
Algorithms
for Picture Analysis Lecture 06: Multigrid Convergence

Variable Grid Resolution

Pictures are given at one particular grid resolution. There might
be alternative ways for generating pictures (showing, e.g., the
same scenery) at different grid resolutions (e.g., by changing
parameters of a flatbed scanner, or by generating a picture
pyramid). Tests or assumptions of varying grid resolution are
often a useful way of analyzing picture analysis procedures.

grid constant θ = the distance between neighboring grid lines
(i.e., θ > 0 is a real)

grid resolution h = the inverse of the grid constant; it refers to the
number of grid elements per unit of distance without specifying
the physical size of the unit (i.e., h > 0 is an integer).

example: grid resolution h = 1, then either one grid point in a
unit or two grid points as endpoints of a unit

in general: maximum number of grid points per unit is h + 1

Let Zh = {i/h : i ∈ Z}.

Z2
h is the set of all 2D grid points in a grid of resolution h > 0.

Z3
h is the set of all such 3D grid points.
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Grid Resolution Model

an original picture is assumed to be in (a rectangular subset of)
the unit square [0, 1]× [0, 1]

a digital picture is defined by some process of digitization,
which maps the original picture into a grid of resolution h

if implementing picture analysis procedures, it is common to
ignore the value of h (i.e., we just assume h = 1 and a grid in Z2)

studies depending on resolutions take h into account
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Example of A Picture’s Pyramid

the basic layer of the pyramid is the original picture of size
2n × 2n (i.e., the picture at grid resolution h = 2−n)

a layer of size 2m × 2m is mapped into the next layer of size
2m−1 × 2m−1 by mapping disjoint windows of 2× 2 pixels into a
single pixel (e.g., by taking the mean of all four pixel values)

top of pyramid: a 1× 1 picture of resolution h = 1
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C. F. Gauss (1777–1855) studied the measurement of the area of
a planar set S ⊂ R2 by counting the grid points (i, j) ∈ Z2

contained in S. This approach suggests the following:

Gauss Digitization

Let S be a subset of the plane. The Gauss digitization G(S) is the
union of the grid squares with center points in S (in general:
Gh(S), if a grid of resolution h is used).

Gauss digitization Gh(Π) of a simple polygon Π using grids of
resolutions h = 8 to h = 128; original polygon (basic layer of
pyramid) was drawn on a grid of resolution h = 512
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The original polygon Π has area 102,742.5 and perimeter
4,040.7966. . . if drawn on a 512× 512 grid.

Relative deviations of the area and perimeter of Gh(Π) from
those of Π when Π is digitized on a 2n × 2n grid (i.e., h = 2n).

The relative deviation is the absolute difference between
the property values for Gh(Π) and Π divided by the
property value for Π. The perimeter of Gh(Π) is the
number of 1-cells on its frontier times 1/h, and the area
of Gh(Π) is the number of 2-cells in Gh(Π) times 1/h2.

As discussed in Lecture 05: the perimeter of Gh(Π) is not an
acceptable estimate of the perimeter of Π (here: the relative
error seems to converge to 25%).
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However, the area of Gh(Π) seems to be a “pretty accurate”
estimator for the area of Π! Already at h = 16, the relative error
is close to zero!

Content Estimation

Gauss digitization is defined analogously in 3D. If S ⊂ R3, the
Gauss digitization Gh(S) is the union of all of the 3-cells (in a
grid of resolution h > 0) with center points in S.

A grid polyhedron is simple iff it is topologically equivalent to a
closed sphere.

The surface area S(Π) and the volume V(Π) of a simple grid
polyhedron Π are defined by the number of 2-cells that form the
frontier of Π multiplied by h−2 and the number of 3-cells
contained in Π multiplied by h−3, respectively.

Let S ⊂ Rn (n ≥ 1) be a closed bounded set that has measurable
content C(S), which is the length L(S) for n = 1, the area A(S)
for n = 2, and the volume V(S) for n = 3.

How to use grid polygons or grid polyhedra (i.e., the available
data in picture analysis) for estimating such properties of the
unknown original set?
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Studies in Number Theory

(just to tell some pointers to related mathematical studies)

S ⊂ Rn, h > 0 (our interest: n = 2 or n = 3)

magnification of S by factor h for n = 2:

Sh = h · S = {(h · x, h · y) : (x, y) ∈ S}

(i.e., this leaves the origin (0, 0) fixed)

N (S) = C(G(S)) = number of grid points (note: for h = 1) in S,
defined either for n = 2 or n = 3 by its Gauss digitization

suppose: Sh depends on only one parameter h > 0 (e.g., a disk
or a sphere of radius h)

h →∞, then N (Sh) = C(S1) · hn +O(hn−1)

O(. . .) is the “big-Oh” as known from discussions of
time complexities of algorithms.

H. Steinhaus (1947) for 2D: |N (S)− C(S)| ≤ 4(P(S) + 1)
(where we assume that content C(S) and perimeter P(S) are
defined)

( For further results, see E. Landau [1955] and H.
Davenport [1951] in the Bibliography of the textbook.)
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C. F. Gauss and his colleague P. Dirichlet (1805–1859) at
Göttingen University already knew that the number of grid
points (i, j) ∈ Z2 inside h · S, where S is a planar convex set,
estimates the area A(h · S) within an asymptotic order of
O(P(h · S)).

Note: S is convex, thus the perimeter P(h · S) is O(h).

Using the Grid Resolution Model

this “translates” from the magnification model (of number
theory, see E. Krätzel [1981]) into the grid-resolution model of
picture analysis as follows:

Theorem 1 For any planar convex set S and any grid resolution
h > 0, |A(Gh(S))−A(S)| = O(h−1) .

This result can be extended to nonconvex planar sets that can be
partitioned into finite numbers of convex sets.

The theorem implies that counting grid points inside such an
S provides a convergent estimate of A(S) as the grid
resolution h goes to infinity.
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Formalized General Evaluation Scheme

Let F be a family of sets S in Rn (the “objects of interest”, e.g. a
class of arcs or curves, or a class of volumes in 3D space).

Let digh(S) denote a digitization of S on a grid of resolution h

(e.g., grid-intersection or Gauss digitization)

Assume that a property Q (e.g., area, perimeter) is defined for
all S ∈ F.

Definition 1 An estimator EQ is multigrid convergent for F and
for digh iff, for any S ∈ F, there is a grid resolution hS > 0 such that
the estimated value EQ(digh(S)) is defined for any grid resolution
h ≥ hS , and

|EQ(digh(S)) − Q(S)| ≤ κ(h)

where κ is a function defined on the real numbers that takes on only
positive real values and converges to zero as h →∞.

The function κ specifies the speed of convergence. (Note: we had
linear convergence in n in case of Archimedes’ method of
estimating π.)

Examples: κ(h) = h−2 specifies quadratic convergence, and
κ(h) = h−1−a, a > 0, specifies superlinear convergence
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Example 1 (discussed before):

F = class of circles, digh(S) = grid-intersection digitization, Q =
perimeter, and EQ = the length of the resulting 8-curve

Result: there is no κ in this case (i.e., this is not a multigrid
convergent estimator)

Example 2 (discussed before):

F = class of planar convex regions, digh(S) = Gauss digitization,
Q = area, and EQ = the number of grid points in the digital set

Result: there is a function κ which is in the order of h−1 (i.e.,
this is a multigrid convergent estimator with [at least] linear
convergence)

Example 3 (to be discussed later):

F = class of planar rectifiable curves, digh(S) = grid-intersection
digitization, Q = length of curve, and EQ = the length of
polygonal chains defined by DSS-approximation of the given
curve

Result: there is a function κ(h) ≈ 4.5/h (i.e., this is a multigrid
convergent estimator with [at least] linear convergence, where
even an absolute upper bound is known)

Page 10 February 2005



Algorithms
for Picture Analysis Lecture 06: Multigrid Convergence

Two ways to study convergence with respect to increased grid
resolution:

(i) way in number theory: consider magnified sets h · S, but
always digitized on the same grid with unit grid constant

(ii): way in numeric mathematics or picture analysis: keep set S

at constant size and digitize it on grids with grid constant 1/h:

(‘forward option’) digitize a given curve in the unit
square for increasing resolutions, or

(‘backward option’) use a given high-resolution picture
as the basic layer of a picture pyramid, and derive
lower-resolution copies for the other layers of the
pyramid.

In both cases, h →∞ corresponds to an increase in grid
resolution.

This lecture uses (in general) approach (ii). This is motivated by
the assumed scenario in which the set to be analyzed remains
physically the same while improvements in hardware (e.g.,
scanners, computing power) allow refinements in grid
resolution.
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Coursework

Related material in textbook: Sections 2.1.2, 2.3.1, and 2.4. and
do Exercise 13 on page 72.

A.6. [5 marks] Do Exercise 12 on page 72. Note that the
midpoint of the digitized disk is not at a grid point position in
general for the varying values of h. We obtain a sequence of
relative errors (for increases in h) which is not always
monotonous in its behavior (i.e., monotonous decreasing or
increasing). A possible option is to use the sliding mean of this
sequence for obtaining a sequence of monotonous behavior. Of
course, the calculated Archimedes constant (i.e., value of h where
we achieve the same accuracy as Archimedes) will then depend
upon the width of the sliding mean.

Let e0, e1, e3, . . . be a sequence of reals. The sliding mean
is specified by one parameter, the width w = 2k + 1
which is a positive odd integer, and produces the
sequence mk,mk+1,mk+2, . . ., where mj is the mean of
w values of the original sequence:

mj =
1

2k + 1

j+k∑
i=j−k

ei

For example, you may start your experiments with w = 31.
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