
Algorithms
for Picture Analysis Lecture 18: Minimum-Length Polygons

Convex Hull

A set S is called convex if for any two points p, q of S the straight
line segment pq is contained in S.

The convex hull C(S) is the intersection of all of the halfspaces of
Rn that contain S; it is the smallest convex set that contains S.

A convex polygon (polyhedron) is a nonempty bounded set that is
an intersection of finitely many half-planes (half-spaces).

A simple polygon (shaded, having 20 vertices) and its convex
hull which is a simple polygon with 5 vertives.

Convex hull of a finite set of points. – The calculation of convex
hulls is a basic procedure in geometry-related picture analysis.
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Graham’s Scan

R.L Graham (1972): O(n log n) for n points in R2

1. Start at a point of S (called the pivot p) that is known
to be on the convex hull.

2. Sort the remaining points pi of S in order of increas-
ing angles ηi; if the angle is the same for more than
one point, keep only the point furthest from p. Let the
resulting sorted sequence of points be q1, . . . , qm.

3. Initialize C(S) by the edge between p and q1.

4. Scan through the sorted sequence. At each left turn,
add a new edge to C(S); skip the point if there is
no turn (a collinear situation); backtrack at each right
turn.

Left: angles ηi for the vectors defined by q1, q2, q5, q4. Right:
backtrack situation at q6; the dashed edges are removed or not
added in Step 4 of the algorithm.
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Relative Convex Hull

J. Sklansky, R.L. Chazin, and B.J. Hansen in 1972

Definition 1 Let S ⊆ B ⊂ R2. S is called B-convex iff, for all
p, q ∈ S, if the straight line segment pq is in B, it is also in S. The
B-convex hull of S is the intersection of all B-convex sets that contain
S.

Relative convex hulls. Left: A,B are simple polygons. Right:
A,B are isothetic simple polygons.

If A,B are simple polygons and A is contained in B, it can be
shown that the frontier of the B-convex hull of A is the
(uniquely determined) minimum-length polygonal curve (short:
MLP) that is contained in B and that circumscribes A.

Relative convex hulls are often used in robotics, computational
geometry and picture analysis (digital geometry).
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Length in the 2D Cell Model

intrinsic distance between two points in a simple polygon = the
length of a shortest arc that connects the points and is contained
in the polygon

it follows: this is a polygonal arc

intrinsic diameter of a polygon = the maximum intrinsic distance
between any two of its points

it follows: is between two vertices of the polygon

Left: the length of a simple 1-arc (in the 2D grid cell model) can be
defined by the length of its intrinsic diameter

Right: the length of a simple 1-curve can be defined by the length
of that MLP contained in the curve (to be precise: in the union of
all 2-cells of this curve), and circumscribing its “inner frontier”
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Length in the 3D Cell Model

Left: the length of a simple 2-arc (in the 3D grid cell model) can be
defined by the length of its intrinsic diameter

Right: the length of a simple 2-curve can be defined by the length
of that MLP that is uniquely identified by being contained in the
curve and not contractible into a single point within this curve.

Difference between 2D and 3D

In the 2D case, the MLP coincides with the relative convex hull
of the “inner frontier” with respect to the “outer frontier” (and
the design of a 2D MLP algorithm is not very hard). In the 3D
case, there is no such analogy with a relative convex hull (and
the calculation of a 3D MLP within a simple 2-curve is a difficult
task).
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1-Curve around a Digital Region

picture grid on the left: a 4-region and its frontier (bold curve)

frontier grid on the right: the original frontier runs through pixels
in this grid, and we consider these as being 2-cells; the original
frontier defines this way a 1-curve, which is not simple in
general, but can be used as input for an MLP algorithm
assuming that the successor of a 2-cell in this 1-curve defines the
only possible grid edge where the MLP can cross into a next
2-cell (the figure on the right shows in bold grid edges which
are not allowed to cross)

resulting MLP, approximating the frontier of the given 4-region
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Self-Intersections

we illustrate possible self-intersections of the frontier of a given
simply-connected 4-region

Accordingly, the 1-curve of grid cells in the frontier grid,
following a trace around the frontier, will also have
self-intersections. The MLP-algorithm needs to handle these
cases as well. The figure illustrates (upper row) the repeated
visit of one 2-cell, and (lower row) the construction of the MLP
in this case. The final result is shown at the bottom on the left.
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Inner and Outer Frontier

Following the given 1-curve in counter-clockwise orientation (in
a righthand coordinate system), the sequence of 1-cells on the
right form a 0-curve γ1 of 1-cells (the “outer frontier” in case of
a simple 1-curve), and those on the left a 0-curve γ2 of 1-cells
(the “inner frontier”).

vertex vi on γ1 or γ2 is called a convex vertex if the frontier makes
a positive turn at vi, detectable by

D(vi−1, vi, vi+1) > 0, where D is the determinant∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = x1y2 + x3y1 + x2y3 − x3y2 − x2y1 − x1y3

vi is called a concave vertex if the frontier makes a negative turn
(D(vi−1, vi, vi+1) < 0); a collinear vertex if D(vi−1, vi, vi+1) = 0

Our algorithm traces γ1 (or γ2), detects convex and concave
vertices, puts their coordinates into a list L, and marks them as
convex or concave.

For simplicity assume that the coordinates are integers; the
coordinates of two successive vertices with indices i and i + 1
satisfy |xi+1 − xi|+ |yi+1 − yi| = 1.

Only convex vertices of the inner curve γ2 and only concave
vertices of the outer curve γ1 can be vertices of the MLP.
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There exists a mapping from the set of all concave vertices of γ2

onto the set of all concave vertices of γ1 such that each concave
vertex of γ1 corresponds to at least one concave vertex of γ2.

Numbers in the figure denote successive vertices in the list L:

1 is a start vertex (i.e., an already known MLP vertex); 3 and 5
are successive convex vertices on γ2; 2, 4, and 6 are successive
concave vertices on γ1. Vertex 7 is not between the negative
(black line) and positive (white line) sides of sector (6,1,5);
therefore 5 is the next MLP vertex and is a new start vertex.

Start: put all of the vertices of γ2 into L, then replace each
concave vertex of γ2 in L with its corresponding concave vertex
of γ1 by modifying its coordinates by ±1, where the sign
depends on the orientations of the incident edges.

L = all (plus others) of the vertices that will form the MLP
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MLP calculation and calculation of its length L

1. Initialize list L = (v1, . . . , vn) as described above; it
contains all of the vertices on γ2 except the concave
vertices, which are replaced by concave vertices on γ1.
Each vi in L is labeled by the sign of D(vi−1, vi, vi+1).

2. Let k := 1, a := 1, b := 1 and i := 2. Let L := 0 and
p1 := v1.
//v1 is the first MLP vertex//

3. If i > n + 1, stop.

4. If i ≤ n, then j := i; else j := 1. //go back to v1//

5. If D(pk, vb, vj) > 0, then //vj lies on the positive
side//
{k := k + 1, pk := vb, i := b, a := b, and L :=
L+ de(pk−1, pk)};
else

(a) If D(pk, va, vj) ≥ 0, then //vj is in the sector//;
if vj has a positive label, then b := j, else a := j;
else //vj lies on the negative side//

(b) {k := k + 1, pk := va, i := a, b := a, and L :=
L+ de(pk−1, pk)}

6. Let i := i + 1 and go to Step 3.

The algorithm has linear time complexity.
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Suppose we already know that vertex vi of L is an MLP vertex.
Then vj (j > i) can be an MLP vertex only if all convex vertices
v+

k such that i < k < j lie on the positive side of (vi, vj) or are
collinear with it (i.e., D(vi, v

+
k , vj) ≥ 0).

Similarly, all concave vertices v−l such that i < l < j must lie on
the negative side of (vi, vj) or be collinear with it.

Suppose a convex vertex v+ and a concave vertex v− both
satisfy these conditions. When we consider a vertex v as a
candidate MLP vertex, the following situations can occur:

1. v lies on the positive side of (vi, v
+) (i.e., D(vi, v

+, v) ≥ 0);

2. v lies on the negative side of (vi, v
+) or is collinear with it

and also lies on the positive side of (vi, v
−) or is collinear

with it; or

3. v lies on the negative side of (vi, v
−).

In case (1), v+ becomes the next MLP vertex.

In case (2), v becomes a candidate for the MLP and must replace
either v+ or v− depending on the sign of v.

In case (3), v− becomes the next MLP vertex. This is also correct
in the trivial case where v+, v−, or both coincide with vi.

Start: a vertex v1 that is known to be an MLP vertex (e.g., the
uppermost-leftmost vertex of γ2); set v+ and v− equal to v1; and
then test all subsequent vertices as just described.

Whenever the next MLP vertex is detected, it becomes a new
start vertex.
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Coursework

Related material in textbook: Sections 1.2.9, 10.1.4, 10.2.3, and
10.2.4.

A.18. [7 marks] Implement the given MLP algorithm for
estimating the perimeter of a simply-connected 4-region by the
length of the MLP. (The calculated length L defines the length
estimator Emlp.) Note:

http://www.citr.auckland.ac.nz/dgt/Source Code.php?id=4
offers a free download of an MLP source.

Allow as input simply-connected 4-regions of arbitrary shape
and size in a 256× 256 binary picture.

(i) Test your algorithm by considering “extreme input cases”,
such as shown below.

(ii) Generate a diagram which shows run-times of your
algorithm in dependence upon the length of the frontier (note:
this length is equal to the number of 1-cells on this curve) of the
given 4-region.

(iii) Optionally, [1 mark] also provide a way (e.g., in a grid of
higher resolution) to visualize the calculated MLP.
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