
Algorithms
for Picture Analysis Lecture 11: Holes; Region Adjacency

Planarity for Graphs

[Z2, A8] shows the difficulty in defining holes for nonplanar
oriented adjacency graphs (see, e.g., page 10 of Lecture 10).

informal definition: A graph [S, A] is called planar iff it can be
drawn in a plane in such a way that its edges are drawn as
simple arcs that intersect only at nodes.

Two isomorphic representations of K3,3 on the left and of K5 on
the right. Both are nonplanar.

Assume a finite graph. Let α0 = card(S) and α1 = card(A).

A planar drawing of a planar graph partitions the plane into α2

faces (α2 − 1 internal faces, and one external face).

Euler’s formula for planar graphs:

α2 − α1 + α0 = 2

The frontier of each face defines a cycle ρ of λ(ρ) consecutive
directed edges.. The degree ν(p) of node p is equal to card(A(p)).∑

p∈S

ν (p) =
∑

ρ

λ (ρ) = 2α1
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Oriented Graphs

given: finite oriented adjacency graph [S, A, ξ]

as before: α0 = card(S) = number of nodes

α1 = card(A)/2 = number of (undirected) edges

ν(p) = card(A(p)) = number of nodes adjacent to p

λ(ρ) = length of cycle ρ = number of nodes on ρ

new: α2 = number of cycles (cycles defined by orientation ξ)

(also for nonplanar oriented graphs; if planar then α2 faces.)

Euler characteristic χ of a finite oriented adjacency graph is
defined by (without a potentially infinite exterior face)

χ = α0 − α1 + (α2 − 1)

Let χ+ = χ + 1 = α0 − α1 + α2 (i.e., with exterior face).

Theorem 1 χ+ ≤ 2 for any finite oriented adjacency graph.

α0 = 48, α1 = 66, α2 = , χ+ =

Definition 1 A (finite or infinite) oriented adjacency graph is called
planar iff either it is finite and has χ+ = 2 or is infinite and any of its
nonempty finite connected oriented subgraphs has χ+ = 2.
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Examples of Planar Oriented Graphs

1. For any planar finite graph [S, A] there is an orientation ξ

such that [S, A, ξ] is planar (i.e., with χ+ = 2).

2. [Z2, A4] using as orientation either the clockwise or
counterclockwise local circular order at all of its pixels

3. [Z2, As] (i.e., switch adjacency) using as orientation either a
clockwise or counterclockwise local circular order at all of its
pixels

Examples of Nonplanar Oriented Graphs

1. K3,3 with any orientation defined on it (always χ+ < 2)

2. K5 with any orientation defined on it (always χ+ < 2)

3. any subset of [Z2, A8] containing at least one 4× 4 square

Unlimited decrease of the Euler characteristic χ+ in the infinite
8-adjacency grid. The numbers below the rectangular oriented
graphs are values of χ+.
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The Separation Theorem

a basic task in picture analysis: trace the border of a region and
analyze this region based on calculated properties

This requires that the performed tracing actually separates
exactly all the pixels in the region from all the pixels not
contained in the region, such that property calculation is based
on the correct set of data. (In Euclidean geometry we have the
Jordan-Veblen curve theorem which states such a separation by
any simple curve.)

(K. Voss and R. Klette, 1986)

Theorem 2 Let [S, A, ξ] be a (finite or infinite) planar oriented
adjacency graph and M a nonempty finite connected proper subset of
S. Then [S, A, ξ] splits into at least two nonconnected substructures
when we delete the boundary of M .

Reminder: boundary = all undirected invalid edges that are
assigned to border cycles of M

Conclusion: The use of any planar oriented adjacency graph
guarantees the desired separation when tracing borders.
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Holes

Let G = [S, A, ξ] be an infinite oriented adjacency graph and M

a finite connected subset of S.

it follows: M has exactly one infinite complementary
component.

Definition 2 Any finite complementary component of M is called a
hole of M .

If S = Zn and the hole is α-connected, we call it an α-hole. For
example, regions in [Z2, A4] can have 8-holes that consist of
several 4-holes.

Three 1-components and six complementary 1-components
(two of these merge into one infinite background component).
1-holes in the grid cell model are 4-holes in the grid point
model.
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Proper and Improper Holes

If G is planar, M has exactly one border cycle, called its outer
border cycle, which separates M from its infinite complementary
component.

All other border cycles of M are called inner border cycles.

If complementary component A of M is separated from M by
border cycle ρ of M , we say that A is assigned to ρ.

Definition 3 Let M be a subset of an infinite planar oriented
adjacency graph. A complementary component of M that is assigned
to one of the inner border cycles of M is called a proper hole of M ,
and a finite complementary component that is assigned to the outer
border cycle of M is called an improper hole of M .

This region has one proper hole and two improper holes.
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Dual 4- and 8-Adjacency

We return to the figure shown in Lecture 02:

In this figure, 8-adjacency is assumed for black pixels, and
4-adjacency for white pixels (resulting into a nonplanar graph).
We delete a few redundant diagonal edges between black pixels,
and we add a few redundant diagonals between white pixels:

We obtain a picture in planar s-adjacency, where we prefer to
draw diagonals between black pixels if there is a “flip-flop case”
(i.e., two pairs of diagonally identical values).
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“White First”

If we assume 4-adjacency for black pixels, and 8-adjacency for
white pixels, then we delete a few redundant diagonal edges
between white pixels, and we add a few redundant diagonals
between black pixels:

We obtain a picture in planar s-adjacency, where we prefer to
draw diagonals between white pixels if there is a “flip-flop
case” (i.e., two pairs of diagonally identical values).

First Equivalence Theorem

Theorem 3 For any 2D binary picture, the dual use of 4- and
8-adjacency can be replaced by a uniform use of s-adjacency such that
the resulting families of components of white or black pixels are
identical for both cases.
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Region Adjacency Graphs

The set A(M) of all nodes adjacent to M ⊆ S (i.e., the set of all
p ∈ M such that A(p) ∩M 6= ∅), is called the adjacency set of M .

If M is finite, so is A(M).

A(M) is the set of border nodes of M (= coborder of M ).

The number of complementary components of M is at most
equal to the number of components of A(M).

Definition 4 If [S, A] is an adjacency graph, two disjoint subsets M1

and M2 of S are called adjacent (M1AM2 or (M1,M2) ∈ A) iff
A(M1) ∩M2 6= ∅.

Because A is symmetric, we have A(M1) ∩M2 6= ∅ iff
A(M2)∩M1 6= ∅ so that A is symmetric. Because M1 and M2 are
disjoint, A is irreflexive, so it is an adjacency relation on any
partition of S.

Definition 5 Let R be a partition of S into regions and (possibly) the
infinite background component. The undirected graph [R,A] is the
region adjacency graph of R.

Region adjacency graphs provide very useful and common
ways of describing the structure of a picture.
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Example of a Multilevel Picture

We assume 4-adjacency for all pixels in the picture P on the left,
which already shows the resulting components of
P -equivalence classes; edges between them illustrate region
adjacency:

The graph on the right shows the region 4-adjacency graph,
where each region in P is now represented by just one node.

Note: s-adjacency has a straightforward extension to multilevel
pictures. Assume a total order for picture values, and allow
diagonals in flip-flop cases according to the preference defined
by this total order. Discuss this for a simple example containing
flip-flop cases.
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Region s-Adjacency Graphs

A. Rosenfeld has shown in 1974:

Theorem 4 Let P be a binary picture defined by the dual use of 4-
and 8-adjacency, that is extended into Z2. Then the region adjacency
graph of P is a tree.

Corollary: There are only proper holes in this case; outer border
cycles of regions only separate the infinite background
component from the given region (and no improper holes at all).

By applying the Equivalence Theorem (page 8) it follows that
s-adjacency in binary pictures also allows to obtain region
adjacency graphs in form of trees, and to exclude improper
holes. Proper holes are called holes in these cases.

s-adjacency (uniquely defined by “black first”): draw the region
adjacency graph assuming that the infinite background is white
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Coursework

Related material in textbook: Sections 4.1.4 (the final part),
beginning of 4.2.1, 4.3.2, and 4.3.5. Do Exercises 9 and 11 on
page 154, and on page 10 of these notes.

A.11. [5 marks] Implement s-adjacency for “black first” (i.e.,
prefer diagonals between black pixels in flip-flop cases). Your
program should be able

(i) to interactively generate binary pictures (e.g., by drawing
binary pictures of size 32× 32 or larger, by cursor movement;
hint: visualize them magnified on screen); show the background
component by using a white frame around a generated picture,

(ii) to label uniquely all components of the picture (hint: FILL
algorithm; will be provided), and

(iii) (in a final interactive step) after moving the cursor onto a
component A, all the components adjacent to A should be
highlighted (hint: by increasing intensity values; this is another
use of FILL) and

(iv) below the curser (or in another window) list all labels of
those components which define holes in A.
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