Pick's Formula

given: simple grid polygon containing α_{0} grid points; l of those on its frontier

Left: $\alpha_{0}=36$ and $l=16$. Middle: $\alpha_{0}=50$ and $l=36$. Right: $\alpha_{0}=39$ and $l=26$.
(G. Pick, 1899)

Theorem 1 The area of a simple grid polygon equals $f=\alpha_{0}-\frac{l}{2}-1$.

Examples above: $f=27$ (left), $f=31$ (middle), and $f=25$ (right)

Decision for Grid Cell Model

Assume our task is to calculate the area of a region M, assuming the (unknown) preimage of this region was mapped by Gauss digitization into the grid, resulting into the picture as given:

The 4-border cycle circumscribes five simple isothetic grid polygons, and four arcs of width zero. A 2×2 square of grid points has area 1 , and each arc has area 0 . - It is more appropriate to consider pixels in the grid cell model, and to measure the area here (i.e., counting the pixels in the region):

We obtain a simple polygon (the frontier of M), and Pick's formula can be used. Vertices of 2-cells are now at grid point positions. The 29×8 picture grid (above) expanded into a 30×9 frontier grid (below).

Frontier Grid

Assume a picture P defined on an $m \times n($ picture $) \operatorname{grid} \mathbb{G}_{m, n}$.

We analyze P in a picture F defined on an $(m+1) \times(n+1)$ frontier grid.
F is at the beginning like an empty "drawing board": we can fill it based on analyzing P.

A pixel in F corresponds to a grid vertex in P (assuming P in the grid cell model). Each grid vertex in P is incident with 4 grid squares (4 pixels).

A value at a pixel in F will be defined based on a given analysis task for picture P.

Example: We trace in F the frontier of a 4-region M in P (see previous page). At each grid point $p=(x, y)$ in F, we have four pixels (and their values) in P which specify a neighborhood of p, and these are pixels $(x-1, y-1),(x, y-1),(x-1, y)$, and (x, y) in P. Depending on these values, we select the next isothetic step of a 4-path in F. Pixel values along this 4-path are changed into "black", and all others remain "white".

Non-Simple Polygons

For example, if applying s-adjacency (in P) then this may lead to a frontier which circumscribes several simple polygons:

Here we have five simple isothetic grid polygons.
General case: assume we circumscribe n simple grid polygons $\Pi_{1}, \ldots, \Pi_{n}(n \geq 1)$. The area is additive:

$$
\begin{aligned}
f= & \mathcal{A}\left(\bigcup_{k=1}^{n} \Pi_{k}\right) \\
= & \left(\alpha_{0}^{(1)}-\frac{l_{1}-1}{2}-1\right)+\sum_{k=2}^{n-1}\left(\alpha_{0}^{(k)}-\frac{l_{k}-2}{2}-1\right) \\
& +\left(\alpha_{0}^{(n)}-\frac{l_{n}-1}{2}-1\right) \\
= & \alpha_{0}-\frac{L}{2}-1
\end{aligned}
$$

with $L=\sum_{k=1}^{n} l_{k}-2(n-1)$ and $\alpha_{0}=\sum_{k=1}^{n} \alpha_{0}^{(k)}-(n-1)$
Note: L can be calculated when tracing the frontier, $n-1$ is the number of pixels in F which are visited twice. For α_{0} see next page.

Discrete Column-Wise Integration

During a trace of a frontier in F, we arrive at a grid point (x, y) (in F) where the neighboring 4 pixels in P are either in the region (shown as a shaded square) or not.

These are all the possible local patterns. Each pattern is labeled by its contribution (i.e., increment) for α_{0}.

An example of counting α_{0}, starting at $(3,5)$ with clockwise orientation. At the end we know that $\alpha_{0}=64$.

Another Example

Border tracing of a connected region M in P in s-adjacency:

Frontier of M in the frontier grid:

n	$=$	$L=$
α_{0}	$=$	area $=$

Inner or Outer Border Cycle?

here we trace two outer and one inner border cycles (using, e.g., the algorithm from Lecture 10 if tracing borders of regions in $\left[\mathbb{Z}^{2}, A_{4}\right]$):

The resulting orientation (e.g., counter-clockwise for inner border cycles) is due to the algorithm.

The black vertices label convex corners (vertex angle is $\pi / 2$), and the white vertices label concave corners (vertex angle is $3 \pi / 2$).

Theorem 2 Let Π_{A} and Π_{C} be the numbers of convex and concave corners on a traced 4-border cycle; then we have $\Pi_{A}-\Pi_{C}=4$ for an outer border cycle, and $\Pi_{A}-\Pi_{C}=-4$ for an inner border cycle.

Regular Oriented Adjacency Graphs

Regular oriented adjacency graph $\mathbb{G}_{\nu, \lambda}=[S, A, \xi]$: all $\nu(p)=\nu$ are constant, and all $\lambda(\rho)=\lambda$ are constant, where $p \in S$ and ρ any cycle generated by ξ

$$
\nu=\frac{1}{\alpha_{0}} \sum_{p \in S} \nu(p)=2 \alpha_{1} / \alpha_{0} \quad \text { and } \quad \lambda=\frac{1}{\alpha_{2}} \sum_{\rho} \lambda(\rho)=2 \alpha_{1} / \alpha_{2}
$$

thus $\quad \alpha_{0} / \alpha_{1}=2 / \nu \quad$ and $\quad \alpha_{2} / \alpha_{1}=2 / \lambda$, and

$$
\begin{equation*}
2 / \nu+2 / \lambda=1+2 / \alpha_{1} \tag{1}
\end{equation*}
$$

Examples: regular tilings of some surface (e.g., sphere or torus) define finite regular oriented adjacency graphs;

For infinite graphs, Equation (1) has only three integer-valued solutions: $\nu=\lambda=4 ; \nu=3$ and $\lambda=6$; and $\nu=6$ and $\lambda=3$.

Let $S=\mathbb{Z}^{2}$ in these three infinite planar $\mathbb{G}_{\nu, \lambda}$ s. All three infinite regular oriented adjacency graphs are planar; we have

$$
\alpha_{0}-\alpha_{1}+\alpha_{2}=2
$$

Simply Connected Regions

Consider a finite subgraph of one of these three $\mathbb{G}_{\nu, \lambda} \mathrm{S}$ defined by a finite subset $M \subseteq \mathbb{Z}^{2}$.

Definition $1 M$ is simply connected iff it has only one border cycle.
Assume the border cycle has length $l(=$ number of nodes on it). Let k be the number of invalid undirected edges between \bar{M} and M, and f the number of atomic cycles of M (the "area" of $M)$.

$\nu=3, \lambda=6, \alpha_{0}=49, \alpha_{1}=59, \alpha_{2}=12, l=52, k=29, f=11$ (left);
$\nu=4, \lambda=4, \alpha_{0}=23, \alpha_{1}=30, \alpha_{2}=9, l=28, k=32, f=8$ (middle);
$\nu=6, \lambda=3, \alpha_{0}=18, \alpha_{1}=32, \alpha_{2}=16, l=19, k=44, f=15$ (right)

Simply Connected Regions

Altogether we have:

$$
\begin{aligned}
\alpha_{0}-\alpha_{1}+\alpha_{2} & =2 \\
\nu \alpha_{0}-k & =2 \alpha_{1} \\
\lambda\left(\alpha_{2}-1\right)+l & =2 \alpha_{1}
\end{aligned}
$$

It follows that:

$$
\nu l-\lambda k+\nu \lambda=(2 \nu+2 \lambda-\nu \lambda) \alpha_{1}=0 \cdot \alpha_{1}=0
$$

ν and λ are constants (of $\mathbb{G}_{\nu, \lambda}$).

A Generalization of Pick's Formula

(K. Voss, 1986: a generalization of Theorem 1)

Theorem 3 For a region M of an infinite planar $G_{\nu, \lambda}$ that has no proper holes, we have $\alpha_{0}=\lambda f / \nu+l / 2+1$, where l is the length of the outer border cycle of M.

General Case

(K. Voss, 1986: a generalization of Theorem 2)

Theorem 4 For a region M of an infinite planar $G_{\nu, \lambda}$ and any of its border cycles, we have $k= \pm \nu+\nu l / \lambda$ where the outer border cycle has the positive sign and any inner border cycle has the negative sign.

Suppose that M has $r \geq 1$ border cycles. Let L be the total length of all border cycles, and K the total number of all invalid edges assigned to these border cycles:

$$
r=2+L / \lambda-K / \nu
$$

r is a topologic invariant of $M: L$ and K can be accumulated by examining all 4-neighborhoods of points in M; border cycle tracing is not necessary

Coursework

Related material in textbook: Sections 8.1.6 and 4.3.7. Solve Exercise 13 on page 305.
A.12. [6 marks] Design and implement (two variants of) an algorithm for discrete column-wise integration in the picture grid, such that the area (= number of grid points contained in a simply connected region) is calculated in $\mathcal{O}(l)$ time when tracing the l pixels on the (outer) border cycle of
(i) a 4-region (only isothetic steps on the border cycle), or
(ii) an 8-region (also allowing diagonal steps on the border cycle).

Apply both variants of the algorithm to digitized disks (Gauss digitization, grid resolution, e.g., between $h=32$ and $h=1024$) and
(iii) discuss the behavior of relative errors (compared to the true area of the disk) for increases in h; in particular, (iv) with respect to Theorem 1 in Lecture 06?

