
Algorithms
for Picture Analysis Lecture 07: Metrics

Axioms of a Metric

Picture analysis always assumes that pictures are defined in
coordinates, and we apply the Euclidean metric as the “golden
standard” for distance (or derived, such as area) measurements.
However, grids may create difficulties sometimes for applying
the Euclidean metric, or may suggest to use alternative metrics.

Let S be an arbitrary nonempty set. A function d : S × S 7→ R is
a distance function or metric on S iff it has the following
properties:

M1: For all p, q ∈ S, we have d(p, q) ≥ 0, and d(p, q) = 0
iff p = q (positive definiteness).

M2: For all p, q ∈ S, we have d(p, q) = d(q, p) (symmetry).

M3: For all p, q, r ∈ S, we have d(p, r) ≤ d(p, q) + d(q, r)
(triangularity: the triangle inequality).

If d is a metric on S, the pair [S, d] defines a metric space.

Page 1 February 2005



Algorithms
for Picture Analysis Lecture 07: Metrics

Let [S, d] be a metric space, p ∈ S, and ε > 0.

The set of points q ∈ S such that d(p, q) ≤ ε is called a ball of
radius ε with center p (or a disk if S is planar), and

Uε(p) = {q : q ∈ S ∧ d(p, q) < ε}

is the ε-neighborhood of p in S.

A subset M of S is called bounded iff it is contained in a ball of
some finite radius.

Euclidean Metric

Euclidean space En is defined with an orthogonal coordinate
system; it is used to define a metric de called the Euclidean metric:

de(p, q) =
√

(x1 − y1)2 + . . . + (xn − yn)2

where points p, q have coordinates (x1, . . . , xn) and (y1, . . . , yn).

Theorem 1 de is a metric on Rn.
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A Degenerate Example

Let S be a nonempty set, and we define that

db (p, q) =
{

0 if p = q

1 otherwise

[S, db] is a metric space (db is the binary metric):

M1:

M2:

M3:

[S, db] is bounded:

Bounded Metric Spaces

[Rn, de] are unbounded metric spaces.

If [S, d] is an unbounded metric space,

d′(p, q) =
d(p, q)

1 + d(p, q)

defines a metric d′ on S, and [S, d′] is a bounded metric space.
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Integer-Valued Metrics

Assume a real a:

bac, the largest integer less than or equal to a

dae, the smallest integer greater than or equal to a

[a], the nearest integer to a if it is unique,

and bac otherwise

For any function d : S × S 7→ R, we can define bdc by
bdc(p, q) = bd(p, q)c and similarly for dde and [d].

Even if d is a metric, these integer-valued functions may not be
metrics.

Example: bdec and [de] are not metrics on Z2.

Theorem 2 If d is a metric dde is also a metric.
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Minkowski Metrics

Minkowski metrics Lm on Rn, where L2 = de (Euclidean metric):

Lm(p, q) = m

√
|x1 − y1|m + . . . + |xn − yn|m (m = 1, 2, . . .)

L∞(p, q) = max{|x1 − y1|, . . . , |xn − yn|}

where p = (x1, x2, . . . , xn) and q = (y1, y2, . . . , yn).

Theorem 3 All the Lm are metrics on Rn, with

Lm1(p, q) ≤ Lm2(p, q) for all 1 ≤ m2 ≤ m1 ≤ ∞

and all p, q ∈ Rn.

Relation to Grid Adjacencies

L1(p, q) = |x1 − y1|+ . . . + |xn − yn|

Two 2D grid points p1 and p2 are 4-adjacent iff L1(p1, p2) = 1
and 8-adjacent iff L∞(p1, p2) = 1.

Two 3D grid points p1 and p2 are 6-adjacent iff L1(p1, p2) = 1
and 26-adjacent iff L∞(p1, p2) = 1.
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2D Grid Point Metrics

Let p, q ∈ R2, p = (x1, y1), q = (x2, y2), and

d4(p, q) = |x1 − x2|+ |y1 − y2|

[R2, d4] is a metric space; d4 is the Minkowski metric L1.

We call d4 the city-block metric or Manhattan metric because, when
we restrict it to Z2, d4(p, q) is the minimal number of isothetic
unit-length steps from p to q; it resembles a shortest walk in a
city with streets that are laid out in an orthogonal grid pattern.

Let p, q ∈ R2, p = (x1, y1), and q = (x2, y2), and

d8(p, q) = max{|x1 − x2|, |y1 − y2|}

[R2, d8] is a metric space; d8 is the Minkowski metric L∞.

We call d8 the chessboard metric because, when we restrict it to
Z2, d8(p, q) is the minimal number of moves from p to q by a
king on a chessboard.

Theorem 4 d8(p, q) ≤ de(p, q) ≤ d4(p, q) ≤ 2 · d8(p, q) for all
p, q ∈ R2
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The city block, Euclidean, and chessboard unit disks in the real
plane.

We have Uε(p) = {p} for ε ≤ 1 and any of the metrics ddee, d4

and d8 on Z2, or for the binary metric (on any set). Metrics on
grid cells are defined by identifying cells with their centers.

The ε-neighborhoods for ε = 1, 2, 3, 4, and 5 in the 2D grid cell
model defined by the city block (left), Euclidean (middle), and
chessboard (right) metrics.

For any grid point p, the smallest neighborhood of p in [Z2, dα]
(α ∈ {4, 8}) is defined by

Nα(p) = {q ∈ Z2 : dα(p, q) ≤ 1}
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3D Grid Point Metrics

Let p, q ∈ R3, p = (x1, y1, z1), and q = (x2, y2, z2), and

d6(p, q) = L1(p, q) = |x1 − x2|+ |y1 − y2|+ |z1 − z2|

d26(p, q) = L∞(p, q) = max{|x1 − x2|, |y1 − y2|, |z1 − z2|}

We also define

d18(p, q) = max{d26(p, q), dd6(p, q)/2e}

For any grid point p, the smallest neighborhood of p in [Z3, dα]
(α ∈ {6, 18, 26}) is defined by

Nα(p) = {q ∈ Z3 : dα(p, q) ≤ 1}

Nα(p)− {p} has cardinality α for α = 6, 18, and 26.

Theorem 5 d26(p, q) ≤ de(p, q) ≤ d6(p, q) ≤ 3 · d26(p, q) for all
p, q ∈ R3, and d26(p, q) ≤ d18(p, q) ≤ de(p, q) for all p, q ∈ Z3

such that de(p, q) 6=
√

3.

Page 8 February 2005



Algorithms
for Picture Analysis Lecture 07: Metrics

2D and 3D Geodesics

A sequence ρ of grid points (p0, p1, . . . , pn) such that
p0 = p, pn = q, and pi+1 is α-adjacent to pi (0 ≤ i ≤ n− 1) is
called an α-path of length n from p to q; p and q are called the
endpoints of ρ.

An α-path is called an α-geodesic if no shorter α-path with the
same endpoints exists.

Theorem 6 The length of a shortest α-path from p to q is dα(p, q).

It follows that an α-path ρ of length n is an α-geodesic iff the
dα-distance between the endpoints of ρ is n.

In Euclidean space, there is a unique shortest arc between any
two points p and q, which is namely the straight line segment
pq. In a grid, there can be many shortest α-paths between two
grid points, and these paths need not be digital straight line
segments.
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2D and 3D Intrinsic Distances

If S is an α-connected set of grid points, for any p, q ∈ S, there
exists an α-path ρ = (p0, p1, . . . , pn) from p0 = p to pn = q such
that the pis are all in S.

The length dS
α(p, q) of a shortest such path is called the intrinsic

α-distance in S from p to q. The α-eccentricity eS
α(p) is the

maximum of all dS
α(p, q), q ∈ S.

The intrinsic α-diameter dα(S) of S is the maximum intrinsic
α-distance between any of its points. This is equal to the
maximum α-eccentricity of all p ∈ S.

If the intrinsic diameter of a connected set S of pixels or voxels
is given by the intrinsic distance between p, q ∈ S, then both p

and q are on the border of S.
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The intrinsic α-radius rα(S) of S is the minimum α-eccentricity
of all p ∈ S.

p is an α-central pixel or voxel in S iff eS
α(p) = rα(S).

The α-center Cα(S) of S is the set of all α-central pixels or voxels
in S.

The intrinsic diameter of this 4-connected set is equal to the
intrinsic 4-distance between pixels p and q. All the filled dots
are 4-central pixels.

C. Jordan showed in 1869 that the centre of a tree is either a
single node or a pair of adjacent nodes.

More examples of 4-centers. Centers of (larger) simply
connected regions can be used to identify locations of these
regions.
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Coursework

Related material in textbook: Sections 1.2.1, 3.1.1, 3.1.2 (norms
not needed), 3.1.4, 3.1.6, 3.2.1, and parts of 3.2.4. Do Exercise 2
on page 113.

A.7. [5 marks] Implement a program which calculates the
intrinsic diameter (with respect to 4-adjacency) of any simply
4-connected set of pixels. (Hints: only a subset of border pixels
needs to be considered, and in graph theory you learned, for
example, about Dijkstra’s algorithm).

Visualize results for 4-regions of varying shape complexity and
size. Generate a diagram which summarizes the observed
runtime of your algorithm depending on the size (in numbers of
pixels) of used 4-regions.

Optional [1 mark]: you may extend your program such that it
also allows to calculate the 4-center of a given simply
4-connected set of pixels.
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Appendix: Center versus Centroid

For a finite set S = {p1, . . . , pn} of points in the plane,
pi = (xi, yi) for 1 ≤ i ≤ n, the centroid pc = (xc, yc) is defined by
the mean of all coordinates:

xc =
1
n

n∑
i=1

xi and yc =
1
n

n∑
i=1

yi

The centroid is unique, but in general not at a grid point
position. The center may contain more than just one pixel, but
all points in the center are at grid point position.
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