, 1992)

Let the constructed DSS approximation γh be the frontier of a
convex (polygonal) set C so that (see Proposition 2):

de(ϑS, ϑC) ≤ ε (2)

Note that ϑC = γh. Proposition 3 says that the following is true:

|P(S)− P(C)| ≤ 2πε (3)

Note that P(S) = L(ϑ(S)) and P(C) = L(γh) = Ph. So we have

|L(ϑ(S))− Ph| ≤ 2πε = 2π
(
εDSS/h + 1/(h ·

√
2)

)
and this is the statement in Theorem 1.

What remains is that we have to prove Proposition 3.
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The frontier ϑC lies in the ε-sausage of the frontier ϑS. Let ϑεS

be the outer frontier of the ε-sausage of ϑS. By Lemma 1, we
have the following:

P(C) ≤ L(ϑεS)

By Lemma 2, we have the following:

L(ϑεS) = P(S) + 2πε

Hence, the following is true:

P(C) ≤ P(S) + 2πε (4)

ϑS lies in the ε-sausage of ϑC, because Hausdorff distance is
symmetric. Let ϑεC be the outer frontier of the ε-sausage of ϑC.
By Lemma 1, we have the following:

P(S) ≤ L(ϑεC)

By Lemma 2, we have the following:

L(ϑεC) = P(C) + 2πε

Hence, the following is true:

P(S)− 2πε ≤ P(C) (5)

From Equations 4 and 5, we have the following,

P(S)− 2πε ≤ P(C) ≤ P(S) + 2πε

which proves Proposition 3, and thus Theorem 1.

Q.E.D.
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