A Linear Online 4-DSS Algorithm

V. Kovalevsky 1990: algorithm K1990

We consider the recognition of 4-DSSs on the frontier of a region in the 2D cellular grid.

| \bigcirc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \bigcirc | O | - | | | | \bigcirc | \bigcirc |
| \bigcirc | | | - | - | \bullet | - | \bigcirc |
| \bigcirc | | \bigcirc | | | | | \bigcirc |
| \bigcirc |

Algorithm K1990 is one of the simplest (implementation) and most efficient linear online 4-DSS recognition algorithms.

It is based on the calculation of a narrowest strip defined by the nearest support below and above (see Theorem 2 on page 4 in Lecture 15, and figure on next page).

It resembles the linear offline algorithm by T.A. Anderson and C.E. Kim (1985) and a linear online algorithm by E. Creutzburg, A. Hübler and O. Sýkora (1988) for 8-arcs.

Notation for K1990

The algorithm follows a digital 4-curve and extends a 4-DSS as long as it has at most two directions and all of its grid points lie between or on a pair of parallel lines that have a main diagonal distance of less than $\sqrt{2}$.

On the parallel line to the left of the digital curve, we define a negative base between the grid points $p_{N}=\operatorname{StartN}$ and $q_{N}=\operatorname{End} N$.

On the parallel line to the right of the digital curve, we define a positive base between the grid points $p_{P}=\operatorname{StartP}$ and $q_{P}=E n d P$.

Initialization of a new 4-DSS

Let the first step be from $r_{1}=\left(x_{1}, y_{1}\right)$ to the 4-adjacent $r_{2}=\left(x_{2}, y_{2}\right) ;$ let $p_{N}=p_{P}=r_{1}, q_{N}=q_{P}=r_{2}, a=x_{2}-x_{1}$, $b=y_{2}-y_{1}, c=a y_{2}-b x_{2}$, and note the direction of the step from r_{1} to r_{2}.

Left to right in figure: $(a, b)^{T}=(1,0),(0,1),(0,-1)$, or $(-1,0)$.
Here: negative base $=$ positive base, and vector $(a, b)^{T}$ is parallel to both.

Number of possible directions on a 4-DSS

Whenever a new step is not in one of the (at most two) directions in the current 4-DSS, we start a new DSS.

When there has been only one direction so far we continue the current DSS.

If we continue with two directions, we decide based on values a and b; see next pages for details.

Two-Point Equation of a Line

Assume two points $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ on a straight line.

The equation of the straight line is

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

or

$$
\begin{aligned}
y & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} x+\frac{y_{1}\left(x_{2}-x_{1}\right)-x_{1}\left(y_{2}-y_{1}\right)}{x_{2}-x_{1}} \\
& =\frac{b}{a} x+\frac{c}{a}
\end{aligned}
$$

If p_{1} and p_{2} are grid points, then a, b, c are integers.

Case of Two Directions

Let points p_{N}, q_{N} be on straight line

$$
y=\frac{b}{a} x+\frac{c}{a}
$$

Note: because the straight line is incident with two grid points, it follows that a, b, c are integers, and we can choose a, b such that they are relatively prime.

Points p_{P}, q_{P} in the example above are on straight line

$$
y=\frac{b}{a} x+\frac{c}{a}-1
$$

Note: Theorem 2 in Lecture 15 allows that this line moves further away from line $y=\frac{b}{a} x+\frac{c}{a}$, namely by $\sqrt{2}$ in main diagonal distance.

Two Inequalities

All grid points on the 4-DSS have coordinates (x, y) which are on or between two straight lines. They satisfy

$$
\begin{equation*}
0 \leq b x-a y+c \tag{1}
\end{equation*}
$$

(i.e., they are right of, or on the "negative straight line") and

$$
\begin{equation*}
b x-a y+c \leq|a|+|b|-1 \tag{2}
\end{equation*}
$$

(i.e., they are left of, or on a second straight line which is $\sqrt{2}$ away from the "negative straight line" in main diagonal distance.)

Note: (2) allows $b x-a y+c=|a|+|b|-1$ (i.e., a second line in distance $\sqrt{2}$). This defines a "symmetric" algorithm; a trace of a

0	0	0	0	0	0	0
	0	0	0	0	0	0

"double staircase" (see example of a subsequence of a border cycle) would contain more than two different directions, leading to a start of a new segment where expected.

Continuation of Algorithm

(Case of two Directions)

Suppose inequalities (1) and (2) are true for $n-1$ accepted grid points $r_{1}=\left(x_{1}, y_{1}\right), \ldots, r_{n-1}=\left(x_{n-1}, y_{n-1}\right)$ of the 4 -DSS.

Let $r_{n}=\left(x_{n}, y_{n}\right)$ be the next grid point to be tested, which is 4 -adjacent to $r_{n-1}=\left(x_{n-1}, y_{n-1}\right)$.
c is an integer such that

$$
c=a y-b x
$$

for any (up to point r_{n-1}) grid point (x, y) on the negative base. (For example, if $q_{N}=(6,1)$ in the figure on page 4 , then $c=9$.) Sometimes c needs to be updated during the algorithm.

$$
\text { Let } h(x, y)=b x-a y+c \text {. }
$$

Because $r_{n}=\left(x_{n}, y_{n}\right)$ is 4-adjacent to $r_{n-1}=\left(x_{n-1}, y_{n-1}\right)$ (i.e., it differs from r_{n-1} only in one coordinate by 1), the value of $h\left(r_{n}\right)$ can only differ either by b or by a from $h\left(r_{n-1}\right)$.

If $0<h\left(r_{n}\right)<|a|+|b|-1$, then r_{n} is accepted and no parameter needs to be updated. Otherwise consider the cases on the next page.
(i) $h\left(r_{n}\right)=0: r_{n}$ is on the negative base, and the n vertices form a 4-DSS; let $q_{N}:=r_{n}$.
(ii) $h\left(r_{n}\right)=|a|+|b|-1: r_{n}$ is on the positive base, and the n vertices form a 4-DSS; let $q_{P}:=r_{n}$.
(iii) $h\left(r_{n}\right)=-1$ or $h\left(r_{n}\right)=|a|+|b|$: the n vertices form a 4-DSS because the new grid point r_{n} is still within the distance limits from the points between the two supporting lines but the values a, b, and c need to be updated:
(A) if $h\left(r_{n}\right)=-1$ then
begin

$$
\begin{aligned}
& \quad q_{N}:=r_{n} ; p_{P}:=q_{P} ; \quad(a, b):=r_{n}-p_{N} \\
& \text { end }
\end{aligned}
$$

(B) if $h\left(r_{n}\right)=|a|+|b|$ then begin

$$
\begin{aligned}
& \quad q_{P}:=r_{n} ; p_{N}:=q_{N} ; \quad(a, b):=r_{n}-p_{P} \\
& \text { end }
\end{aligned}
$$

and for $q_{N}=(x, y)$ let $c=a y-b x$.
(iv) otherwise, the n vertices do not form a 4-DSS; stop at the previous vertex r_{n-1}, and initialize a new 4-DSS.

In cases (iii.A) and (iii.B), we have new values a, b, and c and new endpoints of positive or negative base.

In cases (i) and (ii), we have to move either q_{N} or q_{P} forward into position r_{n}.

Non-Unique Segmentation Results

end vertex of a 4-DSS

A clockwise and an anticlockwise traversal of the frontier of a digital region that produce different segmentations into maximum-length 4-DSSs. The start point of the traversal will also influence the result in general.

Example

$n=2$: We start tracing at points $r_{1}=(0,0)$ and $r_{2}=(1,0)$. We have $p_{N}:=p_{P}:=(0,0), q_{N}:=q_{P}:=(1,0), a:=1, b:=0$, and $c=0$. Only one direction (RIGHT) so far.

$n=3$: With $r_{3}=(1,1)$ comes a second direction (UP). Point $q_{N}=(1,0)$ on the negative base defines $c=0$. We have $h\left(r_{3}\right)=-1$. We are at case (iii.A) on page 8 :
$q_{N}:=(1,1) ; \quad p_{P}:=(1,0) ; \quad(a, b):=(1,1) ; \quad c=0$
$n=4$: For $r_{4}=(2,1)$ we continue to have two directions (RIGHT, UP). We have $h\left(r_{4}\right)=1=|a|+|b|-1$. Case (ii) defines $q_{P}:=(2,1)$.
$n=5$: With $r_{5}=(3,1)$ we get $h\left(r_{5}\right)=2=|a|+|b|$. Case (iii.B) defines $q_{P}:=(3,1), p_{N}:=(1,1),(a, b):=(2,1)$, and $c:=1$.
$n=6$: With $r_{6}=(4,1)$ we get $h\left(r_{6}\right)=3=|a|+|b|$. Case (iii.B)
defines $q_{P}:=(4,1), p_{N}:=(1,1),(a, b):=(3,1)$, and $c:=2$.
$n=7$: With $r_{7}=(4,2)$ we get $h\left(r_{7}\right)=0, q_{N}:=(4,2)$ from (i).
$n=8$: With $r_{8}=(5,2)$ we get $h\left(r_{8}\right)=1$. Because of $0<1<|a|+|b|-1=3$, we can continue without any update.
$n=9$: With $r_{9}=(6,2)$ we get $h\left(r_{9}\right)=2$. Nothing to do.
$n=10: r_{10}=(7,2)$ gives $h\left(r_{10}\right)=3, q_{P}:=(7,2)$, see (ii).
$n=11: r_{11}=(7,3)$ gives $h\left(r_{11}\right)=0, q_{N}=(7,3)$, see (i).
$n=12$: With $r_{12}=(8,3)$ we get $h\left(r_{12}\right)=1$. Nothing to do.
$n=13$: With $r_{13}=(9,3)$ we get $h\left(r_{13}\right)=2$. Nothing to do.
$n=14$: With $r_{14}=(9,4)$ we get $h\left(r_{14}\right)=-1$. Case (iii.A) defines $q_{N}:=(9.4), p_{P}:=(7,2),(a, b):=(8,3)$, and $c=5$.
$n=15$: With $r_{15}=(10,4)$ we get $h\left(r_{15}\right)=3$. Nothing to do.
$n=16$: With $r_{16}=(11,4)$ we get $h\left(r_{16}\right)=6$. Nothing to do.
$n=17$: With $r_{17}=(12,4)$ we get $h\left(r_{17}\right)=9$. Nothing to do.
$n=18$: With $r_{18}=(13,4)$ we get $h\left(r_{18}\right)=12>|a|+|b|$. Step not possible; start a new 4-DSS at $r_{1} 7$.

Coursework

Related material in textbook: Section 9.6.4.
A.16. [7 marks] ${ }^{\text {a }}$ Discuss algorithm K1990.
(i) Assume equal in inequalities (1) and (2) on page 6 . Show that the main diagonal distance between these two straight lines is less or equal to $\sqrt{2}$, for any three integers a, b, and c.
(ii) Implement the algorithm (Note: there are free downloads on the Internet; see, for example, TC18 of the IAPR).
(iii) Provide general arguments (i.e., a proof) that this is a linear time algorithm and specify this further by providing a run-time analysis for 4-DSSs of varying length (see also Exercise 10 on page 337).
(iv) This algorithm provides a polygonal approximation of a traced border cycle. Calculate the total length of this polygonal curve for estimating the perimeter of digitized objects (e.g., a disk, an ellipse, or a "halfmoon"). Discuss the accuracy of this method for estimating the length of these digitized curves (i.e., frontiers of these objects).

[^0]
[^0]: ${ }^{\text {a }}$ You can do either A. 16 or A.17, but not both.

