## Digital and Cellular Rays

digital rays $i_{\alpha, \beta}=i_{\alpha, \beta}(0) i_{\alpha, \beta}(1) \ldots$ as defined in Lecture 04 slope $\alpha$ and intercept $\beta$; if $\alpha$ is rational, then we have a rational digital ray, and an irrational digital ray otherwise


8-path $i_{0.33,1.3}=10010010 \ldots$
alternative digitization model: all 2-cells having a non-empty intersection with the given arc (i.e., outer Jordan digitization or supercover)

a cellular straight line segment: may contain $2 \times 2$ blocks of 2 -cells
translate a cellular straight ray by $(0 \cdot 5,0 \cdot 5)$ so that its 2 -cells are in grid point positions, its frontier consists of an infinite 4-curve which can be split into the upper and lower digital 4-rays


Definition 1 A DSS (4-DSS) is a nonempty finite subpath of a digital ray (upper or lower 4-ray).
note: instead of 8 -DSS or 8-ray it is common to use DSS or digital ray, respectively

Let $U_{n}=\lceil\alpha n+\beta\rceil$ and $L_{n}=\lfloor\alpha n+\beta\rfloor$.
( $\lceil a\rceil$ denotes the smallest integer greater or equal to $a$.)
The differences between successive $U_{n} \mathrm{~s}\left(L_{n} \mathrm{~s}\right)$ define the following chain codes:

$$
\begin{aligned}
u_{\alpha, \beta}(n) & =0 \quad \text { if } U_{n}=U_{n+1} \\
& =02 \quad \text { if } U_{n}=U_{n+1}-1
\end{aligned}
$$

for $n \geq 0$ (analogously for $l_{\alpha, \beta}(n)$ ). In accordance with our assumption that $0 \leq \alpha \leq 1$, we need to use only codes 0 and 2 .

## Words

Assuming that a DSS (4-DSS) starts at a recent pixel of interest, we can assume that it starts at $p=(0,0)$ and ends at a grid point $q=(i, j)$, and is uniquely described by a word

$$
\begin{aligned}
& w(1) \ldots w(i+1) \in\{0,1\}^{\star} \\
& \left(w(1) \ldots w(m) \in\{0,2\}^{\star}, \text { with } m \geq i+1\right) .
\end{aligned}
$$

From now on, we simply identify DSSs (4-DSSs) with such nonempty words on the alphabet $\{0,1\}$ (alphabet $\{0,2\}$ ).

Let $w(1) w(2) \ldots w(m)$ be a word of directional codes. Let $G(w)=\left\{p_{0}, p_{1}, \ldots, p_{m-1}\right\}$ be the assigned set of grid points such that $p_{0}=(0,0)$ and $w$ connects $p_{0}$ with $p_{m-1}$ via a sequence of horizontal, vertical, or diagonal steps (as encoded in $w$ ) through $p_{1}, \ldots, p_{m-2}$.

Example: $w=0122130067700$


Theorem $1 A$ word $w \in\{0,1\}^{\star}$ is an 8-DSS iff $G(w)$ lies between or on two parallel lines with a distance apart (in the $y$ direction) that is less than 1.


Theorem 2 A word $w \in\{0,2\}^{\star}$ is a 4-DSS iff $G(w)$ lies between or on two parallel lines with a distance apart in the main diagonal direction that is less than $\sqrt{2}$.


There are four possible oriented diagonals in a grid square. The (oriented) main diagonal for a pair of parallel lines is the one that maximizes the dot product with the normal to the lines. It makes angle $135^{\circ}$ with the positive $x$-axis if the digitized line has a slope in $[0,1)$.

## Supporting Lines

Two parallel lines at minimum diagonal distance that have $G(w)$ between or on them are called a pair of supporting lines of $w$.

Cellular straight segments can also be characterized by a pair of supporting lines. The distance between a pair of parallel lines is measured in the direction of the normal to the lines. Let $M$ be a bounded set in the plane and $\theta$ a direction $(0 \leq \theta<2 \pi)$. The width $w_{\theta}(M)$ is the minimum distance between a pair of parallel lines such that $\theta$ is the direction of the normal to the lines and $M$ lies between or on them. Let $R_{2 \times 2}$ be a square formed by four 2-cells.

Theorem 3 A 1-connected set $M$ of 2-cells is cellularly straight iff there exists a direction $\theta$ such that $w_{\theta}(\bigcup M) \leq w_{\theta}\left(R_{2 \times 2}\right)$.


## Self-Similarity

The following is an 8-DSS:
0101010101010101011010101010101010110101010101010 10110101010101010101101010101010101011

An initial formulation of necessary conditions for self-similarity of digital straight lines was given by H. Freeman in 1970:
"To summarize, we thus have the following three specific properties which all chains of straight lines must possess:
(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;
(F2) one of the two element values always occurs singly;
(F3) successive occurrences of the element occurring singly are as uniformly spaced as possible."

For the example above: 0 occurs singly, and the run length of the 1 's is as follows:

## 1111111121111112111111121111111211111112

Here, 2 occurs singly, the run lengths 1 and 2 only differ by 1 , and the run length of the $1 s$ is as follows:

87777
Here, 8 occurs singly, the run lengths 7 and 8 only differ by 1 , and there is finally just one run of 7 s .

Let $s$ be a finite word, and let $l(s)$ and $r(s)$ be the run lengths of nonsingular letters to the left of the first singular letter and to the right of the last singular letter in $s$.

Reduction operation $R(s)$ produces a word that results from $s$ by replacing by their run lengths all subwords of nonsingular letters in $s$ that are between two singular letters in $s$ and deleting all other letters in $s$. Starting with a word $u$, it produces a sequence of words $u_{0}=u, u_{1}=R\left(u_{0}\right), u_{2}=R\left(u_{1}\right)$, and so forth.

Definition 2 A finite chain code $u$ has the DSS property iff $u=u_{0}$ and any nonempty word $u_{n}=R\left(u_{n-1}\right)$ satisfies
(L1) There are at most two different letters $a$ and $b$ in $u_{n}$, and, if there are two, then $|a-b|=1$ (modulo 8 in the case of $u_{0}$ ).
(L2) If there are two different letters in $u_{n}$, at least one of them is singular.
as well as the following two conditions:
(S1) If $u_{n}$ contains only one letter a or two different letters $a$ and $a+1$, then $l\left(u_{n-1}\right) \leq a+1$ and $r\left(u_{n-1}\right) \leq a+1$.
(S2) If $u_{n}$ contains two different letters $a$ and $a+1$ and $a$ is nonsingular in $u_{n}$, then $u_{n}$ starts with $a$ if $l\left(u_{n-1}\right)=a+1$ and ends with $a$ if $r\left(u_{n-1}\right)=a+1$.

## Syntactic Characterization

Following L. D. Wu (1982), we have the following:
Theorem 4 A finite 8-arc is an 8-DSS iff its chain code satisfies the DSS property.

$$
\begin{array}{rlrl}
u_{0} & =11011101110111011110111011101111011101110 \\
& 11110111011101110111101110111011110111 \\
s(0) & =0, & n(0)=1, & l(0)=2, \\
u_{1} & =33343343343334334 \\
s(1) & =4, & n(1)=3, & l(1)=3, \\
u_{2} & =2232 \\
s(2) & =3, & n(1)=0 \\
u_{3} & =\varepsilon & & \\
&
\end{array}
$$

The input chain code $u_{0}$ is now represented by a syntactic code, which is as follows for the example:

|  |
| :--- | :--- | :--- | :--- |
| 0 |
| 1 |
| 2 |$|$| $s$ | $n$ | $l$ | $r$ |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 |
| 4 | 3 | 3 | 0 |
| 3 | 2 | 2 | 1 |

This code consists of integers in four columns $s, n, l$, and $r$. The DSS property imposes constraints on these integers so that a given word $u$ can be classified as being a DSS or not.

## The Chord Property

A. Rosenfeld gave in 1974 a first formal characterization of digital straight lines, which led to a better specification of Freeman's property (F3), and finally to Wu's theorem.

Definition 3 A set M of grid points satisfies the chord property iff, for any two distinct $p$ and $q$ in $M$ and any point $r$ on the (real) line segment $p q$, there exists a grid point $t \in M$ such that $\max \left(\left|x_{r}-x_{t}\right|,\left|y_{r}-y_{t}\right|\right)<1$.


An 8-arc is called irreducible iff its set of grid points does not remain 8 -connected if a nonendpoint is removed from it.

Theorem 5 A finite irreducible 8 -arc $u \in\{0,1\}^{\star}$ is a DSS iff $G(u)$ satisfies the chord property.

## DSS Recognition Algorithms

examples of possible applications:
(i) segment borders (8-paths) or frontiers (4-paths) of regions into subsequent DSSs of maximum length (the resulting polygonal approximation supports further processing or analysis)
(ii) approximate edges in pictures (e.g., road borders in a driver support system) or calculated 4- or 8-arcs (e.g., skeletons in 2D or 3D picture analysis)

illustration to (i): the start point and the orientation of tracing influences in general the resulting segmentation into maximum-length DSSs.

## Properties of Algorithms

DSS recognition algorithms can be designed applying selected characterizations as given above

The computational problem is as follows: the input is a sequence of chain codes $i(0), i(1), \ldots$ where (without loss of generality) $i(k) \in\{0,1\}$ and $k \geq 0$.

An offline DSS recognition algorithm decides whether a finite word $u \in\{0,1\}^{\star}$ is a DSS.

An online DSS recognition algorithm reads the successive chain codes $i(0), i(1), \ldots$ and determines the maximum $k \geq 0$ such that $i(0), i(1), \ldots, i(k)$ is a DSS but $i(0), i(1), \ldots, i(k), i(k+1)$ is not.

A recognition algorithm has linear run time behavior (is a linear algorithm) if it runs in $\mathcal{O}(n)$ time (i.e., it performs at most $\mathcal{O}(|u|)$ computation steps for any finite input word $\left.u \in\{0,1\}^{\star}\right)$. An online algorithm is linear if it uses on the average a constant number of operations for each input chain code symbol.

Analogous definitions can be given for 4-DSS recognition algorithms.

## Coursework

Related material in textbook: Sections 9.1, 9.2, 9.3.1, 9.3.2, and the beginning of 9.6 (up to the end of 9.6.1). Solve Exercise 11 on page 337.
A.15. [6 marks] Implement algorithm CHW1982a as described in Section 9.6.2. Generate randomly (at least 100) 8-DSSs of varying length (i.e., number of chain codes) within a (virtual) $1000 \times 1000$ binary picture, run CHW1982a on them and compare your measurements about run-time and length of the syntactic code (i.e., maximum of $k$ in the table where elements changed after initialization) with the formulas on page 330.
(a) You may apply Bresenham's algorithm for generating DSSs (or a line drawing program with subsequent tracing of generated line segments for reading the chain code sequence).
(b) The start pixel can always be the same [e.g., the origin $(0,0)]$, and considering (i.e., generating) DSSs in the first octant only is also fine, because these will also produce any possible type of "syntactic code complexities".
(c) Length $k_{\max }=9$ should be sufficient for segments generated in a (virtual) $1000 \times 1000$ picture.
(d) Run-time measurements will (!) be scattered around a line. A sliding mean can be used to achieve a better appearance as being "a line".
(e) Optional [1 mark] you may also generate examples of two subsequent DSSs - then you will also see cases where "no" is returned.

