
Algorithms
for Picture Analysis Lecture 16: DSS Approximation of Frontiers

A Linear Online 4-DSS Algorithm

V. Kovalevsky 1990: algorithm K1990

We consider the recognition of 4-DSSs on the frontier of a region
in the 2D cellular grid.

Algorithm K1990 is one of the simplest (implementation) and
most efficient linear online 4-DSS recognition algorithms.

It is based on the calculation of a narrowest strip defined by the
nearest support below and above (see Theorem 2 on page 4 in
Lecture 15, and figure on next page).

It resembles the linear offline algorithm by T.A. Anderson and
C.E. Kim (1985) and a linear online algorithm by E. Creutzburg,
A. Hübler and O. Sýkora (1988) for 8-arcs.
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Notation for K1990

The algorithm follows a digital 4-curve and extends a 4-DSS as
long as it has at most two directions and all of its grid points lie
between or on a pair of parallel lines that have a main diagonal
distance of less than

√
2.

On the parallel line to the left of the digital curve, we define a
negative base between the grid points pN =StartN and qN =EndN.

On the parallel line to the right of the digital curve, we define a
positive base between the grid points pP =StartP and qP =EndP.
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Initialization of a new 4-DSS

Let the first step be from r1 = (x1, y1) to the 4-adjacent
r2 = (x2, y2); let pN = pP = r1, qN = qP = r2, a = x2 − x1,
b = y2 − y1, c = ay2 − bx2, and note the direction of the step
from r1 to r2.

Left to right in figure: (a, b)T = (1,0), (0,1), (0,-1), or (-1,0).

Here: negative base = positive base, and vector (a, b)T is parallel
to both.

Number of possible directions on a 4-DSS

Whenever a new step is not in one of the (at most two)
directions in the current 4-DSS, we start a new DSS.

When there has been only one direction so far we continue the
current DSS.

If we continue with two directions, we decide based on values a

and b; see next pages for details.
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Two-Point Equation of a Line

Assume two points p1 = (x1, y1) and p2 = (x2, y2) on a straight
line.

The equation of the straight line is

y − y1

y2 − y1
=

x− x1

x2 − x1

or

y =
y2 − y1

x2 − x1
x +

y1(x2 − x1)− x1(y2 − y1)
x2 − x1

=
b

a
x +

c

a

If p1 and p2 are grid points, then a, b, c are integers.
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Case of Two Directions

Let points pN , qN be on straight line

y =
b

a
x +

c

a

Note: because the straight line is incident with two grid points,
it follows that a, b, c are integers, and we can choose a, b such
that they are relatively prime.

Points pP , qP in the example above are on straight line

y =
b

a
x +

c

a
− 1

Note: Theorem 2 in Lecture 15 allows that this line moves
further away from line y = b

ax + c
a , namely by

√
2 in main

diagonal distance.
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Two Inequalities

All grid points on the 4-DSS have coordinates (x, y) which are
on or between two straight lines. They satisfy

0 ≤ bx− ay + c (1)

(i.e., they are right of, or on the “negative straight line”) and

bx− ay + c ≤ |a|+ |b| − 1 (2)

(i.e., they are left of, or on a second straight line which is
√

2
away from the “negative straight line” in main diagonal
distance.)

Note: (2) allows bx− ay + c = |a|+ |b| − 1 (i.e., a second line in
distance

√
2). This defines a “symmetric” algorithm; a trace of a

“double staircase” (see example of a subsequence of a border
cycle) would contain more than two different directions,
leading to a start of a new segment where expected.
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Continuation of Algorithm

(Case of two Directions)

Suppose inequalities (1) and (2) are true for n− 1 accepted grid
points r1 = (x1, y1), . . . , rn−1 = (xn−1, yn−1) of the 4-DSS.

Let rn = (xn, yn) be the next grid point to be tested, which is
4-adjacent to rn−1 = (xn−1, yn−1).

c is an integer such that

c = ay − bx

for any (up to point rn−1) grid point (x, y) on the negative base.

(For example, if qN = (6, 1) in the figure on page 4, then c = 9.)

Sometimes c needs to be updated during the algorithm.

Let h(x, y) = bx− ay + c .

Because rn = (xn, yn) is 4-adjacent to rn−1 = (xn−1, yn−1) (i.e., it
differs from rn−1 only in one coordinate by 1), the value of h(rn)
can only differ either by b or by a from h(rn−1).

If 0 < h(rn) < |a|+ |b| − 1, then rn is accepted and no parameter
needs to be updated. Otherwise consider the cases on the next
page.

Page 7 February 2005



Algorithms
for Picture Analysis Lecture 16: DSS Approximation of Frontiers

(i) h(rn) = 0: rn is on the negative base, and the n vertices
form a 4-DSS; let qN := rn .

(ii) h(rn) = |a|+ |b| − 1: rn is on the positive base, and the
n vertices form a 4-DSS; let qP := rn .

(iii) h(rn) = −1 or h(rn) = |a| + |b|: the n vertices form
a 4-DSS because the new grid point rn is still within
the distance limits from the points between the two
supporting lines but the values a, b, and c need to be
updated:

(A) if h(rn) = −1 then

begin

qN := rn; pP := qP ; (a, b) := rn − pN ;

end

(B) if h(rn) = |a|+ |b| then

begin

qP := rn; pN := qN ; (a, b) := rn − pP ;

end

and for qN = (x, y) let c = ay − bx .

(iv) otherwise, the n vertices do not form a 4-DSS; stop at
the previous vertex rn−1, and initialize a new 4-DSS.
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In cases (iii.A) and (iii.B), we have new values a, b, and c and
new endpoints of positive or negative base.

In cases (i) and (ii), we have to move either qN or qP forward
into position rn.

Non-Unique Segmentation Results

A clockwise and an anticlockwise traversal of the frontier of a
digital region that produce different segmentations into
maximum-length 4-DSSs. The start point of the traversal will
also influence the result in general.
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Example

n = 2: We start tracing at points r1 = (0, 0) and r2 = (1, 0). We
have pN := pP := (0, 0), qN := qP := (1, 0), a := 1, b := 0, and
c = 0. Only one direction (RIGHT) so far.

n = 3: With r3 = (1, 1) comes a second direction (UP). Point
qN = (1, 0) on the negative base defines c = 0. We have
h(r3) = −1. We are at case (iii.A) on page 8:
qN := (1, 1); pP := (1, 0); (a, b) := (1, 1); c = 0

n = 4: For r4 = (2, 1) we continue to have two directions
(RIGHT, UP). We have h(r4) = 1 = |a|+ |b| − 1. Case (ii) defines
qP := (2, 1).

n = 5: With r5 = (3, 1) we get h(r5) = 2 = |a|+ |b|. Case (iii.B)
defines qP := (3, 1), pN := (1, 1), (a, b) := (2, 1), and c := 1.

n = 6: With r6 = (4, 1) we get h(r6) = 3 = |a|+ |b|. Case (iii.B)
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defines qP := (4, 1), pN := (1, 1), (a, b) := (3, 1), and c := 2.

n = 7: With r7 = (4, 2) we get h(r7) = 0, qN := (4, 2) from (i).

n = 8: With r8 = (5, 2) we get h(r8) = 1. Because of
0 < 1 < |a|+ |b| − 1 = 3, we can continue without any update.

n = 9: With r9 = (6, 2) we get h(r9) = 2. Nothing to do.

n = 10: r10 = (7, 2) gives h(r10) = 3, qP := (7, 2), see (ii).

n = 11: r11 = (7, 3) gives h(r11) = 0, qN = (7, 3), see (i).

n = 12: With r12 = (8, 3) we get h(r12) = 1. Nothing to do.

n = 13: With r13 = (9, 3) we get h(r13) = 2. Nothing to do.

n = 14: With r14 = (9, 4) we get h(r14) = −1. Case (iii.A) defines
qN := (9.4), pP := (7, 2), (a, b) := (8, 3), and c = 5.

n = 15: With r15 = (10, 4) we get h(r15) = 3. Nothing to do.

n = 16: With r16 = (11, 4) we get h(r16) = 6. Nothing to do.

n = 17: With r17 = (12, 4) we get h(r17) = 9. Nothing to do.

n = 18: With r18 = (13, 4) we get h(r18) = 12 > |a|+ |b|. Step
not possible; start a new 4-DSS at r17.
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Coursework

Related material in textbook: Section 9.6.4.

A.16. [7 marks]a Discuss algorithm K1990.

(i) Assume equal in inequalities (1) and (2) on page 6. Show that
the main diagonal distance between these two straight lines is
less or equal to

√
2, for any three integers a, b, and c.

(ii) Implement the algorithm (Note: there are free downloads on
the Internet; see, for example, TC18 of the IAPR).

(iii) Provide general arguments (i.e., a proof) that this is a linear
time algorithm and specify this further by providing a run-time
analysis for 4-DSSs of varying length (see also Exercise 10 on
page 337).

(iv) This algorithm provides a polygonal approximation of a
traced border cycle. Calculate the total length of this polygonal
curve for estimating the perimeter of digitized objects (e.g., a
disk, an ellipse, or a “halfmoon”). Discuss the accuracy of this
method for estimating the length of these digitized curves (i.e.,
frontiers of these objects).

aYou can do either A.16 or A.17, but not both.
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