
Algorithms
for Picture Analysis Lecture 15: Characterization of DSSs

Digital and Cellular Rays

digital rays iα,β = iα,β(0)iα,β(1) . . . as defined in Lecture 04

slope α and intercept β; if α is rational, then we have a rational
digital ray, and an irrational digital ray otherwise

8-path i0.33,1.3 = 10010010 . . .

alternative digitization model: all 2-cells having a non-empty
intersection with the given arc (i.e., outer Jordan digitization or
supercover)

a cellular straight line segment: may contain 2× 2 blocks of 2-cells
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translate a cellular straight ray by (0.5,0.5) so that its 2-cells are
in grid point positions, its frontier consists of an infinite 4-curve
which can be split into the upper and lower digital 4-rays

Definition 1 A DSS (4-DSS) is a nonempty finite subpath of a
digital ray (upper or lower 4-ray).

note: instead of 8-DSS or 8-ray it is common to use DSS or
digital ray, respectively

Let Un = dαn + βe and Ln = bαn + βc.

(dae denotes the smallest integer greater or equal to a.)

The differences between successive Uns (Lns ) define the
following chain codes:

uα,β(n) = 0 if Un = Un+1

= 02 if Un = Un+1 − 1

for n ≥ 0 (analogously for lα,β(n)). In accordance with our
assumption that 0 ≤ α ≤ 1, we need to use only codes 0 and 2.
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Words

Assuming that a DSS (4-DSS) starts at a recent pixel of interest,
we can assume that it starts at p = (0, 0) and ends at a grid point
q = (i, j), and is uniquely described by a word

w(1) . . . w(i + 1) ∈ {0, 1}?

(w(1) . . . w(m) ∈ {0, 2}?, with m ≥ i + 1).

From now on, we simply identify DSSs (4-DSSs) with such
nonempty words on the alphabet {0, 1} (alphabet {0, 2}).

Let w(1)w(2) . . . w(m) be a word of directional codes. Let
G(w) = {p0, p1, . . . , pm−1} be the assigned set of grid points such
that p0 = (0, 0) and w connects p0 with pm−1 via a sequence of
horizontal, vertical, or diagonal steps (as encoded in w) through
p1, . . . , pm−2.

Example: w = 0122130067700
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Theorem 1 A word w ∈ {0, 1}? is an 8-DSS iff G(w) lies between
or on two parallel lines with a distance apart (in the y direction) that
is less than 1.

Theorem 2 A word w ∈ {0, 2}? is a 4-DSS iff G(w) lies between or
on two parallel lines with a distance apart in the main diagonal
direction that is less than

√
2.

There are four possible oriented diagonals in a grid square. The
(oriented) main diagonal for a pair of parallel lines is the one that
maximizes the dot product with the normal to the lines. It
makes angle 135◦ with the positive x-axis if the digitized line
has a slope in [0,1).
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Supporting Lines

Two parallel lines at minimum diagonal distance that have G(w)
between or on them are called a pair of supporting lines of w.

Cellular straight segments can also be characterized by a pair of
supporting lines. The distance between a pair of parallel lines is
measured in the direction of the normal to the lines. Let M be a
bounded set in the plane and θ a direction (0 ≤ θ < 2π). The
width wθ(M) is the minimum distance between a pair of parallel
lines such that θ is the direction of the normal to the lines and M

lies between or on them. Let R2×2 be a square formed by four
2-cells.

Theorem 3 A 1-connected set M of 2-cells is cellularly straight iff
there exists a direction θ such that wθ(

⋃
M) ≤ wθ(R2×2).
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Self-Similarity

The following is an 8-DSS:

0101010101010101011010101010101010110101010101010
10110101010101010101101010101010101011

An initial formulation of necessary conditions for self-similarity
of digital straight lines was given by H. Freeman in 1970:

“To summarize, we thus have the following three
specific properties which all chains of straight lines
must possess:

(F1) at most two types of elements can be present, and
these can differ only by unity, modulo eight;

(F2) one of the two element values always occurs singly;

(F3) successive occurrences of the element occurring
singly are as uniformly spaced as possible.”

For the example above: 0 occurs singly, and the run length of
the 1’s is as follows:

11111111211111112111111121111111211111112

Here, 2 occurs singly, the run lengths 1 and 2 only differ by 1,
and the run length of the 1s is as follows:

87777

Here, 8 occurs singly, the run lengths 7 and 8 only differ by 1,
and there is finally just one run of 7s.
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Let s be a finite word, and let l(s) and r(s) be the run lengths of
nonsingular letters to the left of the first singular letter and to
the right of the last singular letter in s.

Reduction operation R(s) produces a word that results from s

by replacing by their run lengths all subwords of nonsingular
letters in s that are between two singular letters in s and
deleting all other letters in s. Starting with a word u, it produces
a sequence of words u0 = u, u1 = R(u0), u2 = R(u1), and so
forth.

Definition 2 A finite chain code u has the DSS property iff u = u0

and any nonempty word un = R(un−1) satisfies

(L1) There are at most two different letters a and b in un, and, if there
are two, then |a− b| = 1 (modulo 8 in the case of u0).

(L2) If there are two different letters in un, at least one of them is
singular.

as well as the following two conditions:

(S1) If un contains only one letter a or two different letters a and
a + 1, then l(un−1) ≤ a + 1 and r(un−1) ≤ a + 1.

(S2) If un contains two different letters a and a + 1 and a is
nonsingular in un, then un starts with a if l(un−1) = a + 1 and
ends with a if r(un−1) = a + 1.
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Syntactic Characterization

Following L. D. Wu (1982), we have the following:

Theorem 4 A finite 8-arc is an 8-DSS iff its chain code satisfies the
DSS property.

u0 = 11011101110111011110111011101111011101110
11110111011101110111101110111011110111

s(0) = 0, n(0) = 1, l(0) = 2, r(0) = 3
u1 = 33343343343334334

s(1) = 4, n(1) = 3, l(1) = 3, r(1) = 0
u2 = 2232

s(2) = 3, n(2) = 2, l(2) = 2, r(2) = 1
u3 = ε

The input chain code u0 is now represented by a syntactic code,
which is as follows for the example:

0
1
2

s n l r∣∣∣∣∣∣
0 1 2 3
4 3 3 0
3 2 2 1

This code consists of integers in four columns s, n, l, and r. The
DSS property imposes constraints on these integers so that a
given word u can be classified as being a DSS or not.

Page 8 February 2005



Algorithms
for Picture Analysis Lecture 15: Characterization of DSSs

The Chord Property

A. Rosenfeld gave in 1974 a first formal characterization of
digital straight lines, which led to a better specification of
Freeman’s property (F3), and finally to Wu’s theorem.

Definition 3 A set M of grid points satisfies the chord property iff,
for any two distinct p and q in M and any point r on the (real) line
segment pq, there exists a grid point t ∈ M such that
max(|xr − xt|, |yr − yt|) < 1.

An 8-arc is called irreducible iff its set of grid points does not
remain 8-connected if a nonendpoint is removed from it.

Theorem 5 A finite irreducible 8-arc u ∈ {0, 1}? is a DSS iff G(u)
satisfies the chord property.
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DSS Recognition Algorithms

examples of possible applications:

(i) segment borders (8-paths) or frontiers (4-paths) of regions
into subsequent DSSs of maximum length (the resulting
polygonal approximation supports further processing or
analysis)

(ii) approximate edges in pictures (e.g., road borders in a driver
support system) or calculated 4- or 8-arcs (e.g., skeletons in
2D or 3D picture analysis)

illustration to (i): the start point and the orientation of tracing
influences in general the resulting segmentation into
maximum-length DSSs.
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Properties of Algorithms

DSS recognition algorithms can be designed applying selected
characterizations as given above

The computational problem is as follows: the input is a
sequence of chain codes i(0), i(1), . . . where (without loss of
generality) i(k) ∈ {0, 1} and k ≥ 0.

An offline DSS recognition algorithm decides whether a finite
word u ∈ {0, 1}? is a DSS.

An online DSS recognition algorithm reads the successive chain
codes i(0), i(1), . . . and determines the maximum k ≥ 0 such
that i(0), i(1), . . . , i(k) is a DSS but i(0), i(1), . . . , i(k), i(k + 1) is
not.

A recognition algorithm has linear run time behavior (is a linear
algorithm) if it runs in O(n) time (i.e., it performs at most O(|u|)
computation steps for any finite input word u ∈ {0, 1}?). An
online algorithm is linear if it uses on the average a constant
number of operations for each input chain code symbol.

Analogous definitions can be given for 4-DSS recognition
algorithms.
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Coursework

Related material in textbook: Sections 9.1, 9.2, 9.3.1, 9.3.2, and
the beginning of 9.6 (up to the end of 9.6.1). Solve Exercise 11 on
page 337.

A.15. [6 marks] Implement algorithm CHW1982a as described
in Section 9.6.2. Generate randomly (at least 100) 8-DSSs of
varying length (i.e., number of chain codes) within a (virtual)
1000× 1000 binary picture, run CHW1982a on them and
compare your measurements about run-time and length of the
syntactic code (i.e., maximum of k in the table where elements
changed after initialization) with the formulas on page 330.

(a) You may apply Bresenham’s algorithm for generating DSSs
(or a line drawing program with subsequent tracing of
generated line segments for reading the chain code sequence).

(b) The start pixel can always be the same [e.g., the origin (0,0)],
and considering (i.e., generating) DSSs in the first octant only is
also fine, because these will also produce any possible type of
“syntactic code complexities”.

(c) Length kmax = 9 should be sufficient for segments generated
in a (virtual) 1000× 1000 picture.

(d) Run-time measurements will (!) be scattered around a line.
A sliding mean can be used to achieve a better appearance as
being “a line”.

(e) Optional [1 mark] you may also generate examples of two
subsequent DSSs - then you will also see cases where ”no” is
returned.
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