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Convex Hull I

A set S is called convex if for any two points p, g of S the straight
line segment pq is contained in S.

The convex hull C'(S) is the intersection of all of the halfspaces of
R™ that contain S; it is the smallest convex set that contains S.

A convex polygon (polyhedron) is a nonempty bounded set that is
an intersection of finitely many half-planes (half-spaces).

A simple polygon (shaded, having 20 vertices) and its convex
hull which is a simple polygon with 5 vertives.

Convex hull of a finite set of points. — The calculation of convex
hulls is a basic procedure in geometry-related picture analysis.
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Graham’s Scan I

R.L Graham (1972): O(nlogn) for n points in R?

1. Start at a point of S (called the pivot p) that is known
to be on the convex hull.

2. Sort the remaining points p; of S in order of increas-
ing angles 7;; if the angle is the same for more than
one point, keep only the point furthest from p. Let the
resulting sorted sequence of points be g1, ..., ¢n.

3. Initialize C'(S) by the edge between p and ¢;.

4. Scan through the sorted sequence. At each left turn,
add a new edge to C(S5); skip the point if there is
no turn (a collinear situation); backtrack at each right
turn.

Left: angles n; for the vectors defined by ¢, g2, g5, ¢4 Right:
backtrack situation at gs; the dashed edges are removed or not
added in Step 4 of the algorithm.
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Relative Convex Hull I

J. Sklansky, R.L. Chazin, and B.J. Hansen in 1972

Definition 1 Let S C B C R?. S is called B-convex iff, for all
p,q € S, if the straight line segment pq is in B, it is also in S. The

B-convex hull of S is the intersection of all B-convex sets that contain
S.

Given set A

Convex hull
relative to
this set B

Relative convex hulls. Left: A, B are simple polygons. Right:
A, B are isothetic simple polygons.

If A, B are simple polygons and A is contained in B, it can be
shown that the frontier of the B-convex hull of A is the
(uniquely determined) minimum-length polygonal curve (short:
MLP) that is contained in B and that circumscribes A.

Relative convex hulls are often used in robotics, computational
geometry and picture analysis (digital geometry).
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Length in the 2D Cell Model I

intrinsic distance between two points in a simple polygon = the
length of a shortest arc that connects the points and is contained
in the polygon

it follows: this is a polygonal arc

intrinsic diameter of a polygon = the maximum intrinsic distance
between any two of its points

it follows: is between two vertices of the polygon

Left: the length of a simple 1-arc (in the 2D grid cell model) can be
defined by the length of its intrinsic diameter

Right: the length of a simple 1-curve can be defined by the length
of that MLP contained in the curve (to be precise: in the union of
all 2-cells of this curve), and circumscribing its “inner frontier”
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Length in the 3D Cell Model I
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Left: the length of a simple 2-arc (in the 3D grid cell model) can be
defined by the length of its intrinsic diameter

Right: the length of a simple 2-curve can be defined by the length
of that MLP that is uniquely identified by being contained in the
curve and not contractible into a single point within this curve.

Difference between 2D and 3D I

In the 2D case, the MLP coincides with the relative convex hull

of the “inner frontier” with respect to the “outer frontier” (and
the design of a 2D MLP algorithm is not very hard). In the 3D
case, there is no such analogy with a relative convex hull (and
the calculation of a 3D MLP within a simple 2-curve is a difficult
task).
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1-Curve around a Digital Region I

picture grid on the left: a 4-region and its frontier (bold curve)
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frontier grid on the right: the original frontier runs through pixels
in this grid, and we consider these as being 2-cells; the original
frontier defines this way a 1-curve, which is not simple in
general, but can be used as input for an MLP algorithm
assuming that the successor of a 2-cell in this 1-curve defines the
only possible grid edge where the MLP can cross into a next
2-cell (the figure on the right shows in bold grid edges which
are not allowed to cross)

resulting MLP, approximating the frontier of the given 4-region
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Self-Intersections

we illustrate possible self-intersections of the frontier of a given
simply-connected 4-region
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Accordingly, the 1-curve of grid cells in the frontier grid,
following a trace around the frontier, will also have
self-intersections. The MLP-algorithm needs to handle these
cases as well. The figure illustrates (upper row) the repeated
visit of one 2-cell, and (lower row) the construction of the MLP
in this case. The final result is shown at the bottom on the left.
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Inner and Outer Frontier I

Following the given 1-curve in counter-clockwise orientation (in
a righthand coordinate system), the sequence of 1-cells on the
right form a 0-curve 7, of 1-cells (the “outer frontier” in case of
a simple 1-curve), and those on the left a 0-curve 2 of 1-cells
(the “inner frontier”).

vertex v; on y; or ~» is called a convex vertex if the frontier makes
a positive turn at v;, detectable by

D(v;_1,vi,v;11) > 0, where D is the determinant

1 Y1 1
T2 Y2 1| =x1y2 +23Yy1 + Tays — T3y2 — Tay1 — T1Y3
x3 ys 1

v; is called a concave vertex if the frontier makes a negative turn
(D(Ui_l, Vi, 'Uz'+1) < O), a collinear vertex if D(,Uq;_l, Vi, vz’—i—l) =0

Our algorithm traces 7; (or v2), detects convex and concave
vertices, puts their coordinates into a list L, and marks them as
convex Or concave.

For simplicity assume that the coordinates are integers; the
coordinates of two successive vertices with indices 7 and 7 + 1
satisty |ziy1 — x| + |yit1 —vi| = 1.

Only convex vertices of the inner curve ~; and only concave
vertices of the outer curve v, can be vertices of the MLP.
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There exists a mapping from the set of all concave vertices of 2
onto the set of all concave vertices of v; such that each concave
vertex of y; corresponds to at least one concave vertex of 7.

positive sides negative sides MLP
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Numbers in the figure denote successive vertices in the list L:

1is a start vertex (i.e., an already known MLP vertex); 3 and 5
are successive convex vertices on 7s; 2, 4, and 6 are successive
concave vertices on ;. Vertex 7 is not between the negative
(black line) and positive (white line) sides of sector (6,1,5);
therefore 5 is the next MLP vertex and is a new start vertex.

Start: put all of the vertices of 7, into L, then replace each
concave vertex of 2 in L with its corresponding concave vertex
of 71 by modifying its coordinates by +1, where the sign
depends on the orientations of the incident edges.

L = all (plus others) of the vertices that will form the MLP
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MLP calculation and calculation of its length £

1. Initialize list L = (v1,...,v,) as described above; it
contains all of the vertices on 2 except the concave
vertices, which are replaced by concave vertices on ;.
Each v; in L is labeled by the sign of D(v;_1, v;, vi11).

2. Letk:=1,a:=1,b:=1and i := 2. Let £ := 0 and
P1 ‘= V1.

/ /vy is the first MLP vertex//

3. If i > n + 1, stop.

4. Ifi <n,thenj:=14;else j :=1. //gobacktov,//

5. If D(pg,vp,v;) > 0, then //v; lies on the positive
side/ /

{k = k+1 px == v, 1 :=0b a :=>b and L =

L+de(pr—1,pK)};
else

(@) If D(pk,vq,v;) > 0, then / /v, is in the sector//;
if v; has a positive label, then b := j, else a := j;
else //v; lies on the negative side//
b) {k :=k+1,px =041 :=a,b:=a, and L :=
L+ de(pr—1,pk)}
6. Leti := i+ 1 and go to Step 3.

The algorithm has linear time complexity.
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Suppose we already know that vertex v; of L is an MLP vertex.
Then v; (j > 7) can be an MLP vertex only if all convex vertices
v;" such that i < k < j lie on the positive side of (v;, v;) or are
collinear with it (i.e., D(v;, v, v;) > 0).

Similarly, all concave vertices v;” such that i < [ < j must lie on
the negative side of (v;, v;) or be collinear with it.

Suppose a convex vertex v and a concave vertex v~ both
satisfy these conditions. When we consider a vertex v as a
candidate MLP vertex, the following situations can occur:

1. v lies on the positive side of (v;,v™") (i.e., D(v;,v",v) > 0);

2. v lies on the negative side of (v;,v™") or is collinear with it
and also lies on the positive side of (v;, v™) or is collinear
with it; or

3. v lies on the negative side of (v;,v™).

In case (1), v becomes the next MLP vertex.

In case (2), v becomes a candidate for the MLP and must replace
either v or v~ depending on the sign of v.

In case (3), v~ becomes the next MLP vertex. This is also correct
in the trivial case where v, v, or both coincide with v;.

Start: a vertex v; that is known to be an MLP vertex (e.g., the
uppermost-leftmost vertex of +2); set v and v~ equal to v;; and
then test all subsequent vertices as just described.

Whenever the next MLP vertex is detected, it becomes a new
start vertex.
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Coursework I

Related material in textbook: Sections 1.2.9, 10.1.4, 10.2.3, and
10.2.4.

A.18. [7 marks] Implement the given MLP algorithm for
estimating the perimeter of a simply-connected 4-region by the
length of the MLP. (The calculated length £ defines the length
estimator F,,1,.) Note:

http:/ /www.citr.auckland.ac.nz/dgt/Source_Code.php?id=4
offers a free download of an MLP source.

Allow as input simply-connected 4-regions of arbitrary shape
and size in a 256 x 256 binary picture.

(i) Test your algorithm by considering “extreme input cases”,
such as shown below.

[

(ii) Generate a diagram which shows run-times of your
algorithm in dependence upon the length of the frontier (note:
this length is equal to the number of 1-cells on this curve) of the
given 4-region.

(iii) Optionally, [1 mark] also provide a way (e.g., in a grid of
higher resolution) to visualize the calculated MLP.
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