
Algorithms
for Picture Analysis Lecture 12: Properties of 2D Regions

Pick’s Formula

given: simple grid polygon containing α0 grid points; l of those
on its frontier

Left: α0 = 36 and l = 16. Middle: α0 = 50 and l = 36. Right:
α0 = 39 and l = 26.

(G. Pick, 1899)

Theorem 1 The area of a simple grid polygon equals f = α0 − l
2 − 1.

Examples above: f = 27 (left), f = 31 (middle), and f = 25
(right)
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Decision for Grid Cell Model

Assume our task is to calculate the area of a region M , assuming
the (unknown) preimage of this region was mapped by Gauss
digitization into the grid, resulting into the picture as given:

The 4-border cycle circumscribes five simple isothetic grid
polygons, and four arcs of width zero. A 2× 2 square of grid
points has area 1, and each arc has area 0. – It is more
appropriate to consider pixels in the grid cell model, and to
measure the area here (i.e., counting the pixels in the region):

We obtain a simple polygon (the frontier of M ), and Pick’s
formula can be used. Vertices of 2-cells are now at grid point
positions. The 29× 8 picture grid (above) expanded into a
30× 9 frontier grid (below).
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Frontier Grid

Assume a picture P defined on an m× n (picture) grid Gm,n.

We analyze P in a picture F defined on an (m + 1)× (n + 1)
frontier grid.

F is at the beginning like an empty “drawing board”: we can fill
it based on analyzing P .

A pixel in F corresponds to a grid vertex in P (assuming P in
the grid cell model). Each grid vertex in P is incident with 4
grid squares (4 pixels).

A value at a pixel in F will be defined based on a given analysis
task for picture P .

Example: We trace in F the frontier of a 4-region M in P (see
previous page). At each grid point p = (x, y) in F , we have four
pixels (and their values) in P which specify a neighborhood of
p, and these are pixels (x− 1, y − 1), (x, y − 1), (x− 1, y), and
(x, y) in P . Depending on these values, we select the next
isothetic step of a 4-path in F . Pixel values along this 4-path are
changed into “black”, and all others remain “white”.
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Non-Simple Polygons

For example, if applying s-adjacency (in P ) then this may lead
to a frontier which circumscribes several simple polygons:

Here we have five simple isothetic grid polygons.

General case: assume we circumscribe n simple grid polygons
Π1, . . . ,Πn (n ≥ 1). The area is additive:

f = A(
n⋃

k=1

Πk)

= (α(1)
0 − l1 − 1

2
− 1) +

n−1∑
k=2

(
α

(k)
0 − lk − 2

2
− 1

)
+ (α(n)

0 − ln − 1
2

− 1)

= α0 −
L

2
− 1

with L =
∑n

k=1 lk − 2(n− 1) and α0 =
∑n

k=1 α
(k)
0 − (n− 1)

Note: L can be calculated when tracing the frontier, n− 1 is the
number of pixels in F which are visited twice. For α0 see next
page.
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Discrete Column-Wise Integration

During a trace of a frontier in F , we arrive at a grid point (x, y)
(in F ) where the neighboring 4 pixels in P are either in the
region (shown as a shaded square) or not.

These are all the possible local patterns. Each pattern is labeled
by its contribution (i.e., increment) for α0.

An example of counting α0, starting at (3, 5) with clockwise
orientation. At the end we know that α0 = 64.
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Another Example

Border tracing of a connected region M in P in s-adjacency:

Frontier of M in the frontier grid:

n = L =

α0 = area =
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Inner or Outer Border Cycle?

here we trace two outer and one inner border cycles (using, e.g.,
the algorithm from Lecture 10 if tracing borders of regions in
[Z2, A4]):

The resulting orientation (e.g., counter-clockwise for inner
border cycles) is due to the algorithm.

The black vertices label convex corners (vertex angle is π/2), and
the white vertices label concave corners (vertex angle is 3π/2).

Theorem 2 Let ΠA and ΠC be the numbers of convex and concave
corners on a traced 4-border cycle ; then we have ΠA −ΠC = 4 for an
outer border cycle, and ΠA −ΠC = −4 for an inner border cycle.
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Regular Oriented Adjacency Graphs

Regular oriented adjacency graph Gν,λ = [S, A, ξ]: all ν(p) = ν are
constant, and all λ(ρ) = λ are constant, where p ∈ S and ρ any
cycle generated by ξ

ν =
1
α0

∑
p∈S

ν(p) = 2α1/α0 and λ =
1
α2

∑
ρ

λ(ρ) = 2α1/α2

thus α0/α1 = 2/ν and α2/α1 = 2/λ, and

2/ν + 2/λ = 1 + 2/α1 (1)

Examples: regular tilings of some surface (e.g., sphere or torus)
define finite regular oriented adjacency graphs;

For infinite graphs, Equation (1) has only three integer-valued
solutions: ν = λ = 4; ν = 3 and λ = 6; and ν = 6 and λ = 3.

Let S = Z2 in these three infinite planar Gν,λs. All three infinite
regular oriented adjacency graphs are planar; we have

α0 − α1 + α2 = 2
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Simply Connected Regions

Consider a finite subgraph of one of these three Gν,λs defined
by a finite subset M ⊆ Z2.

Definition 1 M is simply connected iff it has only one border cycle.

Assume the border cycle has length l ( = number of nodes on
it). Let k be the number of invalid undirected edges between M

and M , and f the number of atomic cycles of M (the “area” of
M ).

ν = 3, λ = 6, α0 = 49, α1 = 59, α2 = 12, l = 52, k = 29, f = 11
(left);

ν = 4, λ = 4, α0 = 23, α1 = 30, α2 = 9, l = 28, k = 32, f = 8
(middle);

ν = 6, λ = 3, α0 = 18, α1 = 32, α2 = 16, l = 19, k = 44, f = 15
(right)
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Simply Connected Regions

Altogether we have:

α0 − α1 + α2 = 2

να0 − k = 2α1

λ(α2 − 1) + l = 2α1

It follows that:

νl − λk + νλ = (2ν + 2λ− νλ)α1 = 0 · α1 = 0

ν and λ are constants (of Gν,λ).

A Generalization of Pick’s Formula

(K. Voss, 1986: a generalization of Theorem 1)

Theorem 3 For a region M of an infinite planar Gν,λ that has no
proper holes, we have α0 = λf/ν + l/2 + 1 , where l is the length
of the outer border cycle of M .
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General Case

(K. Voss, 1986: a generalization of Theorem 2)

Theorem 4 For a region M of an infinite planar Gν,λ and any of its
border cycles, we have k = ±ν + νl/λ where the outer border cycle
has the positive sign and any inner border cycle has the negative sign.

Suppose that M has r ≥ 1 border cycles. Let L be the total
length of all border cycles, and K the total number of all invalid
edges assigned to these border cycles:

r = 2 + L/λ − K/ν

r is a topologic invariant of M : L and K can be accumulated by
examining all 4-neighborhoods of points in M ; border cycle
tracing is not necessary
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Coursework

Related material in textbook: Sections 8.1.6 and 4.3.7. Solve
Exercise 13 on page 305.

A.12. [6 marks] Design and implement (two variants of ) an
algorithm for discrete column-wise integration in the picture
grid, such that the area (= number of grid points contained in a
simply connected region) is calculated in O(l) time when
tracing the l pixels on the (outer) border cycle of

(i) a 4-region (only isothetic steps on the border cycle), or

(ii) an 8-region (also allowing diagonal steps on the border
cycle).

Apply both variants of the algorithm to digitized disks (Gauss
digitization, grid resolution, e.g., between h = 32 and h = 1024)
and

(iii) discuss the behavior of relative errors (compared to the true
area of the disk) for increases in h; in particular,

(iv) with respect to Theorem 1 in Lecture 06?
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