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Pick’s Formula I

given: simple grid polygon containing o grid points; [ of those
on its frontier
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Left: ap = 36 and [ = 16. Middle: ap = 50 and [ = 36. Right:
ap = 39 and [ = 26.

(G. Pick, 1899)

Theorem 1 The area of a simple grid polygon equals f = g — £ — 1.

Examples above: f = 27 (left), f = 31 (middle), and f = 25
(right)
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Decision for Grid Cell Model I

Assume our task is to calculate the area of a region M, assuming
the (unknown) preimage of this region was mapped by Gauss
digitization into the grid, resulting into the picture as given:
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The 4-border cycle circumscribes five simple isothetic grid
polygons, and four arcs of width zero. A 2 x 2 square of grid
points has area 1, and each arc has area 0. — It is more
appropriate to consider pixels in the grid cell model, and to
measure the area here (i.e., counting the pixels in the region):

We obtain a simple polygon (the frontier of M), and Pick’s
formula can be used. Vertices of 2-cells are now at grid point
positions. The 29 x 8 picture grid (above) expanded into a
30 x 9 frontier grid (below).
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Frontier Grid I

Assume a picture P defined on an m X n (picture) grid G, .

We analyze P in a picture F defined onan (m+ 1) x (n + 1)
frontier grid.

F'is at the beginning like an empty “drawing board”: we can fill
it based on analyzing P.

A pixel in F' corresponds to a grid vertex in P (assuming P in
the grid cell model). Each grid vertex in P is incident with 4
grid squares (4 pixels).

O O | — pixelinF
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A value at a pixel in F' will be defined based on a given analysis
task for picture P.

Example: We trace in F' the frontier of a 4-region M in P (see
previous page). At each grid point p = (z,y) in F, we have four
pixels (and their values) in P which specify a neighborhood of
p, and these are pixels (z — 1,y — 1), (z,y — 1), (x — 1,y), and
(x,y) in P. Depending on these values, we select the next
isothetic step of a 4-path in F'. Pixel values along this 4-path are
changed into “black”, and all others remain “white”.
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Non-Simple Polygons I

For example, if applying s-adjacency (in P) then this may lead
to a frontier which circumscribes several simple polygons:

Here we have five simple isothetic grid polygons.

General case: assume we circumscribe n simple grid polygons
ITy,...,II, (n > 1). The area is additive:

f=AJ 1)
k=1
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k=2
+ (ol 5 1)
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withL =37 I, — 2(n—1)andag =37, ol — (n—1)

Note: L can be calculated when tracing the frontier, n — 1 is the
number of pixels in I’ which are visited twice. For oy see next

page.
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Discrete Column-Wise Integration I

During a trace of a frontier in F', we arrive at a grid point (z, y)
(in F') where the neighboring 4 pixels in P are either in the
region (shown as a shaded square) or not.
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These are all the possible local patterns. Each pattern is labeled
by its contribution (i.e., increment) for ay.
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An example of counting o, starting at (3, 5) with clockwise
orientation. At the end we know that og = 64.
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Another Example I
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Border tracing of a connected region M in P in s-adjacency:
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Frontier of M in the frontier grid:
n = L =

g = area =
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Inner or Outer Border Cycle? I

here we trace two outer and one inner border cycles (using, e.g.,

the algorithm from Lecture 10 if tracing borders of regions in
[22, A4])Z

The resulting orientation (e.g., counter-clockwise for inner
border cycles) is due to the algorithm.

The black vertices label convex corners (vertex angle is 7/2), and
the white vertices label concave corners (vertex angle is 37/2).

Theorem 2 Let I1 4 and Il be the numbers of convex and concave
corners on a traced 4-border cycle ; then we have I14 — Ilc = 4 for an
outer border cycle, and 114 — Il = —4 for an inner border cycle.
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Regular Oriented Adjacency Graphs I

Regular oriented adjacency graph G, » =[S, A,&]: all v(p) = v are
constant, and all A(p) = A are constant, where p € S and p any

cycle generated by &

1 1
V:a—oze;gl/(p):2a1/ao and )\:a—22p:)\(p):2a1/oz2
p

thus «ap/a; =2/v and «s/a; =2/, and

2/v + 2/A=1+ 2/ (1)
Examples: regular tilings of some surface (e.g., sphere or torus)
define finite regular oriented adjacency graphs;

For infinite graphs, Equation (1) has only three integer-valued
solutions: v = A=4,v=3and A = 6;and v = 6 and \ = 3.

Let S = Z? in these three infinite planar G, ,s. All three infinite
regular oriented adjacency graphs are planar; we have

Oé()—Oél—|—052:2
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Simply Connected Regions I

Consider a finite subgraph of one of these three G, xs defined
by a finite subset M C Z2.

Definition 1 M is simply connected iff it has only one border cycle.

Assume the border cycle has length [ ( = number of nodes on
it). Let k be the number of invalid undirected edges between M
and M, and f the number of atomic cycles of M (the “area” of
M).

SRRRKEE
147474 44T
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YA
SRSERKE:
A4 T4THY:

v=3,A=6,a0 =49, 00 =59, a0 =12,1 =52, k=29, f =11
(left);

v=4X=4,a00=23, 01 =30,a5=9,0=28, k=32, f =8
(middle);

v=6,A=3,a0=18, a1 =32, a, =16, =19, k=44, f =15
(right)
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Simply Connected Regions I

Altogether we have:

ao—a1+a2:2
vog — k = 20

)\(O{Q — 1) + [ = 2041
It follows that:
Vi —Ak+vAd=2v4+22—vN)a; =0-a1 =0

v and A are constants (of G, ).

A Generalization of Pick’s Formula I

(K. Voss, 1986: a generalization of Theorem 1)

Theorem 3 For a region M of an infinite planar G, that has no
proper holes, we have oy = Af/v + /2 + 1, where l is the length
of the outer border cycle of M.
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General Case I

(K. Voss, 1986: a generalization of Theorem 2)

Theorem 4 For a region M of an infinite planar G, » and any of its
border cycles, we have k = £v + vl/\ where the outer border cycle
has the positive sign and any inner border cycle has the negative sign.

Suppose that M has r > 1 border cycles. Let L be the total
length of all border cycles, and K the total number of all invalid
edges assigned to these border cycles:

r =2+ L/A - K/v

r is a topologic invariant of M: L and K can be accumulated by
examining all 4-neighborhoods of points in M; border cycle
tracing is not necessary
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Coursework I

Related material in textbook: Sections 8.1.6 and 4.3.7. Solve
Exercise 13 on page 3005.

A.12. [6 marks] Design and implement (two variants of ) an
algorithm for discrete column-wise integration in the picture
grid, such that the area (= number of grid points contained in a
simply connected region) is calculated in O(/) time when
tracing the | pixels on the (outer) border cycle of

(i) a 4-region (only isothetic steps on the border cycle), or

(ii) an 8-region (also allowing diagonal steps on the border
cycle).

Apply both variants of the algorithm to digitized disks (Gauss
digitization, grid resolution, e.g., between h = 32 and h = 1024)
and

(iii) discuss the behavior of relative errors (compared to the true
area of the disk) for increases in h; in particular,

(iv) with respect to Theorem 1 in Lecture 06?
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