
Algorithms
for Picture Analysis Lecture 10: Borders, Boundaries, and Cycles

4-Border and 4-Boundary

set S = black and white pixels; set M ⊆ S = black pixels

invalid edges = all edges between M and M = S \M

p ∈ M 4-inner pixel iff A4(p) ⊆ M (shown in gray)

p ∈ M 4-border pixel iff p not a 4-inner pixel (shown in black)

p ∈ M 4-coborder pixel iff A4(p) ∩M 6= ∅ (shown in gray)

4-boundary of M = set of all invalid edges
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8-Border and 8-Boundary

invalid edges = all edges between M and M = S \M

(note: 8-adjacency also defines diagonal edges)

p ∈ M 8-inner pixel iff A8(p) ⊆ M (shown in gray)

p ∈ M 8-border pixel iff p not a 8-inner pixel (shown in black)

p ∈ M 8-coborder pixel iff A8(p) ∩M 6= ∅ (shown in gray)

8-boundary of M = set of all invalid edges
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s-Border and s-Boundary

s(witch)-adjacency: one diagonal edge in each 2× 2 square

1. three pixel values equal: diagonal connects equal pixels

2. two diagonal pairs of pixels (flip-flop case; see both squares on
the right): diagonal between preferred values (assume a total
order of all picture values)

3. otherwise: lower left to upper right (just to specify a way)

s-inner pixel, s-border pixel, s-coborder pixel, and s-boundary
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Undirected Graph

[S, R] is a (simple undirected) graph iff S is a set and R is a
symmetric and irreflexive relation on S

pRq is equivalent to: “there is an edge {p, q} between node p

and node q”

nodes p, q are adjacent iff they are joined by an edge

[S, R] is an adjacency structure iff S is countable

examples: [Z2, A4] or [Z3, A18]

M ⊆ S (black nodes) also defines invalid edges, inner nodes,
border nodes, coborder nodes, and a boundary

Page 4 February 2005



Algorithms
for Picture Analysis Lecture 10: Borders, Boundaries, and Cycles

Oriented Adjacency Graph

[S, A] is an adjacency graph iff A(p) always finite, S is connected
with respect to A, and any finite subset M ⊆ S has at most one
infinite complementary component

region = a finite component of an adjacency graph

In a local circular order ξ(p) at node p ∈ S, the nodes 〈q1, . . . , qn〉
of A(p) appear exactly once each. We can use these local orders
to trace (directed) edges in [S, A] as follows: if we arrive at p

from qi ∈ A(p), we move next to qk, where k = i + 1 (modulo n).

We arrive at qi+1, let ξ(qi+1) = 〈r1, . . . , rl〉, and p = rk in this
local circular oder of A(qi+1). We move next to rk+1. Let
ξ(rk+1) = 〈s1, . . . , st〉, and qi+1 = sm in this local circular oder
of A(rk+1). We move next to sm+1; and so forth.

Oriented adjacency graph [S, A, ξ] iff any directed edge initiates a
cycle (and not an infinite path).
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Two Options for 4-Adjacency

All possible local circular orders for 4-adjacency.

Initiated 4-paths in the infinite grid point plane. Only two cases
(A and F) lead to oriented adjacency graphs.

Two Options for s- or 8-Adjacency

clockwise or counter-clockwise local circular orders define
oriented s- or 8-adjacency graphs
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Atomic and Border Cycles

A subset M ⊆ S induces a substructure [M,AM , ξM ] of an
oriented adjacency graph [S, A, ξ] where AM contains only those
adjacency pairs {p, q} such that p, q ∈ M and {p, q} ∈ A and
where, for any p ∈ M , ξM (p) is the reduced local circular order
defined by deleting from ξ(p) all nodes that are not in M . Such a
substructure is an oriented adjacency graph iff M is connected
with respect to AM .

The cycles of [M,AM , ξM ] may differ from the cycles of [S, A, ξ].
Let (p, q) be a directed edge in [M,AM , ξM ], let ρ1 be the cycle
generated by (p, q) in [M,AM , ξM ], and let ρ2 be the cycle
generated by (p, q) in [S, A, ξ].

Definition 1 ρ1 is an atomic cycle iff ρ1 = ρ2 and a border cycle
otherwise.
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Tracing a 4-Border Cycle

Given: directed invalid edge (q, p) from q ∈ M to p ∈ M ; let
(q0, p0) := (q, p) and assume the local circular order as shown.

Let ξ(p0) = 〈. . . , q0, q
?, . . .〉 be the local circular order at p0. Point

q? is the pixel above p0 which is not in M . We take the next pixel
in ξ(p0), which is the pixel right of p0: this is in M , and it is the
next pixel on the border cycle.

Stop: back to original directed invalid edge (p, q) (to step p0p1)
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General Border Tracing Algorithm

given: oriented adjacency graph; an directed invalid edge (p, q)
pointing to a border cycle.

1. Let (q0, p0) := (q, p), i := 0, and k := 0.

2. Let ξ(pi) = 〈. . . , qk, q?, . . .〉 be the local circular order
at pi. If q? ∈ M , go to Step 4.

3. Node q? is another node on the border cycle. Let i :=
i + 1 and pi := q?. Let ξ(pi) = 〈. . . , pi−1, q

?, . . .〉 be
the local circular order at pi. If q? ∈ M , go to Step 3;
otherwise, let k := i− 1, and go to Step 4.

4. If (q?, pi) = (q0, p0), go to Step 5. Otherwise, let k :=
k + 1 and qk := q?, and go to Step 2.

5. We are back at the original directed invalid edge (q, p).
The border cycle is 〈p0, p1, . . . , pi〉.

Because (p, q) initiates a cycle (see definition of oriented
adjacency graph), the algorithm will always stop.

Border tracing algorithms have been published by many
authors (the algorithm above by K. Voss and R. Klette in 1986).
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Tracing of an 8-Atomic Cycle

Tracing of 8-Border Cycles

Left: a finite 8-component M in [Z2, A8]. Middle: all 8-border
cycles of M . Right: all 8-border cycles of M .

(Compare discussion of reasons for dual use of 4- and
8-adjacency in Lecture 02)
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Tracing of s-Border Cycles

Left: a finite s-component M in [Z2, As] (rules for s-adjacency as
on page 3). Middle: all s-border cycles of M . Right: all s-border
cycles of M (note: s-atomic cycles circumscribe triangles).

Tracing of 4-Border Cycles

Left: a finite 4-component M in [Z2, A4]. Middle: all 4-border
cycles of M . Right: all 4-border cycles of M (note: 4-atomic
cycles circumscribe squares).
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Coursework

Related material in textbook: Sections 4.1.1, 4.1.3, beginning of
4.1.4, 4.3.1, 4.3.3, and the algorithmic parts of 4.3.4.

A.10. [5 marks] Calculate properties of digitized convex regions
(assumed to be 4-regions in binary pictures; see sketch below)

(i) by tracing their (outer) 4-border cycles,

(ii) during tracing update values P and A such that these
provide estimates for perimeter and area of a given convex
region; for P use the perimeter of the convex hull; you may use
Sklansky’s algorithm published on page 430 in the textbook
(note: this algorithm allows online convex hull calculation
during tracing of a 4-border cycle.), and

(iii) discuss how values of shape factors P2/4πA (see page 28 in
textbook) can be used for characterizing your digitized convex
regions (you may use different values of grid resolution h).
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Appendix: Comments on s-Adjacency

(2D) Consider a chessboard-like pattern of white and black squares in
the Euclidean plane. The question, whether the white or the black
squares are connected, can be answered by considering those points
where white and black squares ”meet” at corners. For example, if those
points are all black, then the black squares are all connected (in the
Euclidean topology). – Now consider a chessboard of white or black
pixels. The following drawing shows on the left “corner points” as
shaded squares, which can be either black or white. On the right, the
resulting s-adjacency is shown if all squares are black.

If a 2× 2 pattern of white or black pixels represents a flip-flop case,
then the diagonal is defined by the color of the (virtual) square
representing the corner point. Dashed lines are invalid edges:

Diagonals in the two patterns on the right are by default; we could
omit them without impact on connectedness of regions. Note that
s-adjacency can be defined for all pictures assuming a total order of
their values.
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(3D) Consider an alternating pattern of white and black cubes in the
Euclidean 3D space: again, corners of cubes decide whether black or
white cubes are connected. — For a set of voxels, we represent corner
points by regular polyhedrons having eight faces (i.e., an octahedron,
composed of equilateral triangles). The drawing shows on the right
one shaded voxel (a truncated cube) and on the left an octahedron
representing the corner vertex of eight voxels. (These octahedra and
truncated cubes are space-filling.)

Each truncated cube is labeled by one 3D picture value. Each
octahedron can only have one value (out of the range of all 3D picture
values, defined by a total order of all picture values: the ”most
important value” is inherited to the face-adjacent octahedron). The
resulting face-connectedness between equal-valued (virtual) octahedra
and (voxel representing) truncated cubes defines s-adjacency in 3D:
6-adjacency between voxels is this way complemented by additional
adjacencies.
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